Sample records for wave interference applet

  1. A Versatile Applet to Explore the Wave Behaviour of Particles

    ERIC Educational Resources Information Center

    Fernandez Palop, J. I.

    2009-01-01

    A pedagogical tool that consists of a Java applet has been developed so that undergraduate students in physics can explore the wave behaviour of particles. The applet executes a simulation in which a two-dimensional wave packet moves towards a slit and an obstacle with variable widths. By changing three parameters, slit width, obstacle width and…

  2. Real-time Java simulations of multiple interference dielectric filters

    NASA Astrophysics Data System (ADS)

    Kireev, Alexandre N.; Martin, Olivier J. F.

    2008-12-01

    An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations

  3. News from Online: More Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sweeney Judd, Carolyn

    1999-09-01

    Absorption (one of three tools) (http://mc2.cchem.berkeley.edu/Chem1A/solar/applets/absorption/ index.html).

    Evaporative cooling in a Bose-Einstein condensation ( http://www.colorado.edu/physics/2000/applets/bec.html). Let's start with the spectrum--the electromagnetic spectrum, of course. Go to the EMSpectrum Explorer at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum /emspectrum.html. Not only do you get information about wavelength, frequency, and energy, but you also get a handy converter that will calculate frequency, wavelength, and energy when one value is entered. And there is more. For example, clicking on red light of 680 nanometers reveals that mitochondria, the power plants of cells, are about the same size as this wavelength, which is also used for photosynthesis. Interesting food for thought! From the EMSpectrum Explorer, go to the Light and Energy page at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html for three Colors of Light Tools. The Color from Emission tool ( http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html) illustrates additive color by mixing differing amounts of Red, Blue, and Green light. Then look at the Color from Absorption tool at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html. The image from the applet shows the white beam and three filters. Take out the blue, green, and red components by altering the scroll bars or text boxes. The third tool, Removing Color with a Single Filter from Colored Light at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html, uses a single filter to take out various colors. Excellent for explaining the theory behind the operation of a basic spectrometer. The Light and Energy tools module, which received support from the National Science Foundation, has been developed under the direction of the ChemLinks Coalition--headed by Beloit College; and The ModularChem Consortium, MC2, headed by the University of California at Berkeley. The Project Director is Marco Molinaro from the University of California at Berkeley; the Project Manager is Susan Walden; Susan Ketchner and Leighanne McConnaughey are also members of the team for this excellent teaching site. For your information, all of the applets will soon be moving, along with the MC2 site, but the old addresses will still work. The next place to explore is Physics 2000 at http://www.colorado.edu/physics/2000/introduction.html. The introductory graphic is a harbinger of good things to come: move the negatively charged particle and see the water molecule spin in response to the position of the charged particle. One goal of the Physics 2000 Educational Initiative is to make physics more accessible to students and people of all ages. Sounds like a good goal for all sciences! One of the first sections is called Einstein's Legacy. Here you can find spectral lines explained in terms of team colors for rival football squads ( http://www.colorado.edu/physics/2000/quantumzone/index.html). Choose from 20 elements to see characteristic emission spectra. The cartoon teachers and students help explain emission spectra. Great applets compare the Bohr atom and the Schrödinger model as well as emission and absorption ( http://www.colorado.edu/physics/2000/quantumzone/schroedinger.html). Einstein's Legacy has many topics: X-rays and CAT Scans, Electromagnetic Waves and Particles, the Quantum Atom, Microwave Ovens, Lasers, and TV & Laptop Screens. Several topics also have sections for the advanced student. One of those advanced sections is part of the second major section of Physics 2000: The Atomic Lab. Two topics are Interference Experiments and Bose-Einstein Condensate. An applet illustrating Laser Cooling is at http://www.colorado.edu/physics/2000/bec/lascool1.html. Next go on to Evaporative Cooling at http://www.colorado.edu/physics/2000/bec/evap_cool.html. The cartoon professors begin the explanation with a picture of steam rising from a cup of hot coffee. Next is an applet with atoms in a parabolic magnetic trap at http://www.colorado.edu/physics/2000/applets/bec.html. The height of the magnetic trap can be changed in order to allow for escape of the most energetic atoms, resulting in cooling so that the Bose-Einstein Condensate is formed. Physics 2000 demands robust computing power. Check the system requirements on the introductory screen before venturing too far into this site. Martin V. Goldman, from the University of Colorado at Boulder, is the Director of Physics 2000, which received support from the Colorado Commission on Higher Education and the National Science Foundation. David Rea is the Technical Director, and many others help make this excellent site possible. Mark your calendars: October 31 through December 3, 1999! Bookmark this site-- http://www.ched-ccce.org/confchem/1999/d/index.html --and sign up. The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum. Scott Van Bramer of Widener University is the conference chair. Experts will present six papers, each to be followed by online discussions. CONFCHEM Online Conferences are sponsored by the American Chemical Society Division of Chemical Education's Committee on Computers in Chemical Education (CCCE). Several Online Conferences are held each year--all are well worth your time. World Wide Web Addresses EMSpectrum Explorer http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum/emspectrum.html Light and Energy http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html Emission Spectrum Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html Absorption Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html Removing Color with a Single Filter from Colored Light http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html Physics 2000 http://www.colorado.edu/physics/2000/introduction.html Einstein's Legacy: Spectral lines http://www.colorado.edu/physics/2000/quantumzone/index.html Einstein's: Schrödinger's Atom http://www.colorado.edu/physics/2000/quantumzone /schroedinger.html The Atomic Lab: Laser Cooling http://www.colorado.edu/physics/2000/bec/lascool1.html The Atomic Lab: Evaporative Cooling in a Bose­Einstein Condensation http://www.colorado.edu/physics/2000/bec/evap_cool.html The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum http://www.ched-ccce.org/confchem/1999/d/index.html access date for all sites: July 1999

  4. Classrooms for the Millennials: An Approach for the Next Generation

    ERIC Educational Resources Information Center

    Gerber, Lindsey N.; Ward, Debra D.

