Numerical Relativity for Space-Based Gravitational Wave Astronomy
NASA Technical Reports Server (NTRS)
Baker, John G.
2011-01-01
In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.
Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine
1996-01-01
A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,
Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments
NASA Astrophysics Data System (ADS)
Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.
2013-12-01
Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.
Physics and instrumentation of ultrasound.
Lawrence, John P
2007-08-01
A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.
The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities
NASA Astrophysics Data System (ADS)
Bergman, J. E. S.
2013-09-01
We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L
The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems.more » We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. B.; Abernathy, D. L.; Ehlers, G.
The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. Wemore » have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.« less
The Polar Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.
1995-01-01
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
NASA Technical Reports Server (NTRS)
1984-01-01
A software program for the production and analysis of data from the Dynamics Explorer-A (DE-A) satellite was maintained and modified and new software initiated. A capability was developed to process DE-A plasma-wave instrument mission analysis files on the Tektronic 4027 color CRT, for which two programs were written. The algorithm for the calibration lookup table for the plasma-wave instrument data was modified and verified, and a production program to generate color FR-80 spectrograms was written.
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
NASA Technical Reports Server (NTRS)
Schuler, D. L.; Eng, W. P.
1984-01-01
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.
The 2010 Polar Aeronomy and Radio Science (PARS) Summer School
2011-12-30
Ionospheric Plasma ........................................................................26 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS ...facility‟s most distant diagnostic pad. This instrument, called the Geomagnetic Observatory System ( GMOS ) is capable of measuring very small...angles 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS 3.7.1. Investigators J. Gancarz, R. Pradipta, and Min-Chang Lee (Mentor
Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy
NASA Technical Reports Server (NTRS)
Moseley, Samuel H.
2012-01-01
The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.
NASA Technical Reports Server (NTRS)
Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.
1985-01-01
This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping
2018-05-01
We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
Field Testing GEOICE: A Next-Generation Polar Seismometer
NASA Astrophysics Data System (ADS)
Beaudoin, B. C.; Winberry, J. P.; Huerta, A. D.; Chung, P.; Parker, T.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.
2015-12-01
We report on the development of a new NSF MRI-community supported seismic observatory designed for studies in ice-covered regions - the Geophysical Earth Observatory for Ice Covered Environs (GEOICE). This project is motivated by the need to densify and optimize the collection of high-quality seismic data relevant to key solid Earth and cryosphere science questions. The GEOICE instruments and their power and other ancillary systems are being designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field. The system is capable of advanced data handling and telemetry while being able to withstand conditions associated with icy environments, including cold/wet conditions and high-latitude solar limitations. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements for observation of both long-period signals (e.g, long-period surface waves and slow sources) and intermediate-to-short-period signals (e.g., teleseismic body waves, local seismicity, and impulsive or extended glaciogenic signals).Key features will include a design that integrates the seismometer and digitizer into a single, environmentally and mechanically robust housing; very low power requirements (~1 watt) for the intermediate-band systems; and advanced power systems that optimize battery capacity and operational limits. The envisioned ~100 element GEOICE instruments will nearly double the current polar inventory of stations and will be maintained and supported at the IRIS PASSCAL Instrument Center to ensure full and flexible peer-reviewed community use. Prototype instruments are currently deployed in Antarctica and Alaska, with a larger Antarctic deployment planned for the 2015-2016 season. The results of these field tests will help to refine instrumentation design and lead to the production of robust and capable next-generation seismic sensors.
High Data Density Temperature Measurement for Quasi Steady-State Flows
NASA Technical Reports Server (NTRS)
Mercer, C. R.; Rashidnia, N.; Creath, K.
1996-01-01
A new optical instrument, the liquid crystal point diffraction interferometer (LCPDI), is used to measure the temperature distribution across a heated chamber filled with silicone oil. Data taken using the LCPDI are compared to equivalent measurements made with a traversing thermo-couple and the two data sets show excellent agreement. This instrument maintains the compact, robust design of Linniks point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave-fronts with very high data density and with automated data reduction.
Biodamage via shock waves initiated by irradiation with ions.
Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V
2013-01-01
Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission
NASA Technical Reports Server (NTRS)
Kurth, W. S.
2001-01-01
The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.
The Unified Radio and Plasma wave investigation
NASA Technical Reports Server (NTRS)
Stone, R. G.; Bougeret, J. L.; Caldwell, J.; Canu, P.; De Conchy, Y.; Cornilleau-Wehrlin, N.; Desch, M. D.; Fainberg, J.; Goetz, K.; Goldstein, M. L.
1992-01-01
The scientific objectives of the Ulysses Unified Radio and Plasma wave (URAP) experiment are twofold: (1) the determination of the direction, angular size, and polarization of radio sources for remote sensing of the heliosphere and the Jovian magnetosphere and (2) the detailed study of local wave phenomena, which determine the transport coefficients of the ambient plasma. A brief discussion of the scientific goals of the experiment is followed by a comprehensive description of the instrument. The URAP sensors consist of a 72.5 m electric field antenna in the spin plane, a 7.5-m electric field monopole along the spin axis of a pair of orthogonal search coil magnetic antennas. The various receivers, designed to encompass specific needs of the investigation, cover the frequency range from dc to 1 MHz. A relaxation sounder provides very accurate electron density measurements. Radio and plasma wave observations are shown to demonstrate the capabilities and limitations of the URAP instruments: radio observations include solar bursts, auroral kilometric radiation, and Jovian bursts; plasma waves include Langmuir waves, ion acousticlike noise, and whistlers.
Status of the PAPPA experiment
NASA Technical Reports Server (NTRS)
Kogut, Alan
2006-01-01
The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a balloonborne instrument to measure the polarization of the cosmic microwave background and search for the signature of primordial gravity waves. PAPPA uses a novel marriage of RF phase modulation and millimeter-wave bolometric detectors to produce a "polarimeter-on-a-chip" capable of simultaneously measuring the Stokes I, Q, and U parameters on the sky. I will discuss the current status and future plans for PAPPA.
Lunar surface gravimeter experiment
NASA Technical Reports Server (NTRS)
Giganti, J. J.; Larson, J. V.; Richard, J. P.; Tobias, R. L.; Weber, J.
1977-01-01
The lunar surface gravimeter used the moon as an instrumented antenna to search for gravitational waves predicted by Einstein's general theory of relativity. Tidal deformation of the moon was measured. Gravitational radiation is a channel that is capable of giving information about the structure and evolution of the universe.
NASA Astrophysics Data System (ADS)
Krisdiana, A.; Aminah, N. S.; Nurosyid, F.
2018-03-01
This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.
Detection and Characterization of Micrometeoroid Impacts on LISA Pathfinder
NASA Astrophysics Data System (ADS)
Hourihane, S.; Littenberg, T.; Baker, J. G.; Pagane, N.; Slutsky, J. P.; Thorpe, J. I.
2017-12-01
LISA Pathfinder (LPF) was a joint ESA/NASA technology demonstration mission for the Laser Interferometer Space Antenna (LISA) gravitational wave observatory. LPF, the most sensitive accelerometer ever flown in space, was launched in December 2015 and successfully concluded its mission in July 2017. Due in part to LPFs success, LISA was selected by the European Space Agency for launch in the early 2030s. An ancillary benefit of LPFs capabilities made it a sensitive detector of micrometeoroid impacts. We report on the capabilities of LPF to detect and characterize impacts, and progress towards using those inferences to advance our understanding of the micrometeoroid environment in the solar system. In doing so, we assess the prospect of space-based gravitational wave observatories as micrometeoroid detection instruments.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.
2014-12-01
ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.
The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results
NASA Astrophysics Data System (ADS)
Cornilleau-Wehrlin, N.; Alleyne, H. St. C.; Yearby, K. H.; de La Porte de Vaux, B.; Meyer, A.; Santolík, O.; Parrot, M.; Belmont, G.; Rezeau, L.; Le Contel, O.; Roux, A.; Attié, D.; Robert, P.; Bouzid, V.; Herment, D.; Cao, J.
2005-11-01
The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location.
Gravity Waves and Tidal Measurement Capabilities from a Space-borne Lidar across the Mesopause.
NASA Astrophysics Data System (ADS)
Dawkins, E. C. M.; Gardner, C. S.; Kaifler, B.; Marsh, D. R.; Janches, D.
2017-12-01
A new proposed NASA mission, ACaDAMe (Atmospheric Coupling and Dynamics Across the Mesopause region) consists of a space-borne sodium lidar, mounted upon the International Space Station. Combining the advantages of a lidar with the near-global coverage provided by the ISS (orbital inclination: 51.6o, orbital period: 92.7 mins), the ACaDAMe mission has enormous potential to quantify the waves that provide the major momentum and energy forcing of the Ionosphere-Thermosphere-Mesosphere system from below. Specifically, this mission seeks to quantify the dominant wave momentum and energy inputs across the mesopause, and identify the near-global distribution of gravity waves and tides that impact the Thermosphere/Ionosphere and are the terrestrial drivers of Space Weather. Leveraging on existing instrument heritage and expertise, this nadir-pointing narrowband lidar would be tuned to two-frequencies (at the peak of the D2a line, and at the minimum between the D2a and D2b peaks), with a capability to retrieve vertically-resolved [Na] and temperature, T, for both nighttime and daytime conditions. Here we outline the proposed mission, present an error characterization for [Na] and T, and describe the capabilities to estimate gravity waves and tidal features which will provide a crucial role in advancing our understanding of small-scale dynamical processes and coupling across this important atmospheric region.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Samara, Marilia; Hancock, Barry; Wicks, Robert; Moore, Tom; Rust, Duncan; Jones, Jonathan; Saito, Yoshifumi; Pollock, Craig; Owen, Chris; Rae, Jonny
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves). A novel capability to time tag individual electron events during short intervals for the purposes of ground analysis of wave-particle interactions is also planned.
Obtaining changes in calibration-coil to seismometer output constants using sine waves
Ringler, Adam T.; Hutt, Charles R.; Gee, Lind S.; Sandoval, Leo D.; Wilson, David C.
2013-01-01
The midband sensitivity of a broadband seismometer is one of the most commonly used parameters from station metadata. Thus, it is critical for station operators to robustly estimate this quantity with a high degree of accuracy. We develop an in situ method for estimating changes in sensitivity using sine‐wave calibrations, assuming the calibration coil and its drive are stable over time and temperature. This approach has been used in the past for passive instruments (e.g., geophones) but has not been applied, to our knowledge, to derive sensitivities of modern force‐feedback broadband seismometers. We are able to detect changes in sensitivity to well within 1%, and our method is capable of detecting these sensitivity changes using any frequency of sine calibration within the passband of the instrument.
Topcu, K Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-07-01
The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups.
Topcu, K. Meltem; Karatas, Ertugrul; Ozsu, Damla; Ersoy, Ibrahim
2014-01-01
Objectives: The aim of this study was to compare the canal debridement capabilities of three single file systems, ProTaper, and K-files in oval-shaped canals. Materials and Methods: Seventy-five extracted human mandibular central incisors with oval-shaped root canals were selected. A radiopaque contrast medium (Metapex; Meta Biomed Co. Ltd., Chungcheongbuk-do, Korea) was introduced into the canal systems and the self-adjusting file (SAF), WaveOne, Reciproc, ProTaper, and K-files were used for the instrumentation of the canals. The percentage of removed contrast medium was calculated using pre- and post-operative radiographs. Results: An overall comparison between the groups revealed that the hand file (HF) and SAF groups presented the lowest percentage of removed contrast medium, whereas the WaveOne group showed the highest percentage (P < 0.001). The ProTaper group removed more contrast medium than the SAF and HF groups (P < 0.05). Conclusions: None of the instruments was able to remove the contrast medium completely. WaveOne performed significantly better than other groups. PMID:25202211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.C.; Ricco, A.J.; Butler, M.A.
There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.
Ulysses radio and plasma wave observations in the Jupiter environment
NASA Technical Reports Server (NTRS)
Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.
1992-01-01
The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.
NASA Astrophysics Data System (ADS)
McIlvenny, J.; Campuzano, F.; Goddijn-Murphy, L.
2016-02-01
Surface autonomous marine robots allow the collection of environmental data for weeks or months at a time in difficult to reach or extreme oceanic environments. Wave glider technology has improved in recent years and is now capable of carrying instruments from different manufacturers1, such as ADCP, wave modules, and acoustic sensors2. Here we investigate the suitability of surface based robotic platforms for the collection of environmental data for the renewable energy industry. The Waveglider robotic platform was chosen for this study, representing one of the most advanced platforms in its class. Two sites were chosen: Farr point in North Scotland and Nazare in Portugal. Both study sites are potential locations for wave energy development. We present the results of two simultaneous field campaigns using Waveglider technology. Of particular importance to the study were data integrity and accuracy, platform ability, performance and durability and risk. The project's main aims were to test the platform's capabilities and collect wave data from two wave energy lease sites. The wave data from the Waveglider are compared to nearshore wave height and period data from simultaneous overhead passes by the altimeter satellite AltiKa3. In addition, Waverider buoys were also deployed and recording wave characteristics at both sites visited by the Waveglider. We present the preliminary inter-comparison between the three wave datasets at both sites and assess the performance of the Waveglider technology.
THOR Field and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek
2016-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Development of the Next Generation of Seismological Instrumentation for Polar Environments
NASA Astrophysics Data System (ADS)
Winberry, J. P.; Anderson, K. R.; Huerta, A. D.; Bernsen, S. P.; Parker, T.; Carpenter, P.; Woodward, R.; Beaudoin, B. C.; Bilek, S. L.
2014-12-01
Ice covered regions comprise >10% of Earth's continental area; and include regions with poorly understood ice dynamics, ice shelf stability, hydrology, tectonic histories and basic geologic structure both deep and shallow. Scientific investigations of these regions are challenged by extreme weather, limited and expensive logistics, and the physical conditions of the ice environment. We report on the next development of a new NSF MRI-supported community seismic capability for studying ice-covered regions- the Geophysical Earth Observatory for Ice Covered Environments (GEOICE). This project is fundamentally motivated by the need to densify and optimize the collection of high-quality data relevant to key solid Earth and cryosphere science questions. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements, for observation of both long-period (e.g., long-period surface waves and slow sources) and intermediate-to-short-period (e.g., teleseismic body waves local seismicity, impulsive or extended glaciogenic signals). The GEOICE instrument, and its power and other ancillary systems, will be specifically designed to both withstand conditions associated with icy environments, including cold/wet conditions and high-latitude solar limitations, and to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field, in data handling, and in telemetry compatibility. Key features will include a design that integrates the seismometer and data logger into a single environmentally and mechanically robust housing, very low power requirements (<~1 watt) for the intermediate-band systems, and advanced power/battery systems that optimize battery capacity and operational limits. The envisioned ~125 element GEOICE instruments will nearly double the current polar inventory of stations and will be maintained and supported at the IRIS PASSCAL Instrument Center to ensure full and flexible peer-reviewed community use.
NASA Technical Reports Server (NTRS)
2000-01-01
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.
2011-01-01
An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232
INTEGRAL IBIS, SPI, and JEM-X observations of LVT151012
NASA Astrophysics Data System (ADS)
Savchenko, V.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Ferrigno, C.; Hanlon, L.; von Kienlin, A.; Kuulkers, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Natalucci, L.; Roques, J. P.; Siegert, T.; Sunyaev, R.; Ubertini, P.
2017-07-01
During the first observing run of LIGO, two gravitational wave events and one lower-significance trigger (LVT151012) were reported by the LIGO/Virgo collaboration. At the time of LVT151012, the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) was pointing at a region of the sky coincident with the high localization probability area of the event and thus permitted us to search for its electromagnetic counterpart (both prompt and afterglow emission). The imaging instruments on board INTEGRAL (IBIS/ISGRI, IBIS/PICsIT, SPI, and the two JEM-X modules) have been exploited to attempt the detection of any electromagnetic emission associated with LVT151012 over three decades in energy (from 3 keV to 8 MeV). The omni-directional instruments on board the satellite, I.e., the SPI-ACS and the IBIS/Veto, complemented the capabilities of the IBIS/ISGRI and IBIS/PICsIT for detections outside their imaging field of view in order to provide an efficient monitoring of the entire LVT151012 localization region at energies above 75 keV. We did not find any significant transient source that was spatially and/or temporally coincident with LVT151012, obtaining tight upper limits on the associated hard X-ray and γ-ray radiation. For typical spectral models, the upper limits on the fluence of the emission from any 1 s counterpart of LVT151012 ranges from Fγ = 3.5 × 10-8 erg cm-2 (20-200 keV), within the field of view of the imaging instruments, to Fγ = 7.1 × 10-7 erg cm-2 (75-2000 keV), considering the least favorable location of the counterpart for a detection by the omni-directional instruments. These results can be interpreted as a tight constraint on the ratio of the isotropic equivalent energy released in the electromagnetic emission to the total energy of the gravitational waves: E75-2000 keV/EGW< 4.4 × 10-5. Finally, we provide an exhaustive summary of the capabilities of all instruments on board INTEGRAL to hunt for γ-ray counterparts of gravitational wave events, exploiting both serendipitousand pointed follow-up observations. This will serve as a reference for all future searches.
THOR Fields and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud
2017-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.
1999-01-01
We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
Weather Radars and Lidar for Observing the Atmosphere
NASA Astrophysics Data System (ADS)
(Vivek) Vivekanandan, J.
2010-05-01
The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.
The Demonstration and Science Experiments (DSX) Mission
NASA Astrophysics Data System (ADS)
McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.
2015-12-01
In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.
Wide-Band Heterodyne Submillimetre Wave Spectrometer for Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Schlecht, Erich
2010-01-01
We present calculations and measurements on a passive submillimetre wave spectroscopic sounder to gather data on the thermal structure, dynamics and composition of the upper atmosphere of a planet, e.g. the stratosphere of Jupiter, or the entire thickness of the atmosphere of Mars. The instrument will be capable of measuring wind speeds, temperature, pressure, and key constituent concentrations in the stratosphere of the target planet. This instrument consists of a Schottky diode based front end and a digital back-end spectrometer. It differs from previous space-based spectrometers in its combination of wide tunability (520-590 GHz), and rapid frequency switching between widely spaced lines within that range. This will enable near simultaneous observation of multiple lines, which is critical to the reconstruction of atmospheric pressure and density versus altitude profiles. At the same time frequency accuracy must be high to enable wind speeds to be determined directly by measurement of the line's Doppler shift.
The Radio & Plasma Wave Investigation (RPWI) for JUICE
NASA Astrophysics Data System (ADS)
Wahlund, J.-E.
2013-09-01
We present the Radio & Plasma Waves Investigation (RPWI) selected for implementation on the JUICE mission. RPWI consists of a highly integrated instrument package that provides a whole set of plasma and fields measurements. The RPWI instrument has outstanding new capabilities not previously available to outer planet missions, and that would address many fundamental planetary science objectives. Specifically, RPWI would be able to study the electro-dynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa and Callisto. RPWI would also be able to monitor the sources of radio emissions from auroral regions of Ganymede and Jupiter, and possibly also from lightning activity in Jupiter's clouds. Moreover, RPWI will search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter.
The DC-8 Submillimeter-Wave Cloud Ice Radiometer
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James
2000-01-01
An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.
NASA Technical Reports Server (NTRS)
Shawhan, S. D.
1982-01-01
The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.
TerraSAR-X Measurements of Wind Fields, Ocean Waves and Currents
NASA Astrophysics Data System (ADS)
Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.
2008-01-01
TerraSAR-X is a new german X-band radar satellite launched on June 15, 2007. In this mission an operational spaceborne synthetic aperture radar (SAR) system with very high spatial resolution is set up producing remote sensing products for commercial and scientific use. TerraSAR-X is a scientific and technological continuation of the successful Space Shuttle missions SIR-C/X and SRTM.The spacecraft is equipped with a phased array X-band SAR, which can operate in different polarisations and has furthermore beam stearing capabilities. In addition the system has a split antenna mode, which is able to provide along track interferometric information. The instrument is designed for multiple imaging modes like Stripmap, Spotlight and ScanSAR.Due to its polarimetric and interferometric capabilities as well as the high spatial resolution of up to 1 m, the TerraSAR-X sensor is a very interesting tool for oceanography. The presentation will give an overview of several applications, which are of both scientific and commercial interest, like e.g. current and ocean wave measurements, monitoring of morphodynamical processes or high resolution wind field retrieval. The potential as well as limitations of the instrument will be summarized and compared with existing sensors. Necessary steps to translate existing C-band SAR inversion algorithms for wind and wave measurements to X-band will be discussed. A strategy will be outlined to achieve this by a combination of theoretical investigations and the use of existing experimental data acquired by both airborne and groundbased X-band radar. First results on the adaption of existing C-band wind retrieval algorithms will be presented. Wind and ocean wave parameter retrievals will be presented, e.g., based on TerraSAR-X scenes taken over the English channel.
Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen
2010-01-01
Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298
Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements
NASA Technical Reports Server (NTRS)
Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.
NASA Astrophysics Data System (ADS)
Spence, Harlan; Reeves, Geoffrey
2012-07-01
The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.
Brown, Adrian; Walter, Malcolm; Cudahy, Thomas
2004-01-01
Rover missions to the rocky bodies of the Solar System and especially to Mars require lightweight, portable instruments that use minimal power, require no sample preparation, and provide suitably diagnostic mineralogical information to an Earth-based exploration team. Short-wave infrared (SWIR) spectroscopic instruments such as the Portable Infrared Mineral Analyser (PIMA, Integrated Spectronics Pty Ltd., Baulkham Hills, NSW, Australia) fulfill all these requirements. We describe an investigation of a possible Mars analogue site using a PIMA instrument. A survey was carried out on the Strelley Pool Chert, an outcrop of stromatolitic, silicified Archean carbonate and clastic succession in the Pilbara Craton, interpreted as being modified by hydrothermal processes. The results of this study demonstrate the capability of SWIR techniques to add significantly to the geological interpretation of such hydrothermally altered outcrops. Minerals identified include dolomite, white micas such as illite-muscovite, and chlorite. In addition, the detection of pyrophyllite in a bleached and altered unit directly beneath the succession suggests acidic, sulfur-rich hydrothermal activity may have interacted with the silicified sediments of the Strelley Pool Chert.
Cavity-Enhanced Quantum-Cascade Laser-Based Instrument for Trace gas Measurements
NASA Astrophysics Data System (ADS)
Provencal, R.; Gupta, M.; Owano, T.; Baer, D.; Ricci, K.; O'Keefe, A.
2005-12-01
An autonomous instrument based on Off-Axis Integrated Cavity Output Spectroscopy has been successfully deployed for measurements of CO in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument consists of a measurement cell comprised of two high reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data acquisition electronics, and data analysis software. The instrument reports CO mixing ratio at a 1-Hz rate based on measured absorption, gas temperature and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41000 ft, the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. We will also present recent development efforts to extend the instrument's capabilities for the measurements of CH4, N2O and CO in real time.
Progress and Prospects toward a Space-based Gravitational-Wave Observatory
NASA Technical Reports Server (NTRS)
Baker, John
2012-01-01
Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.
SMILES/AOS: acousto-optical spectrometer for high resolution submillimeter-wave spectroscopy
NASA Astrophysics Data System (ADS)
Mazuray, L.; Barthès, J.-C.; Bayle, F.; Castel, D.; Claviere, P.; Delbru, F.; Doittau, P.-O.; Gladin, L.; Guilleux, P.; Halbout, S.; Lavielle, D.; Varin, J.-L.; de Zotti, S.; Rosolen, C.; Ozeki, H.
2017-11-01
An acousto-optical spectrometer (AOS) is employed in order to meet scientific mission objectives of submillimeter-wave limb-emission sounder (SMILES) to be aboard the Japanese Experiment Module (JEM) of International space station (ISS). AOS is developed by ASTRIUM for the Japanese space agency (NASDA). The capability of multi channel detection with AOS is suitable for observing multi-chemical species in a wide frequency region. Low noise of the AOS enables us to obtain the spectra with a very high sensitivity. Several technical concerns relating to important instrumental characteristics of AOS are discussed and expected performance of the design are overviewed.
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Source spectral variation and yield estimation for small, near-source explosions
NASA Astrophysics Data System (ADS)
Yoo, S.; Mayeda, K. M.
2012-12-01
Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.
Premier's imaging IR limb sounder
NASA Astrophysics Data System (ADS)
Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi
2017-11-01
The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.
NASA Technical Reports Server (NTRS)
Lin, Bing
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.
MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range
Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...
2015-09-10
In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less
Gravity Wave Variances and Propagation Derived from AIRS Radiances
NASA Technical Reports Server (NTRS)
Gong, Jie; Wu, Dong L.; Eckermann, S. D.
2012-01-01
As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).
System Design of One-chip Wave Particle Interaction Analyzer for SCOPE mission.
NASA Astrophysics Data System (ADS)
Fukuhara, Hajime; Ueda, Yoshikatsu; Kojima, Hiro; Yamakawa, Hiroshi
In past science spacecrafts such like GEOTAIL, we usually capture electric and magnetic field waveforms and observe energetic eletron and ion particles as velocity distributions by each sensor. We analyze plasma wave-particle interactions by these respective data and the discussions are sometimes restricted by the difference of time resolution and by the data loss in desired regions. One-chip Wave Particle Interaction Analyzer (OWPIA) conducts direct quantitative observations of wave-particle interaction by direct 'E dot v' calculation on-board. This new instruments have a capability to use all plasma waveform data and electron particle informations. In the OWPIA system, we have to calibrate the digital observation data and transform the same coordinate system. All necessary calculations are processed in Field Programmable Gate Array(FPGA). In our study, we introduce a basic concept of the OWPIA system and a optimization method for each calculation functions installed in FPGA. And we also discuss the process speed, the FPGA utilization efficiency, the total power consumption.
NASA Astrophysics Data System (ADS)
Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.
2012-12-01
We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.
Plasma wave observations during ion gun experiments
NASA Astrophysics Data System (ADS)
Olsen, R. C.; Weddle, L. E.; Roeder, J. L.
1990-06-01
Experiments in charge control on the AF/NASA P78-2 (SCATHA) satellite were conducted with a plasma/ion source in the inner magnetosphere. These experiments were monitored with plasma wave instruments capable of high temporal and frequency resolution in the 0-6 kHz frequency range. Ion gun experiments revealed two distinct classes of behavior. Nonneutralized ion beam operation at 1 mA, 1kV resulted in arcing signatures (spiky in time, broad frequency range), coincident with induced satellite potentials of -600 to -900 V. This signature disappeared when the accelerating voltage was switched off or the beam was neutralized. The signal is attributed to arcing between differentially charged surfaces. An additional feature was noted in the 100-kHz channel of the wave receiver. During emission of dense, low-energy plasma, a signal is generated which may be at the upper hybrid, or plasma frequency for the local plasma.
CASOAR - An infrared active wave front sensor for atmospheric turbulence analysis
NASA Astrophysics Data System (ADS)
Cariou, Jean-Pierre; Dolfi, Agnes
1992-12-01
Knowledge of deformation of every point of a wave front over time allows statistical turbulence parameters to be analyzed, and the definition of real time adaptive optics to be designed. An optical instrumentation was built to meet this need. Integrated in a compact enclosure for experiments on outdoor sites, the CASOAR allows the deformations of a wave front to be measured rapidly (100 Hz) and with accuracy (1 deg). The CASOAR is an active system: it includes its own light source (CW CO2 laser), making it self-contained, self-aligned and insensitive to spurious light rays. After being reflected off a mirror located beyond the atmospheric layer to be analyzed (range of several kilometers), the beam is received and detected by coherent mixing. Electronic phase is converted in optical phase and recorded or displayed in real time on a monitor. Experimental results are shown, pointing out the capabilities of this device.
Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Parrish, A.; Dezafra, R.; Solomon, P.
1981-01-01
The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Hauchecorne, A.; Cammas, J.-P.; Marqestaut, N.; Mariscal, J.-F.; Posny, F.; Payen, G.; Porteneuve, J.; Keckhut, P.
2018-04-01
A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument's capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum.
Cutting efficiency of Reciproc and waveOne reciprocating instruments.
Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca
2014-08-01
The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Solid state instrumentation concepts for earth resource observation
NASA Technical Reports Server (NTRS)
Richard, H. L.
1982-01-01
Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.
Development of an angle-scanning spectropolarimeter: Preliminary results
NASA Astrophysics Data System (ADS)
Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk
2018-02-01
A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LiVecchi, Albert
The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriatemore » instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.« less
Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna
2014-01-01
In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.
Measurement study on stratospheric turbulence generation by wave-wave interaction
NASA Astrophysics Data System (ADS)
Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef
2017-04-01
During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.
Plasma wave observations at comet giacobini-zinner.
Scarf, F L; Coroniti, F V; Kennel, C F; Gurnett, D A; Ip, W H; Smith, E J
1986-04-18
The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.
Principles of Space Plasma Wave Instrument Design
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1998-01-01
Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.
CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.
2017-12-01
A new satellite design permits broad science measurements from the ocean to the ionosphere by flying below the F-Layer. The satellite called CARINA for Coastal-Ocean, Assimilation, Radio, Ionosphere, Neutral-Drag, and Atmospherics. The unique system capabilities are long duration orbits below the ionosphere and a HF receiver to measure broadband signals. The CARINA science products include recording the ocean surface properties, data for assimilation into global ionosphere models, radio wave propagation measurements, in-situ observations of ionospheric structures, validating neutral drag models and theory, and broadband atmospheric lightning characterization. CARINA will also measure nonlinear wave-generation using ionospheric modification sites in Alaska, Norway, Puerto Rico, and Russia and collaborate with geophysics HF radars (such as Super-DARN) for system calibration. CARINA is a linear 6-U CubeSat with a long antenna extended in the wake direction. The CARINA science mission is supported by three instruments. First, the Electric Field Instrument (EFI) is a radio receiver covering the 2 to 18 MHz range. The receiver can capture both narrow and wide bandwidths for up to 10 minutes. EFI is designed to provide HF signal strength and phase, radar Doppler shift and group delay, and electron plasma density from photoelectron excited plasma waves. Second a Ram Langmuir Probe (RLP) measures high-resolution ion currents at a 10 kHz rate. These measurements yield electron and ion density at the spacecraft. Finally, the Orbiting GPS Receiver (OGR) provides dual frequency GPS position with ionosphere correction. OGR also measures total electron content above the spacecraft and L-Band scintillations. CARINA will be the lowest satellite in orbit at 250 km altitude, <0.01 eccentricity, and up to 4-month lifetime. The design supports unique capabilities with broad applications to the geosciences. Remote sensing of the ocean will sample the HF signals scattered from the rough sea surface to measure the wave height spectrum over large areas. CARINA will provide an enhanced understanding of HF system limiting phenomena such as travelling ionospheric disturbances, field aligned irregularities, sporadic-E and bottomside ionosphere structures.This work supported by the Naval Research Laboratory Base Program.
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash
2017-12-01
Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
Gravity Wave Detection through All-sky Imaging of Airglow
NASA Astrophysics Data System (ADS)
Nguyen, T. V.; Martinez, A.; Porat, I.; Hampton, D. L.; Bering, E., III; Wood, L.
2017-12-01
Airglow, the faint glow of the atmosphere, is caused by the interaction of air molecules with radiation from the sun. Similarly, the aurora is created by interactions of air molecules with the solar wind. It has been shown that airglow emissions are altered by gravity waves passing through airglow source region (100-110km), making it possible to study gravity waves and their sources through airglow imaging. University of Houston's USIP - Airglow team designed a compact, inexpensive all-sky imager capable of detecting airglow and auroral emissions using a fisheye lens, a simple optical train, a filter wheel with 4 specific filters, and a CMOS camera. This instrument has been used in USIP's scientific campaign in Alaska throughout March 2017. During this period, the imager captured auroral activity in the Fairbanks region. Due to lunar conditions and auroral activity images from the campaign did not yield visible signs of airglow. Currently, the team is trying to detect gravity wave patterns present in the images through numerical analysis. Detected gravity wave patterns will be compared to local weather data, and may be used to make correlations between gravity waves and weather events. Such correlations could provide more data on the relationship between the mesosphere and lower layers of the atmosphere. Practical applications of this research include weather prediction and detection of air turbulence.
The Coronal Analysis of SHocks and Waves (CASHeW) framework
NASA Astrophysics Data System (ADS)
Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste
2017-11-01
Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.