    2016-01-01

    The purpose of this paper is to introduce educators to three types of applets that are compatible with smartphones, tablets, and desktop computers: screencasting applets, graphing calculator applets, and student response applets. The applets discussed can be seamlessly and effectively integrated into classrooms to help facilitate lectures, collect…

  5. An Applet for the Investigation of Simpson's Paradox

    ERIC Educational Resources Information Center

    Schneiter, Kady; Symanzik, Jurgen

    2013-01-01

    This article describes an applet that facilitates investigation of Simpson's Paradox in the context of a number of real and hypothetical data sets. The applet builds on the Baker-Kramer graphical representation for Simpson's Paradox. The implementation and use of the applet are explained. This is followed by a description of how the applet has…

  6. Using AppletMagic(tm) to Implement an Orbit Propagator: New Life for Ada Objects

    NASA Technical Reports Server (NTRS)

    Stark, Michael E.

    1997-01-01

    This paper will discuss the use of the Intermetrics AppletMagic tool to build an applet to display a satellite ground track on a world map. This applet is the result of a prototype project that was developed by the Goddard Space Flight Center's Flight Dynamics Division (FDD), starting in June of 1996. Both Version 1 and Version 2 of this applet can be accessed via the URL http://fdd.gsfc.nasa.gov/Java.html. This paper covers Version 1, as Version 2 did not make radical changes to the Ada part of the applet. This paper will briefly describe the design of the applet, discuss the issues that arose during development, and will conclude with lessons learned and future plans for the FDD's use of Ada and Java. The purpose of this paper is to show examples of a successful project using Oi AppletMagic, and to highlight some of the pitfalls that occurred along the way. It is hoped that this discussion will be useful both to users of AppletMagic and to organizations such as Intermetrics that develop new technology.

  7. WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets

    NASA Astrophysics Data System (ADS)

    Gutfreund, Yechezkal-Shimon; Nicol, John R.

    1997-01-01

    The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.

  8. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  9. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  10. In Internet-Based Visualization System Study about Breakthrough Applet Security Restrictions

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, Yan

    In the process of realization Internet-based visualization system of the protein molecules, system needs to allow users to use the system to observe the molecular structure of the local computer, that is, customers can generate the three-dimensional graphics from PDB file on the client computer. This requires Applet access to local file, related to the Applet security restrictions question. In this paper include two realization methods: 1.Use such as signature tools, key management tools and Policy Editor tools provided by the JDK to digital signature and authentication for Java Applet, breakthrough certain security restrictions in the browser. 2. Through the use of Servlet agent implement indirect access data methods, breakthrough the traditional Java Virtual Machine sandbox model restriction of Applet ability. The two ways can break through the Applet's security restrictions, but each has its own strengths.

  11. Using Applets in Teaching Mathematics.

    ERIC Educational Resources Information Center

    Heath, Garrett Durand

    2002-01-01

    Use of applets in classroom demonstrations encourages students to use them in homework problems. These applets are dynamic and do not have the syntactical or procedural stumbling blocks associated with most software or textual material, so students can begin exploring and learning immediately. (MM)

  12. Teaching helix and problems connected with helix using GeoGebra

    NASA Astrophysics Data System (ADS)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  13. Developing Preservice Teachers' Understanding of Function Using a Vending Machine Metaphor Applet

    ERIC Educational Resources Information Center

    McCulloch, Allison; Lovett, Jennifer; Edgington, Cyndi

    2017-01-01

    The purpose of this study is to examine the use of a Vending Machine applet as a cognitive root for the development of preservice teachers understanding of function. The applet was designed to purposefully problematize common misconceptions associated with the algebraic nature of typical function machines. Findings indicated affordances and…

  14. Facilitating Student Experimentation with Statistical Concepts.

    ERIC Educational Resources Information Center

    Smith, Patricia K.

    2002-01-01

    Offers a Web page with seven Java applets allowing students to experiment with key concepts in an introductory statistics course. Indicates the applets can be used in three ways: to place links to the applets, to create in-class demonstrations of statistical concepts, and to lead students through experiments and discover statistical relationships.…

  15. The Fractionkit Applet

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan; Johnston-Wilder, Sue

    2008-01-01

    This article is the third in a series of articles describing a research project entitled "Entering into Symbols" (EIS) on the use of mathematical applets at key stages 2 and 3. The first two articles, in "MT200" and "MT203", described applets designed to teach place value ("Tuckshop subtraction") and basic algebra ("Matchbox algebra"). In this…

  16. Interactive Learning with Java Applets: Using Interactive, Web-Based Java Applets to Present Science in a Concrete, Meaningful Manner

    ERIC Educational Resources Information Center

    Corder, Greg

    2005-01-01

    Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…

  17. Designing GeoGebra Applets to Maximize Student Engagement

    ERIC Educational Resources Information Center

    Paoletti, Teo; Monahan, Ceire; Vishnubhotla, Madhavi

    2017-01-01

    GeoGebra is a free tool that has the potential to change both how and what is taught in mathematics. GeoGebra allows teachers and students to explore various mathematical ideas either through the full applet (https://www.geogebra.org/graphing) or by sharing applets via GeoGebra's Materials site (https://www.geogebra. org/materials/). It has many…

  18. [A solution for display and processing of DICOM images in web PACS].

    PubMed

    Xue, Wei-jing; Lu, Wen; Wang, Hai-yang; Meng, Jian

    2009-03-01

    Use the technique of Java Applet to realize the supporting of DICOM image in ordinary Web browser, thereby to expand the processing function of medical image. First analyze the format of DICOM file and design a class which can acquire the pixels, then design two Applet classes, of which one is used to disposal the DICOM image, the other is used to display DICOM image that have been disposaled in the first Applet. They all embedded in the View page, and they communicate by Applet Context object. The method designed in this paper can make users display and process DICOM images directly by using ordinary Web browser, which makes Web PACS not only have the advantages of B/S model, but also have the advantages of the C/S model. Java Applet is the key for expanding the Web browser's function in Web PACS, which provides a guideline to sharing of medical images.

  19. A Dynamic Applet for the Exploration of the Concept of the Limit of a Sequence

    ERIC Educational Resources Information Center

    Cheng, Kell; Leung, Allen

    2015-01-01

    This paper reports findings of an explorative study that examine the effectiveness of a GeoGebra-based dynamic applet in supporting students' construction of the formal definition of the limit of a sequence or convergence. More specifically, it is about how the use of the applet enables students to make connections between the graphical…

  20. Handle with care: the impact of using Java applets in Web-based studies on dropout and sample composition.

    PubMed

    Stieger, Stefan; Göritz, Anja S; Voracek, Martin

    2011-05-01

    In Web-based studies, Web browsers are used to display online questionnaires. If an online questionnaire relies on non-standard technologies (e.g., Java applets), it is often necessary to install a particular browser plug-in. This can lead to technically induced dropout because some participants lack the technological know-how or the willingness to install the plug-in. In two thematically identical online studies conducted across two time points in two different participant pools (N = 1,527 and 805), we analyzed whether using a Java applet produces dropout and distortion of demographics in the final sample. Dropout was significantly higher on the Java applet questionnaire page than on the preceding and subsequent questionnaire pages. Age-specific effects were found only in one sample (i.e., dropouts were older), whereas sex-specific effects were found in both samples (i.e., women dropped out more frequently than men on the Java applet page). These results additionally support the recommendation that using additional technologies (e.g., Java applets) can be dangerous in producing a sample that is biased toward both younger and male respondents.

  1. An Applet to Estimate the IOP-Induced Stress and Strain within the Optic Nerve Head

    PubMed Central

    2011-01-01

    Purpose. The ability to predict the biomechanical response of the optic nerve head (ONH) to intraocular pressure (IOP) elevation holds great promise, yet remains elusive. The objective of this work was to introduce an approach to model ONH biomechanics that combines the ease of use and speed of analytical models with the flexibility and power of numerical models. Methods. Models representing a variety of ONHs were produced, and finite element (FE) techniques used to predict the stresses (forces) and strains (relative deformations) induced on each of the models by IOP elevations (up to 10 mm Hg). Multivariate regression was used to parameterize each biomechanical response as an analytical function. These functions were encoded into a Flash-based applet. Applet utility was demonstrated by investigating hypotheses concerning ONH biomechanics posited in the literature. Results. All responses were parameterized well by polynomials (R2 values between 0.985 and 0.999), demonstrating the effectiveness of our fitting approach. Previously published univariate results were reproduced with the applet in seconds. A few minutes allowed for multivariate analysis, with which it was predicted that often, but not always, larger eyes experience higher levels of stress and strain than smaller ones, even at the same IOP. Conclusions. An applet has been presented with which it is simple to make rapid estimates of IOP-related ONH biomechanics. The applet represents a step toward bringing the power of FE modeling beyond the specialized laboratory and can thus help develop more refined biomechanics-based hypotheses. The applet is available for use at www.ocularbiomechanics.com. PMID:21527378

  2. Degraded Operational Environment: Integration of Social Network Infrastructure Concept in a Traditional Military C2 System

    DTIC Science & Technology

    2013-06-01

    Communication Applet) UNIGE – D.I.M.E. Using a free application as “MIT APP Inventor” Android Software Development Kit DEGRADED C2 ICCRTS 2013...operate on an Android operating system up-gradable on which will be developed a simplified ACA ( Android Communication Applet) that will call C24U...Server) IP number . . . Portable COTS Devices ACA - C24U ( Android Communication Applet) Sending/receiving SEFL (Simple Exchange

  3. Collection of process data after cardiac surgery: initial implementation with a Java-based intranet applet.

    PubMed

    Ratcliffe, M B; Khan, J H; Magee, K M; McElhinney, D B; Hubner, C

    2000-06-01

    Using a Java-based intranet program (applet), we collected postoperative process data after coronary artery bypass grafting. A Java-based applet was developed and deployed on a hospital intranet. Briefly, the nurse entered patient process data using a point and click interface. The applet generated a nursing note, and process data were saved in a Microsoft Access database. In 10 patients, this method was validated by comparison with a retrospective chart review. In 45 consecutive patients, weekly control charts were generated from the data. When aberrations from the pathway occurred, feedback was initiated to restore the goals of the critical pathway. The intranet process data collection method was verified by a manual chart review with 98% sensitivity. The control charts for time to extubation, intensive care unit stay, and hospital stay showed a deviation from critical pathway goals after the first 20 patients. Feedback modulation was associated with a return to critical pathway goals. Java-based applets are inexpensive and can collect accurate postoperative process data, identify critical pathway deviations, and allow timely feedback of process data.

  4. Using applet-servlet communication for optimizing window, level and crop for DICOM to JPEG conversion.

    PubMed

    Kamauu, Aaron W C; DuVall, Scott L; Wiggins, Richard H; Avrin, David E

    2008-09-01

    In the creation of interesting radiological cases in a digital teaching file, it is necessary to adjust the window and level settings of an image to effectively display the educational focus. The web-based applet described in this paper presents an effective solution for real-time window and level adjustments without leaving the picture archiving and communications system workstation. Optimized images are created, as user-defined parameters are passed between the applet and a servlet on the Health Insurance Portability and Accountability Act-compliant teaching file server.

  5. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  6. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    PubMed

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  7. Spin wave scattering and interference in ferromagnetic cross

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanayakkara, Kasuni; Kozhanov, Alexander; Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  8. Add Java extensions to your wiki: Java applets can bring dynamic functionality to your wiki pages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarberry, Randall E.