Elnaghy, A M; Elsaka, S E
2017-10-01
To compare the cyclic fatigue resistance of WaveOne Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA) and Reciproc (VDW, Munich, Germany) reciprocating instruments during immersion in sodium hypochlorite (NaOCl) and saline solutions at body temperature. A total of 180 new WaveOne Gold primary size 25, .07 taper, and Reciproc size 25, .08 taper were randomly divided into three groups: group 1: no immersion (control, air); group 2: immersion in saline at 37 ± 1 °C; and group 3: immersion in 5% NaOCl at 37 ± 1 °C. The instruments were reciprocated in the test solution until fracture, and the number of cycles to failure was recorded. The data were analysed statistically using t-tests and one-way analysis of variance (anova) with the significance level set at P < 0.05. A Weibull analysis was performed on number of cycles to failure data. WaveOne Gold instruments had significantly greater number of cycles to failure than Reciproc instruments in all groups (P < 0.001). Fatigue resistance for both instruments tested in air was significantly higher than that in saline and NaOCl solutions (P < 0.001). For both instruments, there was no significant difference in the fatigue resistance between saline and NaOCl solutions (P > 0.05). The Weibull analysis showed that the predicted cycles of WaveOne Gold in air was 1027 cycles for 99% survival. However, Reciproc instruments tested in NaOCl solution had the lowest predicted cycles (613 cycles) among the groups. Immersion of WaveOne Gold and Reciproc reciprocating instruments in saline and NaOCl solutions decreased considerably their cyclic fatigue resistance. The fatigue resistance of WaveOne Gold instruments was higher than that of Reciproc instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L.; Kasameyer, P.; Turpin, C.
2000-03-01
This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.« less
Design and development of the Sentinel-2 Multi Spectral Instrument and satellite system
NASA Astrophysics Data System (ADS)
Chorvalli, Vincent; Cazaubiel, Vincent; Bursch, Stefan; Welsch, Mario; Sontag, Heinz; Martimort, Philippe; Del Bello, Umberto; Sy, Omar; Laberinti, Paolo; Spoto, François
2010-10-01
2A and Sentinel-2B satellites currently under development will ensure systematic global acquisition of all land and coastal waters in the visible and short-wave infrared spectral domain with a 5 day revisit time at the equator. The Multi Spectral Instrument is a push-broom imager providing imagery in 13 spectral channels with spatial resolutions ranging from 10 m to 60 m and a swath width of 290 Km, larger than SPOT and Landsat. The instrument features a full field of view calibration device, a silicon carbide Three Mirror Anastigmat telescope with mirror dimensions up to 600 mm, specific filter stripe assemblies, newly developed Si-CMOS and HgCDTe detectors and a low noise wavelet compression video electronics. The 1.4 Tbits/s raw image date rate is reduced down to 490 Mbits/s at the output of the instrument to cope with the overall system transmission capability. The Sentinel-2 program has entered in the CD phase in 2009. Launch of Sentinel-2A satellite is scheduled for 2013.
INTEGRAL Observations of GW170104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savchenko, V.; Ferrigno, C.; Bozzo, E.
2017-09-10
We used data from the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) to set upper limits on the γ -ray and hard X-ray prompt emission associated with the gravitational-wave event GW170104, discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo collaboration. The unique omnidirectional viewing capability of the instruments on board INTEGRAL allowed us to examine the full 90% confidence level localization region of the LIGO trigger. Depending on the particular spectral model assumed and the specific position within this region, the upper limits inferred from the INTEGRAL observations range from F {sub γ} = 1.9 × 10{sup −7} erg cm{supmore » −2} to F {sub γ} = 10{sup −6} erg cm{sup −2} (75 keV–2 MeV energy range). This translates into a ratio between the prompt energy released in γ -rays along the direction to the observer and the gravitational-wave energy of E {sub γ} / E {sub GW} < 2.6 × 10{sup −5}. Using the INTEGRAL results, we cannot confirm the γ -ray proposed counterpart to GW170104 by the Astro—Rivelatore Gamma a Immagini Leggero (AGILE) team with the mini-Calorimeter (MCAL) instrument. The reported flux of the AGILE/MCAL event, E2, is not compatible with the INTEGRAL upper limits within most of the 90% LIGO localization region. There is only a relatively limited portion of the sky where the sensitivity of the INTEGRAL instruments was not optimal and the lowest-allowed fluence estimated for E2 would still be compatible with the INTEGRAL results. This region was also observed independently by Fermi /Gamma-ray Burst Monitor and AstroSAT, from which, as far as we are aware, there are no reports of any significant detection of a prompt high-energy event.« less
Root canal centering ability of rotary cutting nickel titanium instruments: A meta-analysis
Gundappa, Mohan; Bansal, Rashmi; Khoriya, Sarvesh; Mohan, Ranjana
2014-01-01
Aim: To systematically review articles on canal centering ability of endodontic rotary cutting Nickel-Titanium (Ni-Ti) instruments and subject results to meta-analysis. Materials and Methods: A comprehensive search was initiated on canal centering ability of different rotary cutting Ni-Ti files such as Protaper, Hero Shaper, K3, Mtwo, Race, Wave One by selecting articles published in peer reviewed journals during 1991-2013 using “Pub Med” database. Inclusion and exclusion criteria were established. A data was created by tabulating: Author name, publication year, sample size, number of experimental groups, methods to evaluate canal centering ability, instrument cross section, taper, tip design, rake angle, mean and standard deviation. The data generated was subjected to meta-analysis. Results: Maximum studies were found to be conducted on mesiobuccal canal of mandibular 1st molar with curvature ranging from 15-60°. The difference in canal centering ability of different rotary cutting Ni-Ti instruments was not statistically significant. Conclusion: All endodontic rotary cutting Ni-Ti instruments are capable of producing centered preparations. Protaper depicted the best centering ability. Computed tomography is an effective method of evaluating canal centering ability. PMID:25506134
NASA Astrophysics Data System (ADS)
Helson, Kyle
2014-03-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.
NASA Astrophysics Data System (ADS)
Carroy, Glenn; Lemaur, Vincent; Henoumont, Céline; Laurent, Sophie; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal
2018-01-01
Supramolecular mass spectrometry has emerged in the last decade as an orthogonal method to access, at the molecular level, the structures of noncovalent complexes extracted from the condensed phase to the rarefied gas phase using electrospray ionization. It is often considered that the soft nature of the ESI source confers to the method the capability to generate structural data comparable to those in the condensed phase. In the present paper, using the ammonium ion/cucurbituril combination as a model system, we investigate using ion mobility and computational chemistry the influence of the instrumental parameters on the topology, i.e., internal versus external association, of gaseous host/guest complex ions. MS and theoretical data are confronted to condensed phase data derived from nuclear magnetic resonance spectroscopy to assess whether the instrumental parameters can play an insidious role when trying to derive condensed phase data from mass spectrometry results. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.
2006-10-01
We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorbermore » Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.« less
WaveOne Rotary Instruments after Clinical Use.
Shen, Ya; Coil, Jeffrey M; Mo, Anthony John; Wang, Zhejun; Hieawy, Ahmed; Yang, Yan; Haapasalo, Markus
2016-02-01
The purpose of this study was to evaluate the incidence and mode of WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) instrument defects after single use at different endodontic clinics. A total of 438 WaveOne instruments were collected after clinical use from the 4 specialist clinics over a 12-month period and from 1 graduate program over a 20-month period. The incidence and type of instrument defects were analyzed. The lateral surfaces of part of the defective instruments and fracture surfaces of fractured files were examined using scanning electron microscopy. Unused and clinically used files were examined by a nanoindentation test. Of the 438 WaveOne instruments collected, 42 (9.6%) had defects: 40 (9.1%) were distorted and 2 (0.5%) files had fractured, 1 Small and 1 Primary file. Clear differences in the frequency of defects were found among the 3 file sizes; the occurrence of distortion and fracture were highest with the Small file (21.2% and 0.7%, respectively) followed by the Primary file (4.4% and 0.4%, respectively) (P < .05). No defects were detected on the Large file. The cause of the 2 fractures was shear stress. Instruments from various clinics showed no significantly different occurrence of instrument deformation. Unwinding occurred at 1.2-3.1 mm from the tip. No significant difference in nanohardness was detected among unused and used instruments. The risk of WaveOne fracture is very low when files are singly used by endodontists and residents. Unwinding of the files occurred most frequently in the Small file. The frequency of defects of WaveOne instruments were not influenced by the operator. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yudin, V. A.; England, S.; Liu, H.; Solomon, S. C.; Immel, T. J.; Maute, A. I.; Burns, A. G.; Foster, B.; Wu, Q.; Goncharenko, L. P.
2013-12-01
We examine the capability of novel configurations of community models, WACCM-X and TIME-GCM, to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Mesosphere-Thermosphere-Ionosphere (MTI) system. In these configurations the lower atmosphere of WACCM-X is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of Global Modeling and Assimilation Office at NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics the simulations in the MTI are capable to reproduce observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. These 'terrestrial-weather' driven simulations with day-to-day variable solar and geomagnetic inputs can provide background state (first guess) and error statistics for the inverse algorithms of new NASA missions, ICON and GOLD at locations and time of observations in the MTI region. With two different viewing geometries (sun-synchronous and geostationary) of instruments, ICON and GOLD will provide complimentary global observations of temperature, winds and constituents to constrain the first-principle forecast models. This paper will discuss initial design of Observing Simulation Experiments (OSE) in WACCM-X/GEOS-5 and TIME-GCM. As recognized, OSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. They can guide on how to integrate/combine information from different instruments. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying tidal dynamics and their effects in models by combination of sun-synchronous and geostationary observations of ICON and GOLD. We will also discuss how correlative space-borne and ground-based observations can verify OSE results in the observable and non-observable regions of the MTI.
Application of Seismic Array Processing to Tsunami Early Warning
NASA Astrophysics Data System (ADS)
An, C.; Meng, L.
2015-12-01
Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.
Instrumentational complexity of music genres and why simplicity sells.
Percino, Gamaliel; Klimek, Peter; Thurner, Stefan
2014-01-01
Listening habits are strongly influenced by two opposing aspects, the desire for variety and the demand for uniformity in music. In this work we quantify these two notions in terms of instrumentation and production technologies that are typically involved in crafting popular music. We assign an 'instrumentational complexity value' to each music style. Styles of low instrumentational complexity tend to have generic instrumentations that can also be found in many other styles. Styles of high complexity, on the other hand, are characterized by a large variety of instruments that can only be found in a small number of other styles. To model these results we propose a simple stochastic model that explicitly takes the capabilities of artists into account. We find empirical evidence that individual styles show dramatic changes in their instrumentational complexity over the last fifty years. 'New wave' or 'disco' quickly climbed towards higher complexity in the 70s and fell back to low complexity levels shortly afterwards, whereas styles like 'folk rock' remained at constant high instrumentational complexity levels. We show that changes in the instrumentational complexity of a style are related to its number of sales and to the number of artists contributing to that style. As a style attracts a growing number of artists, its instrumentational variety usually increases. At the same time the instrumentational uniformity of a style decreases, i.e. a unique stylistic and increasingly complex expression pattern emerges. In contrast, album sales of a given style typically increase with decreasing instrumentational complexity. This can be interpreted as music becoming increasingly formulaic in terms of instrumentation once commercial or mainstream success sets in.
A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tian-Sen; Saganti, Premkumar
During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv)more » established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities. Apart from scientific staff members, several students (more than ten undergraduate students and two graduate students from several engineering and science disciplines) were supported and worked on the equipment and experiments during the award period. We also anticipate that these opportunities with current expansions may result in a graduate program in plasma science and propulsion engineering disciplines. *Corresponding Author – Dr. Saganti, Regents Professor and Professor of Physics – pbsaganti@pvamu.edu« less
Capabilities of the Large-Scale Sediment Transport Facility
2016-04-01
experiments in wave /current environments. INTRODUCTION: The LSTF (Figure 1) is a large-scale laboratory facility capable of simulating conditions...comparable to low- wave energy coasts. The facility was constructed to address deficiencies in existing methods for calculating longshore sediment...transport. The LSTF consists of a 30 m wide, 50 m long, 1.4 m deep basin. Waves are generated by four digitally controlled wave makers capable of producing
NASA Astrophysics Data System (ADS)
Hartogh, P.; Ilyushin, Ya. A.
2016-10-01
Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-01-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (~2–90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the “DNP power curve”, i.e. the microwave (MW) power dependence of DNP enhancement, the “DNP spectrum”, i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 – 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers. PMID:26920839
NASA Astrophysics Data System (ADS)
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-03-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-03-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers. Copyright © 2015 Elsevier Inc. All rights reserved.
An improved water-filled impedance tube.
Wilson, Preston S; Roy, Ronald A; Carey, William M
2003-06-01
A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.
Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.
Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali
2018-02-17
The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P < 0.05). Also a Weibull analysis was performed on TF data. The cyclic fatigue resistance values of the WaveOne Gold Glider and R-Pilot were significantly higher than those of the ProGlider (P < 0.05), with no significant difference between them (P > 0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.
Higuera, Oscar; Plotino, Gianluca; Tocci, Luigi; Carrillo, Gabriela; Gambarini, Gianluca; Jaramillo, David E
2015-06-01
The purpose of this study was to evaluate the cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments. A total of 45 nickel-titanium instruments were tested and divided into 3 experimental groups (n = 15): group 1, WaveOne Primary instruments; group 2, Reciproc R25 instruments; and group 3, Twisted File (TF) Adaptive M-L1 instruments. The instruments were then subjected to cyclic fatigue test on a static model consisting of a metal block with a simulated canal with 60° angle of curvature and a 5-mm radius of curvature. WaveOne Primary, Reciproc R25, and TF Adaptive instruments were activated by using their proprietary movements, WaveOne ALL, Reciproc ALL, and TF Adaptive, respectively. All instruments were activated until fracture occurred, and the time to fracture was recorded visually for each file with a 1/100-second chronometer. Mean number of cycles to failure and standard deviations were calculated for each group, and data were statistically analyzed (P < .05). Instruments were also observed through scanning electron microscopy to evaluate type of fracture. Cyclic fatigue resistance of Reciproc R25 and TF Adaptive M-L1 was significantly higher than that of WaveOne Primary (P = .009 and P = .002, respectively). The results showed no statistically significant difference between TF Adaptive M-L1 and Reciproc R25 (P = .686). Analysis of the fractured portion under scanning electron microscopy indicated that all instruments showed morphologic characteristics of ductile fracture that were due to accumulation of metal fatigue. No statistically significant differences were found between the instruments tested except for WaveOne Primary, which showed the lowest resistance to cyclic fatigue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.
Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro
2015-01-01
The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05). The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05). The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.
Rapid detection of bacteria with miniaturized pyrolysis-gas chromatographic analysis
NASA Astrophysics Data System (ADS)
Mowry, Curtis; Morgan, Catherine H.; Baca, Quentin; Manginell, Ronald P.; Kottenstette, Richard J.; Lewis, Patrick; Frye-Mason, Gregory C.
2002-02-01
Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The profiles of biological markers such as fatty acids can be used to characterize biological samples or to distinguish bacteria at the gram-type, genera, and even species level. Common methods for whole cell bacterial analysis are neither portable nor rapid, requiring lengthy, labor intensive sample preparation and bench-scale instrumentation. These methods chemically derivatize fatty acids to produce more volatile fatty acid methyl esters (FAMEs) that can be separated and analyzed by a gas chromatograph (GC)/mass spectrometer. More recent publications demonstrate decreased sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis/derivatization. Ongoing development of miniaturized pyrolysis/GC instrumentation by this department capitalizes on Sandia advances in the field of microfabricated chemical analysis systems ((mu) ChemLab). Microdevices include rapidly heated stages capable of pyrolysis or sample concentration, gas chromatography columns, and surface acoustic wave (SAW) sensor arrays. We will present results demonstrating the capabilities of these devices toward fulfilling the goal of portable, rapid detection and early warning of the presence of pathogens in air or water.
A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed
NASA Technical Reports Server (NTRS)
Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix
2014-01-01
Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.
NASA Astrophysics Data System (ADS)
St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.
2009-05-01
Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.
Bell, Lindsay; Kellison, Ida; Garvan, Cynthia W; Bussing, Regina
2010-04-01
This study examines whether elementary school-aged children can report behaviors relevant to assessing symptoms of attention-deficit/hyperactivity disorder (ADHD). Interviews were conducted with 120 children aged 6 to 12 years and their parents across 3 waves as part of a longitudinal cohort study of ADHD detection and service use. Child self-reports obtained through the Dimensions of Temperament Scale-Revised-Child (DOTS-R-C) were correlated with parent-reported ADHD symptoms, which were assessed through DSM-IV-based instrument ratings obtained concurrently and 5 years later. The Dimensions of Temperament Scale-Revised-Child subscales Activity Level and Task Orientation demonstrate adequate internal consistency after eliminating items requiring reverse scoring. Children's self-reports of Task Orientation Problems correlate with their parents' concurrent reports of inattention, r(117) = .23, p < .05, and with parents' Wave 3 reports of inattention, r(118) = .25, p < .01 as well as hyperactivity, r(118) = .25, p < .01. Children's self-reports of Activity Level correlate with their parents' concurrent reports of hyperactivity, r(117) = .21, p < .05, as well as Wave 3 reports of hyperactivity/impulsivity, r(118) = .37, p < .001 and inattention, r(118) = .23, p < .05. Findings suggest that children may be capable of producing meaningful self-reports of Activity Level and Task Orientation. We propose that the development of child-friendly self-report instruments targeting ADHD symptoms is merited to facilitate the collection of child input during ADHD assessments.
Cyclic Fatigue Resistance of Reciproc, WaveOne, and WaveOne Gold Nickel-Titanium Instruments.
Özyürek, Taha
2016-10-01
The purpose of this study was to compare the cyclic fatigue resistance of Reciproc R25 (VDW, Munich, Germany), WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland), and WaveOne Gold Primary files (Dentsply Maillefer). Twenty Reciproc R25, 20 WaveOne Primary, and 20 WaveOne Gold Primary instruments were included in this study. The cyclic fatigue tests were performed using a cyclic fatigue testing device, which has an artificial stainless steel canal with a 60° angle of curvature and a 5-mm radius of curvature. The files were randomly divided into 3 groups (group 1: Reciproc R25; group 2: WaveOne Primary; and group 3: WaveOne Gold Primary). All the instruments were rotated until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically (P < .05). There was a significant difference among the groups (P < .05). The WaveOne Gold Primary showed the greatest mean of NCF (1628 ± 107), and the WaveOne Primary showed the lowest mean of NCF (1153 ± 119.2). Within the limitations of this in vitro study, the cyclic fatigue resistance of the WaveOne Gold Primary single-file system was higher than the WaveOne Primary and Reciproc R25 single-file instruments. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Instrument For Simulation Of Piezoelectric Transducers
NASA Technical Reports Server (NTRS)
Mcnichol, Randal S.
1996-01-01
Electronic instrument designed to simulate dynamic output of integrated-circuit piezoelectric acceleration or pressure transducer. Operates in conjunction with external signal-conditioning circuit, generating square-wave signal of known amplitude for use in calibrating signal-conditioning circuit. Instrument also useful as special-purpose square-wave generator in other applications.
NASA Astrophysics Data System (ADS)
Coco, G.; Guza, R. T.; Garnier, R.; Lomonaco, P.; Lopez De San Roman Blanco, B.; Dalrymple, R. A.; Xu, M.
2014-12-01
Edge waves, gravity waves trapped close to the shoreline by refraction, can in some cases form a standing wave pattern with alongshore periodic sequence of high and low runup. Nonlinear mechanisms for generation of edge waves by monochromatic waves incident on a planar beach from deep water have been elaborated theoretically and in the lab. Edge waves have been long considered a potential source for alongshore periodic morphological patterns in the swash (e.g., beach cusps), and edge-wave based predictions of cusp spacing compare qualitatively well with many field observations. We will discuss the extension of lab observations and numerical modeling to include incident waves with significant frequency and directional bandwidth. Laboratory experiments were performed at the Cantabria Coastal and Ocean Basin. The large rectangular basin (25 m cross-shore by 32 m alongshore) was heavily instrumented, had reflective sidewalls, and a steep concrete beach (slope 1:5) with a constant depth (1m) section between the wavemaker and beach. With monochromatic, normally incident waves we observed the expected, previously described subharmonic observations. Edge wave vertical heights at the shoreline reached 80cm, and edge wave uprushes exceeded the sloping beach freeboard. When frequency and frequency-directional spread are increased, the excited edge wave character changes substantially. In some cases, subharmonic excitation is suppressed completely. In other cases, edge waves are excited intermittently and unpredictably. The spatially and temporally steady forcing required for strong, persistent subharmonic instability is lacking with even modestly spread (direction and frequency) incident waves. An SPH numerical model is capable of reproducing aspects of the observations. It seems unlikely to us that subhamonic edge waves alone are responsible for most cusp formation on natural beaches. The steady incident wave forcing needed to initiate subharmonic growth, and to maintain subharmonics long enough to build cups, are abundantly present with an incident plane wave, but lacking in many natural settings. Although subharmonic edge waves can potentially start the initial spacing, positive feedback between flow and morphology are likely critical to cusp growth.
Slip-pulse rupture behavior on a 2 meter granite fault
McLaskey, Gregory C.; Kilgore, Brian D.; Beeler, Nicholas M.
2015-01-01
We describe observations of dynamic rupture events that spontaneously arise on meter-scale laboratory earthquake experiments. While low-frequency slip of the granite sample occurs in a relatively uniform and crack-like manner, instruments capable of detecting high frequency motions show that some parts of the fault slip abruptly (velocity >100 mm∙s-1, acceleration >20 km∙s-2) while the majority of the fault slips more slowly. Abruptly slipping regions propagate along the fault at nearly the shear wave speed. We propose that the dramatic reduction in frictional strength implied by this pulse-like rupture behavior has a common mechanism to the weakening reported in high velocity friction experiments performed on rotary machines. The slip pulses can also be identified as migrating sources of high frequency seismic waves. As observations from large earthquakes show similar propagating high frequency sources, the pulses described here may have relevance to the mechanics of larger earthquakes.
Review of oil spill remote sensing.
Fingas, Merv; Brown, Carl
2014-06-15
Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.
The TolTEC Camera for the LMT Telescope
NASA Astrophysics Data System (ADS)
Bryan, Sean
2018-01-01
TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) on Sierra Negra in Puebla, Mexico. The instrument will discover and characterize distant galaxies by detecting the thermal emission of dust heated by starlight. The polarimetric capabilities of the camera will measure magnetic fields in star-forming regions in the Milky Way. The optical design of the camera uses mirrors, lenses, and dichroics to simultaneously couple a 4 arcminute diameter field of view onto three single-band focal planes at 150, 220, and 280 GHz. The 7000 polarization-selective detectors are single-band horn-coupled LEKID detectors fabricated at NIST. A rotating half wave plate operates at ambient temperature to modulate the polarized signal. In addition to the galactic and extragalactic surveys already planned, TolTEC installed at the LMT will provide open observing time to the community.
A small-volume PVTX system for broadband spectroscopic calibration of downhole optical sensors
NASA Astrophysics Data System (ADS)
Jones, Christopher Michael; Pelletier, Michael T.; Atkinson, Robert; Shen, Jing; Moore, Jeff; Anders, Jimmy; Perkins, David L.; Myrick, Michael L.
2017-07-01
An instrument is presented that is capable of measuring the optical spectrum (long-wave ultraviolet through short-wave mid-infrared) of fluids under a range of temperature and pressure conditions from ambient pressure up to 138 MPa (20 000 psi) and 422 K (300 °F) using ˜5 ml of fluid. Temperature, pressure, and density are measured in situ in real-time, and composition is varied by adding volatile and nonvolatile components. The stability and accuracy of the conditions are reported for pure ethane, and the effects of temperature and pressure on characteristic regions of the optical spectrum of ethane are illustrated after correction for temperature and pressure effects on the optical cell path length, as well as normalization to the measured density. Molar absorption coefficients and integrated molar absorption coefficients for several vibrational combination bands are presented.
Report on the first round of the Mock LISA Data Challenges
NASA Astrophysics Data System (ADS)
Arnaud, K. A.; Auger, G.; Babak, S.; Baker, J. G.; Benacquista, M. J.; Bloomer, E.; Brown, D. A.; Camp, J. B.; Cannizzo, J. K.; Christensen, N.; Clark, J.; Cornish, N. J.; Crowder, J.; Cutler, C.; Finn, L. S.; Halloin, H.; Hayama, K.; Hendry, M.; Jeannin, O.; Królak, A.; Larson, S. L.; Mandel, I.; Messenger, C.; Meyer, R.; Mohanty, S.; Nayak, R.; Numata, K.; Petiteau, A.; Pitkin, M.; Plagnol, E.; Porter, E. K.; Prix, R.; Roever, C.; Stroeer, A.; Thirumalainambi, R.; Thompson, D. E.; Toher, J.; Umstaetter, R.; Vallisneri, M.; Vecchio, A.; Veitch, J.; Vinet, J.-Y.; Whelan, J. T.; Woan, G.
2007-10-01
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries.
NASA Astrophysics Data System (ADS)
Anarde, K.; Figlus, J.; Dellapenna, T. M.; Bedient, P. B.
2017-12-01
Prior to landfall of Hurricane Harvey on August 25, 2017, instrumentation was deployed on the seaward and landward sides of a barrier island on the central Texas Gulf Coast to collect in-situ hydrodynamic measurements during storm impact. High-resolution devices capable of withstanding extreme conditions included inexpensive pressure transducers and tilt current meters mounted within and atop (respectively) shallow monitoring wells. In order to link measurements of storm hydrodynamics with the morphological evolution of the barrier, pre- and post-storm digital elevation models were generated using a combination of unmanned aerial imagery, LiDAR, and real-time kinematic GPS. Push-cores were collected and analyzed for grain size and sedimentary structure to relate hydrodynamic observations with the local character of storm-generated deposits. Observations show that at Hog Island, located approximately 160 miles northeast of Harvey's landfall location, storm surge inundated an inactive storm channel. Infragravity waves (0.003 - 0.05 Hz) dominated the water motion onshore of the berm crest over a 24-hour period proximate to storm landfall. Over this time, approximately 50 cm of sediment accreted vertically atop the instrument located in the backshore. Storm deposits at this location contained sub-parallel alternating laminae of quartz and heavy mineral-enriched sand. While onshore progression of infragravity waves into the back-barrier was observed over several hours prior to storm landfall, storm deposits in the back-barrier lack the characteristic laminae preserved in the backshore. These field measurements will ultimately be used to constrain and validate numerical modeling schemes that explore morphodynamic conditions of barriers in response to extreme storms (e.g., XBeach, CSHORE). This study provides a unique data set linking extreme storm hydrodynamics with geomorphic changes during a relatively low surge, but highly dissipative wave event.
Laser probe for measuring 2-D wave slope spectra of ocean capillary waves
NASA Technical Reports Server (NTRS)
Palm, C. S.; Anderson, R. C.; Reece, A. M.
1977-01-01
A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.
NASA Astrophysics Data System (ADS)
Iyer, S. K.; Heitsenrether, R.
2015-12-01
Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.
NASA Astrophysics Data System (ADS)
Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.
2014-12-01
Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified through environmental testing at GSFC. The concept of operations is to fly the GSFC designed instrument/spacecraft in a LEO orbit and collect the 874-GHz radiance data for a period of at least 28+ days. Communication will be through the WFF's UHF ground station. Mission Operations and data processing and validation will be conducted at GSFC.
NASA Astrophysics Data System (ADS)
Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael
2016-12-01
A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings.
NASA Astrophysics Data System (ADS)
Reineman, Benjamin D.
I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at McMillan Airfield (Camp Roberts, CA), and flight tests of similarly instrumented Boeing-Insitu ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center, Dahlgren Division (Dahlgren, VA), where the first known direct flux measurements were made from low-altitude (down to 30 m) UAV flights over water (Potomac River). During the October 2012 Equatorial Mixing Experiment in the central Pacific aboard the R/V Roger Revelle, ship-launched and recovered ScanEagles were deployed in an effort to characterize the marine atmospheric boundary layer structure and dynamics. I present a description of the instrumentation, summarize results from flight tests, present preliminary analysis from UAV flights off of the Revelle, and discuss potential applications of these UAVs for marine atmospheric boundary layer studies.
Zhao, Dan; Shen, Ya; Peng, Bin; Haapasalo, Markus
2014-11-01
The aim of this study was to describe the canal shaping properties of ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Universal (PTU; Dentsply Tulsa Dental Specialties, Johnson City, TN), and WaveOne (Dentsply Maillefer) nickel-titanium instruments in mandibular first molars by using micro-computed tomographic (micro-CT) scanning. A total of 36 maxillary first molars with 2 separate mesial canals and 1 distal canal were selected and scanned preoperatively and postoperatively by using micro-CT scanning with a voxel size of 30 μm. Canals were prepared with PTU, PTN, and WaveOne systems under hypochlorite irrigation. The volume of the untreated canal; the volume of dentin removed after preparation; the amount of the uninstrumented area; and the transportation to the coronal, middle, and apical thirds of canals were measured. The preparation time and instrument failure were also recorded. Instrumentation of canals increased their volume and surface area. The distal canals had a significantly higher proportion of unprepared surfaces than mesial canals (P < .05). The PTN system produced less transportation than the WaveOne and PTU systems in the apical third of the mesial canals (P < .05). There was no significant difference on apical transportation in distal canals among the 3 instrument systems. Instrumentation with WaveOne was significantly faster than with the other 2 instruments (P < .05). The PTN, PTU, and WaveOne instruments shaped root canals in mandibular first molars in vitro without significant shaping errors. The curved canals prepared using PTN had less apical transportation than the canals prepared using WaveOne and PTU. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity
NASA Technical Reports Server (NTRS)
Haglund, G. T.; Kane, E. J.
1973-01-01
The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.
Research in Observations of Oceanic Air/Sea Interaction
NASA Technical Reports Server (NTRS)
Long, David G.; Arnold, David V.
1995-01-01
The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.
Cutting efficiency of instruments with different movements: a comparative study.
Tocci, Luigi; Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca
2015-01-01
The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments.
Cutting Efficiency of Instruments with Different Movements: a Comparative Study
Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca
2015-01-01
ABSTRACT Objectives The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. Material and Methods 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). Results TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Conclusions Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. PMID:25937877
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
Organizational Capabilities for Integrating Care: A Review of Measurement Tools.
Evans, Jenna M; Grudniewicz, Agnes; Baker, G Ross; Wodchis, Walter P
2016-12-01
The success of integrated care interventions is highly dependent on the internal and collective capabilities of the organizations in which they are implemented. Yet, organizational capabilities are rarely described, understood, or measured with sufficient depth and breadth in empirical studies or in practice. Assessing these capabilities can contribute to understanding why some integrated care interventions are more effective than others. We identified, organized, and assessed survey instruments that measure the internal and collective organizational capabilities required for integrated care delivery. We conducted an expert consultation and searched Medline and Google Scholar databases for survey instruments measuring factors outlined in the Context and Capabilities for Integrating Care Framework. A total of 58 instruments were included in the review and assessed based on their psychometric properties, practical considerations, and applicability to integrated care efforts. This study provides a bank of psychometrically sound instruments for describing and comparing organizational capabilities. Greater use of these instruments across integrated care interventions and studies can enhance standardized comparative analyses and inform change management. Further research is needed to build an evidence base for these instruments and to explore the associations between organizational capabilities and integrated care processes and outcomes. © The Author(s) 2016.
Kaiplavil, Sreekumar; Mandelis, Andreas; Wang, Xueding; Feng, Ting
2014-08-01
Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography.
Kaiplavil, Sreekumar; Mandelis, Andreas; Wang, Xueding; Feng, Ting
2014-01-01
Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography. PMID:25136480
A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering
NASA Technical Reports Server (NTRS)
Mckenzie, Robert L.
1987-01-01
A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.