    Virtually everyone familiar with today’s world wide web has encountered the free online encyclopedia Wikipedia many times. What you may not know is that Wikipedia is driven by an excellent open-source product called MediaWiki which is available to anyone for free. This has led to a proliferation of wiki sites devoted to just about any topic one can imagine. Users of a wiki can add content -- all that is required of them is that they type in their additions into their web browsers using the simple markup language called wikitext. Even better, the developers of wikitext made it extensible.more » With a little server-side development of your own, you can add your own custom syntax. Users aware of your extensions can then utilize them on their wiki pages with a few simple keystrokes. These extensions can be custom decorations, formatting, web applications, and even instances of the venerable old Java applet. One example of a Java applet extension is the Jmol extension (REF), used to embed a 3-D molecular viewer. This article will walk you through the deployment of a fairly elaborate applet via a MediaWiki extension. By no means exhaustive -- an entire book would be required for that -- it will demonstrate how to give the applet resize handles using using a little Javascript and CSS coding and some popular Javascript libraries. It even describes how a user may customize the extension somewhat using a wiki template. Finally, it explains a rudimentary persistence mechanism which allows applets to save data directly to the wiki pages on which they reside.« less

  9. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  10. EINO the Answer

    ERIC Educational Resources Information Center

    Hollister, James; Richie, Sam; Weeks, Arthur

    2010-01-01

    This study investigated the various methods involved in creating an intelligent tutor for the University of Central Florida Web Applets (UCF Web Applets), an online environment where student can perform and/or practice experiments. After conducting research into various methods, two major models emerged. These models include: 1) solving the…

  11. LAVA web-based remote simulation: enhancements for education and technology innovation

    NASA Astrophysics Data System (ADS)

    Lee, Sang Il; Ng, Ka Chun; Orimoto, Takashi; Pittenger, Jason; Horie, Toshi; Adam, Konstantinos; Cheng, Mosong; Croffie, Ebo H.; Deng, Yunfei; Gennari, Frank E.; Pistor, Thomas V.; Robins, Garth; Williamson, Mike V.; Wu, Bo; Yuan, Lei; Neureuther, Andrew R.

    2001-09-01

    The Lithography Analysis using Virtual Access (LAVA) web site at http://cuervo.eecs.berkeley.edu/Volcano/ has been enhanced with new optical and deposition applets, graphical infrastructure and linkage to parallel execution on networks of workstations. More than ten new graphical user interface applets have been designed to support education, illustrate novel concepts from research, and explore usage of parallel machines. These applets have been improved through feedback and classroom use. Over the last year LAVA provided industry and other academic communities 1,300 session and 700 rigorous simulations per month among the SPLAT, SAMPLE2D, SAMPLE3D, TEMPEST, STORM, and BEBS simulators.

  12. Interactive Economics Instruction with Java and CGI.

    ERIC Educational Resources Information Center

    Gerdes, Geoffrey R.

    2000-01-01

    States that this Web site is based on the conviction that Web-based materials must contain interactive modules to achieve value beyond that obtained by conventional media. Discusses three applets that can be reached at the homepage of the Web site by selecting the Java applets link. (CMK)

  13. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana

    2011-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159

  14. Central Limit Theorem: New SOCR Applet and Demonstration Activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana

    2008-07-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem).

  15. Automatic Web-based Calibration of Network-Capable Shipboard Sensors

    DTIC Science & Technology

    2007-09-01

    Server, Java , Applet, and Servlet . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...49 b. Sensor Applet...........................................................................49 3. Java Servlet ...Table 1. Required System Environment Variables for Java Servlet Development. ......25 Table 2. Payload Data Format of the POST Requests from

  16. Paintbrush of Discovery: Using Java Applets to Enhance Mathematics Education

    ERIC Educational Resources Information Center

    Eason, Ray; Heath, Garrett

    2004-01-01

    This article addresses the enhancement of the learning environment by using Java applets in the mathematics classroom. Currently, the first year mathematics program at the United States Military Academy involves one semester of modeling with discrete dynamical systems (DDS). Several faculty members from the Academy have integrated Java applets…

  17. Trajectory description of the quantum–classical transition for wave packet interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less

  18. Developing Interactive Educational Engineering Software for the World Wide Web with Java.

    ERIC Educational Resources Information Center

    Reed, John A.; Afjeh, Abdollah A.

    1998-01-01

    Illustrates the design and implementation of a Java applet for use in educational propulsion engineering curricula. The Java Gas Turbine Simulator applet provides an interactive graphical environment which allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The simulator can be easily accessed from the World…

  19. Inside the Letter

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan

    2007-01-01

    In this article, the authors describe how a Java applet can help to build learners' intuitions about basic ideas of algebra. "Matchbox Algebra" is a Java applet the authors have designed to enable learners to grasp a key idea in learning algebra: that the letter "x" may be thought of as representing an as-yet-unknown number. They describe the…

  20. IDEA: Identifying Design Principles in Educational Applets

    ERIC Educational Resources Information Center

    Underwood, Jody S.; Hoadley, Christopher; Lee, Hollylynne Stohl; Hollebrands, Karen; DiGiano, Chris; Renninger, K. Ann

    2005-01-01

    The Internet is increasingly being used as a medium for educational software in the form of miniature applications (e.g., applets) to explore concepts in a domain. One such effort in mathematics education, the Educational Software Components of Tomorrow (ESCOT) project, created 42 miniature applications each consisting of a context, a set of…

  1. Graphical Response Exercises for Teaching Physics

    ERIC Educational Resources Information Center

    Bonham, Scott

    2007-01-01

    What is physics without graphs and diagrams? The web is becoming ubiquitous, but how can one expect students to make graphs and diagrams on the web? The solution is to extend functionality through Java applets. Four examples of exercises using the Physics Applets for Drawing (PADs) will illustrate how these can be used for physics instruction to…

  2. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    ERIC Educational Resources Information Center

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  3. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  4. Spin wave interference in YIG cross junction

    DOE PAGES

    Balinskiy, M.; Gutierrez, D.; Chiang, H.; ...