Carvalho, Maira de Souza; Junior, Emílio Carlos Sponchiado; Bitencourt Garrido, Angela Delfina; Roberti Garcia, Lucas da Fonseca; Franco Marques, André Augusto
2015-01-01
The aim of this study was to evaluate the cleaning effectiveness achieved with two reciprocating single-file systems in severely curved root canals: Reciproc and WaveOne. Twenty-five mesial roots of mandibular molars were randomly separated into two groups, according to the instrumentation system used. The negative control group consisted of five specimens that were not instrumented. The mesial canals (buccal and lingual) in Reciproc Group were instrumented with file R25 and the WaveOne group with the Primary file. The samples were submitted to histological processing and analyzed under a digital microscope. The WaveOne group presented a larger amount of debris than the Reciproc Group, however, without statistically significant difference (P > 0.05). A larger amount of debris in the control group was observed, with statistically significant difference to Reciproc and WaveOne groups (P < 0.05). The two reciprocating single-file instrumentation systems presented similar effectiveness for root canal cleaning.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
NASA Astrophysics Data System (ADS)
Helson, Kyle R.
2015-08-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.
Facility for the evaluation of space communications and related systems
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.
1995-01-01
NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.
The Mock LISA Data Challenge Round 3: New and Improved Sources
NASA Technical Reports Server (NTRS)
Baker, John
2008-01-01
The Mock LISA Data Challenges are a program to demonstrate and encourage the development of data-analysis capabilities for LISA. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information they can infer about the source parameters. The challenges are being released in rounds of increasing complexity and realism. Challenge 3. currently in progress, brings new source classes, now including cosmic-string cusps and primordial stochastic backgrounds, and more realistic signal models for supermassive black-hole inspirals and galactic double white dwarf binaries.
NASA Astrophysics Data System (ADS)
Leifer, Andrew Michael
2011-07-01
This work presents optogenetics and real-time computer vision techniques to non-invasively manipulate and monitor neural activity with high spatiotemporal resolution in awake behaving Caenorhabditis elegans. These methods were employed to dissect the nematode's mechanosensory and motor circuits and to elucidate the neural control of wave propagation during forward locomotion. Additionally, similar computer vision methods were used to automatically detect and decode fluorescing DNA origami nanobarcodes, a new class of fluorescent reporter constructs. An optogenetic instrument capable of real-time light delivery with high spatiotemporal resolution to specified targets in freely moving C. elegans, the first such instrument of its kind, was developed. The instrument was used to probe the nematode's mechanosensory circuit, demonstrating that stimulation of a single mechanosensory neuron suffices to induce reversals. The instrument was also used to probe the motor circuit, demonstrating that inhibition of regions of cholinergic motor neurons blocks undulatory wave propagation and that muscle contractions can persist even without inputs from the motor neurons. The motor circuit was further probed using optogenetics and microfluidic techniques. Undulatory wave propagation during forward locomotion was observed to depend on stretch-sensitive signaling mediated by cholinergic motor neurons. Specifically, posterior body segments are compelled, through stretch-sensitive feedback, to bend in the same direction as anterior segments. This is the first explicit demonstration of such feedback and serves as a foundation for understanding motor circuits in other organisms. A real-time tracking system was developed to record intracellular calcium transients in single neurons while simultaneously monitoring macroscopic behavior of freely moving C. elegans. This was used to study the worm's stereotyped reversal behavior, the omega turn. Calcium transients corresponding to temporal features of the omega turn were observed in interneurons AVA and AVB. Optics and computer vision techniques similar to those developed for the C. elegans experiments were also used to detect DNA origami nanorod barcodes. An optimal Bayesian multiple hypothesis test was deployed to unambiguously classify each barcode as a member of one of 216 distinct barcode species. Overall, this set of experiments demonstrates the powerful role that optogenetics and computer vision can play in behavioral neuroscience and quantitative biophysics.
NASA Astrophysics Data System (ADS)
Schultz, A.; Urquhart, S.; Slater, M.
2010-12-01
At present, the US academic community has access to two national electromagnetic (EM) instrument pools that support long-period magnetotelluric (MT) equipment suitable for crust-mantle scale studies. The requirements of near surface geophysics, hydrology, glaciology, as well as the full range of crust and mantle investigations require development of new capabilities in data acquisition with broader frequency bandwidth than these existing units, increased instrument numbers, and concomitant developments in 3D/4D data interpretation. NSF Major Research Instrumentation support has been obtained to meet these requirements by developing an initial set of next-generation instruments as a National Geoelectromagnetic Facility (NGF), available to all PIs on a cost recovery basis, and operated by Oregon State University (OSU). In contrast to existing instruments with data acquisition systems specialized to operate within specific frequency bands and for specific electromagnetic methods, the NGF model "Zen/5" instruments being co-developed by OSU and Zonge Research and Engineering Organization are based on modular receivers with a flexible number of digital and analog input channels, designed to acquire EM data at dc, and from frequencies ranging from micro-Hz to MHz. These systems can be deployed in a compact, low power configuration for extended deployments (e.g. for crust-mantle scale experiments), or in a high frequency sampling mode for near surface work. The NGF is also acquiring controlled source EM transmitters, so that investigators may carry out magnetotelluric, audio-MT, radiofrequency-MT, as well as time-domain/transient EM and DC resistivity studies. The instruments are designed to simultaneously accommodate multiple electric field dipole sensors, magnetic fluxgates and induction coil sensors. Sample rates as high as 2.5 MHz with resolution between 24 and 32 bits, depending on sample rate, are specified to allow for high fidelity recording of waveforms. The NGF is accepting instrument use requests from investigators planning electromagnetic surveys via webform submission on its web site ngf.coas.oregonstate.edu. The site is also a port of entry to request access to the 46 long period magnetotelluric instruments also operated by OSU as national instrument pools. Cyberinfrastructure support is available to investigators, including field computers, EM data processing software, and access to a hybrid CPU-GPU parallel computing environment, currently configured with dual Intel Westmere hexacore CPUs and 960 NVidia Tesla and 1792 Nvidia Fermi GPU cores. The capabilities of the Zen/5 receivers will be presented, with examples of data acquired from a recent shallow water marine controlled source experiment conducted in coastal Oregon as part of an effort to locate a buried submarine pipeline, using a 1.1 KW 256 Hz signal source imposed on the pipeline from shore. A Zen/5 prototype instrument, modified for marine use through support by the Oregon Wave Energy Trust, demonstrated the marine capabilities of the NGF instrument design.
Telltale Instrument Waving in the Martian Wind
2008-10-16
This frame from a series of images shows NASA Phoenix Mars Lander telltale instrument waving in the Martian wind. Documenting the telltale movement helps mission scientists and engineers determine what the wind is like on Mars.
Jupiter plasma wave observations: an initial voyager 1 overview.
Scarf, F L; Gurnett, D A; Kurth, W S
1979-06-01
The Voyager I plasma wave instrument detected low-frequency radio emissions, ion acoustic waves, and electron plasma oscillations for a period of months before encountering Jupiter's bow shock. In the outer magnetosphere, measurements of trapped radio waves were used to derive an electron density profile. Near and within the Io plasma torus the instrument detected high-frequency electrostatic waves, strong whistler mode turbulence, and discrete whistlers, apparently associated with lightning. Some strong emissions in the tail region and some impulsive signals have not yet been positively identified.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Kummerow, C.; Chandra, C. V.; Berg, W. K.; Brown, S. T.; Pallas, M.; Radhakrishnan, C.
2017-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class satellites observing storms at 5 millimeter-wave frequencies with 5-10 minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. Such a small satellite mission would enable the first global measurements of clouds and precipitation on the time scale of tens of minutes and the corresponding spatial scale of a few km. TEMPEST is designed to improve the understanding of cloud processes by providing critical information on temporal signatures of precipitation and helping to constrain one of the largest sources of uncertainty in cloud models. TEMPEST millimeter-wave radiometers are able to perform remote observations of the cloud interior to observe microphysical changes as the cloud begins to precipitate or ice accumulates inside the storm. The TEMPEST technology demonstration (TEMPEST-D) mission is in progress to raise the TRL of the instrument and spacecraft systems from 6 to 9 as well as to demonstrate radiometer measurement and differential drag capabilities required to deploy a constellation of 6U-Class satellites in a single orbital plane. The TEMPEST-D millimeter-wave radiometer instrument provides observations at 89, 165, 176, 180 and 182 GHz using a single compact instrument designed for 6U-Class satellites. The direct-detection topology of the radiometer receiver substantially reduces both its power consumption and design complexity compared to heterodyne receivers. The TEMPEST-D instrument performs precise, end-to-end calibration using a cross-track scanning reflector to view an ambient blackbody calibration target and cosmic microwave background every scan period. The TEMPEST-D radiometer instrument has been fabricated and successfully tested under environmental conditions (vibration, thermal cycling and vacuum) expected in low-Earth orbit. TEMPEST-D began in Aug. 2015, with a rapid 2.5-year development to deliver a complete spacecraft with integrated payload by Feb. 2018. TEMPEST-D has been manifested by NASA CSLI planned for launch on ELaNa-23 on Cygnus Antares II to the ISS in Mar. 2018. The TEMPEST-D satellite is expected to be deployed into a 400-km orbit at 51.6° inclination a few months after arrival at ISS.
A new application of PVDF line-focus transducers on measuring dispersion curves of a layered medium
NASA Astrophysics Data System (ADS)
Lee, Yung-Chun; Ko, Shin-Pin
2000-05-01
In the past few years, PVDF line-focus acoustic transducers have been proven to be a useful and convenient tool for accurately measuring surface wave velocity. The transducer is very easy to construct and the measurement system can be readily established with conventional ultrasonic instruments. In this investigation, however, the capability of PVDF line-focus transducers will be further extended to the measurement of dispersion relation of surface acoustic waves of a layered medium. To achieve this, a number of line-focus transducers are first fabricated with PVDF films of various thickness so that they can operate at different frequencies. Experimental testing on these transducers shows that surface acoustic waves of frequency ranging from 2 MHz to 20 MHz can be effectively generated and detected. For the determination of surface wave velocity as a function of frequency, a new method of processing the measured waveforms during a z-direction defocusing measurements is developed. A mathematical model is given to explain how this method works. With the transducers and the analyzing method, the surface wave dispersion relation of a layer/substrate configuration have been experimentally determined. Samples include thick polymeric films as well as metal films deposited on glass, aluminum, and silicon crystal. Possibility of determining material properties of the layers from the measured dispersion curves will be discussed.
Pinheiro, Sérgio Luiz; Pessoa, Carolina; da Silva, Josianne Neres; Gonçalves, Rafael Orro; Duarte, Danilo Antonio; da Silveira Bueno, Carlos Eduardo
2016-01-01
To assess, in vitro, the ability of the ProTaper(™) and WaveOne(™) systems to reduce Enterococcus faecalis contamination in primary molars. Sixty roots of primary molars were contaminated with E. faecalis. Roots were randomly allocated to one of four groups (n=20): ProTaper(™), WaveOne(™), control A, or control B. The files used were S1 and S2/F1 and F2 (ProTaper(™) system) and 25.08 (WaveOne(™) system). In control group A, the root canal was left uninstrumented, whereas in control group B, the root canal was irrigated with NaCl 0.9%. E. faecalis was sampled from the root canal system before and after instrumentation and the Wilcoxon test and Mann-Whitney U were used. There were no differences in E. faecalis counts between pre-instrumentation counts in the ProTaper™ and WaveOne(™) (p>0.05). The ProTaper(™) system led to an 89.36% reduction in E. faecalis burden, versus 78.10% with the WaveOne(™) system (p>0.05). Instrumentation time was shorter with WaveOne(™) (p<0.0001). The ProTaper(™) and WaveOne™ systems were equally effective in reducing Enterococcus faecalis in primary molars. The WaveOne(™) system was associated with shorter instrumentation time.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2013-12-01
Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.
Bürklein, Sebastian; Flüch, Stefanie; Schäfer, Edgar
2018-05-18
The aim was to compare the canal straightening of M-wire [Reciproc (VDW, Munich, Germany) and WaveOne (Dentsply Maillefer, Ballaigues, Switzerland)] and gold- and blue-wire heat-treated [Reciproc blue (VDW) and WaveOne Gold (Dentsply Maillefer)] instruments in severely curved root canals. A total of 80 root canals in extracted human teeth with angles of curvatures ranging between 25° and 35° and radii ranging between 3.1 and 8.5 mm were divided into four groups (n = 20). Based on radiographs taken prior to instrumentation, the groups were balanced with respect to the angle and the radius of canal curvature (P = 1.0 and P = 1.0, respectively). All canals were prepared to an apical size 25 according to the manufacturers' instructions. Pre- and post-instrumentation radiographs were superimposed and canal straightening was analysed using a computer imaging programme. Preparation time and instrument failure were also recorded. Data were analysed statistically using ANOVA and Student-Newman-Keuls test. During preparation no instrument fractured. All instruments maintained the original canal curvature well with no significant differences between the instruments (P = 0.278). Regarding preparation time, no significant differences between the four instruments were obtained (P > 0.05). Under the conditions of this study, all instruments respected the original canal curvature well. Instruments were safe to use. The use of the gold- and blue-wire heat-treated instruments was not associated with an improved shaping ability.
Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas
2014-09-01
This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.
Kwak, Sang Won; Ha, Jung-Hong; Cheung, Gary Shun-Pan; Kim, Hyeon-Cheol; Kim, Sung Kyo
2018-03-01
The purpose of this study was to compare in vitro torque generation during instrumentation with or without glide path establishment. Endo-training resin blocks with J-shaped canals were randomly divided into 2 groups according to glide path establishment (with or without) and subdivided into 2 subgroups with shaping instruments (WaveOne [Dentsply Maillefer, Ballaigues, Switzerland] or WaveOne Gold [Dentsply Maillefer]) (n = 15). For the glide path-established group, the glide path was prepared using ProGlider (Dentsply Maillefer). During the instrumentation with WaveOne or WaveOne Gold, in vitro torque was measured. The acquired data were analyzed with software. The maximum torque and total torque (the sum of the generated torque) were calculated. The data were statistically evaluated using 2-way analysis of variance and the Duncan post hoc comparison to examine any correlation of torque generation with glide path establishment and nickel-titanium instruments. The significance level was set at 95%. The generated total torque by WaveOne Gold was significantly reduced by glide path establishment (P < .05), whereas glide path establishment did not induce significant changes in the maximum torque for both file systems. WaveOne Gold with a glide path showed the lowest total torque generation among all groups (P < .05). WaveOne generated a higher maximum torque than WaveOne Gold regardless of the establishment of a glide path (P < .05). Under the limitations of this study, glide path establishment and the mechanical property of instruments have a significant influence on torque generation. It is recommended to create the glide path and use a flexible file to reduce torque generation and, consequently, the risk of file fracture and root dentin damage. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Crossingham, Grant James
This thesis is concerned with the design of a new ocean going instrument to measure the local sea surface profile. The motivation behind this project was the need to investigate oceanographic features that have been observed using imaging radar aboard aircraft and satellites. The measurements made with this instrument will further the understanding of the processes involved in radar backscatter from the ocean surface and will enable further analysis of ocean phenomena detected using imaging radars. With an improved understanding of these processes it will be possible to analyse quantitatively satellite images generated from around the globe. This will allow global environmental monitoring which could lead to improved weather forecasting, pollution control such as oil slick monitoring and surface and subsurface operations. It is believed that radar signals having a wavelength of 10 to 300mm are backscattered from waves on the ocean surface of similar length. Earlier attempts to measure waves including those designed to measure millimetric waves are critically reviewed and an account of the evolution of the design of a new instrument to measure these small waves is presented. This new instrument has been tested in the laboratory, which has demonstrated that a repeatable wave slope measurement accuracy of +/-0.56° has been achieved in static tests. Dynamic tests made using a wave tank have generated a wave slope profile, clearly showing 10mm wavelengths present on the surface. The new Digital Slopemeter is designed to measure the small-scale sea surface roughness for wavelengths in the range 10mm to 224mm. This instrument uses two grids of wavelength shifting fibres to digitally record the slope of a refracted laser beam. The laser beam is rapidly scanned over the sea surface to ensure that the profile of the surface is effectively stationary over a length of 224mm. The wave slope is sampled at 3.5mm intervals along each scan, allowing 7mm wavelengths to be resolved. This efficient measurement of the sea surface roughness enables a real-time display of the data collected. The design of the instrument permits it to be deployed from the bow of a research vessel in moderate seas. This instrument is therefore simple and flexible to deploy.
SCTE: An open-source Perl framework for testing equipment control and data acquisition
NASA Astrophysics Data System (ADS)
Mostaço-Guidolin, Luiz C.; Frigori, Rafael B.; Ruchko, Leonid; Galvão, Ricardo M. O.
2012-07-01
SCTE intends to provide a simple, yet powerful, framework for building data acquisition and equipment control systems for experimental Physics, and correlated areas. Via its SCTE::Instrument module, RS-232, USB, and LAN buses are supported, and the intricacies of hardware communication are encapsulated underneath an object oriented abstraction layer. Written in Perl, and using the SCPI protocol, enabled instruments can be easily programmed to perform a wide variety of tasks. While this work presents general aspects of the development of data acquisition systems using the SCTE framework, it is illustrated by particular applications designed for the calibration of several in-house developed devices for power measurement in the tokamak TCABR Alfvén Waves Excitement System. Catalogue identifier: AELZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License Version 3 No. of lines in distributed program, including test data, etc.: 13 811 No. of bytes in distributed program, including test data, etc.: 743 709 Distribution format: tar.gz Programming language: Perl version 5.10.0 or higher. Computer: PC. SCPI capable digital oscilloscope, with RS-232, USB, or LAN communication ports, null modem, USB, or Ethernet cables Operating system: GNU/Linux (2.6.28-11), should also work on any Unix-based operational system Classification: 4.14 External routines: Perl modules: Device::SerialPort, Term::ANSIColor, Math::GSL, Net::HTTP. Gnuplot 4.0 or higher Nature of problem: Automation of experiments and data acquisition often requires expensive equipment and in-house development of software applications. Nowadays personal computers and test equipment come with fast and easy-to-use communication ports. Instrument vendors often supply application programs capable of controlling such devices, but are very restricted in terms of functionalities. For instance, they are not capable of controlling more than one test equipment at a same time or to automate repetitive tasks. SCTE provides a way of using auxiliary equipment in order to automate experiment procedures at low cost using only free, and open-source operational system and libraries. Solution method: SCTE provides a Perl module that implements RS-232, USB, and LAN communication allowing the use of SCPI capable instruments [1]. Therefore providing a straightforward way of creating automation and data acquisition applications using personal computers and testing instruments [2]. SCPI Consortium, Standard Commands for Programmable Instruments, 1999, http://www.scpiconsortium.org. L.C.B. Mostaço-Guidolin, Determinação da configuração de ondas de Alfvén excitadas no tokamak TCABR, Master's thesis, Universidade de São Paulo (2007), http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23042009-230419/.
An inexpensive instrument for measuring wave exposure and water velocity
Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.
2011-01-01
Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.
A levitation instrument for containerless study of molten materials.
Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
A levitation instrument for containerless study of molten materials
NASA Astrophysics Data System (ADS)
Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
5-Beam ADCP Deployment Strategy Considerations
NASA Astrophysics Data System (ADS)
Moore, T.; Savidge, D. K.; Gargett, A.
2016-02-01
With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.
Magnetoresistive magnetometer for space science applications
NASA Astrophysics Data System (ADS)
Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.
2012-02-01
Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
NASA Astrophysics Data System (ADS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis
2015-09-01
This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.
Tambe, Varsha Harshal; Nagmode, Pradnya Sunil; Abraham, Sathish; Patait, Mahendra; Lahoti, Pratik Vinod; Jaju, Neha
2014-01-01
Aim: The aim of the present study was to compare the canal transportation and centering ability of Rotary ProTaper, One Shape and Wave One systems using cone beam computed tomography (CBCT) in curved root canals to find better instrumentation technique for maintaining root canal geometry. Materials and Methods: Total 30 freshly extracted premolars having curved root canals with at least 10 degrees of curvature were divided into three groups of 10 teeth each. All teeth were scanned by CBCT to determine the root canal shape before instrumentation. In Group 1, the canals were prepared with Rotary ProTaper files, in Group 2 the canals were prepared with One Shape files and in Group 3 canals were prepared with Wave One files. After preparation, post-instrumentation scan was performed. Pre-instrumentation and post-instrumentation images were obtained at three levels, 3 mm apical, 3 mm coronal and 8 mm apical above the apical foramen were compared using CBCT software. Amount of transportation and centering ability were assessed. The three groups were statistically compared with analysis of variance and Tukey honestly significant. Results: All instruments maintained the original canal curvature with significant differences between the different files. Data suggested that Wave One files presented the best outcomes for both the variables evaluated. Wave One files caused lesser transportation and remained better centered in the canal than One Shape and Rotary ProTaper files. Conclusion: The canal preparation with Wave One files showed lesser transportation and better centering ability than One Shape and ProTaper. PMID:25506145
75 FR 12175 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
..., 1301 Beal Avenue, Ann Arbor, MI 49109-2122. Instrument: Tester for TFT Imager. Manufacturer: Siemens AG... capability of amorphous silicon TFT and organic photo-diode. This instrument must be capable of measuring...
Infrared Astrophysics in the SOFIA Era - An Overview
NASA Astrophysics Data System (ADS)
Yorke, Harold W.
2018-06-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) provides the international astronomical community access to a broad range of instrumentation that covers wavelengths spanning the near to far infrared. The high spectral resolution of many of these instruments in several wavelength bands is unmatched by any existing or near future planned facility. The far infrared polarization capabilities of one of its instruments, HAWC+, is also unique. Moreover, SOFIA allows for additional instrument augmentations, as new state-of-the-art photometric, spectrometric, and polarimetric capabilities have been added and are being further improved. The fact that SOFIA provides ample mass, power, computing capabilities as well as 4K cooling eases the constraints on future instrument design, technical readiness, and the instrument build to an extent not possible for space-borne missions. We will review SOFIA's current and future planned capabilities and highlight specific science areas for which the stratospheric observatory will be able to significantly advance Origins science topics.
Anderson, G P; Golden, J P; Ligler, F S
1994-06-01
A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.
Vandenbosch, Laura; van Oosten, Johanna M F
2018-07-01
Despite increasing interest in the implications of adolescents' use of sexually explicit Internet material (SEIM), we still know little about the relationship between SEIM use and adolescents' casual sexual activities. Based on a three-wave online panel survey study among Dutch adolescents (N = 1079; 53.1% boys; 93.5% with an exclusively heterosexual orientation; M age = 15.11; SD = 1.39), we found that watching SEIM predicted engagement in casual sex over time. In turn, casual sexual activities partially predicted adolescents' use of SEIM. A two-step mediation model was tested to explain the relationship between watching SEIM and casual sex. It was partially confirmed. First, watching SEIM predicted adolescents' perceptions of SEIM as a relevant information source from Wave 2 to Wave 3, but not from Wave 1 to Wave 2. Next, such perceived utility of SEIM was positively related to stronger instrumental attitudes toward sex and thus their views about sex as a core instrument for sexual gratification. Lastly, adolescents' instrumental attitudes toward sex predicted adolescents' engagement in casual sex activities consistently across waves. Partial support emerged for a reciprocal relationship between watching SEIM and perceived utility. We did not find a reverse relationship between casual sex activities and instrumental attitudes toward sex. No significant gender differences emerged.
New instrumentation for the 1.2m Southern Millimeter Wave Telescope (SMWT)
NASA Astrophysics Data System (ADS)
Vasquez, P.; Astudillo, P.; Rodriguez, R.; Monasterio, D.; Reyes, N.; Finger, R.; Mena, F. P.; Bronfman, L.
2016-07-01
Here we describe the status of the upgrade program that is being performed to modernize the Southern 1.2m Wave Telescope. The Telescope was built during early ´80 to complete the first Galactic survey of Molecular Clouds in the CO(1-0) line. After a fruitful operation in CTIO the telescope was relocated to the Universidad de Chile, Cerro Calán Observatory. The new site has an altitude of 850m and allows observations in the millimeter range throughout the year. The telescope was upgraded, including a new building to house operations, new control system, and new receiver and back-end technologies. The new front end is a sideband-separating receiver based on a HEMT amplifier and sub-harmonic mixers. It is cooled with Liquid Nitrogen to diminish its noise temperature. The back-end is a digital spectrometer, based on the Reconfigurable Open Architecture Computing Hardware (ROACH). The new spectrometer includes IF hybridization capabilities to avoid analog hybrids and, therefore, improve the sideband rejection ratio of the receiver.
NASA Astrophysics Data System (ADS)
Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.
2017-11-01
The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude. The effect over the boresight at the instrument focal plane has also been analyzed. The results show that the effect of the FDT HREW thermal gradients on the FDT performance can be optically corrected. The influence of the thermal gradients on the system is also presented.
NASA Astrophysics Data System (ADS)
Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael
2017-04-01
A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR) at Oberpfaffenhofen (48.09 ° N, 11.28 ° E), Germany. The spatial resolution of the instrument is 17 m/pixel in zenith direction with a field of view (FOV) of 11.1 km x 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 ° and 0 °) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the Maximum Entropy Method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4th to 5th April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM airglow imager provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings. Parts of this research received funding from the Bavarian State Ministry of the Environment and Consumer Protection.
A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER
NASA Astrophysics Data System (ADS)
Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan
2014-05-01
One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform, occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR observed sensitivity as low as -37 dBZ at 1 km range and resolved linear depolarization ratio (LDR) signature better than -29 dB during its latest test flights. References: Kollias, P., and B. A. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter wavelength radar observation. J. Atmos. Sci., 57, 2417-2434. Kollias, P., B.A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 58, 1750-1766. Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. Hunning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bulletin of the American Meteorological Society, 87, 896-909. Pazmany, A. L., R. E. McIntosh, R. Kelly, and V. G., 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731-739. Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., McIntosh, R., Pazmany, A., 1998. Fine-scale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540-3564.
NASA Technical Reports Server (NTRS)
McAndrew, Brendan; McCorkel, Joel; Shuman, Timothy; Zukowski, Barbara; Traore, Aboubakar; Rodriguez, Michael; Brown, Steven; Woodward, John
2018-01-01
A description of the Goddard Laser for Absolute Calibration of Radiance, a tunable, narrow linewidth spectroradiometric calibration tool, and results from calibration of an earth science satellite instrument from ultraviolet to short wave infrared wavelengths.
Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation
NASA Technical Reports Server (NTRS)
Chung, K.; Hosny, W. M.; Steenken, W. G.
1980-01-01
A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied.
NASA Astrophysics Data System (ADS)
Tougher, B. B.
2011-12-01
Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.
Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis.
Barbosa, I; Ferreira, F; Scelza, P; Neff, J; Russano, D; Montagnana, M; Zaccaro Scelza, M
2018-04-10
To evaluate the presence and propagation of defects and their effects on surfaces of nickel-titanium (NiTi) instruments using noncontact, three-dimensional optical profilometry, and to assess the accuracy of this method of investigation. The flute surface areas of instruments from two commercial instrumentation systems, namely Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were assessed and compared before and after performing two instrumentation cycles in simulated root canals in clear resin blocks. All the analyses were conducted on areas measuring 211 × 211 μm, located 3 mm from the tips of the instruments. A quantitative analysis was conducted before and after the first and second instrumentation cycles, using the Sa (average roughness over the measurement field), Sq (root mean square roughness) and Sz (average height over the measurement field) amplitude parameters. All the data were submitted to statistical analysis at a 5% level of significance. There was a significant increase (P = 0.007) in wear in both groups, especially between baseline and the second instrumentation cycle, with significantly higher wear values being observed on WaveOne instruments (Sz median values = 33.68 and 2.89 μm, respectively, for WO and RP groups). A significant increase in surface roughness (P = 0.016 and P = 0.008, respectively, for Sa and Sq) was observed in both groups from the first to the second instrumentation cycle, mostly in WaveOne specimens. Qualitative analysis revealed a greater number of defects on the flute topography of all the instruments after use. More defects were identified in WaveOne Primary instruments compared to Reciproc R25, irrespective of the evaluation stage. The investigation method provided an accurate, repeatable and reproducible assessment of NiTi instruments at different time-points. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick
2014-01-01
The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.
NASA Astrophysics Data System (ADS)
Kletzing, C.
2017-12-01
The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.
Wave data processing toolbox manual
Sullivan, Charlene M.; Warner, John C.; Martini, Marinna A.; Lightsom, Frances S.; Voulgaris, George; Work, Paul
2006-01-01
Researchers routinely deploy oceanographic equipment in estuaries, coastal nearshore environments, and shelf settings. These deployments usually include tripod-mounted instruments to measure a suite of physical parameters such as currents, waves, and pressure. Instruments such as the RD Instruments Acoustic Doppler Current Profiler (ADCP(tm)), the Sontek Argonaut, and the Nortek Aquadopp(tm) Profiler (AP) can measure these parameters. The data from these instruments must be processed using proprietary software unique to each instrument to convert measurements to real physical values. These processed files are then available for dissemination and scientific evaluation. For example, the proprietary processing program used to process data from the RD Instruments ADCP for wave information is called WavesMon. Depending on the length of the deployment, WavesMon will typically produce thousands of processed data files. These files are difficult to archive and further analysis of the data becomes cumbersome. More imperative is that these files alone do not include sufficient information pertinent to that deployment (metadata), which could hinder future scientific interpretation. This open-file report describes a toolbox developed to compile, archive, and disseminate the processed wave measurement data from an RD Instruments ADCP, a Sontek Argonaut, or a Nortek AP. This toolbox will be referred to as the Wave Data Processing Toolbox. The Wave Data Processing Toolbox congregates the processed files output from the proprietary software into two NetCDF files: one file contains the statistics of the burst data and the other file contains the raw burst data (additional details described below). One important advantage of this toolbox is that it converts the data into NetCDF format. Data in NetCDF format is easy to disseminate, is portable to any computer platform, and is viewable with public-domain freely-available software. Another important advantage is that a metadata structure is embedded with the data to document pertinent information regarding the deployment and the parameters used to process the data. Using this format ensures that the relevant information about how the data was collected and converted to physical units is maintained with the actual data. EPIC-standard variable names have been utilized where appropriate. These standards, developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) (http://www.pmel.noaa.gov/epic/), provide a universal vernacular allowing researchers to share data without translation.
Probing Black Holes With Gravitational Radiation
NASA Astrophysics Data System (ADS)
Cornish, Neil J.
2006-09-01
Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.
Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.; Weimer, Daniel R.
1994-01-01
The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated.
NASA Astrophysics Data System (ADS)
Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.
2016-03-01
Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.
Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Alexandra; Haller, Merrick; Walker, David
This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.« less
Digital holographic interferometry for characterizing deformable mirrors in aero-optics
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme
2016-08-01
Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Zhao, Y.; Pautet, P. D.; Carstens, J. N.; Pugmire, J. R.; Smith, S. M.; Liu, A. Z.; Vargas, F.; Swenson, G. R.; Randall, C. E.; Bailey, S. M.; Russell, J. M., III
2016-12-01
To date, the primary research goals of the Aeronomy of Ice in the Mesosphere (AIM) satellite have focussed on investigating the occurrence, properties and dynamics of high-latitude Polar Mesospheric Clouds (PMC). With the evolution of the AIM orbit beta angle the opportunity now exists to make measurements outside the PMC region covering mid-low and equatorial latitudes. As part of the extended AIM mission science program, the AIM platform in conjunction with auxiliary ground-based measurements will be used to better understand upper atmospheric dynamics and vertical coupling due to gravity waves. Over the next 2 years AIM will take advantage of a new imaging capability of the on-board large-field CIPS UV imager to capture new data on the characteristics and spatial extents of stratospheric gravity waves near the 50 km level and their variation with latitude and season. In this study we report on initial coordinated ground-based measurements with the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile ( 30°S) and nearby El Leoncito Observatory, Argentina, high in the Andes Mountains, where regular remote-sensing measurements are made using meteor radar, mesospheric airglow imagers, temperature mappers and an Na wind-temperature lidar (on a campaign basis). First coordinated measurements were made during the winter period in June 2016. AIM daytime overpasses have been analysed to search for and characterize extensive stratospheric wave events, as well as long-lived "Mountain Waves" over South America. Subsequent night-time ground-based measurements have been used to quantify wave characteristics in the mesopause region ( 80-100 km) to investigate vertical coupling. These measurements are continuing and it is planned to extend the new AIM stratospheric gravity wave data set for similar studies from a number of well-instrumented ground sites around the world.
NASA Astrophysics Data System (ADS)
Frouin, Robert; Deschamps, Pierre-Yves; Rothschild, Richard; Stephan, Edward; Leblanc, Philippe; Duttweiler, Fred; Ghaemi, Tony; Riedi, Jérôme
2006-12-01
The Monitoring Aerosols in the Ultraviolet Experiment (MAUVE) and the Short-Wave Infrared Polarimeter Experiment (SWIPE) instruments have been designed to collect, from a typical sun-synchronous polar orbit at 800 km altitude, global observations of the spectral, polarized, and directional radiance reflected by the earth-atmosphere system for a wide range of applications. Based on the heritage of the POLDER radiometer, the MAUVE/SWIPE instrument concept combines the merits of TOMS for observing in the ultra-violet, MISR for wide field-of-view range, MODIS, for multi-spectral aspects in the visible and near infrared, and the POLDER instrument for polarization. The instruments are camera systems with 2-dimensional detector arrays, allowing a 120-degree field-of-view with adequate ground resolution (i.e., 0.4 or 0.8 km at nadir) from satellite altitude. Multi-angle viewing is achieved by the along-track migration at spacecraft velocity of the 2-dimensional field-of-view. Between the cameras' optical assembly and detector array are two filter wheels, one carrying spectral filters, the other polarizing filters, allowing measurements of the first three Stokes parameters, I. Q, and V, of the incident radiation in 16 spectral bands optimally placed in the interval 350-2200 nm. The spectral range is 350-1050 nm for the MAUVE instrument and 1050-2200 nm for the SWIPE instrument. The radiometric requirements are defined to fully exploit the multi-angular, multi-spectral, and multi-polarized capability of the instruments. These include a wide dynamic range, a signal-to-noise ratio above 500 in all channels at maximum radiance level, i.e., when viewing a surface target of albedo equal to 1, and a noise-equivalent-differential reflectance better than 0.0005 at low signal level for a sun at zenith. To achieve daily global coverage, a pair of MAUVE and SWIPE instruments would be carried by each of two mini-satellites placed on interlaced orbits. The equator crossing time of the two satellites would be adjusted to allow simultaneous observations of the overlapping zone viewed from the two parallel orbits of the twin satellites. Using twin satellites instead of a single satellite would allow measurements in a more complete range of scattering angles. A MAUVE/SWIPE satellite mission would improve significantly the accuracy of ocean color observations from space, and will extend the retrieval of ocean optical properties to the ultra-violet, where they become very sensitive to detritus material and dissolved organic matter. It would also provide a complete description of the scattering and absorption properties of aerosol particles, as well as their size distribution and vertical distribution. Over land, the retrieved bidirectional reflectance function would allow a better classification of terrestrial vegetation and discrimination of surface types. The twin satellite concept, by providing stereoscopic capability, would offer the possibility to analyze the three-dimensional structure and radiative properties of cloud fields.
The high resolution optical instruments for the Pleiades HR Earth observation satellites
NASA Astrophysics Data System (ADS)
Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier
2017-11-01
Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen beginning-2010, the second will follow beginning-2011.
NASA Astrophysics Data System (ADS)
Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.
2018-05-01
A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V
2016-01-01
Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.
NASA Astrophysics Data System (ADS)
Che, George
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory's capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintenberg, A.L.
1985-04-01
An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less
Conceptualizing and assessing improvement capability: a review
Boaden, Ruth; Walshe, Kieran
2017-01-01
Abstract Purpose The literature is reviewed to examine how ‘improvement capability’ is conceptualized and assessed and to identify future areas for research. Data sources An iterative and systematic search of the literature was carried out across all sectors including healthcare. The search was limited to literature written in English. Data extraction The study identifies and analyses 70 instruments and frameworks for assessing or measuring improvement capability. Information about the source of the instruments, the sectors in which they were developed or used, the measurement constructs or domains they employ, and how they were tested was extracted. Results of data synthesis The instruments and framework constructs are very heterogeneous, demonstrating the ambiguity of improvement capability as a concept, and the difficulties involved in its operationalisation. Two-thirds of the instruments and frameworks have been subject to tests of reliability and half to tests of validity. Many instruments have little apparent theoretical basis and do not seem to have been used widely. Conclusion The assessment and development of improvement capability needs clearer and more consistent conceptual and terminological definition, used consistently across disciplines and sectors. There is scope to learn from existing instruments and frameworks, and this study proposes a synthetic framework of eight dimensions of improvement capability. Future instruments need robust testing for reliability and validity. This study contributes to practice and research by presenting the first review of the literature on improvement capability across all sectors including healthcare. PMID:28992146
SmallSat Innovations for Planetary Science
NASA Astrophysics Data System (ADS)
Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric
2017-10-01
As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.
Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert
2014-12-30
Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system wasmore » designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.« less
Instrumentation: Software-Driven Instrumentation: The New Wave.
ERIC Educational Resources Information Center
Salit, M. L.; Parsons, M. L.
1985-01-01
Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…
Small aperture seismic arrays for studying planetary interiors and seismicity
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.
2017-12-01
Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.
The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F. S.; Bale, S. D.; Ludlam, M.; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malsapina, D. M.; Bolton, M. K.; Hudson, M.; Strangeway, R. J.; Baker, D. N.; Li, X.; Albert, J.; Foster, J. C.; Chaston, C. C.; Mann, I.; Donovan, E.; Cully, C. M.; Cattell, C. A.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A.; Tao, J. B.
2013-11-01
The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ˜15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the "highest quality" events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).
First plasma wave observations at uranus.
Gurnett, D A; Kurth, W S; Scarf, F L; Poynter, R L
1986-07-04
Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 kilohertz. About 10 hours before closest approach the bow shock was identified by an abrupt broadband burst of electrostatic turbulence at a radial distance of 23.5 Uranus radii. Once Voyager was inside the magnetosphere, strong whistler-mode hiss and chorus emissions were observed at radial distances less than about 8 Uranus radii, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. Various other plasma waves were also observed in this same region. At the ring plane crossing, the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micrometer-sized dust particles on the spacecraft. The maximum impact rate was about 30 to 50 impacts per second, and the north-south thickness of the impact region was about 4000 kilometers.
Field and laboratory comparison of PM10 instruments in high winds
USDA-ARS?s Scientific Manuscript database
Instruments capable of measuring PM10 (particulate matter less than or equal to 10µm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentratio...
Science Instruments and Sensors Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Barney, Rich; Zuber, Maria
2005-01-01
The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond). Viewgraphs on these instruments and sensors are presented.
Measuring sea surface height with a GNSS-Wave Glider
NASA Astrophysics Data System (ADS)
Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.
2017-04-01
A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information about dynamic topography and sea state. GNSS-Wave Glider data will next be validated against concurrent and co-located satellite altimetry data from the Jason-1, Jason-2, CryoSat-2 and AltiKa missions.
Dynamics of internetwork chromospheric fibrils: Basic properties and magnetohydrodynamic kink waves
NASA Astrophysics Data System (ADS)
Mooroogen, K.; Morton, R. J.; Henriques, V.
2017-11-01
Aims: Current observational instruments are now providing data with the necessary temporal and spatial cadences required to examine highly dynamic, fine-scale magnetic structures in the solar atmosphere. Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα in the internetwork. Methods: We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides. Results: We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120 s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfvén speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of the IN fibril.
NASA Astrophysics Data System (ADS)
Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.
2017-12-01
Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.
Formation of Large-Amplitude Wave Groups in an Experimental Model Basin
2008-08-01
varying parameters, including amplitude, frequency, and signal duration. Superposition of thes finite regular waves produced repeatable wave groups at a...19 Regular Waves 20 Irregular Waves 21 Senix Wave Gages 21 GLRP 23 Instrumentation Calibration and Uncertainty 26 Senix Ultrasonic Wave Gages... signal output from sine wave superposition, two sine waves combined: x] + x2 (top) and x3 + x4 (middle), all four waves (x, + x2 + x, + xA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Wu, Yu-Ping; Min, Hao
A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicatedmore » RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.« less
NASA Astrophysics Data System (ADS)
Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.
2017-12-01
The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.
Topçuoğlu, H S; Düzgün, S; Akpek, F; Topçuoğlu, G; Aktı, A
2016-06-01
To evaluate the effect of a glide path on the amount of apically extruded debris during canal preparation using single-file systems in curved canals. Ninety extracted mandibular molar teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, a glide path was not created whereas a glide path was created using PathFile instruments on the mesial canals of all teeth in the remaining three groups. The mesial canals of the teeth were then instrumented with the following single-file instrument systems: WaveOne, Reciproc and OneShape. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data obtained were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The OneShape file was associated with less debris extrusion than the Reciproc and WaveOne files when canal instrumentation was performed without a glide path (P < 0.05). However, no significant difference was found between the Reciproc and WaveOne files (P > 0.05). There was no significant difference amongst the OneShape, Reciproc and WaveOne files when a glide path was created before canal preparation in curved root canals (P > 0.05). All systems extruded significantly less debris in groups with a glide path than in groups without a glide path (P < 0.05). All instruments were associated with apical extrusion of debris. Creating a glide path prior to canal instrumentation reduced the amount of apically extruded debris in curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Microwave Investigation of the Mars Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Gulkis, S.; Forget, F.; Janssen, M.; Riley, A. L.; Hartogh, P.; Clancy, T.; Allen, M.; Frerking, M.
2000-01-01
The Microwave Investigation of the Mars Atmosphere and Surface Experiment (MIMAS) is designed to address two major scientific goals: 1) To understand the three dimensional general circulation of the Martian atmosphere, and 2) To understand the hydrologic cycle of water on Mars, including the time-variable sources, sinks, and atmospheric transport of water vapor. The proposed instrument is a submillimeter wave, heterodyne receiver, with both continuum and very high spectral resolution capability. A small reflector antenna will be used to feed the receiver. Instrument heritage comes from the MIRO receiver, currently under design for the ESA Rosetta Mission, and from SWAS, a NASA astrophysics mission. The instrument will be able to measure atmospheric spectral lines from both water and carbon monoxide and use these lines as tracers of atmospheric winds. Measurement objectives of MIMAS are to measure surface temperature, atmospheric temperature from the surface up to an altitude of 60 km or more, the distribution of CO and H2O in the atmosphere, and certain wind fields (zonal and meridional). The global distribution of CO, as well as temperature distributions, will be used as input data for GCMs (general circulation models). Water vapor profiles will be used to understand the sources and sinks of water on Mars and to understand how it is transported globally by the general circulation. Zonal and meridional wind fields will provide further tests of the GCMs. An important aspect of this experiment is that the temperature and humidity measurements are insensitive to dust and ice condensates thereby making the measurement capability independent of the presence of dust clouds and ice particles. Temperature measurements derived from the data can be used in conjunction with infrared measurements to determine dust profiles.
Yang, Yan; Shen, Ya; Ma, Jingzhi; Cao, Yingguang; Haapasalo, Markus
2016-08-01
Micro-computed tomographic scanning was used to evaluate the influence of operator's experience on the time and quality of instrumentation of the mesial root canals of mandibular molars using WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland). Thirty mandibular molars with 2 separate mesial canals were submitted to preoperative micro-CT scans. Teeth were randomly allocated to 3 groups: and experienced operator group and inexperienced groups before and after training with WaveOne files. Second scans were obtained after instrumentation. The volume of the untreated canal, the volume of dentin removed after preparation; the amount of the uninstrumented area; and transportation to the coronal, middle, and apical thirds of canals were measured. The preparation time was also recorded. Instrumentation of canals increased their volume and surface area in all groups. No significant differences between experienced and inexperienced (with and without training) groups in the apical, middle, and coronal sections were detected although coronal transportation was slightly larger in both inexperienced groups than in the experienced group. The inexperienced operator without training used significantly more time for instrumentation than the experienced operator (P < .05); after training for 1 month, the instrumentation time by the same inexperienced operator was reduced (P < .05) to close to the time of the experienced operator (P > .05). The WaveOne instrumentation technique required a short learning curve for the inexperienced user in order to master this technology. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V
2016-01-01
ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Hidayat, D.; Young, S. R.; Widiwijayanti, C.; Shalev, E.; Malin, P. E.; Elsworth, D.; Williams, P.; van Boskirk, E.; Thompson, G.; Syers, T.; Sparks, R. S.; Schleigh, B.; Norton, G.; Neuberg, J.; Miller, V.; McWhorter, N.; Johnston, W.; Dunkley, P.; Clarke, A. B.; Bass, V.
2005-05-01
The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufrière Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites (Mattioli et al., 2004). The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer (~Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. The project has been successfully launched with its capture of the tremendous SHV lava dome collapse of 12-13 July 2003 (Herd et al., 2003), involving about 120 million cubic meters--the largest lava dome collapse in the historical record. A wide variety of unique geophysical signals were acquired CALIPSO instrumentation during the July 2003 collapse and important constraints on a variety of volcanic processes are being obtained. For example, tsunami waves were generated 2 km east of the volcanic dome by pyroclastic flows entering the sea. We reconstruct collapse volume-time history from seismic signals generated by pyroclastic flows, using the method of Brodscholl et al. (2000). The tsunami left flotsam strandlines of runup >8m high along the east coast of Montserrat, and waves ~0.5m high were reported from Guadaloupe. Unique borehole dilatometer data (Voight et al., 2003; Mattioli et al., 2003; 2004) record details of tsunami wave passage. One station is located 40m from the sea, with the instrument ~180m below MSL. Strain wave packets at periods of ~200-500s occurred, consistent in period and amplitude with water loading from passing tsunami waves. Wave packets between ~0600-1130 LT can be correlated with pyroclastic flow seismic data. Non-linear Boussinesq hydrodynamic modeling fits wave decay from source to instrument site and is consistent with wave periods and delay times. Coherent near-field waves depend on flow volume, submerged time of motion, and bathymetry. The model matches the delay time between pyroclastic flow entry time and arrival of tsunami waves at the instrument site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PIERSON, R.M.
1999-10-27
This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
Remote sensing technology research and instrumentation platform design
NASA Technical Reports Server (NTRS)
1992-01-01
An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.
NASA Astrophysics Data System (ADS)
Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.
2006-01-01
The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
Gravity Spy - Integrating LIGO detector characterization, citizen science, and machine learning
NASA Astrophysics Data System (ADS)
Zevin, Michael; Gravity Spy
2016-06-01
On September 14th 2015, the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) made the first direct observation of gravitational waves and opened a new field of observational astronomy. However, being the most complicated and sensitve experiment ever undertaken in gravitational physics, aLIGO is susceptible to various sources of environmental and instrumental noise that hinder the search for more gravitational waves.Of particular concern are transient, non-Gaussian noise features known as glitches. Glitches can mimic true astrophysical gravitational waves, occur at a high enough frequency to be coherent between the two detectors, and generally worsen aLIGO's detection capabilities. The proper classification and charaterization of glitches is paramount in optimizing aLIGO's ability to detect gravitational waves. However, teaching computers to identify and morphologically classify these artifacts is exceedingly difficult.Human intuition has proven to be a useful tool in classifcation probelms such as this. Gravity Spy is an innovative, interdisciplinary project hosted by Zooniverse that combines aLIGO detector characterization, citizen science, machine learning, and social science. In this project, citizen scientists and computers will work together in a sybiotic relationship that leverages human pattern recognition and the ability of machine learning to process large amounts of data systematically: volunteers classify triggers from the aLIGO data steam that are constantly updated as aLIGO takes in new data, and these classifications are used to train machine learning algorithms which proceed to classify the bulk of aLIGO data and feed questionable glithces back to the users.In this talk, I will discuss the workflow and initial results of the Gravity Spy project with regard to aLIGO's future observing runs and highlight the potential of such citizen science projects in promoting nascent fields such as gravitational wave astrophysics.
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Maccarone, Thomas J.; Chomiuk, Laura; ngVLA Science Working Group 2, ngVLA Science Working Group 4
2018-01-01
The ngVLA will be a powerful telescope for finding and studying black holes, surveying everything from the remnants of massive stars to the supermassive black holes that lurk in the centers of galaxies. High-resolution imaging abilities will allow the separation of low-luminosity black holes in the local Universe from background sources, thereby providing critical constraints on the formation and growth of black holes of all sizes. Its combination of sensitivity and angular resolution will provide new constraints on the physics of black hole accretion and jet formation. Combined with facilities across the spectrum and gravitational wave observatories, the ngVLA will provide crucial constraints on the interaction of supermassive black holes with their environments, with implications for the evolution of galaxies and the emission of gravitational waves from in-spiraling supermassive black holes. The ngVLA will identify the radio counterparts to transient sources discovered by gravitational wave, neutrino, and optical observatories, and its high-resolution, fast-mapping capabilities will make it the preferred instrument to pinpoint electromagnetic counterparts to events such as supermassive black hole mergers.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Musical Sound, Instruments, and Equipment
NASA Astrophysics Data System (ADS)
Photinos, Panos
2017-12-01
'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.
The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments.
Magalhães, Rafael Rodrigues Soares de; Braga, Lígia Carolina Moreira; Pereira, Érika Sales Joviano; Peixoto, Isabella Faria da Cunha; Buono, Vicente Tadeu Lopes; Bahia, Maria Guiomar de Azevedo
2016-01-01
The aim of this study was to assess the influence of clinical use, in vivo, on the torsional behavior of Reciproc and WaveOne instruments considering the possibility that they degraded with use. Diameter at each millimeter, pitch length, and area at 3 mm from the tip were determined for both types of instruments. Twenty-four instruments, size 25, 0.08 taper, of each system were divided into two groups (n=12 each): Control Group (CG), in which new Reciproc (RC) and WaveOne Primary (WO) instruments were tested in torsion until rupture based on ISO 3630-1; and Experimental Group (EG), in which each new instrument was clinically used to clean and shape the root canals of one molar. After clinical use, the instruments were analyzed using optical and scanning electron microscopy and subsequently tested in torsion until fracture. Data were analyzed using one-way analysis of variance at a=.05. WO instruments showed significantly higher mean values of cross-sectional area A3 (P=0.000) and smaller pitch lengths than RC instruments with no statistically significant differences in the diameter at D3 (P=0.521). No significant differences in torsional resistance between the RC and WO new instruments (P=0.134) were found. The clinical use resulted in a tendency of reduction in the maximum torque of the analyzed instruments but no statistically significant difference was observed between them (P=0.327). During the preparation of the root canals, two fractured RC instruments and longitudinal and transversal cracks in RC and WO instruments were observed through SEM analysis. After clinical use, no statistically significant reduction in the torsional resistance was observed.
2015-10-30
Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can
All electrical propagating spin wave spectroscopy with broadband wavevector capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.
2016-07-04
We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less
VISSR Atmospheric Sounder (VAS) Research Review
NASA Technical Reports Server (NTRS)
Greaves, J. R. (Editor)
1983-01-01
The VAS, an experimental instrument flown onboard Geostationary Operational Environmental Satellite (GOES), is capable of achieving mutlispectral imagery of atmospheric temperature, water vapor, and cloudiness patterns over short time intervals. In addition, this instrument provides an atmospheric sounding capability from geosynchronous orbit. The VAS demonstration is an effort for evaluating the VAS instrument's performance, and for demonstrating the capabilities of a VAS prototype system to provide useful geosynchronous satellite data for supporting weather forecasts and atmospheric research. The demonstration evaluates the performance of the VAS Instruments on GOES-4-5, and -6, develops research oriented and prototype/operational VAS data processing systems, determines the accuracy of certain basic and derived meteorological parameters that can be obtained from the VAS instrument, and assesses the utility of VAS derived information in analyzing severe weather situations.
NASA Astrophysics Data System (ADS)
Schneider, Bastian; Hoffmann, Gösta
2017-04-01
The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.
Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar
NASA Technical Reports Server (NTRS)
Martner, Brooks E.; Ralph, F. Martin
1993-01-01
Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
The Application of Ultrasonic Inspection to Crimped Electrical Connections
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2010-01-01
The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.
Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy.
Chandler, John E; Stypula-Cyrus, Yolanda; Almassalha, Luay; Bauer, Greta; Bowen, Leah; Subramanian, Hariharan; Szleifer, Igal; Backman, Vadim
2017-03-01
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menge, P.R.; Cuneo, M.E.; Hanson, D.L.
A magnetic spectrometer has been fielded on the coaxial magnetically insulated transmission line (MITL) of the SABRE ten-cavity inductive voltage adder operated in positive polarity (6 MV, 300 kA, 50 ns). Located 1 m upstream from an extraction ion diode, this diagnostic is capable of measuring the SABRE voltage pulse with a 2 ns resolution. Ions (protons and carbon) from either a flashover or plasma gun source are accelerated from the inner anode across the gap to the outer cathode and into a drift tube terminated by the magnetic spectrometer. The magnetically deflected ions are recorded on up to sixteenmore » PIN diodes (diameter = 1 mm, thickness = 35 {mu}). The voltage waveform is produced from the time-of-flight information. Results confirm previous observations of a vacuum wave precursor separated from the magnetically insulated wave. Verification of upstream precursor erosion techniques are possible with this instrument. Measurements of peak voltage show good agreement with other time-integrated voltage diagnostics. Comparisons with theoretical voltage predictions derived from a flow impedance model of MITL behavior will be presented.« less
Voyager 2 plasma wave observations at saturn.
Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L
1982-01-29
The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.
NASA Technical Reports Server (NTRS)
McGill, Matthew; Famiglietti, Joe
2005-01-01
Researchers at NASA's Goddard Space Flight Center have developed an autonomous aerosol backscatter lidar instrument for use on the high-altitude ER-2 aircraft (for more information please visit http://cpl.gsfc.nasa.gov). Work is currently underway to transfer this instrument to a UAV platform such as Global Hawk. While the NASA applications are Earth science and satellite validation, there is clearly a Homeland Security application for such an instrument. One novel concept is to have a fleet of UAVs stationed around the country, each UAV having a payload including a lidar instrument. In the event of attack, the appropriate UAV(s) could be launched for purposes of, e.g., plume detection and tracking that are critical for decision support. While the existing lidar instrument is not directly capable of biological species discrimination, it is capable of plume tracking and thus can demonstrate to DHS the capabilities and utility of such instruments. Using NASA funding we will have an instrument ready to fly on Global Hawk by end of 2005. We would like to find partners, either within private industry or within DHS who would be willing to contribute aircraft access and flight hours for a demonstration flight. Longer-term partnerships to develop more advanced and more capable types of lidar instruments are also desirable. In this presentation we will detail the existing ER-2 lidar instrument and show measurement results, show the progress made on adapting to the Global Hawk platform, present concepts for DHS uses of such instruments, and openly pursue partnership opportunities.
Millimeter- and Submillimeter-Wave Remote Sensing Using Small Satellites
NASA Technical Reports Server (NTRS)
Ehsan, N.; Esper, J.; Piepmeier, J.; Racette, P.; Wu, D.
2014-01-01
Cloud ice properties and processes play fundamental roles in atmospheric radiation and precipitation. Limited knowledge and poor representation of clouds in global climate models have led to large uncertainties about cloud feedback processes under climate change. Ice clouds have been used as a tuning parameter in the models to force agreement with observations of the radiation budget at the top of the atmosphere, and precipitation at the bottom. The lack of ice cloud measurements has left the cloud processes at intermediate altitudes unconstrained. Millimeter (mm) and submillimeter (submm)-wave radiometry is widely recognized for its potential to fill the cloud measurement gap in the middle and upper troposphere. Analyses have shown that channels from 183900 GHz offer good sensitivity to ice cloud scattering and can provide ice water path (IWP) products to an accuracy of 25 by simultaneously retrieving ice particle size (Dme) and IWP. Therefore, it is highly desirable to develop a cost-effective, compact mm/submm-wave instrument for cloud observations that can be deployed on future small satellites.This paper presents a conceptual study for a mm/submm-wave instrument for multispectral measurements of ice clouds. It discusses previous work at these frequencies by NASA Goddard Space Flight Center (GSFC) and the current instrument study, as well as receiver architectures and their anticipated performance. And finally, it describes a microsatellite prototype intended for use with this mm/submm-wave instrument.
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.
2016-12-01
The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.
Advances in Inner Magnetosphere Passive and Active Wave Research
NASA Technical Reports Server (NTRS)
Green, James L.; Fung, Shing F.
2004-01-01
This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.
Proceedings of a Workshop on Assessment of Techniques for Measuring Tropospheric N sub x O sub y
NASA Technical Reports Server (NTRS)
1983-01-01
Human impact on the troposphere, particularly on the regional to global scale is assessed. One area of required research is instrumentation development, which is aimed at improving the capability to measure important trace gases and aerosols which are key species in the major atmospheric biogeochemical cycles. To focus on specific needs, the Instrumentation Workshop for NxOy Tropospheric Species was conducted. The workshop discussed measurement needs and instrument capabilities for NxOy species, including NO, NO2, HNO3, HNO2, PAN, and NO3 aerosols. The status and measurement capabilities of various techniques (operational as well as conceptual) were discussed, along with future instrument and technology needs.
Statistical evidence for the existence of Alfvénic turbulence in solar coronal loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; McIntosh, Scott W.; Bethge, Christian
2014-12-10
Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfvénic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loopsmore » using data from the Coronal Multi-channel Polarimeter instrument. We observe Alfvénic perturbations with phase speeds which range from 250 to 750 km s{sup –1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of Alfvénic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of Alfvénic turbulence in coronal loops.« less
Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel
This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.
NASA Astrophysics Data System (ADS)
Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.
2015-01-01
Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently of the same magnitude as the fluxes when N2O exchange was small at the measurement site. Both instruments based on continuous-wave quantum cascade laser, CW-TILDAS-CS and N2O / CO-23d, were able to determine the same sample of low N2O fluxes with a high mutual coefficient of determination at the 30 min averaging level and with minor systematic difference over the observation period of several months. This enables us to conclude that the new-generation instrumentation is capable of measuring small N2O exchange with high precision and accuracy at sites with low fluxes.
Ultrasonic wave-based structural health monitoring embedded instrument.
Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano
2013-12-01
Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.
NASA Astrophysics Data System (ADS)
Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.
1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.
Field observations using an AOTF polarimetric imaging spectrometer
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George
1993-01-01
This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.
NASA Astrophysics Data System (ADS)
Darema, F.
2016-12-01
InfoSymbiotics/DDDAS embodies the power of Dynamic Data Driven Applications Systems (DDDAS), a concept whereby an executing application model is dynamically integrated, in a feed-back loop, with the real-time data-acquisition and control components, as well as other data sources of the application system. Advanced capabilities can be created through such new computational approaches in modeling and simulations, and in instrumentation methods, and include: enhancing the accuracy of the application model; speeding-up the computation to allow faster and more comprehensive models of a system, and create decision support systems with the accuracy of full-scale simulations; in addition, the notion of controlling instrumentation processes by the executing application results in more efficient management of application-data and addresses challenges of how to architect and dynamically manage large sets of heterogeneous sensors and controllers, an advance over the static and ad-hoc ways of today - with DDDAS these sets of resources can be managed adaptively and in optimized ways. Large-Scale-Dynamic-Data encompasses the next wave of Big Data, and namely dynamic data arising from ubiquitous sensing and control in engineered, natural, and societal systems, through multitudes of heterogeneous sensors and controllers instrumenting these systems, and where opportunities and challenges at these "large-scales" relate not only to data size but the heterogeneity in data, data collection modalities, fidelities, and timescales, ranging from real-time data to archival data. In tandem with this important dimension of dynamic data, there is an extended view of Big Computing, which includes the collective computing by networked assemblies of multitudes of sensors and controllers, this range from the high-end to the real-time seamlessly integrated and unified, and comprising the Large-Scale-Big-Computing. InfoSymbiotics/DDDAS engenders transformative impact in many application domains, ranging from the nano-scale to the terra-scale and to the extra-terra-scale. The talk will address opportunities for new capabilities together with corresponding research challenges, with illustrative examples from several application areas including environmental sciences, geosciences, and space sciences.
Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves
NASA Astrophysics Data System (ADS)
Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.
2018-02-01
The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.
Software-type Wave-Particle Interaction Analyzer on board the Arase satellite
NASA Astrophysics Data System (ADS)
Katoh, Yuto; Kojima, Hirotsugu; Hikishima, Mitsuru; Takashima, Takeshi; Asamura, Kazushi; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Ozaki, Mitsunori; Yagitani, Satoshi; Yokota, Shoichiro; Matsuda, Shoya; Kitahara, Masahiro; Shinohara, Iku
2018-01-01
We describe the principles of the Wave-Particle Interaction Analyzer (WPIA) and the implementation of the Software-type WPIA (S-WPIA) on the Arase satellite. The WPIA is a new type of instrument for the direct and quantitative measurement of wave-particle interactions. The S-WPIA is installed on the Arase satellite as a software function running on the mission data processor. The S-WPIA on board the Arase satellite uses an electromagnetic field waveform that is measured by the waveform capture receiver of the plasma wave experiment (PWE), and the velocity vectors of electrons detected by the medium-energy particle experiment-electron analyzer (MEP-e), the high-energy electron experiment (HEP), and the extremely high-energy electron experiment (XEP). The prime objective of the S-WPIA is to measure the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for the S-WPIA to synchronize instruments to a relative time accuracy better than the time period of the plasma wave oscillations. Since the typical frequency of chorus emissions in the inner magnetosphere is a few kHz, a relative time accuracy of better than 10 μs is required in order to measure the relative phase angle between the wave and velocity vectors. In the Arase satellite, a dedicated system has been developed to realize the time resolution required for inter-instrument communication. Here, both the time index distributed over all instruments through the satellite system and an S-WPIA clock signal are used, that are distributed from the PWE to the MEP-e, HEP, and XEP through a direct line, for the synchronization of instruments within a relative time accuracy of a few μs. We also estimate the number of particles required to obtain statistically significant results with the S-WPIA and the expected accumulation time by referring to the specifications of the MEP-e and assuming a count rate for each detector.
The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments
de MAGALHÃES, Rafael Rodrigues Soares; BRAGA, Lígia Carolina Moreira; PEREIRA, Érika Sales Joviano; PEIXOTO, Isabella Faria da Cunha; BUONO, Vicente Tadeu Lopes; BAHIA, Maria Guiomar de Azevedo
2016-01-01
ABSTRACT Torsional overload is a fracture representative parameter for instruments in single-file techniques. Objective The aim of this study was to assess the influence of clinical use, in vivo, on the torsional behavior of Reciproc and WaveOne instruments considering the possibility that they degraded with use. Material and Methods Diameter at each millimeter, pitch length, and area at 3 mm from the tip were determined for both types of instruments. Twenty-four instruments, size 25, 0.08 taper, of each system were divided into two groups (n=12 each): Control Group (CG), in which new Reciproc (RC) and WaveOne Primary (WO) instruments were tested in torsion until rupture based on ISO 3630-1; and Experimental Group (EG), in which each new instrument was clinically used to clean and shape the root canals of one molar. After clinical use, the instruments were analyzed using optical and scanning electron microscopy and subsequently tested in torsion until fracture. Data were analyzed using one-way analysis of variance at a=.05. Results WO instruments showed significantly higher mean values of cross-sectional area A3 (P=0.000) and smaller pitch lengths than RC instruments with no statistically significant differences in the diameter at D3 (P=0.521). No significant differences in torsional resistance between the RC and WO new instruments (P=0.134) were found. The clinical use resulted in a tendency of reduction in the maximum torque of the analyzed instruments but no statistically significant difference was observed between them (P=0.327). During the preparation of the root canals, two fractured RC instruments and longitudinal and transversal cracks in RC and WO instruments were observed through SEM analysis. Conclusion After clinical use, no statistically significant reduction in the torsional resistance was observed. PMID:27556200
Fluorescence lifetime as a new parameter in analytical cytology measurements
NASA Astrophysics Data System (ADS)
Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.
1996-05-01
A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.
Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh
2017-12-01
A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.