    2017-01-17

    This work is aimed at studying the interference between backward volume magnetostatic spin waves and magnetostatic surface spin waves in a magnetic cross junction. These two types of magnetostatic waves possess different dispersion with zero frequency overlap in infinite magnetic films. However, the interference may be observed in finite structures due to the effect magnetic shape anisotropy. We report experimental data on spin wave interference in a micrometer size Y 3Fe 2(FeO 4) 3 cross junction. There are four micro antennas fabricated at the edges of the cross arms. Two of these antennas located on the orthogonal arms are usedmore » for spin wave generation, and the other two antennas are used for the inductive voltage detection. The phase difference between the input signals is controlled by the phase shifter. Prominent spin wave interference is observed at the selected combination of operational frequency and bias magnetic field. The maximum On/Off ratio exceeds 30dB at room temperature. The obtained results are important for a variety of magnetic devices based on spin wave interference.« less

  5. An Ethernet Java Applet for a Course for Non-Majors.

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    1997-01-01

    Details the topics of a new course that introduces computing and communication technology to students not majoring in computer science. Discusses the process of developing a Java applet (a program that can be invoked through a World Wide Web browser) that illustrates the protocol used by ethernet local area networks to determine which computer can…

  6. Animating Statistics: A New Kind of Applet for Exploring Probability Distributions

    ERIC Educational Resources Information Center

    Kahle, David

    2014-01-01

    In this article, I introduce a novel applet ("module") for exploring probability distributions, their samples, and various related statistical concepts. The module is primarily designed to be used by the instructor in the introductory course, but it can be used far beyond it as well. It is a free, cross-platform, stand-alone interactive…

  7. Vacillations induced by interference of stationary and traveling planetary waves

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  8. Evaluation by University Students of the Use of Applets for Learning Physics

    ERIC Educational Resources Information Center

    Bohigas, Xavier; Periago, Christina; Jaen, Xavier; Pejuan, Arcadi

    2011-01-01

    We present the results of a study carried out with students in their second year of Industrial Engineering to find out students' levels of satisfaction concerning the use of simulation tools (in this case an applet was used) as a tool for helping students learn the topic of movement by charged particles within electrical and magnetic fields. The…

  9. Developing and Using an Applet to Enrich Students' Concept Image of Rational Polynomials

    ERIC Educational Resources Information Center

    Mason, John

    2015-01-01

    This article draws on extensive experience working with secondary and tertiary teachers and educators using an applet to display rational polynomials (up to degree 7 in numerator and denominator), as support for the challenge to deduce as much as possible about the graph from the graphs of the numerator and the denominator. Pedagogical and design…

  10. Geogebra Applets Design and Development for Junior High School Students to Learn Quadrilateral Mathematics Concepts

    ERIC Educational Resources Information Center

    Nisiyatussani; Ayuningtyas, Vidya; Fathurrohman, Maman; Anriani, Nurul

    2018-01-01

    This design and development research was motivated by the rapid expansion and use of GeoGebra by mathematics educators (teachers and lecturers) in Indonesia. One of GeoGebra features is GeoGebra Applet that can be used, modified, and/or developed by educators for dynamic and interactive mathematics teaching and learning. At the time of research…

  11. A Novel Active-Learning Protein Purification Exercise for Large-Enrollment Introductory Biochemistry Courses Using the CHROM Web Applet

    ERIC Educational Resources Information Center

    Barrette-Ng, Isabelle H.; Usher, Ken C.

    2013-01-01

    The CHROM Web applet has been used to create a new active-learning exercise in which students design a purification scheme for a recombinant protein using ion-exchange chromatography (IEC). To successfully complete the exercise, students are challenged to apply elementary concepts from acid-base chemistry as well as protein and amino acid…

  12. Web based tools for data manipulation, visualisation and validation with interactive georeferenced graphs

    NASA Astrophysics Data System (ADS)

    Ivankovic, D.; Dadic, V.

    2009-04-01

    Some of oceanographic parameters have to be manually inserted into database; some (for example data from CTD probe) are inserted from various files. All this parameters requires visualization, validation and manipulation from research vessel or scientific institution, and also public presentation. For these purposes is developed web based system, containing dynamic sql procedures and java applets. Technology background is Oracle 10g relational database, and Oracle application server. Web interfaces are developed using PL/SQL stored database procedures (mod PL/SQL). Additional parts for data visualization include use of Java applets and JavaScript. Mapping tool is Google maps API (javascript) and as alternative java applet. Graph is realized as dynamically generated web page containing java applet. Mapping tool and graph are georeferenced. That means that click on some part of graph, automatically initiate zoom or marker onto location where parameter was measured. This feature is very useful for data validation. Code for data manipulation and visualization are partially realized with dynamic SQL and that allow as to separate data definition and code for data manipulation. Adding new parameter in system requires only data definition and description without programming interface for this kind of data.

  13. On the Benefits of Creeping Wave Antennas in Reducing Interference Between Neighboring Wireless Body Area Networks.

    PubMed

    Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti

    2017-02-01

    We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.

  14. Java Programming Language

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    The Java seminar covers the fundamentals of Java programming language. No prior programming experience is required for participation in the seminar. The first part of the seminar covers introductory concepts in Java programming including data types (integer, character, ..), operators, functions and constants, casts, input, output, control flow, scope, conditional statements, and arrays. Furthermore, introduction to Object-Oriented programming in Java, relationships between classes, using packages, constructors, private data and methods, final instance fields, static fields and methods, and overloading are explained. The second part of the seminar covers extending classes, inheritance hierarchies, polymorphism, dynamic binding, abstract classes, protected access. The seminar conclude by introducing interfaces, properties of interfaces, interfaces and abstract classes, interfaces and cailbacks, basics of event handling, user interface components with swing, applet basics, converting applications to applets, the applet HTML tags and attributes, exceptions and debugging.