Waves at Navigation Structures
2014-10-27
upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the
2009-05-11
CAPE CANAVERAL, Fla. – Space shuttle Atlantis roars into the cloudy sky above Launch Pad 39A at NASA's Kennedy Space Center in Florida on the STS-125 mission. Blue cones of light, mach diamonds, can be seen beneath the engine nozzles. The mach diamonds are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Atlantis will rendezvous with NASA's Hubble Space Telescope. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Tony Gray-Tom Farrar
2009-05-11
CAPE CANAVERAL, Fla. – Space shuttle Atlantis roars into the cloudy sky above Launch Pad 39A at NASA's Kennedy Space Center in Florida on the STS-125 mission. Blue cones of light, mach diamonds, can be seen beneath the engine nozzles. The mach diamonds are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Atlantis will rendezvous with NASA's Hubble Space Telescope. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Tony Gray-Tom Farrar
Sub µGal Absolute Gravity Measurements with a Transportable Quantum Gravimeter
NASA Astrophysics Data System (ADS)
Desruelle, B.; Vermeulen, P.; Menoret, V.; Landragin, A.; Bouyer, P.; Le Moigne, N.; Gabalda, G.; Bonvalot, S.
2017-12-01
This paper presents a review of the last two years of operation of the first unit of the Absolute Quantum Gravimeter (AQG). The AQG is an industry-grade commercial gravimeter, which validates the feasibility to develop a matter-wave gravimeter as a transportable turn-key device. We will discuss the stability of the absolute measurement of g and demonstrate the capability of our instrument to achieve a sensitivity better than 1 µGal in various types of environment. We will in particular comment on the last measurement campaigns and comparisons performed by the AQG which have validated the ease of use and the robustness of the sensor. This paper will also present the status of the development of the field version of the AQG designed to be compatible with outdoor operation.
Do we detect interplanetary dust with Faraday cups?
NASA Astrophysics Data System (ADS)
Kočiščák, S.; Pavlů, J.; Šafránková, J.; Němeček, Z.; Přech, L.
2018-07-01
Transient clouds of a plasma generated by hypervelocity dust particles impacting onto the spacecraft were observed in-situ by many experiments over the last 20 years. The reported observations analyze sensitive measurements of plasma waves that are transmitted to the Earth with a sufficient time resolution. The detection is based on a fact that hypervelocity impacts generate plumes of the ionized gas expanding into a space. The present paper analyzes five years of the operation of the Bright Monitor of the Solar Wind (BMSW) onboard the Spektr-R spacecraft with a motivation to demonstrate that such type of the instruments is capable to observe the dust impacts into its detectors. The results of analysis are compared with Wind electric field measurements used for a detection of hypervelocity dust impacts.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Northwest National Marine Renewable Energy Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batten, Belinda; Polagye, Brian
In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability andmore » Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following are presented and discussed where appropriate: the initial objective or hypothesis; an overview of accomplishments and approaches used; any problems encountered or departures from planned methodology over the life of the project; impacts of the problems or rescoping of the project; how accomplishments compared with original project goals; and deliverables under the subtasks. Products and models developed under the award are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batten, Belinda; Polagye, Brian; LiVecchi, Al
In 2008, the US Department of Energy’s (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC’s scope included research and testing in the following topic areas: • Advanced Wave Forecasting Technologies; • Device and Array Optimization; • Integrated and Standardized Test Facility Development; • Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; • Increased Reliability andmore » Survivability of Marine Energy Systems; • Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC’s mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE’s goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following are presented and discussed where appropriate: the initial objective or hypothesis; an overview of accomplishments and approaches used; any problems encountered or departures from planned methodology over the life of the project; impacts of the problems or rescoping of the project; how accomplishments compared with original project goals; and deliverables under the subtasks. Products and models developed under the award are also included.« less
Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes
Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig; ...
2018-04-19
In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less
Dual physiological rate measurement instrument
NASA Technical Reports Server (NTRS)
Cooper, Tommy G. (Inventor)
1990-01-01
The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.
Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig
In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less
A new prototype system for earthquake early warning in Taiwan
NASA Astrophysics Data System (ADS)
Hsiao, N.; Wu, Y.; Chen, D.; Kuo, K.; Shin, T.
2009-12-01
Earthquake early warning (EEW) system has already been developed and tested in Taiwan for more than ten years. With the implementation of a real-time strong-motion network by the Central Weather Bureau (CWB), a virtual sub-network (VSN) system based on regional early warning approach was utilized at the first attempt. In order to shorten the processing time, seismic waveforms in a 10-sec time window starting from the first P-wave arrival time at the nearest station are used to determine the hypocenter and earthquake magnitude which is dubbed ML10. Since 2001, this EEW system has responded to a total of 255 events with magnitude greater than 4.5 occurred inland or off the coast of Taiwan. The system is capable of issuing an earthquake report within 20 sec of its occurrence with good magnitude estimations for events up to magnitude 6.5. This will provide early warning for metropolitan areas located 70 km away from the epicentre. In the latest development, a new prototype EEW system based on P-wave method was developed. Instead of ML10, we adopt the “Pd magnitude”, MPd, as our magnitude indicator in the new system. Pd is defined as the peak amplitude of the initial P-wave displacement. In the previous studies, by analyzing the Pd attenuation relationship with earthquake magnitudes, Pd was proved to be a good magnitude estimator for EEW purpose. Therefore, we adopt the Pd magnitude in developing our next generation EEW system. The new system is designed and constructed based on the Central Weather Bureau Seismographic Network (CWBSN). The CWBSN is a real-time seismographic network with more than one hundred digital telemetered seismic stations distributed over the entire Taiwan. Currently, there are three types of seismic instruments installed at the stations, either co-site or separately installed, including short-period seismographs, accelerometers, and broadband instruments. For the need of integral data processing, we use the Earthworm system as a common platform to integrate all real-time signals. In the process, strong-motion and broadband signals are used for automatic P-wave arrival time and Pd determination. However, short-period signals are only used for P-wave arrival time picking. This new system is still under development and being improved, with the hope of replacing the current operational EEW system in the future.
Characterization of the RPW Electric Antenna System aboard Solar Orbiter
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Rucker, H. O.; Oswald, T.; Sampl, M.; Fischer, G.; Macher, W.; Maksimovic, M.
2009-12-01
Radio and Plasma Waves Experiment The Radio and Plasma Waves experiment (RPW) is unique amongst the Solar Orbiter instruments in that it makes both important in situ and remote-sensing measurements. It is of prime importance for the Solar Orbiter mission. RPW will perform measurements to determine the properties, dynamics and interactions of plasma, fields and particles in the near-Sun heliosphere. It will participate in the investigation of the links between the solar surface, corona and inner heliosphere. RPW will explore, at all latitudes, the energetics, dynamics and fine-scale structure of the Sun’s magnetized atmosphere. More specifically, RPW will measure magnetic and electric fields in high time resolution using a number of sensors, to determine the characteristics of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz. Electric Antenna System A novel electric antenna design is proposed for the RPW experiment. It consists of a set of three identical monopoles, each of a total length of more than 6 meters, deployed from the corners of the spacecraft and perpendicular to the spacecraft-Sun axis. Each of the three antennas rods has a length of 5m and is mounted on a boom. The antennas are equally spaced, so the angles between the antennas are 120°. Simulation of the Antenna System Performance The electromagnetic wave reception properties of the spacecraft antenna system are influenced by the currents flowing on the conductive surface of the spacecraft body and the impedances at the foot points of the antenna rods. In the specific case of Solar Orbiter the spacecraft body and the antenna system structure is not yet finally defined, however the preliminary known schematics enable a first estimate of the effective length vectors. The foot point voltages for all antenna elements are calculated for linear polarized waves, incident from different directions. Applying the reciprocity theorem a full polarimetric characterization of the antenna system is performed in a frequency range from 100 kHz up to 20 MHz. One-side heating of the antenna rods caused by solar radiation will lead to a significant antenna bending. This will influence the effective antenna vectors and has to be taken into account for the calibration process, especially if the bending will cause asymmetries in the antenna system. A detailed study of radiation coupling effects caused for instance by solar panels and high gain communication antenna (HGA) has been performed. The orientation of solar panels and HGA as well as the bending of the antenna elements has a significant influence on the instrument calibration. The analysis of different combinations of the three foot point voltages points out the instrument capabilities in polarization sensitive direction finding. The results of the computer simulations together with model scaled measurements will be used to evaluate the influence of the spacecraft on the antenna system reception properties and may be used for a re-evaluation of the structure and position of antennas and instruments on board Solar Orbiter
Advanced ESPI-based medical instruments for otolaryngology
NASA Astrophysics Data System (ADS)
Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.
1993-05-01
Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.
Shuttle wave experiments. [space plasma investigations: design and instrumentation
NASA Technical Reports Server (NTRS)
Calvert, W.
1976-01-01
Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
NASA Astrophysics Data System (ADS)
Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.
2005-05-01
WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.
NASA Astrophysics Data System (ADS)
Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.
2014-04-01
Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.
The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.
2017-12-01
New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.
Construction Of Critical Thinking Skills Test Instrument Related The Concept On Sound Wave
NASA Astrophysics Data System (ADS)
Mabruroh, F.; Suhandi, A.
2017-02-01
This study aimed to construct test instrument of critical thinking skills of high school students related the concept on sound wave. This research using a mixed methods with sequential exploratory design, consists of: 1) a preliminary study; 2) design and review of test instruments. The form of test instruments in essay questions, consist of 18 questions that was divided into 5 indicators and 8 sub-indicators of the critical thinking skills expressed by Ennis, with questions that are qualitative and contextual. Phases of preliminary study include: a) policy studies; b) survey to the school; c) and literature studies. Phases of the design and review of test instruments consist of two steps, namely a draft design of test instruments include: a) analysis of the depth of teaching materials; b) the selection of indicators and sub-indicators of critical thinking skills; c) analysis of indicators and sub-indicators of critical thinking skills; d) implementation of indicators and sub-indicators of critical thinking skills; and e) making the descriptions about the test instrument. In the next phase of the review test instruments, consist of: a) writing about the test instrument; b) validity test by experts; and c) revision of test instruments based on the validator.
da Frota, Matheus F; Espir, Camila G; Berbert, Fábio L C V; Marques, André A F; Sponchiado-Junior, Emílio C; Tanomaru-Filho, Mario; Garcia, Lucas F R; Bonetti-Filho, Idomeo
2014-12-01
As compared with continuous rotary systems, reciprocating motion is believed to increase the fatigue resistance of NiTi instruments. We compared the cyclic fatigue and torsional resistance of reciprocating single-file systems and continuous rotary instrumentation systems in simulated root canals. Eighty instruments from the ProTaper Universal, WaveOne, MTwo, and Reciproc systems (n = 20) were submitted to dynamic bending testing in stainless-steel simulated curved canals. Axial displacement of the simulated canals was performed with half of the instruments (n = 10), with back-and-forth movements in a range of 1.5 mm. Time until fracture was recorded, and the number of cycles until instrument fracture was calculated. Cyclic fatigue resistance was greater for reciprocating systems than for rotary systems (P < 0.05). Instruments from the Reciproc and WaveOne systems significantly differed only when axial displacement occurred (P < 0.05). Instruments of the ProTaper Universal and MTwo systems did not significantly differ (P > 0.05). Cyclic fatigue and torsional resistance were greater for reciprocating systems than for continuous rotary systems, irrespective of axial displacement.
NASA Astrophysics Data System (ADS)
Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.
2018-04-01
We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity
Simpsy, Gurram Samuel; Sajjan, Girija S.; Mudunuri, Padmaja; Chittem, Jyothi; Prasanthi, Nalam N. V. D.; Balaga, Pankaj
2016-01-01
Introduction: M-Wire and reciprocating motion of WaveOne and controlled memory (CM) wire) of HyFlex were the recent innovations using thermal treatment. Therefore, a study was planned to evaluate the shaping ability of reciprocating motion of WaveOne and HyFlex using cone beam computed tomography (CBCT). Methodology: Forty-five freshly extracted mandibular teeth were selected and stored in saline until use. All teeth were scanned pre- and post-operatively using CBCT (Kodak 9000). All teeth were accessed and divided into three groups. (1) Group 1 (control n = 15): Instrumented with ProTaper. (2) Group 2 (n = 15): Instrumented with primary file (8%/25) WaveOne. (3) Group 3 (n = 15): Instrumented with (4%/25) HyFlex CM. Sections at 1, 3, and 5 mm were obtained from the pre- and post-operative scans. Measurement was done using CS3D software and Adobe Photoshop software. Apical transportation and degree of straightening were measured and statistically analyzed. Results: HyFlex showed lesser apical transportation when compared to other groups at 1 and 3 mm. WaveOne showed lesser degree of straightening when compared to other groups. Conclusion: This present study concluded that all systems could be employed in routine endodontics whereas HyFlex and WaveOne could be employed in severely curved canals. PMID:27994323
Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations
NASA Astrophysics Data System (ADS)
Hitomi, N.; Selva, D.; Blackwell, W. J.
2014-12-01
MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can better satisfy stakeholder needs compared to the PATH mission. Well-architected constellations have increased coverage, improved horizontal resolution from lower orbits, and improved temporal resolution. Furthermore, this improved performance can be achieved at a lower cost than what is estimated for the PATH mission.
NASA Astrophysics Data System (ADS)
Preusse, Peter; Dörnbrack, Andreas; Eckermann, Stephen D.; Riese, Martin; Schaeler, Bernd; Bacmeister, Julio T.; Broutman, Dave; Grossmann, Klaus U.
2002-09-01
The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument measured stratospheric temperatures and trace species concentrations with high precision and spatial resolution during two missions. The measuring technique is infrared limb-sounding of optically thin emissions. In a general approach, we investigate the applicability of the technique to measure gravity waves (GWs) in the retrieved temperature data. It is shown that GWs with wavelengths of the order of 100-200 km horizontally can be detected. The results are applicable to any instrument using the same technique. We discuss additional constraints inherent to the CRISTA instrument. The vertical field of view and the influence of the sampling and retrieval imply that waves with vertical wavelengths ~3-5 km or larger can be retrieved. Global distributions of GW fluctuations were extracted from temperature data measured by CRISTA using Maximum Entropy Method (MEM) and Harmonic Analysis (HA), yielding height profiles of vertical wavelength and peak amplitude for fluctuations in each scanned profile. The method is discussed and compared to Fourier transform analyses and standard deviations. Analysis of data from the first mission reveals large GW amplitudes in the stratosphere over southernmost South America. These waves obey the dispersion relation for linear two-dimensional mountain waves (MWs). The horizontal structure on 6 November 1994 is compared to temperature fields calculated by the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) mesoscale model (MM5). It is demonstrated that precise knowledge of the instrument's sensitivity is essential. Particularly good agreement is found at the southern tip of South America where the MM5 accurately reproduces the amplitudes and phases of a large-scale wave with 400 km horizontal wavelength. Targeted ray-tracing simulations allow us to interpret some of the observed wave features. A companion paper will discuss MWs on a global scale and estimates the fraction that MWs contribute to the total GW energy (Preusse et al., in preparation, 2002).
The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite
NASA Astrophysics Data System (ADS)
Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.
2012-12-01
The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.
Searching for Correlated Radio Transients & Gravitational Wave Bursts
NASA Astrophysics Data System (ADS)
Kavic, Michael; Shawhan, P. S.; Yancey, C.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.
2013-01-01
We will discuss an ongoing multi-messenger search for transient radio pulses and gravitational wave bursts. This work is being conducted jointly by the Long Wavelength Array (LWA) and the LIGO Scientific Collaboration (LSC). A variety of astrophysical sources can produce simultaneous emission of gravitational waves and coherent low-frequency electromagnetic radiation. The primary common source motivating this work is the merger of neutron star binaries for which the LWA and LSC instruments have comparable sensitivity. Additional common sources include supernovae, long timescale GRBs and cosmic string cusp events. Data taken by both instruments can be compared to search for correlated signals. Identification of correlated signals can be used to increase the sensitivity of both instruments. We will summarize the coincident observations which have already been conducted and outline plans for future work. We will describe the process being used for synthesizing these data set and present preliminary results.
Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials
2016-05-23
another application, electromagnetic wave shielding . Electromagnetic wave induces current which results in loss of energy. Thus magnetic nanoparticles...applicable for electromagnetic wave shielding . For better electromagnetic wave shielding capability, i) high dielectric constant, ii) high magnetic ...electromagnetic wave shielding properties7,8. In such point of view, designing a structure, magnetic nanoparticles in two dimensional electric conductive matrix
Pickup Ion Signatures in the Vicinity of Titan
NASA Astrophysics Data System (ADS)
Regoli, L.; Coates, A. J.; Feyerabend, M.; Roussos, E.; Jones, G. H.; Krupp, N.; Thomsen, M. F.
2015-12-01
Being the only moon in the solar system with a significant atmosphere, Titan possesses an ionosphere that acts as a conducting obstacle to the incoming plasma from Saturn's magnetosphere. This creates a mass-loading of the magnetic field lines with freshly picked up ions from Titan's atmosphere on a process similar to that observed in comets (e.g. Coates et al. (1993), Journal of Geophysical Research, Vol. 98, No. A12, 20985-20994) and other moons like Jupiter's Io (e.g. Russell et al. (2003), Planetary and Space Science, Vol. 51, 233-238). However, while at other celestial bodies ion cyclotron waves arise as one of the main signatures of this process, this is not the case at Titan, with e.g. Cowee et al. (2010) (Journal of Geophysical Research, Vol. 115, A10224) attributing this to the local orientation of the magnetic field and the plasma flow preventing the waves to grow to levels detectable by the instruments on-board Cassini. For the reason above, the detection of pickup ions signatures needs to be approached through other methods. For this study, we analyze data from the CAPS/IMS instrument on-board Cassini. IMS is an ion mass spectrometer capable of detecting ion fluxes with energies from 1 eV to 50 keV with an atomic resolution of M/ΔM ~ 70. During many of the dedicated Titan flybys by Cassini, IMS was able to distinguish between ions of magnetospheric origin and of ionospheric origin, the latter being freshly picked up ions from Titan's ionosphere. With the help of ion spectrograms and time of flight (TOF) information, we carried out a survey of all the flybys for which IMS has data (the CAPS instrument was switched off after the 83th. dedicated flyby, named in the project as T83) in order to obtain information about the location and frequency of occurence for the signatures.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Kangaslahti, P.; Schlecht, E.; Bosch-Lluis, X.; Ogut, M.; Padmanabhan, S.; Cofield, R.; Chahat, N.; Brown, S. T.; Jiang, J. H.; Deal, W.; Zamora, A.; Leong, K.; Shih, S.; Mei, G.
2015-12-01
Measurements of upper-tropospheric water vapor and cloud ice at a variety of local times are critically needed to provide information not currently available from microwave sensors in sun-synchronous orbits. Such global measurements would enable increasingly accurate cloud and moisture simulations in global circulation models, improving both climate predictions and knowledge of their uncertainty. In addition, this capability would address the need for measurements of cloud ice particle size distribution and water content in both clean and polluted environments. Complementary measurements of aerosol pollution would allow investigation of its effects on cloud properties and climate. This is particularly important since the uncertainty in the aerosol effect on climate is at least four times as great as the uncertainty in greenhouse gas effects. To address this unmet need, a collaborative team among Colorado State University, Caltech Jet Propulsion Laboratory and Northrop Grumman Corporation is developing and fabricating the Tropospheric Water and Cloud ICE (TWICE) radiometer instrument. TWICE is designed with size, mass, power consumption and downlink data rate compatible with deployment aboard a 6U-Class nanosatellite. TWICE is advancing the state of the art of spaceborne millimeter- and submillimeter-wave radiometers by transitioning from Schottky mixer-based front ends to InP HEMT MMIC low-noise amplifier front ends, substantially reducing the radiometer's mass, volume and power consumption. New low-noise amplifiers and related front-end components are being designed and fabricated by JPL and Northrop Grumman based on InP HEMT MMIC technology up to 670 GHz. The TWICE instrument will provide 16 radiometer channels, including window frequencies near 240, 310 and 670 GHz to perform ice particle sizing and determine total ice water content, as well as four sounding channels each near 118 GHz for temperature sounding and near 183 GHz and 380 GHz for water vapor sounding during nearly all weather conditions, particularly useful in the upper troposphere in the presence of ice clouds.
A Standing-Wave Experiment with a Guitar
NASA Astrophysics Data System (ADS)
Inman, Fred W.
2006-10-01
When teaching standing waves, one often uses as examples musical instruments with strings, e.g., pianos, violins, and guitars. In today's popular music culture, young people may be more familiar with guitars than any other string instrument. I was helping my 15-year-old granddaughter make some repairs and adjustments to her electric guitar, and the subject of the spacing between the frets on the fingerboard was raised. I told her that the physics of standing waves and the equal tempered musical scale dictate the location of the frets. The purpose of this paper is to suggest that students might be introduced to the physics of standing waves using a guitar and to the formula for the fret locations. By measuring the positions of the frets, this formula can be tested.
MARXS: A Modular Software to Ray-trace X-Ray Instrumentation
NASA Astrophysics Data System (ADS)
Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam
2017-12-01
To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.
2018-04-01
The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.
Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Observations and computations
NASA Astrophysics Data System (ADS)
Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.
2017-04-01
Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims: Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods: We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results: We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTI = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions: In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties. Computer code for the dispersion analysis is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A3
Telerobotics control of ExoGeoLab lander instruments
NASA Astrophysics Data System (ADS)
Lillo, A.; Foing, B. H.
2017-09-01
This document is about the improvement of the autonomy and capabilities of the prototype lander ExoGeoLab, designed to host remote controlled instruments for analogue Moon/Mars manned missions. Accent is put on new exploration capabilities for the lander to reduce the need for EVA.
Terrestrial Laser Scanning for Coastal Geomorphologic Research in Western Greece
NASA Astrophysics Data System (ADS)
Hoffmeister, D.; Tilly, N.; Curdt, C.; Aasen, H.; Ntageretzis, K.; Hadler, H.; Willershäuser, T.; Vött, A.; Bareth, G.
2012-07-01
We used terrestrial laser scanning (TLS) for (i) accurate volume estimations of dislocated boulders moved by high-energy impacts and for (ii) monitoring of annual coastal changes. In this contribution, we present three selected sites in Western Greece that were surveyed during a time span of four years (2008-2011). The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro). Each scan position and a further target were recorded for georeferencing and merging of the point clouds. For the annual detection of changes, reference points for the base station of the DGPS system were marked. Our studies show that TLS is capable to accurately estimate volumes of boulders, which were dislocated and deposited inland from the littoral zone. The mass of each boulder was calculated from this 3D-reconstructed volume and according density data. The masses turned out to be considerably smaller than common estimated masses based on tape-measurements and according density approximations. The accurate mass data was incorporated into wave transport equations, which estimate wave velocities of high-energy impacts. As expected, these show smaller wave velocities, due to the incorporated smaller mass. Furthermore, TLS is capable to monitor annual changes on coastal areas. The changes are detected by comparing high resolution digital elevation models from every year. On a beach site, larger areas of sea-weed and sandy sediments are eroded. In contrast, bigger gravel with 30-50 cm diameter was accumulated. At the other area with bigger boulders and a different coastal configuration only slightly differences were detectable. In low-lying coastal areas and along recent beaches, post-processing of point clouds turned out to be more difficult, due to noise effects by water and shadowing effects. However, our studies show that the application of TLS in different littoral settings is an appropriate and promising tool. The combination of both instruments worked well and the annual positioning procedure with own survey point is precose for this purpose.
Wideband Timing of Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Pennucci, Timothy; Demorest, Paul; Ransom, Scott M.; North American Nanohertz ObservatoryGravitational Waves (NANOGRAV)
2015-01-01
The use of backend instrumentation capable of real-time coherent dedispersion of relatively large fractional bandwidths has become commonplace in pulsar astronomy. However, along with the desired increase in sensitivity to pulsars' broadband signals, a larger instantaneous bandwidth brings a number of potentially aggravating effects that can lead to degraded timing precision. In the case of high-precision timing experiments, such as the one being carried out by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), subtle effects such as unmodeled intrinsic profile evolution with frequency, interstellar scattering, and dispersion measure variation are potentially capable of reducing the experiment's sensitivity to a gravitational wave signal. In order to account for some of these complications associated with wideband observations, we augmented the traditional algorithm by which the fundamental timing quantities are measured. Our new measurement algorithm accommodates an arbitrary two-dimensional model ``portrait'' of a pulsar's total intensity as a function of observing frequency and rotational phase, and simultaneously determines the time-of-arrival (TOA), the dispersion measure (DM), and per-frequency-channel amplitudes that account for interstellar scintillation. Our publicly available python code incorporates a Gaussian-component modeling routine that allows for independent component evolution with frequency, a ``fiducial component'', and the inclusion of scattering. Here, we will present results from the application of our wideband measurement scheme to the suite of NANOGrav millisecond pulsars, which aimed to determine the level at which the experiment is being harmed by unmodeled profile evolution. We have found thus far, and expect to continue to find, that our new measurements are at least as good as those from traditional techniques. At a minimum, by largely reducing the volume of TOAs we will decrease the computational demand associated with probing posterior distributions in the search for gravitational waves. The development of this algorithm is well-motivated by the promise of even larger fractional bandwidth receiver systems in the future of pulsar astronomy.
Comparison of CFD simulations with experimental data for a tanker model advancing in waves
NASA Astrophysics Data System (ADS)
Orihara, Hideo
2011-03-01
In this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.
Connor, Linda; Paul, Fiona; McCabe, Margaret; Ziniel, Sonja
2017-02-01
The Quick-EBP-VIK is a new instrument for measuring nurses' value, implementation, and knowledge of EBP. Psychometric testing was conducted in two parts. Part 1 describes the tool development and validity testing which resulted in the development of a 25-item survey after receiving ≥0.80 Item-Level Content Validity Index for both clarity and relevance. Part 2 describes psychometric testing was necessary to assess additional types of validity and reliability. The purpose of this paper is to further describe the psychometric testing of the Quick-EBP-VIK survey instrument. This descriptive study was designed to assess test-retest reliability, internal consistency and construct validity via a web-based survey. The survey instrument was e-mailed to all nurses at the study hospital. Nurses who responded to the first survey (Wave 1) received another e-mail invitation to complete the survey instrument again (Wave 2) for the purpose of assessing the test-retest reliability of the instrument. A total of 1,177 deliverable e-mails were sent to all nursing staff at one free standing pediatric hospital with Magnet ® designation in the northeast. A total of 382 nurses returned completed surveys, indicating a 32.5% response rate for Wave 1. A total of 131 nurses responded to Wave 2 indicating a response rate of 34.3%. The intraclass correlation coefficients for the items included in the final instrument ranged from 0.43 to 0.80 and were deemed sufficient. These represent a sufficient intraclass correlation coefficient. The Cronbach's Alpha values for each of the three domains are all higher than 0.7 indicating that the items of each of the measurement dimension are internally consistent. However, the composite reliability of the third domain was slightly lower than 0.7 when using Raykov's Rho. The Quick-EBP-VIK instrument has gone through rigorous comprehensive testing and has demonstrated good psychometric properties. © 2016 Sigma Theta Tau International.
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2013-09-30
motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully
GOES Sounder Instrument - NOAA Satellite Information System (NOAASIS);
ground-based, balloon system. The Sounder has 4 sets of detectors (visible, long wave IR, medium wave IR , short wave IR). The incoming radiation passes through a set of filters before reaching the detectors concentric rings, one for each IR detector group. The outer ring contains 7 long wave filters, the middle
NASA Astrophysics Data System (ADS)
Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.
2014-12-01
The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.
Poster Presentation: Optical Test of NGST Developmental Mirrors
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg
2000-01-01
An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).
Real-time passive acoustic detection of marine mammals from a variety of autonomous platforms
NASA Astrophysics Data System (ADS)
Baumgartner, M.; Van Parijs, S. M.; Hotchkin, C. F.; Gurnee, J.; Stafford, K.; Winsor, P.; Davies, K. T. A.; Taggart, C. T.
2016-02-01
Over the past two decades, passive acoustic monitoring has proven to be an effective means of estimating the occurrence of marine mammals. The vast majority of applications involve archival recordings from bottom-mounted instruments or towed hydrophones from moving ships; however, there is growing interest in assessing marine mammal occurrence from autonomous platforms, particularly in real time. The Woods Hole Oceanographic Institution has developed the capability to detect, classify, and remotely report in near real time the calls of marine mammals via passive acoustics from a variety of autonomous platforms, including Slocum gliders, wave gliders, and moored buoys. The mobile Slocum glider can simultaneously measure marine mammal occurrence and oceanographic conditions throughout the water column, making it well suited for studying both marine mammal distribution and habitat. Wave gliders and moored buoys provide complementary observations over much larger spatial scales and longer temporal scales, respectively. The near real-time reporting capability of these platforms enables follow-up visual observations, on-water research, or responsive management action. We have recently begun to use this technology to regularly monitor baleen whales off the coast of New England, USA and Nova Scotia, Canada, as well as baleen whales, beluga whales, and bearded seals in the Chukchi Sea off the northwest coast of Alaska, USA. Our long-range goal is to monitor occurrence over wide spatial and temporal extents as part of the regional and global ocean observatory initiatives to improve marine mammal conservation and management and to study changes in marine mammal distribution over multi-annual time scales in response to climate change.
Smart instruments and the national collaboratory
NASA Technical Reports Server (NTRS)
Leiner, Barry M. (Editor)
1989-01-01
Here, we explore the process of scientific experimental investigation and ask what capabilities are required of the collaboratory to support such investigations. We first look at a number of examples of scientific research being conducted using remote instruments. We then examine the process of such research, asking at each stage what are the required capabilities. We finally integrate these results into a statement of the required set of capabilities needed to support scientific research in the future.
Assessment of CFD capability for prediction of hypersonic shock interactions
NASA Astrophysics Data System (ADS)
Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis
2012-01-01
The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.
2011-01-01
The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.
78 FR 27186 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... cell regeneration in damaged tissue, and examine the regulatory mechanisms for metabolic activity in... populations of cells develop into a coherent circuit that capably detects directional movement in a visual... a single neuron or large numbers of cells in a neuronal population. The instrument's capabilities...
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Composite Materials NDE Using Enhanced Leaky Lamb Wave Dispersion Data Acquisition Method
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mal, Ajit; Lih, Shyh-Shiuh; Chang, Zensheu
1999-01-01
The leaky Lamb wave (LLW) technique is approaching a maturity level that is making it an attractive quantitative NDE tool for composites and bonded joints. Since it was first observed in 1982, the phenomenon has been studied extensively, particularly in composite materials. The wave is induced by oblique insonification using a pitch-catch arrangement and the plate wave modes are detected by identifying minima in the reflected spectra to obtain the dispersion data. The wave behavior in multi-orientation laminates has been well documented and corroborated experimentally with high accuracy. The sensitivity of the wave to the elastic constants of the material and to the boundary conditions led to the capability to measure the elastic properties of bonded joints. Recently, the authors significantly enhanced the LLW method's capability by increasing the speed of the data acquisition, the number of modes that can be identified and the accuracy of the data inversion. In spite of the theoretical and experimental progress, methods that employ oblique insonification of composites are still not being applied as standard industrial NDE methods. The authors investigated the issues that are hampering the transition of the LLW to industrial applications and identified 4 key issues. The current capability of the method and the nature of these issues are described in this paper.
Cabanillas, Cristina; Monterde, Manuel; Pallarés, Antonio; Aranda, Susana; Montes, Raquel
2015-01-01
Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique), ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p < 0.05). Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences. PMID:26664361
Cabanillas, Cristina; Monterde, Manuel; Pallarés, Antonio; Aranda, Susana; Montes, Raquel
2015-01-01
Objectives. To compare the effectiveness of four instrument systems for preparing oval root canals: manual instrumentation (Step-Back technique), ProTaper Universal, ProTaper Next, and Wave One. Material and Methods. For the purpose of this assessment, 60 teeth extracted for orthodontic or periodontal reasons, specifically canines and premolars with full coronal and root anatomy, were used and 15 samples were assigned to each group. The section of the canals was compared before and after instrumenting and the section of untouched canal wall was measured using AutoCAD software. The data was analysed by means of Shapiro-Wilk, ANOVA, and Kruskal-Wallis tests. Results. In the apical third, 100% of the canals were prepared with all the systems. In the middle third, a p value of 0.5989 in the Kruskal-Wallis test was obtained, which indicates no significant difference between the groups. At the coronal third level, the results obtained revealed that Wave One had a significantly lower mean average than the rest (p < 0.05). Conclusions. There are no differences between the various root canal instrument systems in the apical and middle thirds. At the coronal third level, Wave One system showed performance significantly worse than the rest, among which there were no differences.
NASA Astrophysics Data System (ADS)
Wilkins, C.; Bingley, L.; Angelopoulos, V.; Caron, R.; Cruce, P. R.; Chung, M.; Rowe, K.; Runov, A.; Liu, J.; Tsai, E.
2017-12-01
UCLA's Electron Losses and Fields Investigation (ELFIN) is a 3U+ CubeSat mission designed to study relativistic particle precipitation in Earth's polar regions from Low Earth Orbit. Upon its 2018 launch, ELFIN will aim to address an important open question in Space Physics: Are Electromagnetic Ion-Cyclotron (EMIC) waves the dominant source of pitch-angle scattering of high-energy radiation belt charged particles into Earth's atmosphere during storms and substorms? Previous studies have indicated these scattering events occur frequently during storms and substorms, and ELFIN will be the first mission to study this process in-situ.Paramount to ELFIN's success is its instrument suite consisting of an Energetic Particle Detector (EPD) and a Fluxgate Magnetometer (FGM). The EPD is comprised of two collimated solid-state detector stacks which will measure the incident flux of energetic electrons from 50 keV to 4 MeV and ions from 50 keV to 300 keV. The FGM is a 3-axis magnetic field sensor which will capture the local magnetic field and its variations at frequencies up to 5 Hz. The ELFIN spacecraft spins perpendicular to the geomagnetic field to provide 16 pitch-angle particle data sectors per revolution. Together these factors provide the capability to address the nature of radiation belt particle precipitation by pitch-angle scattering during storms and substorms.ELFIN's instrument development has progressed into the late Engineering Model (EM) phase and will soon enter Flight Model (FM) development. The instrument suite is currently being tested and calibrated at UCLA using a variety of methods including the use of radioactive sources and applied magnetics to simulate orbit conditions during spin sectoring. We present the methods and test results from instrument calibration and performance validation.
Comparison of apical and coronal extrusions using reciprocating and rotary instrumentation systems.
Lu, Yan; Chen, Min; Qiao, Feng; Wu, Ligeng
2015-08-07
The aim of this study was to compare the apical and coronal extrusions by using two reciprocating and two rotary instrumentation systems. Eighty extracted human single-rooted anterior teeth were randomly assigned to four groups. Four different root canal instrumentation systems were used according to the manufacturers instructions, including two reciprocating single-file systems, Reciproc and WaveOne, and two full-sequence rotary BLX and ProTaper instruments. Debris collected from the coronal by the instruments and apical extrusions were quantified respectively. After drying the collections, the mean weight of debris collected from apical and coronal extrusions was assessed using an electronic balance and analyzed using the Kruskal-Wallis H and Mann-Whitney U tests. Statistically significant differences in the apical extrusion were observed among the four groups. Reciproc and WaveOne instruments produced significantly less debris than BLX and ProTaper instruments (P < 0.05). All of the systems produced apical extrusion of debris. However, reciprocating single-file systems produced less apical extrusion than full-sequence rotary systems. No relationship was observed between apical and coronal extrusions.
An ultrasonic noncontact method to monitor the doneness of bakery products
NASA Astrophysics Data System (ADS)
Chimenti, D. E.; Faeth, L.
2000-05-01
The paper describes a method using ultrasonics and fluid dynamics to assess the state of "doneness" of bakery products, such as bread loaves, online and in situ. The problem in the baking industry is that bread doneness determined by time and temperature can be inaccurate, leaving some product underbaked. We describe a noncontact method using air-pulse excitation and air-coupled ultrasonic motion sensing to infer the state of doneness of the baking loaf while still in the oven and on a moving belt. The ultrasonic sensor operates at 100 kHz using a toneburst excitation and pitch-catch transducer geometry. The problem is one of detecting small (50 micron) movements in the loaf, whose position may vary up to several mm. Further, the loaf movements caused by the air-pulse excitation are rapid (20 to 50 msec). We present a signal-processing system, incorporating a boxcar integrator, that functions as a pulsed, time-domain acoustic interferometer. This instrument is capable of both the high time and spatial resolution essential for the successful operation of the instrument. We estimate a spatial resolution of 30 micron and a temporal resolution of 5 msec, using 100 kHz acoustic waves. The results of numerous in-oven measurements on one-pound bread loaves during the bake cycle will be presented to illustrate the performance of the instrument.
High Resolution Imaging with MUSTANG-2 on the GBT
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.
The local properties of ocean surface waves by the phase-time method
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.
1992-01-01
A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.
NASA Astrophysics Data System (ADS)
Lyu, Jiang-Tao; Zhou, Chen
2017-12-01
Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.
Time-Distance Helioseismology with the MDI Instrument: Initial Results
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Kosovichev, A. G.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; DeForest, C.; Hoeksema, J. T.; Schou, J.; Saba, J. L. R.; Tarbell, T. D.;
1997-01-01
In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is effected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It his made it possible for us to detect the travel time fo separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec 1/pixel). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.
Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Xiao, Z.; Zhang, D. H.
2012-02-01
In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.
Instrument Synthesis and Analysis Laboratory
NASA Technical Reports Server (NTRS)
Wood, H. John
2004-01-01
The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).
In vitro study of calcium hydroxide removal from mandibular molar root canals.
Ma, Jingzhi; Shen, Ya; Yang, Yan; Gao, Yuan; Wan, Pan; Gan, Yan; Patel, Payal; Curtis, Allison; Khakpour, Mehrzad; Haapasalo, Markus
2015-04-01
Previous studies have shown the difficulty in removing calcium hydroxide (Ca[OH]2) paste from the root canals before root filling. Mesial and distal canals of 30 mandibular molars were prepared with the WaveOne Primary (25/.08) and Large file (40/.08) (Dentsply Tulsa Dental Specialties, Tulsa, OK), respectively. All canals were then filled with Ca(OH)2. The teeth were divided into the following 3 treatment groups (each with n = 10): (1) instrumentation with needle irrigation, (2) instrumentation with irrigation and passive ultrasonic activation (PUI), and (3) the GentleWave system (Sonendo, Inc, Laguna Hills, CA) without instrumentation. The irrigation time in each group was 7.5 minutes. To further test the efficiency of the GentleWave system, shorter times of 90 seconds were tested using water alone. Reconstructed micro-computed tomographic scans were used to measure the volume of the canals and Ca(OH)2 after instrumentation, initial filling of Ca(OH)2, and after its removal. The percentage of Ca(OH)2 remaining in the canals was calculated. None of the 10 teeth (30 canals) in the conventional irrigation and PUI groups were completely cleaned of Ca(OH)2 in 7.5 minutes. In the apical third of mesial and distal canals, respectively, conventional irrigation removed 47.82% ± 16.36% and 77.68% ± 12.82%, PUI removed 61.66% ± 25.54% and 88.85 ± 12.06%, and the GentleWave system removed significantly more Ca(OH)2 (P < .05) with 100% and 98.78% ± 3.84%. Additional experiments in 10 teeth, using only water as the irrigant, revealed that the GentleWave system removed 99.85% and 99.97% of Ca(OH)2 within 90 seconds without the use of any instruments in the mesial and distal canals, respectively. The study confirms the difficulty to remove Ca(OH)2 from root canals using conventional methods. The GentleWave system removed the paste within 90 seconds using water irrigation alone. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Plaut, J. J.; Gurnett, D. A.; Picardi, G.
2004-01-01
The penetration of the MARSIS radar signal into the polar ice mass is modeled to determine the capability of the instrument to locate sub-glacial aquifers. As a ground penetrating radar, the orbiting MARSIS transmits a signal greater than 1 W between 1-5 MHz. In this work we will investigate the effect of ice conductive losses on the radar-detection of subsurface aquifers. Based on wave propagation analysis, it is found that for a bulk ice conductivity below 10-5 S/m, conductive losses in the medium are not significant. However, if the bulk ice conductivity is relatively large (greater than 10-5 S/m), the reflected signal from any deep aquifer will be absorbed as it propagates in the lossy ice medium limiting the probing depth.
Science highlights from MAVEN/IUVS after two years in Mars Orbit
NASA Astrophysics Data System (ADS)
Schneider, N. M.; Deighan, J.; Stiepen, A.; Jain, S.; Lefèvre, F.; Stevens, M. H.; Gröller, H.; Yelle, R. V.; Lo, D.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; Crismani, M. M. J.; Mayyasi, M.; McClintock, W. E.; Holsclaw, G.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.
2016-12-01
The broad capabilities of the Imaging UltraViolet Spectrograph on the MAVEN mission are enabling new science ranging from Mars' lower atmosphere up though the escaping corona. After two years in Mars orbit, the instrument has yielded insights on present-day processes at Mars including dayglow, nightglow, aurora, meteor showers, clouds, and solar-planetary interactions. In this presentation we will highlight several new discoveries in the mesosphere and below. First, spatial mapping of nitric oxide nightglow reveals regions of atmospheric downwelling necessitating substantial changes to global atmospheric circulation models. Second, a new high-spatial-resolution UV imaging mode allows detection of clouds from nadir to limb and their local time evolution, as well as unprecedented determinations of Mars' low-altitude ozone. Finally, IUVS has obtained hundreds of stellar occultation profiles probing atmospheric structure, composition, waves and tides.
2009-05-11
CAPE CANAVERAL, Fla. – Space shuttle Atlantis roars into the cloudy sky above Launch Pad 39A at NASA's Kennedy Space Center in Florida on the STS-125 mission. Blue cones of light, mach diamonds, can be seen beneath the engine nozzles. The mach diamonds are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Atlantis will rendezvous with NASA's Hubble Space Telescope on the STS-125 mission. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Michael Gayle-Rusty Backer
The matter in extreme conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...
2015-04-21
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.
Investigations related to evaluation of ultramicrofluorometer
NASA Technical Reports Server (NTRS)
Whitcomb, B.
1981-01-01
High resolution emission and excitation fluorescent spectra were obtained for several samples in an effort to determine the optimum operational design for the instrument. The instrument was used to determine the required nature of a sample which could be detected, and in so doing, several different sample preparation techniques were considered. Numerous experiments were performed to determine the capabilities of the instrument with regard to the detection of suitably prepared virus specimens. Significant results were obtained in several areas. The fluorescent spectra indicated that substantial changes in the laser might be used advantageously to greatly improve the performance of the instrument. In the existing configuration, the instrument was shown to be capable of detecting the presence of suitably prepared virus samples.
NASA Astrophysics Data System (ADS)
Zhou, L.; Gao, S.
2017-12-01
The southern coast of Hainan Island in China is one of the most frequently hit areas of tropical cyclones in the Pacific Northwest regions. Long-term storm data are important to reconstruct past extreme wave events, for understanding present-day coastal vulnerability. However, the magnitude of storm and typhoon events in the historical period over the northwestern South China Sea is still poorly understood. A primary study was carried out to investigate into the characteristics of a carbonate boulder field found at the Xiaodonghai (XDH) site on the southern coast of Hainan Island, in order to derive the maximum spatial extent, wave height, and velocity of coastal flooding and to determine the type of extreme wave events responsible for the boulder distributions. We recorded the position, shape, size, and the long axis orientation of 1247 of the boulders, with the a-axes being between 0.52 and 3.76 m. A morphometric analysis of the boulders shows that they are distributed within 160 m of the reef edge, with an exponential fining trend shoreward. Numerical models are used to estimate the minimum wave height and minimum flow velocity required to move these boulders. Flow velocities of 1.76-14.73 m/s and storm wave height of 0.47-15.87 m are needed to displace the measured boulders deposited near the mean sea level. These values are consistent with the dataset of storm boulder transport at other sites in the Asia-Pacific region and local instrumental records. Overall, the carbonate boulder deposits at the XDH site implies that the area is exposed to giant storm waves capable of displacing the very large boulders observed here. The recurrence of a similar storm event in the future will have the potential to cause severe coastal flooding damage on this densely populated part of the low-lying coastlines of Hainan Island.
Juno Detects a Ham Radio HI from Earth
2013-12-10
During its close flyby of Earth, NASA Jupiter-bound Juno spacecraft listened for a coordinated, global transmission from amateur radio operators using its radio and plasma wave science instrument, known as Waves.
Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin
2004-01-01
This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...
NASA Astrophysics Data System (ADS)
Argan, A.; Piano, G.; Tavani, M.; Trois, A.
2016-04-01
We study the capability of the AGILE gamma ray space mission in detecting magnetospheric particles (mostly electrons) in the energy range 10-100 MeV. Our measurements focus on the inner magnetic shells with L ≲ 1.2 in the magnetic equator. The instrument characteristics and a quasi-equatorial orbit of ˜500 km altitude make it possible to address several important properties of the particle populations in the inner magnetosphere. We review the on board trigger logic and study the acceptance of the AGILE instrument for particle detection. We find that the AGILE effective geometric factor (acceptance) is R≃50 cm2 sr for particle energies in the range 10-100 MeV. Particle event reconstruction allows to determine the particle pitch angle with the local magnetic field with good accuracy. We obtain the pitch angle distributions for both the AGILE "pointing" phase (July 2007 to October 2009) and the "spinning" phase (November 2009 to present). In spinning mode, the whole range (0-180 degrees) is accessible every 7 min. We find a pitch angle distribution of the "dumbbell" type with a prominent depression near α = 90° which is typical of wave-particle resonant scattering and precipitation in the inner magnetosphere. Most importantly, we show that AGILE is not affected by solar particle precipitation events in the magnetosphere. The satellite trajectory intersects magnetic shells in a quite narrow range (1.0 ≲ L ≲ 1.2); AGILE then has a high exposure to a magnetospheric region potentially rich of interesting phenomena. The large particle acceptance in the 10-100 MeV range, the pitch angle determination capability, the L shell exposure, and the solar-free background make AGILE a unique instrument for measuring steady and transient particle events in the inner magnetosphere.
Sub-millimetre-wave and far infrared ESA missions with a focus on antenna technologies
NASA Astrophysics Data System (ADS)
de Maagt, Peter; Polegre, Arturo; Crone, Gerry
2017-11-01
The are of (sub)millimetre wave and far-infrared antenna technology is a very dynamic sector in electromagnetics. Several future ESA missions have been planned and their requirements are pushing the limits of existing technologies. Feasibility studies have provided baseline concepts, which have helped to grasp the main features of these instruments and to identify their critical aspects. A number of scientific and technical activities have then followed, dedicated to specific topics. The paper discusses (sub)millimetre wave and far-infrared Earth observation and astronomical instruments. Furthermore, generic technology work carried out in the frame of ESA contracts, applicable to this frequency range, is reported on.
NASA Astrophysics Data System (ADS)
Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.
2013-09-01
Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms
Wave Dynamic Analysis of the Seismic Response of a Reinforced Concrete Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astroza, Rodrigo; Saragoni, G. Rodolfo
2008-07-08
This paper evaluates the response of the seven-story instrumented building, Holiday Inn Hotel, during the 1994 Northridge earthquake through the wave propagation dynamic analysis. The building has been instrumented during other earthquakes, the most important of these was the 1971 San Fernando earthquake, where the building was located only 22 [km] from the epicenter and didn't showing structural damage. From the accelerograms analysis is detected the propagation of Rayleigh and soil waves in the building, where the first has a polarized particle motion on a vertical plane and the second has a coupled particle motion in the horizontal plane. Bothmore » waves impose their frequencies to the building response, whose fundamental frequency (1.4 [Hz] according to ambient vibration test) is less than the frequencies of the identified waves. Due to the impact that these observations have in the seismic design of buildings, as a first attempt, a simple method is proposed to estimate the drift produced by the propagation of a Rayleigh wave in buildings.« less
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1995-01-01
Recent in situ Ulysses and Galileo observations of the source regions of type 3 solar radio bursts appear to show an absence of ion acoustic waves S produced by nonlinear Langmuir wave processes such as the electrostatic (ES) decay, in contradiction with earlier ISEE 3 observations and analytic theory. This letter resolves these apparent contradictions. Refined analyses of the maximum S-wave electric fields produced by ES decay and of the characteristics of the Ulysses Wave Form Analyzer (WFA) instrument show that the bursty S waves observed by the ISEE 3 should be essentially undetectable by the Ulysses WFA. It is also shown that the maximum S-wave levels predicted for the Galileo event are approximately less than the instrumental noise level, thereby confirming an earlier suggestion. Thus, no contradictions exist between the ISEE 3 and Ulysses/Galileo observation, and no evidence exists against ES decay in the published Ulysses and Galileo data. All available data are consistent with, or at worst not inconsistent with, the ES decay proceeding and being the dominant nonlinear process in type 3 bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, F.; Filippetto, D.; Johnson, M.
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
NASA Technical Reports Server (NTRS)
Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.
1996-01-01
This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.
Sannibale, F.; Filippetto, D.; Johnson, M.; ...
2017-11-27
The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less
Beyond Kepler: Direct Imaging of Exoplanets
NASA Technical Reports Server (NTRS)
Belikov, Ruslan
2018-01-01
The exoplanets field has been revolutionizing astronomy over the past 20+ years and shows no signs of stopping. The next big wave of exoplanet science may come from direct imaging of exoplanets. Several (non-habitable) exoplanets have already been imaged from the ground and NASA is planning an instrument for its 2020s flagship mission (WFIRST) to directly image large exoplanets. One of the key goals of the field is the detection and characterization of "Earth 2.0", i.e. a rocky planet with an atmosphere capable of supporting life. This appears possible with several potential instruments in the late 2020s such as WFIRST with a starshade, Extremely Large Telescopes (ELTs) from the ground, or one of NASA possible flagship missions in the 2030s (HabEx or LUVOIR). Also, if an Earth-like planet exists around Alpha Centauri (A or B), it may be possible to directly image it in the next approx. 5 years with a small space mission such as the Alpha Centauri Exoplanet Satellite (ACESat). I will describe the current challenges and opportunities in this exciting field, as well as the work we are doing at the Exoplanet Technologies group to enable this exciting science.
Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A
2015-05-01
To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
An Investigation of the Influence of Waves on Sediment Processes in Skagit Bay
2012-09-30
parameterizations common to most surface wave models, including wave generation by wind , energy dissipation from whitecapping, and quadruplet wave-wave...supply and wind on tidal flat sediment transport. It will be used to evaluate the capabilities of state-of-the-art open source sediment models and to...N00014-08-1-1115 which supported the hydrodynamic model development. Wind forcing for the wave and hydrodynamic models for realistic experiments will
First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Smith, E. J.; Bolton, S. J.
2016-12-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a picture perfect Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the first opportunity to sample the Jovian environment close up and in polar orbit on August 27, 2016 (PJ1). Following a successful PJ1, a period reduction maneuver (PRM) will drop the spacecraft into its 14-day science orbit to begin the science phase of the mission. During this phase, the gravity and magnetic fields will be mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, in addition to the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory samples the Jovian magnetic field at a rate of up to 64 vector samples/second. We present the first observations of Jupiter's magnetic field obtained in polar orbit and in context with prior observations and those acquired by Juno's other science instruments (waves and particles instruments, and remote-sensing infrared and ultraviolet imaging spectrographs).
Visible and shortwave infrared focal planes for remote sensing instruments
NASA Astrophysics Data System (ADS)
Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.
1984-01-01
The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.
Capabilities Roadmap Briefings to the National Research Council
NASA Technical Reports Server (NTRS)
2005-01-01
High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.
NASA Astrophysics Data System (ADS)
Shalev, E.; Kenedi, C. L.; Malin, P.
2008-12-01
The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.
The Matter in Extreme Conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja
2015-01-01
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063
Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Giannatempo, Giovanni; Laino, Luigi; Ciavarella, Domenico; Berutti, Elio; Lo Muzio, Lorenzo
2016-01-01
To assess the influence of operator experience on: shaping and centering ability, mean preparation time and presence of canal aberrations of ProTaper Universal and WaveOne systems on simulated root canals. Sixty S-shaped canals in resin blocks were assigned to four groups (n=15 for each group). Group1 (Experienced operator, ProTaper), Group2 (Experienced operator, WaveOne), Group3 (Inexperienced operator, ProTaper), Group4 (Inexperienced operator, WaveOne). Photographic method was used to record pre- and post-instrumentations images. After superimposition, it has been evaluated presence of canal aberrations and differences in shaping and centering ability between groups. WaveOne system produced a lower amount of canal aberrations both in the hand of expert than inexpert operators. However, a WaveOne instrument breakage occurred in the hands of an inexperienced operator. No differences have been found in the evaluation of shaping ability with both systematics. Operator's experience doesn't influence the shaping ability of ProTaper and WaveOne systems. Experience factor could influence the centering ability in the use of both the systematics. However, WaveOne Primary reduce the mean preparation time and the presence of canal aberrations.
NASA Astrophysics Data System (ADS)
Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.
2017-12-01
In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.
NASA Technical Reports Server (NTRS)
Scudder, Jack D.
1992-01-01
The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.
Spatial and temporal variability of chorus and hiss
NASA Astrophysics Data System (ADS)
Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.
2017-12-01
Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1982-01-01
Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.
High power broadband millimeter wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1999-05-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.
2004-01-01
Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.
NASA Astrophysics Data System (ADS)
Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.
2017-12-01
A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.
Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis.
Western, J Sylvia; Dicksit, Daniel Devaprakash
2017-01-01
All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms "Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems." A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Statistically significant difference was seen in the following comparisons: SAF < Wave One, SAF < Rotary ProTaper. Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One.
Calomeni, Mauricio Rocha; Furtado da Silva, Vernon; Velasques, Bruna Brandão; Feijó, Olavo Guimarães; Bittencourt, Juliana Marques; Ribeiro de Souza e Silva, Alair Pedro
2017-01-01
Introduction: One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. Subjects: The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementia diagnosis (EWD), n=15, 76±8 years, elderly diagnosed with Parkinson’s disease (EDP), n=15, 72±7 years, elderly diagnosed with Alzheimer’s disease (EDA), n=15, 81±6 years. The other groups were named children with Autism (CA), n=10, 11±4 years, children with Intellectual Impairment (CII), n=10, 12 ±5 years and children with normal cognitive development (CND), n=10, 11±4 years. Instruments and procedure: Instruments were the Mini Mental State Examination Test (MMSE), EEG-Neurocomputer instrument for brain waves registration, brain stimulator, Digit Span Test and a Protocol for working memory training. Data collection followed a pre and post-conjugated stimulation version. Results: The results of the inferential statistics showed that the stimulation protocol had different effects on Alpha and SMR brain waves of the patients. Also, indicated gains in memory functions, for both, children and elderlies as related to gains in brain waves modulation. Conclusion: The results may receive and provide support to a range of studies examining brain modulation and synaptic plasticity. Also, it was emphasized in the results discussion that there was the possibility of the technique serving as an accessory instrument to alternative brain therapies. PMID:29238390
Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Lipolysis
Lin, San Yih
2017-01-01
Traditional methods for adipose tissue removal have progressed from invasive methods such as liposuction to more modern methods of noninvasive lipolysis. This research entails the development and evaluation of an omnidirectional-capable flat-coil electromagnetic shock wave generator (EMSWG) for lipolysis. The developed EMSWG has the advantage of omnidirectional-capable operation. This capability increases the eventual clinical usability by adding three designed supports to the aluminum disk of the EMSWG to allow omnidirectional operation. The focal pressures of the developed EMSWG for different operating voltages were measured, and its corresponding energy intensities were calculated. The developed EMSWG was mounted in a downward orientation for lipolysis and evaluated as proof of concept. In vitro tests on porcine fatty tissues have been carried out. It is found that at a 6 kV operating voltage with 1500 shock wave exposures, a 2 cm thick subcutaneous hypodermis of porcine fatty tissue can be ruptured, resulting in a damaged area of 1.39 mm2. At a 6.5 kV operating voltage with 2000 shock wave exposures, the damaged area is increased to about 5.20 mm2, which can be enlarged by changing the focal point location, resulting in significant lipolysis for use in clinical applications. PMID:29065664
Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Lipolysis.
Chang, Ming Hau; Lin, San Yih
2017-01-01
Traditional methods for adipose tissue removal have progressed from invasive methods such as liposuction to more modern methods of noninvasive lipolysis. This research entails the development and evaluation of an omnidirectional-capable flat-coil electromagnetic shock wave generator (EMSWG) for lipolysis. The developed EMSWG has the advantage of omnidirectional-capable operation. This capability increases the eventual clinical usability by adding three designed supports to the aluminum disk of the EMSWG to allow omnidirectional operation. The focal pressures of the developed EMSWG for different operating voltages were measured, and its corresponding energy intensities were calculated. The developed EMSWG was mounted in a downward orientation for lipolysis and evaluated as proof of concept. In vitro tests on porcine fatty tissues have been carried out. It is found that at a 6 kV operating voltage with 1500 shock wave exposures, a 2 cm thick subcutaneous hypodermis of porcine fatty tissue can be ruptured, resulting in a damaged area of 1.39 mm 2 . At a 6.5 kV operating voltage with 2000 shock wave exposures, the damaged area is increased to about 5.20 mm 2 , which can be enlarged by changing the focal point location, resulting in significant lipolysis for use in clinical applications.
NASA Astrophysics Data System (ADS)
Haler, Jean R. N.; Massonnet, Philippe; Chirot, Fabien; Kune, Christopher; Comby-Zerbino, Clothilde; Jordens, Jan; Honing, Maarten; Mengerink, Ynze; Far, Johann; Dugourd, Philippe; De Pauw, Edwin
2018-01-01
Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments. [Figure not available: see fulltext.
Tilt Current Meter Field Validation in the Surf Zone
NASA Astrophysics Data System (ADS)
Anarde, K.; Myres, H.; Figlus, J.
2016-12-01
Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.
NASA Astrophysics Data System (ADS)
Hospodarsky, G. B.; Pisa, D.; Santolik, O.; Kurth, W. S.; Soucek, J.; Basovnik, M.; Gurnett, D. A.; Arridge, C. S.
2015-12-01
Langmuir waves are commonly observed in the upstream regions of planetary and interplanetary shock. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and can form electron beams. In regions with beams, the electron distribution becomes unstable and electrostatic waves can be generated. The process of generation and the evolution of electrostatic waves strongly depends on the solar wind electron distribution and generally exhibits complex behavior. Langmuir waves can be identified as intense narrowband emission at a frequency very close to the local plasma frequency and weaker broadband waves below and above the plasma frequency deeper in the downstream region. We present a detailed study of Langmuir waves detected upstream of the Saturnian bowshock by the Cassini spacecraft. Using data from the Radio and Plasma Wave Science (RPWS), Magnetometer (MAG) and Cassini Plasma Spectrometer (CAPS) instruments we have analyzed several periods containing the extended waveform captures by the Wideband Receiver. Langmuir waves are a bursty emission highly controlled by variations in solar wind conditions. Unfortunately due to a combination of instrumental field of view and sampling period, it is often difficult to identify the electron distribution function that is unstable and able to generate Langmuir waves. We used an electrostatic version of particle-in-cell simulation of the Langmuir wave generation process to reproduce some of the more subtle observed spectral features and help understand the late stages of the instability and interactions in the solar wind plasma.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
NASA Astrophysics Data System (ADS)
McMillan, Norman D.; O'Mongain, Eon; Walsh, James E.; Breen, Liam; McMillan, Duncan G.; Power, Michael J.; O'Dea, John P.; Kinsella, Seamus M.; Kelly, Mairead P.; Hammil, Conor; Orr, Dermot
1994-12-01
A preliminary investigation into the use of multiwavelength fiber drop analyzer (FDA) for the measurement of viscosity, spectral absorbance and refractive index is made with a view to obtaining conservative estimates of the instrumental capability of the FDA for these measurands. Some important new insights into drop vibrations are made from studies on the fiber drop traces (FDTs) of mechanically excited damped vibrations in drops with a set volume. A brief description of the feasibility measurements on the first application of the FDA in the diagnosis of disease in synovial fluid is given. Strong experimental evidence is reported for the existence of the surface-guided wave peak of the fiber drop trace and some new insights into the nature of the FDT are suggested based on a comparative study of the FDTs from a multiple-wavelength and a single-wavelength FDA. The earlier reported drop period dependence on applied electric field is critically reexamined, a new interpretation of this effect, is suggested, and an experimental study of clarification is given. Finally, a brief review of the projected capabilities of the FDA based on the work reported here is provided.
A High-Precision Instrument for Mapping of Rotational Errors in Rotary Stages
Xu, W.; Lauer, K.; Chu, Y.; ...
2014-11-02
A rotational stage is a key component of every X-ray instrument capable of providing tomographic or diffraction measurements. To perform accurate three-dimensional reconstructions, runout errors due to imperfect rotation (e.g. circle of confusion) must be quantified and corrected. A dedicated instrument capable of full characterization and circle of confusion mapping in rotary stages down to the sub-10 nm level has been developed. A high-stability design, with an array of five capacitive sensors, allows simultaneous measurements of wobble, radial and axial displacements. The developed instrument has been used for characterization of two mechanical stages which are part of an X-ray microscope.
Advances in instrumentation at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter
2010-07-01
In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
Christodoulou Memory of GW150914 - Prospects of Detection in LIGO and Future Detectors
NASA Astrophysics Data System (ADS)
Johnson, Aaron; Kapadia, Shasvath; Kennefick, Daniel
2017-01-01
The event GW150914 produced strains of the order 10-21 in the two instruments comprising the Laser Interferometric Gravitational Wave Observatory (LIGO). The event has been interpreted as originating in a coalescing black hole binary, with individual components of about 30 solar masses each. A striking aspect of the coalescence deduced from the signal is the emission of 3 solar masses of energy in the oscillating gravitational wave. Theory predicts a DC component of the gravitational signal associated with the emission of such large amounts of gravitational wave energy known as the Christodoulou memory. The memory, as a non-linear component of the signal, is expected to be an order of magnitude smaller than the amplitude of the primary AC component of the gravitational waves. We discuss the prospects of detecting the Christodoulou memory in similar future signals, both with LIGO and with other detectors, including future space-based instruments.
Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris
2007-01-01
Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.
Turbulence and mountain wave conditions observed with an airborne 2-micron lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, Jack; Bogue, Rodney
2006-01-01
Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges (California, USA) by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 meters per second (m/s) at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 seconds in moderate turbulence.
Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.
2006-01-01
Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.
ERIC Educational Resources Information Center
Denson, Nida; Ovenden, Georgia; Wright, Lesley; Paradies, Yin; Priest, Naomi
2017-01-01
Intercultural understanding (ICU) is becoming an essential part of living and contributing effectively in our increasingly diverse society. In fact, ICU is a key capability in the Australian schooling curriculum, alongside other general capabilities such as numeracy and literacy. While there are current instruments assessing ICU, there is little…
A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester
NASA Astrophysics Data System (ADS)
Yoon, Sunghyun; Cho, Young-Ho
2014-11-01
We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.
NASA Astrophysics Data System (ADS)
Pautet, P. D.; Taylor, M.; Kaifler, B.
2016-12-01
The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.
Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector
2017-01-01
Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324
BAROMETRIC AND WATER-SURFACE WAVES PRODUCED BY MIKE SHOT
Barometric and water -surface waves generated by Mike shot were studied by means of 25 instruments in 19 locations in the Pacific Basin ranging from...on the tops of two mounts. The first water waves arriving at Eniwetok Island apparently traveled along paths outside the lagoon. At several of the...stations there were two distinct arrivals of water waves, the first apparently being driven by the propagated rise in atmospheric pressure caused by the
Pawar, A M; Pawar, S; Kfir, A; Pawar, M; Kokate, S
2016-04-01
To compare the push-out bond strength exhibited by root fillings performed with either C-Point and Endosequence® BC sealer™ (BC Sealer) or gutta-percha and AH Plus® after the instrumentation of oval canals with either the Self-Adjusting File (SAF) System or WaveOne (WO) reciprocating file. Eighty extracted premolars were selected and divided randomly into the following four groups (n = 20): group 1, SAF instrumentation and filling using gutta-percha and AH Plus sealer; group 2, SAF instrumentation and C-Point and BC sealer filling; group 3, WO instrumentation and filling using gutta-percha and AH Plus sealer; and group 4, WO instrumentation and filling with C-Point and BC sealer. Sodium hypochlorite (5.25%) and EDTA (17%) were used as irrigants for all groups. After the sealer was set completely, the teeth were prepared for micro push-out assessment using 1.0-mm-thick root slices. Loading was performed with a universal testing machine at a speed of 0.5 mm min(-1) . Two-way anova and Student's t-test for pairwise comparisons were used to compare groups. All specimens filled with C-Point and BC sealer were associated with significantly higher push-out bond strength compared with gutta-percha and AH Plus sealer (P < 0.001). The bond strength was higher for the coronal and apical samples of the C-Point/BC sealer/SAF group (6.6 ± 0.3 and 3.2 ± 0.3 MPa) versus those of the gutta-percha/AH Plus/WO group (4.8 ± 0.3 and 1.8 ± 0.3 MPa), by 38% and by 80% in the coronal and apical parts, respectively (P < 0.001, P < 0.0001). Adhesive bond failure was more common in the WaveOne-instrumented group in general and in the buccal and lingual recesses in this group in particular. In oval canals, the instrument used and the root filling material significantly affected the push-out values of root fillings. The highest value was recorded in oval root canals instrumented with the SAF System and filled with C-Point and BC sealer, whereas the lowest strength was noted in oval canals instrumented with WaveOne and filled with gutta-percha and AH Plus sealer. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Source Mechanism and Near-field Characteristics of the 2011 Tohoku-oki Tsunami
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Cheung, K.; Lay, T.