  15. Designing Tasks with Interactive Geometry Applets for Use in Research: Some Methodological Issues

    ERIC Educational Resources Information Center

    Sinclair, Margaret

    2006-01-01

    This paper discusses some of the results of a study carried out with two classes of grade 7 students (11-12 years old); the aim of the project was to design, develop, and test interactive geometry tasks for use in future research into how (or whether) interactive applets help students learn mathematics. The study tasks were developed around the…

  16. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  17. Law of Large Numbers: the Theory, Applications and Technology-based Education

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Gould, Robert

    2011-01-01

    Modern approaches for technology-based blended education utilize a variety of recently developed novel pedagogical, computational and network resources. Such attempts employ technology to deliver integrated, dynamically-linked, interactive-content and heterogeneous learning environments, which may improve student comprehension and information retention. In this paper, we describe one such innovative effort of using technological tools to expose students in probability and statistics courses to the theory, practice and usability of the Law of Large Numbers (LLN). We base our approach on integrating pedagogical instruments with the computational libraries developed by the Statistics Online Computational Resource (www.SOCR.ucla.edu). To achieve this merger we designed a new interactive Java applet and a corresponding demonstration activity that illustrate the concept and the applications of the LLN. The LLN applet and activity have common goals – to provide graphical representation of the LLN principle, build lasting student intuition and present the common misconceptions about the law of large numbers. Both the SOCR LLN applet and activity are freely available online to the community to test, validate and extend (Applet: http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html, and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN). PMID:21603584

  18. Interactive Web-based tutorials for teaching digital electronics

    NASA Astrophysics Data System (ADS)

    Bailey, Donald G.

    2000-10-01

    With a wide range of student abilities in a class, it is difficult to effectively teach and stimulate all students. A series of web based tutorials was designed to help weaker students and stretch the stronger students. The tutorials consist of a series of HTML web pages with embedded Java applets. This combination is particularly powerful for providing interactive demonstrations because any textual content may be easily provided within the web page. The applet is able to be a compete working program that dynamically illustrates the concept, or provides a working environment for the student to experiment and work through their solution. The applet is dynamic, and responds to the student through both mouse clicks and keyboard entry. These allow the student to adjust parameters, make selections, and affect the way the program is run or information is displayed. Such interaction allows each applet to provide a mini demonstration or experiment to help the student understand a particular concept or technique. The approach taken is illustrated with a tutorial that dynamically shows the relationships between a truth table, Karnaugh amp, logic circuit and Boolean algebra representations of a logic function, and dramatically illustrates the effect of minimization on the resultant circuit. Use of the tutorial has resulted in significant benefits, particularly with weaker students.

  19. Wave interference: mechanics of the standing wave component and the illusion of "which way" information

    NASA Astrophysics Data System (ADS)

    Hudgins, W. R.; Meulenberg, A.; Penland, R. F.

    2015-09-01

    Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference pattern as they merge. Each half of the pattern can be traced to one of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of wave momentum and energy in a medium, that interfering waves interact. Central to the mechanism of interference is a standing wave component resulting from the combination of coherent waves. We show the mathematics for the formation of the standing wave component and for wave momentum involved in the waves' interaction. In water and in open coaxial cable, we observe that standing waves form cells bounded "reflection zones" where wave momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing waves in media to the standing wave component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference pattern is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with one dark zone between them. Blocking one beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.

  20. Appearance of wavefront dislocations under interference among beams with simple wavefronts

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Besaha, R. N.; Mokhun, Igor I.

    1997-12-01

    The appearance of wave front dislocations under interference among beams with simple wave fronts is considered. It is shown, that even two beams with the smooth wave fonts is possible the formation of dislocations screw type. The screw dislocations are formed in cross point of lines of equal amplitude of beams and minimum of an interference pattern.

  1. A modern Galileo tale

    NASA Astrophysics Data System (ADS)

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo’s birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo’s celebrated experiments on the uniformly accelerated motion, as reported on in ‘Discourses and Mathematical Demonstrations Relating to Two New Sciences’. Our applet is inexpensive, makes up for the lack of a fully-fledged physics lab and can be used as an accompanying activity in an (open) online course. The version we present allows for an ‘empirical’ test of three of the most relevant theorems in the third day of Galileo’s Discourses. By three different experimental setups, students can see a ball roll down a slope, take measures and perform data analysis, following Galileo’s footsteps. The applet is made freely available on the internet, so it can be downloaded and modified to cater for different students’ needs.

  2. Review and New Results of Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2011-10-01

    We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.

  3. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  4. Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits.

    PubMed

    Li, Xing; Gao, Yaru; Jiang, Shuna; Ma, Li; Liu, Chunxiang; Cheng, Chuanfu

    2015-02-09

    Using an L-shaped metal nanoslit to generate waves of the pure photonic and plasmonic modes simultaneously, we perform an experimental solution for the scattered imaging of the interference of the two waves. From the fringe data of interference, the amplitudes and the wavevector components of the two waves are obtained. The initial phases of the two waves are obtained from the phase map reconstructed with the interference of the scattered image and the reference wave in the interferometer. The difference in the wavevector components gives rise to an additional phase delay. We introduce the scattering theory under Kirchhoff's approximation to metal slit regime and explain the wavevector difference reasonably. The solution of the quantities is a comprehensive reflection of excitation, scattering and interference of the two waves. By decomposing the polarized incident field with respect to the slit element, the scattered image produced by slit of arbitrary shape can be solved with the nanoscale Huygens-Fresnel principle. This is demonstrated by the experimental intensity pattern and phase map produced by a ring-slit and its consistency with the calculated results.

  5. Visualizing Sound: Demonstrations to Teach Acoustic Concepts

    NASA Astrophysics Data System (ADS)

    Rennoll, Valerie

    Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.

  6. Coherence and visibility for vectorial light.

    PubMed

    Luis, Alfredo

    2010-08-01

    Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path interference between four scalar waves. This comprises previous approaches to coherence between vectorial waves and restores the equivalence between correlation-based coherence and visibility.

  7. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  8. Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference

    NASA Astrophysics Data System (ADS)

    Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi

    2018-02-01

    Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.

  9. Family-oriented cardiac risk estimator: a Java web-based applet.

    PubMed

    Crouch, Michael A; Jadhav, Ashwin

    2003-01-01

    We developed a Java applet that calculates four different estimates of a person's 10-year risk for heart attack: (1) Estimate based on Framingham equation (2) Framingham equation estimate modified by C-reactive protein (CRP) level (3) Framingham estimate modified by family history of heart disease in parents or siblings (4) Framingham estimate modified by both CRP and family heart disease history. This web-based, family-oriented cardiac risk estimator uniquely considers family history and CRP while estimating risk.

  10. Dynamic Detection of Malicious Code in COTS Software

    DTIC Science & Technology

    2000-04-01

    run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s

  11. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2 H – NbSe 2

    DOE PAGES

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; ...

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂ that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.« less

  12. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.

    PubMed

    Arguello, C J; Rosenthal, E P; Andrade, E F; Jin, W; Yeh, P C; Zaki, N; Jia, S; Cava, R J; Fernandes, R M; Millis, A J; Valla, T; Osgood, R M; Pasupathy, A N

    2015-01-23

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2 that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe2, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.

  13. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    PubMed

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  14. Quantum erasure in the near-field

    NASA Astrophysics Data System (ADS)

    Walborn, S. P.

    2018-05-01

    The phenomenon of quantum erasure has shed light on the nature of wave-particle duality and quantum complementarity. A number of quantum erasers have been realized using the far-field diffraction of photons from a Young double-slit apparatus. By marking the path of a photon using an additional degree of freedom, the usual Young interference pattern is destroyed. An appropriate measurement of the system marking the photon’s path allows one to recover the interference pattern. Here quantum erasure is considered in the context of near-field diffraction. To observe interference in the near-field requires the use of two periodic wave functions, so that the usual ‘which way’ marker then becomes a ‘which-wave function’ marker. We determine the propagation distances for which quantum erasure, or more generally the observation of interference between the two periodic wave functions, can be observed. The meaning of wave and particle-like properties in this scenario is discussed. These results could lead to quantum eraser experiments with material particles, for which interference effects are more readily observed in the near-field rather than the far-field.

  15. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.

    PubMed

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-10-12

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.

  16. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model

    PubMed Central

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-01-01

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411

  17. Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments.

    PubMed

    McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe

    2007-04-01

    Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.

  18. An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference

    ERIC Educational Resources Information Center

    Hopper, Seth; Howell, John

    2006-01-01

    When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…

  19. Resonant parametric interference effect in spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    NASA Astrophysics Data System (ADS)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2018-04-01

    Electron-nucleus bremsstrahlung in the field of two moderately strong pulsed laser waves in the case of incommensurate frequencies is theoretically studied under resonant conditions. The process is studied in detail in a special kinematic region, where stimulated processes with correlated emission and absorption of photons of the first and second waves become predominant (parametric interference effect). The availability of this region is caused by interference of the first and second laser waves. The correspondence between the emission angle and the final-electron energy is established in this interference kinematic. In this case, the cross-sectional properties are determined by the multiphoton quantum interference parameter, which is proportional to the product of intensities of the first and second waves. The resonant differential cross section of electron-nucleus spontaneous bremsstrahlung with simultaneous registration of both emission angles of the spontaneous photon and the scattered electron can exceed by four or five orders of magnitude the corresponding cross section in the absence of an external field. It was shown for nonrelativistic electrons that the resonant cross section of the studied process in the field of two pulsed laser waves within the interference region in two order of magnitude may exceed corresponding cross sections at other scattering kinematics. The obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (such as SLAC, FAIR, XFEL, ELI).

  20. Signal extraction and wave field separation in tunnel seismic prediction by independent component analysis

    NASA Astrophysics Data System (ADS)

    Yue, Y.; Jiang, T.; Zhou, Q.

    2017-12-01

    In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in the meeting. In summary, we can safely draw the conclusion that ICA can not only extract high quality data from the mixed signals, but also can separate P and S waves effectively.

  1. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  2. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  3. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  4. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  5. Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Watt-Meyer, Oliver; Kushner, Paul

    2014-05-01

    A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.

  6. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  7. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  8. Combine EPR and two-slit experiments: Interference of advanced waves

    NASA Astrophysics Data System (ADS)

    Klyshko, D. N.

    1988-10-01

    A nonclassical interference effect, using two-photon correlations in nonlinear optical interactions, is discussed. The apparent nonlocality could be conveniently interpreted in terms of advanced waves, emitted by one detector toward the other. A new Bell-type experiment is proposed, in which the measured photon's parameter is the wave-vector (instead of the polarisation), so that the observable can take more than two possible values.