2011-12-01
The Tohoku-oki great earthquake ruptured the megathrust fault offshore of Miyagi and Fukushima in Northeast Honshu with moment magnitude of Mw 9.0 on March 11, 2011, and generated strong shaking across the region. The resulting tsunami devastated the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. The extensive global seismic networks, dense geodetic instruments, well-positioned buoys and wave gauges, and comprehensive runup records along the northeast Japan coasts provide datasets of unprecedented quality and coverage for investigation of the tsunami source mechanism and near-field wave characteristics. Our finite-source model reconstructs detailed source rupture processes by inversion of teleseismic P waves recorded around the globe. The finite-source solution is validated through comparison with the static displacements recoded at the ARIA (JPL-GSI) GPS stations and models obtained by inversion of high-rate GPS observations. The rupture model has two primary slip regions, near the hypocenter and along the trench; the maximum slip is about 60 m near the trench. Together with the low rupture velocity, the Tohoku-oki event has characteristics in common with tsunami earthquakes, although it ruptured across the entire megathrust. Superposition of the deformation of the subfaults from the planar fault model according to their rupture initiation and rise times specifies the seafloor vertical displacement and velocity for tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami from the time histories of the seafloor deformation using the dispersive long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). The computed results are compared with data from six GPS gauges and three wave gauges near the source at 120~200-m and 50-m water depth, as well as DART buoys positioned across the Pacific. The shock-capturing model reproduces near-shore tsunami bores and the runup data gathered by the 2011 Tohoku Earthquake Tsunami Joint Survey Group. Spectral analysis of the computed surface elevation reveals a series of resonance modes and areas prone to tsunami hazards. This case study improves our understanding of near-field tsunami waves and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
High intensity multi beam design of SANS instrument for Dhruva reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K.; Désert, S.
A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies ofmore » agglomerates larger than few tens of nm.« less
Spallation and fracture resulting from reflected and intersecting stress waves.
NASA Technical Reports Server (NTRS)
Kinslow, R.
1973-01-01
Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.
A retarding ion mass spectrometer for the Dynamics Explorer-1
NASA Technical Reports Server (NTRS)
Wright, W.
1985-01-01
The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.
Novel instrumentation in urologic surgery: Shock wave lithotripsy
Semins, Michelle J.; Matlaga, Brian R.
2010-01-01
Extracorporeal shock wave lithotripsy (SWL) was first introduced in 1980 and it rapidly revolutionized the treatment of stone disease. SWL is a non-invasive, outpatient procedure that now accounts for the majority of stone removal procedures. Since the introduction of first generation lithotripter, the Dornier HM3 machine, SWL devices have undergone many modifications secondary to limitations, in efforts to create a more effective and efficient way to treat stones and decrease possible morbidities. Herein, we review the evolution of the technology and advances in the instrumentation over the last three decades. PMID:21116366
The Pioneer Venus Orbiter plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Taylor, W. W. L.; Virobik, P. F.
1980-01-01
The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.
Microwave radiometer for subsurface temperature measurement
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.
Eddy covariance measurements of sea spray particles over the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Norris, S.; Brooks, I.; de Leeuw, G.; Smith, M. H.; Moeman, M.; Lingard, J.
2007-09-01
Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol concentration suitable for direct eddy correlation determination of the particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP) - capable of measuring 8-channel size spectra for mean radii between 0.15 and 0.35 μm at 10 Hz. The first successful measurements were made during the WASFAB (Waves, Air Sea Fluxes, Aerosol and Bubbles) field campaign in October 2005 in Duck (NC, USA). The method and results are presented and comparisons are made with recent sea spray source functions from the literature.
2009-05-11
CAPE CANAVERAL, Fla. – A fish-eye view shows space shuttle Atlantis lifting off from Launch Pad 39A at NASA's Kennedy Space Center in Florida. At left in the foreground is the White Room, which provides access into the shuttle. On the horizon is the Atlantic Ocean. A blue mach diamond appears below the engine nozzle at right. The mach diamonds are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Atlantis will rendezvous with NASA's Hubble Space Telescope on the STS-125 mission. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Sandra Joseph-Kevin O'Connell
NASA's Preparations for ESA's L3 Gravitational Wave Mission
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2016-01-01
Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.
Structure and Variability in the Ionosphere using DMSP/SSUSI and TIMED/GUVI Data
NASA Astrophysics Data System (ADS)
Bruntz, R. J.; Paxton, L. J.; Kil, H.; Schaefer, R. K.; Zhang, Y.; Miller, E. S.
2016-12-01
In this paper we report the results of our characterization of the nightside ionospheric variability using data from SSUSI and GUVI. Both instruments observe the recombination of O+ ions and electrons in the ionosphere. The signatures are clearest on the nightside, where they are not obscured by the photoelectron impact excitation of O atoms, as is the case for dayside observations, or energetic particle precipitation, as is the case for auroral emissions. SSUSI also flies a 630nm photometer oriented towards nadir. When in darkness, the O2+ recombination red signature can be observed. We will consider these observations in light of groundbased observations of waves (including GPS-TEC measurements of MSTIDs) and observations by other satellites. We place these measurements in context by comparing our existing capability to what we will be able to do with GOLD and ICON.
A Detector for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.
2008-01-01
We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.
Development of an Atmospheric Pressure Ionization Mass Spectrometer
NASA Technical Reports Server (NTRS)
1998-01-01
A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.
Electromechanical wave imaging of biologically and electrically paced canine hearts in vivo.
Costet, Alexandre; Provost, Jean; Gambhir, Alok; Bobkov, Yevgeniy; Danilo, Peter; Boink, Gerard J J; Rosen, Michael R; Konofagou, Elisa E
2014-01-01
Electromechanical wave imaging (EWI) has been show capable of directly and entirely non-invasively mapping the trans mural electromechanical activation in all four cardiac chambers in vivo. In this study, we assessed EWI repeatability and reproducibility, as well as its capability of localizing electronic and, for the first time, biological pacing locations in closed-chest, conscious canines. Electromechanical activation was obtained in six conscious animals during normal sinus rhythm (NSR) and idioventricular rhythms occurring in dogs with complete heart block instrumented with electronic and biologic pacemakers (EPM and BPM respectively). After atrioventricular node ablation, dogs were implanted with an EPM in the right ventricular (RV) endocardial apex (n = 4) and two additionally received a BPM at the left ventricular (LV) epicardial base (n = 2). EWI was performed trans thoracically during NSR, BPM and EPM pacing, in conscious dogs, using an unfocused transmit sequence at 2000 frames/s. During NSR, the EW originated at the right atrium (RA), propagated to the left atrium (LA) and emerged from multiple sources in both ventricles. During EPM, the EW originated at the RV apex and propagated throughout both ventricles. During BPM, the EW originated from the LV basal lateral wall and subsequently propagated throughout the ventricles. EWI differentiated BPM from EPM and NSR and identified the distinct pacing origins. Isochrone comparison indicated that EWI was repeatable and reliable. These findings thus indicate the potential for EWI to serve as a simple, non-invasive and direct imaging technology for mapping and characterizing arrhythmias as well as the treatments thereof. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.
2009-01-01
Wave phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma wave modes trapped in various plasma regimes (e.g., whistlers, Langmuir and ULF waves) and atmospheric gravity waves, are ubiquitous in the heliosphere. Because waves can propagate, wave data obtained at a given observing location may pertain to wave oscillations generated locally or from afar. While wave data analysis requires knowledge of wave characteristics specific to different wave modes, the search for appropriate data for heliophysics wave studies also requires knowledge of wave phenomena. In addition to deciding whether the interested wave activity is electrostatic (i.e., locally trapped) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the wave activity on observer's location or viewing geometry, propagating frequency range and whether the wave data were acquired by passive or active observations. Occurances of natural wave emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric wave data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.
75 FR 3895 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... instrument must be able to perform using lasers with both continuous wave (CW) and pulsed mode. The use of picoseconds pulsed lasers is necessary to measure fluorescence lifetime. The use of CW lasers, so that the... controls the laser head provides user-selectable pulsed repetition rates. This instrument is unique in that...
Rubio, Jorge; Zarzosa, José Ignacio; Pallarés, Antonio
2017-09-01
The aim of this study was to compare the cutting are, root canal anatomy preservation and non-instrumented areas of F360®, F6-SkyTaper®, Hyflex-EDM®, iRACE®, Neoniti®, O.Shape®, P.Next®, Reciproc®, Revo-S® and Wave-One-Gold® size 25 files. 300 teeth with a single straight root and a circular or elliptical root canal were divided into 10 groups (1-F360®, 2- F6-SkyTaper®, 3-Hyflex-EDM®, 4-iRACE®, 5-Neoniti®, 6-O.Shape®, 7-P.Next®, 8-Reciproc®, 9-Revo-S® and 10-Wave-One-Gold®) cut into 3 cross sections using an ultrafine cutting disc. They were photographed under a stereo microscope and preinstrumentation analyses were made before rebuilding the teeth with# 10 K- File and epoxy glue. A glide path was created with #10 and #15 K files and each group was instrumented using rotary or reciprocating systems. Cutting areas, root canal anatomy preservation and non-instrumented areas were analyzed using the AutoCAD 2015 Levene's test, the Welch´s test, and the Games-Howell´s test. The Pearson's chi-squared test was used for statistical analysis. Levene's test showed no equality of variances (P<0.05), therefore Welch´s and Games-Howell's tests were applied to cutting areas, showing significant differences in all thirds and overall (P<0.05). No differences in root canal anatomy preservation were observed (P>0.05). In non-instrumented areas, significant differences were found (P<0.05) in middle third being better in Reciproc®, Neoniti® and WaveOneGold®, and in apical thirds being higher P.Next®, Reciproc®, HyflexEDM®, Neoniti® and WaveOneGold®. In cutting area, P.Next® and Reciproc® were superior in coronal third, Neoniti® and Hyflex EDM® medially and apically and Neoniti® and Reciproc® overall. Regarding the root canal anatomy preservation, all systems were similar. For non-instrumented areas, all systems achieved similar results coronally, but Reciproc®, Neoniti® and Wave One Gold® were superior in middle third and P.Next®, Reciproc®, Hyflex EDM®, Neoniti® and Wave One Gold® were superior in apically.
Comparison of Shaping Ability of 10 Rotary and Reciprocating Systems: an In Vitro Study with AutoCad
Zarzosa, José Ignacio; Pallarés, Antonio
2017-01-01
Objective The aim of this study was to compare the cutting are, root canal anatomy preservation and non-instrumented areas of F360®, F6-SkyTaper®, Hyflex-EDM®, iRACE®, Neoniti®, O.Shape®, P.Next®, Reciproc®, Revo-S® and Wave-One-Gold® size 25 files. Materials and Methods 300 teeth with a single straight root and a circular or elliptical root canal were divided into 10 groups (1-F360®, 2- F6-SkyTaper®, 3-Hyflex-EDM®, 4-iRACE®, 5-Neoniti®, 6-O.Shape®, 7-P.Next®, 8-Reciproc®, 9-Revo-S® and 10-Wave-One-Gold®) cut into 3 cross sections using an ultrafine cutting disc. They were photographed under a stereo microscope and preinstrumentation analyses were made before rebuilding the teeth with# 10 K- File and epoxy glue. A glide path was created with #10 and #15 K files and each group was instrumented using rotary or reciprocating systems. Cutting areas, root canal anatomy preservation and non-instrumented areas were analyzed using the AutoCAD 2015 Levene's test, the Welch´s test, and the Games-Howell´s test. The Pearson’s chi-squared test was used for statistical analysis. Results Levene's test showed no equality of variances (P<0.05), therefore Welch´s and Games-Howell's tests were applied to cutting areas, showing significant differences in all thirds and overall (P<0.05). No differences in root canal anatomy preservation were observed (P>0.05). In non-instrumented areas, significant differences were found (P<0.05) in middle third being better in Reciproc®, Neoniti® and WaveOneGold®, and in apical thirds being higher P.Next®, Reciproc®, HyflexEDM®, Neoniti® and WaveOneGold®. Conclusions In cutting area, P.Next® and Reciproc® were superior in coronal third, Neoniti® and Hyflex EDM® medially and apically and Neoniti® and Reciproc® overall. Regarding the root canal anatomy preservation, all systems were similar. For non-instrumented areas, all systems achieved similar results coronally, but Reciproc®, Neoniti® and Wave One Gold® were superior in middle third and P.Next®, Reciproc®, Hyflex EDM®, Neoniti® and Wave One Gold® were superior in apically. PMID:29225361
The FIELDS Instrument Suite for Solar Probe Plus
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
The FIELDS Instrument Suite for Solar Probe Plus
Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.
2018-01-01
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144
Field-based high-speed imaging of explosive eruptions
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.
2012-12-01
Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian explosion, with ejection velocities twice as high as previously recorded. Video-derived information on ejection velocity and ejecta mass can be combined with analytical and experimental models to constrain the physical parameters of the gas driving individual pulses. 2) Jet development. The ejection trajectory of pyroclasts can also be used to outline the spatial and temporal development of the eruptive jet and the dynamics of gas-pyroclast coupling within the jet, while high-speed thermal images add information on the temperature evolution in the jet itself as a function of the pyroclast size and content. 2) Pyroclasts settling. High-speed videos can be used to investigate the aerodynamic settling behavior of pyroclasts from bomb to ash in size and including ash aggregates, providing key parameters such as drag coefficient as a function of Re, and particle density. 3) The generation and propagation of acoustic and shock waves. Phase condensation in volcanic and atmospheric aerosol is triggered by the transit of pressure waves and can be recorded in high-speed videos, allowing the speed and wavelength of the waves to be measured and compared with the corresponding infrasonic signals and theoretical predictions.
Dhingra, Anil; Kochar, Rohit; Banerjee, Satyabrat; Srivastava, Punit
2014-03-01
This study compared the canal curvature modifications after instrumentation with One Shape (Micro Mega) rotary file and Wave One primary reciprocating file (Dentsply Maillefer, Ballaigues, Switzerland). Thirty International Organization for Standardization 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer) were used. In all specimens working length (WL) was established at the reference point 0. Glide path was achieved with Path-File 1, 2 and 3 (Dentsply Maillefer) at the WL. Group 1 were shaped with One Shape file and group 2 with Wave One files. Pre and post-digital images were superimposed, processed with Corel draw Graphic Suite X5 (Corel Corporation, Ottawa, Canada), Adobe Photoshop CS3 (Adobe Systems Inc., San Jose, CA) and Solid works student Edition software (Dassault Systems Solid Works Corp, S.A., Velizy, France). Mean was more for Wave One compared with One Shape. One-way ANOVA and t-test showed a significant difference between One Shape and Wave One at 5% level of significance (P < 0.05). Canals prepared with Wave One file preserved canal shape, respected the anatomical shape of J-shaped canal and produced a continuously tapered funnel.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena
2015-01-01
Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Voyager Captures Sounds of Interstellar Space
2013-09-12
The plasma wave instrument on NASA's Voyager 1 spacecraft captured these sounds of dense plasma, or ionized gas, vibrating in interstellar space. There were two times the instrument heard these vibrations: October to November 2012 and April to May 2013.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2014-12-01
Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.
Solid motor diagnostic instrumentation. [design of self-contained instrumentation
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Arens, W. E.; Wuest, W. S.
1973-01-01
A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.
Wave energy: a Pacific perspective.
Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen
2012-01-28
This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.
Wind and wave dataset for Matara, Sri Lanka
NASA Astrophysics Data System (ADS)
Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei
2018-01-01
We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447).
Patra, Subir; Ahmed, Hossain; Banerjee, Sourav
2018-01-18
Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.
Chemical Detection and Identification Techniques for Exobiology Flight Experiments
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.
2002-01-01
Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).
Quantitative imaging of the human upper airway: instrument design and clinical studies
NASA Astrophysics Data System (ADS)
Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.
2006-08-01
Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.
NASA Technical Reports Server (NTRS)
Monaldo, Frank M.; Lyzenga, David R.
1988-01-01
During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.
NASA Astrophysics Data System (ADS)
Facsko, Gabor; Sibeck, David; Balogh, Tamas; Kis, Arpad; Wesztergom, Viktor
2017-04-01
The bow shock and the outer rim of the outer radiation belt are detected automatically by our algorithm developed as a part of the Boundary Layer Identification Code Cluster Active Archive project. The radiation belt positions are determined from energized electron measurements working properly onboard all Cluster spacecraft. For bow shock identification we use magnetometer data and, when available, ion plasma instrument data. In addition, electrostatic wave instrument electron density, spacecraft potential measurements and wake indicator auxiliary data are also used so the events can be identified by all Cluster probes in highly redundant way, as the magnetometer and these instruments are still operational in all spacecraft. The capability and performance of the bow shock identification algorithm were tested using known bow shock crossing determined manually from January 29, 2002 to February 3,. The verification enabled 70% of the bow shock crossings to be identified automatically. The method shows high flexibility and it can be applied to observations from various spacecraft. Now these tools have been applied to Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) magnetic field, plasma and spacecraft potential observations to identify bow shock crossings; and to Van Allen Probes supra-thermal electron observations to identify the edges of the radiation belt. The outcomes of the algorithms are checked manually and the parameters used to search for bow shock identification are refined.
NASA Technical Reports Server (NTRS)
1980-01-01
Despite the malfunctioning of the digital portion of the experiment which is encoding the absolute amplitude of the wave spectrum with a fixed bias of approximately 20 dB, the analog portion of the instrument is acquiring excellent data concerning the wave function and relative amplitude. Results obtained over a 2-year period which have important implications for magnetospheric wave-particle interactions are examined in the areas of emission generation by nonconducted coherent waves, and cold plasma distribution in the inner magnetosphere.
Simulating Responses of Gravitational-Wave Instrumentation
NASA Technical Reports Server (NTRS)
Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele
2006-01-01
Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.
Can JWST Follow Up on Gravitational-Wave Detections?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs SearchIntegration time needed for JWSTs NIRCam to detect a kilonova at 200 Mpc, as a function of time since the merger. Different curves correspond to different NIRCam filters. Note that the total time for follow-up is overwhelmingly dominated by things like telescope slew time, rather than by this exposure time. [Bartos et al. 2016]In a recent study, a team of authors led by Imre Bartos (Columbia University) evaluatewhether JWST will be capable of catching these kilonovae if LIGO finds gravitational wave signals.Bartos and collaborators calculate that, given the sensitivity of the different filters on JWSTs Near-Infrared Camera, the instrument should easily be able to detect a kilonova 200 Mpc away (a typical distance at which LIGO might be able to find a neutron-star binary). But theres a catch: 10 deg2 is a really big sky area, and it would take JWST an unfeasible amount of time (days!) to fully cover it.The authors suggest insteadusing a targeted search. Since most mergers are expected to be in or near galaxies, JWST could specifically focus the follow-up search on known galaxies within the searcharea. This approach would bring the total search time down to 12.6 hours, which is within the realm of feasibility. And this time could be reduced even further by concentrating on galaxies most likely to host kilonovae, like those with high star-formation rates.The conclusion: if LIGO is able to detect gravitational waves, JWST will provide an excellent means to follow up on the detection in the attempt toidentify the source.CitationI. Bartos et al 2016 ApJ 816 61. doi:10.3847/0004-637X/816/2/61
NASA Astrophysics Data System (ADS)
Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath
2017-05-01
In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.
Design and development of the spinning mode synthesizer
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Reethof, G.
1973-01-01
Design and development of a flexible source of spinning modes which is capable of generating independent spinning waves of controlled complexity and spin speed without the introduction of broad band elements is reported. These features were accomplished through the use of eight commercial loudspeakers located in an equally spaced circular array with diameter of 11 inches and properly phased so that the system could generate a spinning wave. The constructed apparatus was tested in an anechoic environment and found capable of generating a plane, one and two lobed spinning wave of high quality with a sound pressure level of 120 db and at frequencies ranging from 1500 to 2500 Hz at a distance of 4 ft in the far field. The wave speeds investigated varied from 8000 to 18000 rad/sec which represent supersonic peripheral speeds.
Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis
Western, J. Sylvia; Dicksit, Daniel Devaprakash
2017-01-01
Background: All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Objectives: Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. Methodology: An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms “Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems.” A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Results: Statistically significant difference was seen in the following comparisons: SAF < Wave One, SAF < Rotary ProTaper. Conclusions: Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One. PMID:28761250
A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Cramer, K. E.; Perey, Daniel F.; Yost, William t.
2010-01-01
The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.
Singh, Abhishek; Arunagiri, Doraiswamy; Pushpa, Shankarappa; Sawhny, Asheesh; Misra, Abhinav; Khetan, Kirti
2015-01-01
The purpose of this ex vivo study was to evaluate and compare the weight of debris and volume of irrigant extruded apically from teeth using different preparation techniques. Thirty extracted human mandibular premolars with single canals and similar lengths were instrumented using hand ProTaper F2 (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland), M-two (25, 0.06; VDW, Munich, Germany) and WaveOne Primary (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland). Debris and irrigant extruded during instrumentation were collected into preweighed Eppendorf tubes. The volume of the irrigant was measured, and then the tubes were stored in an incubator at 70°C for 2 days. The Eppendorf tubes were weighed to obtain the final weight when the extruded debris was included. Three consecutive weights were obtained for each tube. Data were statistically analyzed by one-way analysis of variance and Student's t-test. There were no statistically significant differences among the groups. The WaveOne reciprocating system showed the maximum amount of apical extrusion of debris and irrigant among all the groups. The least amount of debris and irrigant was observed in ProTaper hand instrument (P > 0.05). All instrumentation techniques were associated with debris and irrigant extrusion.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers
NASA Technical Reports Server (NTRS)
Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work for this design is to apply the high output power from both the 250 and 300 GHz to multiple chains in order to generate milliwatts at 2.3 THz. Using the first generation of results for this innovation, 40 mW of output power were produced from a 240-GHz tripler at 350-mW input power, and 27- mW output power was produced from a 300-GHz tripler at 408-mW input power. This is two times higher than the current state-of-the-art output power capability. A finite-element thermal simulation also shows that 30-microns thick diamond dropped the temperature of the anodes by at least 200 C.
An Overview of Saturn Narrowband Radio Emissions Observed by Cassini RPWS
NASA Astrophysics Data System (ADS)
Ye, S.-Y.; Fischer, G.; Menietti, J. D.; Wang, Z.; Gurnett, D. A.; Kurth, W. S.
Saturn narrowband (NB) radio emissions are detected between 3 and 70 kHz, with occurrence probability and wave intensity peaking around 5 kHz and 20 kHz. The emissions usually occur periodically for several days after intensification of Saturn kilometric radiation (SKR). Originally detected by the Voyagers, the extended duration of the Cassini mission and the improved capabilities of the Radio and Plasma Wave Science (RPWS) instrument have significantly advanced our knowledge about them. For example, RPWS measurements of the magnetic component have validated the electromagnetic nature of Saturn NB emissions. Evidences show that the 20 kHz NB emissions are generated by mode conversion of electrostatic upper hybrid waves on the boundary of the plasma torus, whereas direction-finding results point to a source in the auroral zone for the 5 kHz component. Similar to SKR, the 5 kHz NB emissions have a clock-like modulation and display two distinct modulation periods identical to the northern and southern hemisphere periods of SKR. Polarization measurements confirm that most NB emissions are propagating in the L-O mode, with the exception of second harmonic NB emissions. At high latitudes closer to the planet, RPWS detected right hand polarized Z-mode NB emissions below the local electron cyclotron frequency (f_ce), which are believed to be the source of the L-O mode NB emissions detected above the local f_ce. Although the energy source for the generation of the Z-mode waves is still unclear, linear growth rate calculations indicate that the observed plasma distributions are unstable to the growth of electrostatic cyclotron harmonic emission. Alternatively, electromagnetic Z-mode might be directly generated by the cyclotron maser instability. The source Z-mode waves, upon reflection, propagate to the opposite hemisphere before escaping through mode conversion, which could explain the fact that both rotational modulation periods of NB emissions are observable in each hemisphere.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Slocum, R. K.; Spore, N.
2015-12-01
Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both empirical and numerical models predicting coast inundation and erosion in advance of storms.
Are CMEs capable of producing Moreton waves? A case study: the 2006 December 6 event
NASA Astrophysics Data System (ADS)
Krause, G.; Cécere, M.; Zurbriggen, E.; Costa, A.; Francile, C.; Elaskar, S.
2018-02-01
Considering the chromosphere and a stratified corona, we examine, by performing 2D compressible magnetohydrodynamics simulations, the capability of a coronal mass ejection (CME) scenario to drive a Moreton wave. We find that given a typical flux rope (FR) magnetic configuration, in initial pseudo-equilibrium, the larger the magnetic field and the lighter (and hotter) the FR, the larger the amplitude and the speed of the chromospheric disturbance, which eventually becomes a Moreton wave. We present arguments to explain why Moreton waves are much rarer than CME occurrences. In the frame of the present model, we explicitly exclude the action of flares that could be associated with the CME. Analysing the Mach number, we find that only fast magnetosonic shock waves will be able to produce Moreton events. In these cases an overexpansion of the FR is always present and it is the main factor responsible for the Moreton generation. Finally, we show that this scenario can account for the Moreton wave of the 2006 December 6 event (Francile et al. 2013).
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1983-01-01
An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.
Next generation laser-based standoff spectroscopy techniques for Mars exploration.
Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey
2015-01-01
In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments
Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo
2016-01-01
Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.; ...
2018-02-02
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
NASA Astrophysics Data System (ADS)
Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.
2016-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to achieve relative positioning in a constellation of 6U-Class nanosatellites. The TEMPEST-D 6U-Class satellite is planned to be delivered in July 2017 for launch through NASA CSLI no later than March 2018.
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.
1999-01-01
Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.
Lu, Chia Jung; Jin, Chunguang; Zellers, Edward T
2006-02-01
The evaluation of a novel prototype instrument designed for on-site determinations of VOC mixtures found in indoor working environments is described. The instrument contains a miniature multi-stage preconcentrator, a dual-column separation module with pressure-tunable retention capabilities, and an integrated array of three polymer-coated surface acoustic wave sensors. It was challenged with dynamic test-atmospheres of a set of 15 common indoor air contaminants at parts-per-billion concentrations within a stainless-steel chamber under a range of conditions. Vapours were reliably identified at a known level of confidence by combining column retention times with sensor-array response patterns and applying a multivariate statistical test of pattern fidelity for the chromatographically resolved vapours. Estimates of vapour concentrations fell within 7% on average of those determined by EPA Method TO-17, and limits of detection ranged from 0.2 to 28 ppb at 25 degrees C for 1 L samples collected and analyzed in <12 min. No significant humidity effects were observed (0-90% RH). Increasing the chamber temperature from 25 to 30 degrees C reduced the retention times of the more volatile analytes which, in turn, demanded alterations in the scheduling of column-junction-point pressure (flow) modulations performed during the analysis. Reductions in sensor sensitivities with increasing temperature were predictable and similar among the sensors in the array such that most response patterns were not altered significantly. Short-term fluctuations in concentration were accurately tracked by the instrument. Results indicate that this type of instrument could provide routine, semi-autonomous, near-real-time, multi-vapour monitoring in support of efforts to assess air quality in office environments.
Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto
2016-01-01
The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P < .05 and P < .001, respectively). Hyflex EDM showed a lower maximum torque load (P < .05) but a significantly higher angular rotation (P < .0001) to fracture than Reciproc R25 and WaveOne Primary. No significant difference was found comparing the maximum torque load, angular rotation, and cyclic fatigue of Reciproc R25 and WaveOne Primary (P > .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Caviedes-Bucheli, J; Rios-Osorio, N; Rey-Rojas, M; Laguna-Rivero, F; Azuero-Holguin, M M; Diaz, L E; Curtidor, H; Castaneda-Ramirez, J J; Munoz, H R
2018-05-17
To quantify Substance P (SP) and Calcitonin gene-related peptide (CGRP) expression in healthy human periodontal ligament from premolars after root canal preparation with Reciproc Blue, WaveOne Gold, XP EndoShaper and hand files. A total of 50 human periodontal ligament samples were obtained from healthy mandibular premolars where extraction was indicated for orthodontic reasons. Prior to extraction, 40 of these premolars were equally divided into four groups, and root canals were prepared using four different systems: Reciproc Blue, WaveOne Gold, XP EndoShaper and a hand instrumentation technique. The remaining 10 healthy premolars were extracted without treatment and served as a negative control group. All periodontal ligament samples were processed, and SP and CGRP were measured by radioimmunoassay. The Kruskal-Wallis test was used to establish significant differences between groups and LSD post hoc comparisons were also performed. Greater SP and CGRP values were found in the hand instrumentation group, followed by the XP EndoShaper, WaveOne Gold and the Reciproc groups. The lower SP and CGRP values were for the healthy periodontal ligament group. The Kruskal-Wallis test revealed significant differences between groups (P < 0.05). Post hoc Least Significant Difference (LSD) tests revealed significant differences (P < 0.05) in SP and CGRP expression between all the comparisons except for the Reciproc Blue and WaveOne Gold group (P > 0.05). All the root canal preparation techniques tested increased SP and CGRP expression in human periodontal ligament, with hand files and XP EndoShaper instruments being associated with greater neuropeptide release compared to Reciproc Blue and WaveOne Gold files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
Density and temperature structure over northern Europe
NASA Technical Reports Server (NTRS)
Philbrick, C. R.; Schmidlin, F. J.; Grossmann, K. U.; Lange, G.; Offermann, D.; Baker, K. D.; Krankowsky, D.; Von Zahn, U.
1985-01-01
During the Energy Budget Campaign, a number of profiles of the density and temperature were obtained to study the structure and variability of the atmosphere. The measurements were made using rocketborne instrumentation launched from Esrange, Sweden, and Andoya Rocket Range, Norway, during November and December 1980. The techniques included meteorological temperature sondes, passive falling sphere, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data covering the altitude range from 20 to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the wave features and variations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. However, the features in the profiles during one of the measurement periods are unusual and may be due to aurorally generated shock waves. The geomagnetic storm conditions caused temperature increases in the lower thermosphere which maximized in the 120-140 km region.
NASA Astrophysics Data System (ADS)
Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott
2006-05-01
Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.
Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science
NASA Astrophysics Data System (ADS)
Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan
2015-05-01
Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.
2017-07-01
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.
Wang, Y.; Tobias, B.; Chang, Y. -T.; ...
2017-03-14
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.
NASA Astrophysics Data System (ADS)
O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.
2017-12-01
The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.
Robert J. Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk
1999-01-01
This guide was prepared to assist inspectors in the use of stress wave timing instruments and the various methods of locating and defining areas of decay in timber bridge members. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in timber bridges and (b) the principles of stress wave nondestructive...
Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk
2000-01-01
This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...
The STEREO Mission: A New Approach to Space Weather Research
NASA Technical Reports Server (NTRS)
Kaiser, michael L.
2006-01-01
With the launch of the twin STEREO spacecraft in July 2006, a new capability will exist for both real-time space weather predictions and for advances in space weather research. Whereas previous spacecraft monitors of the sun such as ACE and SOH0 have been essentially on the sun-Earth line, the STEREO spacecraft will be in 1 AU orbits around the sun on either side of Earth and will be viewing the solar activity from distinctly different vantage points. As seen from the sun, the two spacecraft will separate at a rate of 45 degrees per year, with Earth bisecting the angle. The instrument complement on the two spacecraft will consist of a package of optical instruments capable of imaging the sun in the visible and ultraviolet from essentially the surface to 1 AU and beyond, a radio burst receiver capable of tracking solar eruptive events from an altitude of 2-3 Rs to 1 AU, and a comprehensive set of fields and particles instruments capable of measuring in situ solar events such as interplanetary magnetic clouds. In addition to normal daily recorded data transmissions, each spacecraft is equipped with a real-time beacon that will provide 1 to 5 minute snapshots or averages of the data from the various instruments. This beacon data will be received by NOAA and NASA tracking stations and then relayed to the STEREO Science Center located at Goddard Space Flight Center in Maryland where the data will be processed and made available within a goal of 5 minutes of receipt on the ground. With STEREO's instrumentation and unique view geometry, we believe considerable improvement can be made in space weather prediction capability as well as improved understanding of the three dimensional structure of solar transient events.
A novel 4-DOF surgical instrument with modular joints and 6-Axis Force sensing capability.
Li, Kun; Pan, Bo; Zhang, Fuhai; Gao, Wenpeng; Fu, Yili; Wang, Shuguo
2017-03-01
It is difficult for surgeons to exert appropriate forces during delicate operations due to lack of force feedback in robot-assisted minimally invasive surgery (RMIS). A 4-DOF surgical grasper with a modular wrist and 6-axis force sensing capability is developed. A grasper integrated with a miniature force and torque sensor based on the Stewart platform is designed, and a cable tension decomposition mechanism is designed to alleviate influence of the cable tension to the sensor. A modularized wrist consisting of four joint units is designed to facilitate integration of the sensor and eliminate coupled motion of the wrist. Sensing ranges of this instrument are ±10 N and ±160 N mm, and resolutions are 1.2% in radial directions, 5% in axial direction, and 4.2% in rotational directions. An ex vivo experiment shows that this instrument prototype successfully measures the interaction forces. A 4-DOF surgical instrument with modular joints and 6-axis force sensing capability is developed. This instrument can be used for force feedback in RMIS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.
1990-12-01
The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.
Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions
2011-09-01
understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a...depth of 60 meters in granite (Climax Stock). The shot was well- recorded by an array of over 150 instruments, including both near-field wave motion...measurements as well as far- field seismic measurements. This paper focuses on measurements and modeling of the near-field data. A complimentary
MOEMs devices designed and tested for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe
2017-11-01
Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.
An innovative on-board processor for lightsats
NASA Technical Reports Server (NTRS)
Henshaw, R. M.; Ballard, B. W.; Hayes, J. R.; Lohr, D. A.
1990-01-01
The Applied Physics Laboratory (APL) has developed a flightworthy custom microprocessor that increases capability and reduces development costs of lightsat science instruments. This device, called the FRISC (FORTH Reduced Instruction Set Computer), directly executes the high-level language called FORTH, which is ideally suited to the multitasking control and data processing environment of a spaceborne instrument processor. The FRISC will be flown as the onboard processor in the Magnetic Field Experiment on the Freja satllite. APL has achieved a significant increase in onboard processing capability with no increase in cost when compared to the magnetometer instrument on Freja's predecessor, the Viking satellite.
Measuring Fluorescent Dye in the Bubbly and Sediment-Laden Surfzone
2009-04-16
damage instrumentation, hamper deployment, and render many oceanographic instruments and platforms (i.e., boats) unusable. Breaking waves intermit ...fluo- rometer system. The jet ski allows fast repeated cross- and alongshore transects though the sur- fzone where traditional boats and submersibles
NASA Technical Reports Server (NTRS)
Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.
1996-01-01
We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.
Jason Tracks Powerful Tropical Cyclone Gonu High Winds, Waves
2007-06-08
This pair of images from the radar altimeter instrument on NASA U.S./France Jason mission reveals information on wind speeds and wave heights of Tropical Cyclone Gonu, which reached Category 5 strength in the Arabian Sea prior to landfall in early June.
Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Madsen, B.; Wedlund, C. Simon; Eriksson, A.; Goetz, C.; Karlsson, T.; Gunell, H.; Spicher, A.; Henri, P.; Vallières, X.; Miloch, W. J.
2018-05-01
The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma.
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor
2017-03-01
The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.
Aeropropulsion 1987. Session 4: Instrumentation and Controls Research
NASA Technical Reports Server (NTRS)
1987-01-01
The Lewis Research Center has had a long history of research directed toward advancing the national capability in the areas of propulsion research instrumentation and propulsion controls. Some of the major advances from this research that are currently in use are highlighted as well as some of the ongoing and planned research that will strongly impact the future capabilities. The presentations will cover the efforts on research instrumentation and controls as well as the research on high temperature electronics. This introductory section will focus on the major drivers or needs of the aeropropulsion industry that have shaped the instrumentation and controls research programs. Also covered will be the technological opportunities that have greatly impacted the program and that permitted break-throughs in several areas.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Zaccheo, T.
2012-12-01
The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of <0.2 ppm on monthly averages and <0.06 ppm on yearly averages, using conservative estimates of cloud cover and aerosol loading. The capability for continuous monitoring over a fixed geometry makes it possible to independently characterize the atmospheric column, using existing capabilities (e.g. aircore, aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.
Effect of alloy type on the life-time of torsion-preloaded nickel-titanium endodontic instruments.
Ha, Jung-Hong; Kim, Sung Kyo; Cheung, Gary Shun-Pan; Jeong, Seong Hwa; Bae, Yong Chul; Kim, Hyeon-Cheol
2015-01-01
This study was aimed to evaluate the effect of torsional preloads on the cyclic fatigue life of nickel-titanium (NiTi) instruments with different history of heat treatments by manufacturers. WaveOne (Primary) made of M-wire, K3XF (#30/0.06) of R-phase, and ProTaper (F2) of conventional NiTi alloy was used. Each file was preloaded at four conditions (nil, 25, 50, and 75% of their mean ultimate torsional strength) before fatigue testing. The torsional preloads 10-, 30-, or 50-times were applied by securing 5 mm of the file tip, rotating it until the preset torque was attained before returning to the origin. Then, the number of cycles to failure (NCF) was evaluated by rotational bending in a simulated canal. Data were analyzed using multiple linear regression analysis and two-way ANOVA. Fractured instruments were examined under scanning electron microscope (SEM). SEM showed that most WaveOne after 75% preloading, regardless of repetitions, showed some longitudinal cracks parallel to the long axis of the file, which were rare for K3XF. Regression analysis revealed that the brand of instrument was the most critical factor. At up to 75% preloading, ProTaper and K3XF did not show any significant decline in NCF. For 30-repetition groups of WaveOne, the 50 and 25% torsion preloaded groups showed a significantly higher NCF than the 0 and 75% groups. Within the limitations of this study, the alloy type of NiTi instrument have a significant effect on the phenomenon that a certain amount of torsional preload may improve the cyclic fatigue resistance of NiTi rotary instruments. © Wiley Periodicals, Inc.
Lightning and plasma wave observations from the galileo flyby of venus.
Gurnett, D A; Kurth, W S; Roux, A; Gendrin, R; Kennel, C F; Bolton, S J
1991-09-27
During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.
In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.
Lightning and plasma wave observations from the Galileo flyby of Venus
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Roux, A.; Gendrin, R.; Kennel, C. F.; Bolton, S. J.
1991-01-01
Durig the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.
A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints
NASA Astrophysics Data System (ADS)
Reep, Jeffrey W.; Russell, Alexander J. B.; Tarr, Lucas A.; Leake, James E.
2018-02-01
Alfvénic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption that the current work removes. Via a ray-tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; and (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.
Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis
NASA Technical Reports Server (NTRS)
Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.
2000-01-01
Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billing, M. G.; Conway, J. V.; Crittenden, J. A.
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less
Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.
Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...
2016-04-28
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less
Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.
2014-12-01
TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one-year mission. TEMPEST provides critical information on the time evolution of cloud and precipitation microphysics, thereby yielding a first-order understanding of how assumptions in current cloud-model parameterizations behave in diverse climate regimes.
Performance Characterization of an Instrument.
ERIC Educational Resources Information Center
Salin, Eric D.
1984-01-01
Describes an experiment designed to teach students to apply the same statistical awareness to instrumentation they commonly apply to classical techniques. Uses propagation of error techniques to pinpoint instrumental limitations and breakdowns and to demonstrate capabilities and limitations of volumetric and gravimetric methods. Provides lists of…
Did we see the 2011 summer heat wave coming?
NASA Astrophysics Data System (ADS)
Luo, Lifeng; Zhang, Yan
2012-05-01
A series of climate extreme events affected many parts of the US during 2011, including the severe drought in Texas, the spring tornado outbreak in the southern states, and the weeklong summer heat wave in the Central Plains. Successful prediction of these events can better inform and prepare the general public to cope with these extremes. In this study, we investigate the operational capability of the new NCEP Climate Forecast System (CFSv2) in predicting the 2011 summer heat wave. We found that starting from April 2011, the operational CFSv2 forecast consistently suggested an elevated probability of extremely hot days during the forthcoming summer over the Central Plains, and as the summer was approaching the forecast became more certain about the summer heat wave in its geographic location, intensity and timing. This study demonstrates the capability of the new seasonal forecast system and its potential usefulness in decision making process.
NASA Astrophysics Data System (ADS)
Iula, Antonio; Lamberti, Nicola; Savoia, Alessandro; Caliano, Giosue
2012-05-01
In this work an experimental evaluation of the possiblity to influence and control the fluid film forces in the gap of a lubricated journal bearing by means of a rotating travelling wave is carried out. The travellig wave is generated by two power actuators opportunely positioned on the outer surface of the bearing and electrically driven with a phase shift of 90°. Each transducer is designed to work at the natural frequency of the radial nonaxisymmetrical mode 0-5 (23.6 kHz). Experimental results show that the travelling wave is capable to control the motion of an oil drop on the inner surface of the bearing and that it is capable to put in rotation a rotor layed on the drop oil via the viscous forces in the oil drop itself.
LISN: A distributed observatory to image and study ionospheric irregularities
NASA Astrophysics Data System (ADS)
Sheehan, R.; Valladares, C. E.
2013-05-01
During nighttime the low-latitude ionosphere commonly develops plasma irregularities and density structures able to disrupt radio wave signals. This interference produces an adverse impact on satellite communication and navigation signals. For example, EM signals originated from satellites can suffer fading as deep as 20 dB even at UHF frequencies. In addition, civil aviation is increasingly dependent upon Global Navigation Satellite Systems and disruption of the navigation capability from ionospheric irregularities poses a clear threat to passengers and crews. To monitor and specify the conditions of the ionosphere over South America, the Low-latitude Ionospheric Sensor Network (LISN) was established as a permanent array of scientific instruments that operate continuously and transmit their observables to a central server in a real-time basis. Presently, the LISN observatory includes 3 different types of instruments: (1) 47 GPS receivers, (2) 5 flux-gate magnetometers and (3) 2 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes. In addition to providing a nowcast of the disturbed state of the ionosphere over South America, LISN permits detailed studies of the initiation and development of plasma irregularities. By using data assimilation and tomography techniques, LISN provides continuous estimates of several important geophysical parameters that are indispensable to a program aimed at forecasting the plasma electrodynamics and the formation of density structures in the low-latitude ionosphere.
NASA Astrophysics Data System (ADS)
Goldberg, D.; Bock, Y.; Melgar, D.
2017-12-01
Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to advance rapid characterization of large events. Improvement of initial magnitude estimates through integration of geodetic and seismogeodetic observations is a top priority of an ongoing collaboration with NASA and NOAA's National and Pacific Tsunami Warning Centers (NOAA/NASA GNSS Tsunami Team).
Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite
NASA Astrophysics Data System (ADS)
Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.
2017-12-01
Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.
Field measurement of velocity time series in the center of Sequim Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Harker-Klimes, Genevra EL
A 600 kHz RDI Workhorse was installed in the center of Sequim Bay from 15:04 June 23, 2017 to 09:34 August 24, 2017 at a depth of 25.9 m from MLLW. The instrument was configured to record the flow velocity in vertical cells of 1.0 m in 10 minute ensembles. Each ensemble was calculated as the mean of 24 pings, sampled with an interval of 5.0 s. A burst of increased sampling rate (1200 samples at 2 Hz) was recorded to characterize the wave climate on an hourly basis. The peak depth-averaged flow speed for the deployment was recorded duringmore » the flood tide on June 24, 2017 with a magnitude of 0.34 m/s. The peak flow speed in a single bin was recorded during the same tide at a location of 11.6 m from the seabed with a magnitude of 0.46 m/s. The velocity direction was observed to be relatively constant as a function of depth for the higher flow velocities (flood tides) but highly variable during times of slower flow (ebb tides). A peak significant wave height of 0.36 m was recorded on June 30, 2017 at 18:54. The measured waves showed no indication of a prevalent wave direction during this deployment. The wave record of the fetch-limited site during this deployment approaches the lower limit of the wave measurement resolution. The water temperature fluctuated over a range of 1.7°C during the deployment duration. The mean pitch of the instrument was -1.2° and the mean roll angle of the instrument was 0.3°. The low pitch and roll angles are important factors in the accurate measurement of the wave activity at the surface.« less
Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne
2005-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.
Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere
NASA Astrophysics Data System (ADS)
Cullens, C. Y.; England, S.; Immel, T. J.
2014-12-01
The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.
Engel, Lidia; Mortimer, Duncan; Bryan, Stirling; Lear, Scott A; Whitehurst, David G T
2017-07-01
The ICEpop CAPability measure for Adults (ICECAP-A) is a measure of capability wellbeing developed for use in economic evaluations. It was designed to overcome perceived limitations associated with existing preference-based instruments, where the explicit focus on health-related aspects of quality of life may result in the failure to capture fully the broader benefits of interventions and treatments that go beyond health. The aim of this study was to investigate the extent to which preference-based health-related quality of life (HRQoL) instruments are able to capture aspects of capability wellbeing, as measured by the ICECAP-A. Using data from the Multi Instrument Comparison project, pairwise exploratory factor analyses were conducted to compare the ICECAP-A with five preference-based HRQoL instruments [15D, Assessment of Quality of Life 8-dimension (AQoL-8D), EQ-5D-5L, Health Utilities Index Mark 3 (HUI-3), and SF-6D]. Data from 6756 individuals were used in the analyses. The ICECAP-A provides information above that garnered from most commonly used preference-based HRQoL instruments. The exception was the AQoL-8D; more common factors were identified between the ICECAP-A and AQoL-8D compared with the other pairwise analyses. Further investigations are needed to explore the extent and potential implications of 'double counting' when applying the ICECAP-A alongside health-related preference-based instruments.
Ground Based, Millimeter Wave Measurement of Ozone in the Middle Atmosphere
NASA Technical Reports Server (NTRS)
Parrish, Alan
2000-01-01
There is a need for highly reliable measurements of stratospheric ozone. Policy makers worldwide concerned with public health rely oil a clear consensus from the scientific community as a basis for ozone-related environmental policy that has a significant impact oil national economies. Tile latest Such consensus was presented in WMO, and used in a 1999 meeting of the parties considering amendments to the Montreal Protocol oil Substances that Deplete the Ozone Layer. Tile scientific community, in turn, needs highly precise and accurate measurements of ozone levels, and small time derivatives of these levels, both in continued - development of its understanding of the physical and chemical processes involved and as clear evidence that these processes are occurring as stated. Over most of the world, changes in ozone levels are small. For example, over the heavily populated northern midlatitudes, the linearized rate of ozone decline is between 0.2% per year and 0.7% per year, depending on altitude. These values are small enough to make measurement requirements technically challenging. Data quality may suffer from imperfections in individual instruments. In one instance, early results from a satellite-borne ozone sensor were later found to be invalid because of calibration drift. Even in the absence of drift, tile absolute calibration of a new sensor may differ slightly from that of its predecessor in service. Most ozone remote sensing instruments operate at ultraviolet or infrared wavelengths where scattering from dust and aerosols must be taken into account; results from these systems may be or are affected following a major volcanic eruption, such as tile one at Mt. Pinatubo in 1991. Given these difficulties, a consensus of measurements from several independent systems is required to insure a reliable understanding of stratospheric ozone levels. Because of the above-described need for highly precise and accurate ozone measurements using several independent techniques, there was interest in developing several techniques which were known but not highly developed in the 1980's into systems capable of being used in ail operational manner to make measurements with the level of quality needed to-detect small trends in ozone levels. A ground-based microwave instrument capable of remotely sensing stratospheric ozone had been designed by tile Principal Investigator of the present project. This instrument was built at tile Millitech Corporation in South Deerfield, Massachusetts before tile present work began. (Funding for design and construction of the instrument came from sources other than the present grant.) Tile instrument measured the spectrum of one of the many emission lines produced by purely rotational transitions of ozone, one at a frequency of 110.8 GHz. The altitude distribution of ozone can. in principle, be retrieved from the details of the pressure-broadened spectrum of the ozone transition. However, the level of contamination of the spectral measurement by instrumentally induced artifacts must be very low in order to retrieve a ozone profile of useful quality from it. The Millitech instrument demonstrated spectral purity at ail adequate level, and there were promising ideas for instrumental improvements and for further development of the technique. The initial objectives of the present project, then, were to develop techniques for calibrating the Millitech instrument, to minimize artifacts in tile spectra it produces, to optimally retrieve ozone profiles from tile spectra, to test tile quality of the microwave profiles by comparing them with profiles obtained using several other, independent techniques over both short and periods of time, and to perform research using the ozone data gathered with the instrument.
A Detailed Study of Transom Breaking Waves
2009-05-01
be effectively mapped over a desired area. The novel projection optics of the DLP-enhanced QViz system used a Digital Micromirror Device (DMD), an...optical semiconductor instrument. The DMD device (Texas Instruments, DMD Discovery 1100) contains an array of 1024 by 768 micromirrors . In the
NASA Technical Reports Server (NTRS)
Coulter, Dan; Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
A Robotic Communications Gateway for Ocean Observations
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Berger, J.; Laske, G.; Babcock, J.
2015-12-01
We describe a new technology that can provide real-time telemetry of sensor data from the ocean bottom. The breakthrough technology that makes this system possible is an autonomous surface vehicle called the Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA., which harvests wave and solar energy for motive and electrical power. The free-floating surface communications gateway uses a Liquid Robotics wave glider comprising a surfboard-sized float towed by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land are provided by the Iridium satellite constellation. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. The topside acoustics communications package is mounted in a shallow tow body, which uses a WHOI micro modem and a Benthos low frequency, directional transducer. A matching bottom side modem and transducer are mounted on the ocean bottom package. Tests of the surface gateway in 4000 m of water demonstrated an acoustic efficiency of approximately 256 bits/J. For example, it has the ability to send four channels of compressed, one sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.36 W and a latency of about three minutes. This gateway is used to send near-real-time data from a broadband ocean bottom seismic observatory; we are presently designing and constructing a seafloor package with a two-year operational life. We have found that for frequencies f where f<10mHz, 35mHz < f < 120mHz and f>~3Hz, the vertical component, seafloor system noise characteristics are generally superior to similar observatories on land. Increasing the density of these stations over the majority of the surface of Earth; that is, the oceans will greatly enhance the resolution of deep Earth structure and serve civil needs including tsunami warning. The robotic technology is readily applicable for other ocean observations.
Modeling of the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii
NASA Astrophysics Data System (ADS)
Cheung, K.; Yamazaki, Y.; Roeber, V.; Lay, T.
2011-12-01
The 2011 Tohoku-oki great earthquake (Mw 9.0) generated a destructive tsunami along the entire Pacific coast of northeastern Japan. The tsunami, which registered 6.7 m amplitude at a coastal GPS gauge and 1.75 m at an open-ocean DART buoy, triggered warnings across the Pacific. The waves reached Hawaii 7 hours after the earthquake and caused localized damage and persistent coastal oscillations along the island chain. Several tide gauges and a DART buoy west of Hawaii Island recorded clear signals of the tsunami. The Tsunami Observer Program of Hawaii State Civil Defense immediately conducted field surveys to gather runup and inundation data on Kauai, Oahu, Maui, and Hawaii Island. The extensive global seismic networks and geodetic instruments allows evaluation and validation of finite fault solutions for the tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami using the long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) and a finite fault solution based on inversion of teleseismic P waves. The depth-integrated model describes dispersive waves through the non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum-conserved advection scheme. Four levels of two-way nested grids in spherical coordinates allow description of tsunami evolution processes of different time and spatial scales for investigation of the impacts around the Hawaiian Islands. The model results are validated with DART data across the Pacific as well as tide gauge and runup measurements in Hawaii. Spectral analysis of the computed surface elevation reveals a series of resonance modes over the insular shelf and slope complex along the archipelago. Resonance oscillations provide an explanation for the localized impacts and the persistent wave activities in the aftermath. The model results provide insights into effects of fringing reefs, which are present along 70% of Hawaii's coastlines, on tsunami transformation and runup processes. This case study improves our understanding of tsunamis in tropical island environment and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
Northern Arabian Sea Circulation - Autonomous Research: Optimal Planning Systems (NASCar-OPS)
2015-09-30
vehicles ( gliders , drifters, floats, and/or wave- gliders ) - Provide guidance for persistent optimal sampling, including for long-duration observation...headings and relative operating speeds will be provided to the operational fleets of instruments and vehicles (e.g. gliders , drifters, floats or wave... gliders ). We plan to use models specific to vehicle types (floats, wave- gliders , etc.). We also plan to further parallelize and optimize our codes
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Schmidt, Carsten; Hannawald, Patrick; Offenwanger, Thomas; Sedlak, René; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2017-04-01
During the GW-LCYCLE campaign from January to February 2016 in Northern Scandinavia, we operated four instruments: two ground-based OH* IR-spectrometers (scanning and non-scanning mode at ALOMAR (69°N), Norway, and Kiruna (68°N), Sweden) and one ground-based OH* IR all-sky camera (at Kiruna) as well as one OH* IR-camera on board the research aircraft FALCON (field of view ca. 30°, spatial resolution 150 m x 150 m). Due to the differing spatial and temporal resolution of the instruments, this equipment allows the investigation of temporal and spatial gravity wave parameters in a wide spectral range. The flights of the research aircraft provide the opportunity to investigate gravity waves in between both measurement sites. During the campaign period, the dynamical situation changed due to a minor stratospheric warming. The effect of this warming on the OH*-layer is investigated using TIMED-SABER data. We provide an overview of the development of planetary and gravity wave parameters and energy density at mesopause height during the campaign period and present first results of the airborne measurements. Finally, we discuss possible wave sources and the influence of the stratospheric warming on wave parameters, and propagation.
NASA Technical Reports Server (NTRS)
Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.
2001-01-01
The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.
High-frequency Plasma Waves Associated with Magnetic Reconnection in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
Activities of high-frequency plasma waves associated with magnetic reconnection in the solar wind observed by Time Domain Sampler (TDS) experiments on STEREO/WAVES are preliminarily analyzed. The TDS instrument can provide burst mode electric fields data with as long as 16384 sample points at 250 kHz sampling rate. In all 1120 suspected reconnection events, it is found that the most commonly occurred waves are neither ion acoustic waves, electrostatic solitary waves, nor Langmuir/upper hybrid waves, but Bernstein-like waves with harmonics of the electron cyclotron frequency. In addition, to each type of waves, Langmuir/upper hybrid waves reveal the largest occurrence rate in the reconnection region than in the ambient solar wind. These results indicate that Bernstein-like waves and Langmuir/upper hybrid waves might play important roles in the reconnection associated particle heating processes and they might also influence the dissipation of magnetic reconnection.
Secondary Generation of Mountain Waves in the Stratosphere
NASA Astrophysics Data System (ADS)
Woods, Bryan K.
Secondary generation of mountain waves was documented using in situ aircraft data from the Terrain-Induced Rotor Experiment (T-REX). Mountain waves propagating from the Sierra Nevada generated secondary waves due to stratospheric wave breaking. The seminal Eliassen and Palm (1961) relation of mountain wave energy and momentum fluxes is observationally verified for the first time. One case of reversed wave fluxes in the stratosphere is shown to be the result of multiscale secondary waves propagating down from the stratosphere. The Tropopause Inversion Layer (TIL) is shown to be capable of serving as a wave duct trapping such secondary waves. Simple idealized 2D simulations are shown to reproduce secondary wave patterns that bare striking resemblance to those observed in T-REX. However, 3D simulations are shown to fail to reproduce realistic secondary waves.
UAVSAR Program: Initial Results from New Instrument Capabilities
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip;
2013-01-01
UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.
ERIC Educational Resources Information Center
Seeberg, Vilma
2014-01-01
This study proposes an elaboration of the human development capability approach by theorizing empowerment capabilities as an essential aspect of the education of excluded village girls. Seeking to explain Chinese village girls' demand for schooling, the article identifies intangible and instrumental capabilities that have often been overlooked and…
The WHISPER Relaxation Sounder and the CLUSTER Active Archive
NASA Astrophysics Data System (ADS)
Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.
CCAM: A novel millimeter-wave instrument using a close-packed TES bolometer array
NASA Astrophysics Data System (ADS)
Lau, Judy M.
This thesis describes CCAM, an instrument designed to map the Cosmic Microwave Background (CMB), and also presents some of the initial measurements made with CCAM on the Atacama Cosmology Telescope (ACT). CCAM uses a CCD-like camera of millimeter-wave TES bolometers. It employs new detector technology, read-out electronics, cold re-imaging optics, and cryogenics to obtain high sensitivity CMB anisotropy measurements. The free-standing 8×32 close-packed array of pop- up TES detectors is the first of its kind to observe the sky at 145 GHz. We present the design of the receiver including the antireflection coated silicon lens re-imaging system, construction and optimization of the pulse tube/ sorption refrigerator cryogenic system, as well as the technology developed to integrate eight 1×32 TES columns and accompanying read-out electronics in to an array of 256 millimeter-wave detectors into a focal plane area of 3.5 cm 2. The performance of the detectors and optics prior to deployment at the ACT site in Chile are reported as well as preliminary performance results of the instrument when optically paired with the ACT telescope in the summer of 2007. Here, we also report on the feasibility of the TES detector array to measure polarization when coupled to a rotating birefringent sapphire half wave plate and wire-grid polarizer.
7 years of MAXI: monitoring X-ray transients
NASA Astrophysics Data System (ADS)
Serino, M.; Shidatsu, M.; Iwakiri, W.; Mihara, T.
2017-03-01
This workshop was held to celebrate the successful 7 years of observation with Monitor of All-sky X-ray Image (MAXI), a Japanese astrophysics payload on the International Space Station. Since the launch in 2009, MAXI has been monitoring the variable X-ray sky, and has discovered 17 new X-ray sources. Often with a help of multi-wavelength follow-up observations, one of them has been identified with the nuclear ignition of a massive nova, 6 with black-hole binaries, and 5 with those involving neutron stars. Nevertheless, 4 of them remain unidentified, and are considered to form a potentially new class of short soft transients. MAXI is also leading the time-domain astronomy, with its capability to issue alerts which triggers prompt follow-up observations in the optical and other wavelengths. So far, MAXI has detected about a hundred gamma-ray bursts, and performing unbiased watch for stellar flares. In addition, long-term X-ray variations of about a hundred of sources are continuously tracked with MAXI. This has enabled a variety of new astrophysics that cannot be achieved by snapshot observations. The recent detections of the gravitation wave events have significantly increased the importance of MAXI as a currently operating all-sky monitor, and as a member of multi-messenger astronomy which covers electromagnetic waves, neutrinos, and gravitational waves. In this symposium, the MAXI results obtained during the 7 years are reviewed, with a session assigned to those from Hitomi. The symposium also covers new prospects in the time-domain astronomy, to be developed with future X-ray missions/instruments.
Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders
NASA Astrophysics Data System (ADS)
Safaeinili, A.
2003-12-01
Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (< 1000 m) with a higher depth resolution of ˜ 10-15 m. In addition to its subsurface exploration goals, MARSIS, that has a frequency range between 0.1 to 5.5 MHz, will study the ionosphere of Mars and providing a wealth of new information on Martian ionosphere. Both MARSIS and SHARAD have the potential of providing answers to a number of questions such as depth of ice-layers in the polar region and recently discovered ice-rich regions in both northern and southern hemispheres of Mars. The next generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.
Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite
NASA Astrophysics Data System (ADS)
Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya
2018-05-01
The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ren, Baiyang
Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF) arrays, which can extract modal information from the received waves. Also, the PATs and array sensors have broad frequency bandwidth and can easily excite and receive high order guided wave modes which are not possible using PZT disks. Currently, many guided wave SHM techniques employ the fundamental guided wave modes below the first cut-off frequency because of their low dispersion in this frequency range. Such a practice ignores the possibility of using higher order modes which sometimes have much better sensitivity to defects. A frequency domain finite element model is created in this work to study the behavior of the interaction between guided waves and a disbond. The sensitivities of modes are classified into three levels, namely, good sensitivity, intermediate sensitivity and no sensitivity. The novel damage indicators, wave modal amplitude and wave modal composition, are proposed to increase the sensitivity to disbonds. The effects of environmental operational conditions (EOC) are presenting great challenges to reliable SHM practice because they may influence the wave amplitude and time of flight. The use of fundamental modes shows poor sensitivity to the disbond; but the use of higher order modes shows good sensitivity. The experiments demonstrate that the new damage indicators have excellent sensitivity to disbonds even with elevated temperatures and have the capability to characterize the size of a disbond. Additionally, the detection of other types of defects like notches on aluminum plates and disbonds in adhesively bonded aluminum plate are also demonstrated using the proposed damage indicators. The use of the new damage indicators for SHM applications relies on the capability of resolving the modal content of wave signals which is enabled only by using PFC PATs and polyvinylidene fluoride (PVDF) array sensors.
Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket
NASA Astrophysics Data System (ADS)
Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.
2003-12-01
The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.
Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument
NASA Technical Reports Server (NTRS)
Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.
2014-01-01
Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.
NASA Technical Reports Server (NTRS)
Lally, J.; Meister, R.
1983-01-01
The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.
Physical instrumental vetoes for gravitational-wave burst triggers
NASA Astrophysics Data System (ADS)
Ajith, P.; Hewitson, M.; Smith, J. R.; Grote, H.; Hild, S.; Strain, K. A.
2007-08-01
We present a robust strategy to veto certain classes of instrumental glitches that appear at the output of interferometric gravitational-wave detectors. This veto method is “physical” in the sense that, in order to veto a burst trigger, we make use of our knowledge of the coupling of different detector subsystems to the main detector output. The main idea behind this method is that the noise in an instrumental channel X can be transferred to the detector output (channel H) using the transfer function from X to H, provided the noise coupling is linear and the transfer function is unique. If a nonstationarity in channel H is causally related to one in channel X, the two have to be consistent with the transfer function. We formulate two methods for testing the consistency between the burst triggers in channel X and channel H. One method makes use of the null stream constructed from channel H and the transferred channel X, and the second involves cross correlating the two. We demonstrate the efficiency of the veto by “injecting” instrumental glitches in the hardware of the GEO 600 detector. The veto safety is demonstrated by performing gravitational-wave like hardware injections. We also show an example application of this method using 5 days of data from the fifth science run of GEO 600. The method is found to have very high veto efficiency with a very low accidental veto rate.
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
Visualization of Harmonic Series in Resonance Tubes Using a Smartphone
ERIC Educational Resources Information Center
Jaafar, Rosly; Ayop, Shahrul Kadri; Ismail, Ahmad Tarmimi; Hon, Kok Keng; Daud, Anis Nazihah Mat; Hashim, Mohd Helmy
2016-01-01
Because sound waves are such an abstract concept in physics, hands-on activities are often recommended to improve students' understanding and strengthen their knowledge. However, most schools do not have sufficiently sophisticated measuring instruments to perform sound wave experiments. Recently, researchers used smartphones as oscilloscopes,…
ISEE/ICE plasma wave data analysis
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1989-01-01
The work performed for the period 1 Jan. 1985 to 30 Oct. 1989 is presented. The objective was to provide reduction and analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the International Sun Earth Explorer 3 (ISEE-3)/International Cometary Explorer (ICE) missions.
The New Meteor Radar at Penn State: Design and First Observations
NASA Technical Reports Server (NTRS)
Urbina, J.; Seal, R.; Dyrud, L.
2011-01-01
In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.
Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability
NASA Technical Reports Server (NTRS)
Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.
2009-01-01
Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.