  9. Noise, anti-noise and fluid flow control.

    PubMed

    Williams, J E Ffowcs

    2002-05-15

    This paper celebrates Thomas Young's discovery that wave interference was responsible for much that is known about light and colour. A substantial programme of work has been aimed at controlling the noise of aerodynamic flows. Much of that field can be explained in terms of interference and it is argued in this paper that the theoretical techniques for analysing noise can also be seen to rest on interference effects. Interference can change the character of wave fields to produce, out of well-ordered fields, wave systems quite different from the interfering wave elements. Lighthill's acoustic analogy is described as an example of this effect, an example in which the exact model of turbulence-generated noise is seen to consist of elementary interfering sound waves; waves that are sometimes heard in advance of their sources. The paper goes on to describe an emerging field of technology where sound is suppressed by superimposing on it a destructively interfering secondary sound; one designed and manufactured specifically for interference. That sound is known as anti-sound, or anti-noise when the sound is chaotic enough. Examples are then referred to where the noisy effect to be controlled is actually a disturbance of a linearly unstable system; a disturbance that is destroyed by destructive interference with a deliberately constructed antidote. The practical benefits of this kind of instability control are much greater and can even change the whole character of flows. It is argued that completely unnatural unstable conditions can be held with active controllers generating destructively interfering elements. Examples are given in which gravitational instability of stratified fluids can be prevented. The Kelvin-Helmholtz instability of shear flows can also be avoided by simple controls. Those are speculative examples of what might be possible in future developments of an interference effect, which has made anti-noise a useful technology.

  10. Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.

    2017-04-01

    The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.

  11. Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide

    PubMed Central

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong

    2014-01-01

    We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001

  12. Short wavelength ion waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Gurnett, D. A.

    1984-01-01

    The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328

  13. Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows

    NASA Astrophysics Data System (ADS)

    Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.

    2017-07-01

    While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.

  14. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  15. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Taylor, Lawrence S.; Rubens, Deborah J.; Parker, Kevin J.

    2004-03-01

    The shear wave velocity is one of a few important parameters that characterize the mechanical properties of bio-materials. In this paper, two noninvasive methods are proposed to measure the shear velocity by inspecting the shear wave interference patterns. In one method, two shear wave sources are placed on the opposite two sides of a sample, driven by the identical sinusoidal signals. The shear waves from the two sources interact to create interference patterns, which are visualized by the vibration sonoelastography technique. The spacing between the pattern bands equals half of the shear wavelength. The shear velocity can be obtained by taking the product of the wavelength and the frequency. An alternative method is to drive the two vibration sources at slightly different frequencies. In this case, the interference patterns no longer remain stationary. It is proved that the apparent velocity of the moving patterns is proportional to the shear velocity in the medium. Since the apparent velocity of the patterns can be measured by analysing the video sequence, the shear velocity can be obtained thereafter. These approaches are validated by a conventional shear wave time-of-flight approach, and they are accurate within 4% on various homogeneous tissue-mimicking phantoms.

  16. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    NASA Astrophysics Data System (ADS)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  17. Interference patterns in the Spacelab 2 plasma wave data - Oblique electrostatic waves generated by the electron beam

    NASA Technical Reports Server (NTRS)

    Feng, Wei; Gurnett, Donald A.; Cairns, Iver H.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies of 0-30 kHz and at distances up to 400 m from the shuttle. Strong low-frequency (below 10 kHz) electric field noise was observed in the wideband data during two periods in which an electron beam was ejected from the shuttle. This noise shows clear evidence of interference patterns caused by the finite (3.89 m) antenna length. The low-frequency noise was the most dominant type of noise produced by the ejected electron beam. Analysis of antenna interference patterns generated by these waves permits a determination of the wavelength, the direction of propagation, and the location of the source region. The observed waves have a linear dispersion relation very similar to that of ion acoustic waves. The waves are believed to be oblique ion acoustic or high-order ion cyclotron waves generated by a current of ambient electrons returning to the shuttle in response to the ejected electron beam.

  18. Coherent molecular transistor: control through variation of the gate wave function.

    PubMed

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  19. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  20. Dynamic aspects of apparent attenuation and wave localization in layered media

    USGS Publications Warehouse

    Haney, M.M.; Van Wijk, K.

    2008-01-01

    We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.

  1. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1990-01-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  2. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Astrophysics Data System (ADS)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  3. Integrating the ECG power-line interference removal methods with rule-based system.

    PubMed

    Kumaravel, N; Senthil, A; Sridhar, K S; Nithiyanandam, N

    1995-01-01

    The power-line frequency interference in electrocardiographic signals is eliminated to enhance the signal characteristics for diagnosis. The power-line frequency normally varies +/- 1.5 Hz from its standard value of 50 Hz. In the present work, the performances of the linear FIR filter, Wave digital filter (WDF) and adaptive filter for the power-line frequency variations from 48.5 to 51.5 Hz in steps of 0.5 Hz are studied. The advantage of the LMS adaptive filter in the removal of power-line frequency interference even if the frequency of interference varies by +/- 1.5 Hz from its normal value of 50 Hz over other fixed frequency filters is very well justified. A novel method of integrating rule-based system approach with linear FIR filter and also with Wave digital filter are proposed. The performances of Rule-based FIR filter and Rule-based Wave digital filter are compared with the LMS adaptive filter.

  4. Interband interference effects at the edge of a multiband chiral p -wave superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Long; Huang, Wen; Sigrist, Manfred; Yao, Dao-Xin

    2017-12-01

    Chiral superconductors support chiral edge modes and potentially spontaneous edge currents at their boundaries. Motivated by the putative multiband chiral p -wave superconductor Sr2RuO4 , we study the influence of the interference between different bands at the edges, which may appear in the presence of moderate edge disorder or in edge tunneling measurements. We show that interband interference can strongly modify the measurable quantities at the edges when the order parameter exhibits phase difference between the bands. This is illustrated by investigating the edge dispersion and the edge current distribution in the presence of interband mixing, as well as the conductance at a tunneling junction. The results are discussed in connection with the putative chiral p -wave superconductor Sr2RuO4 . In passing, we also discuss similar interference effects in multiband models with other pairing symmetries.

  5. Interface wave propagation and edge conversion at a low stiffness interphase layer between two solids: A numerical study.

    PubMed

    Cho, Hideo; Rokhlin, Stanislav I

    2015-09-01

    The Rayleigh-to-interface wave conversion and the propagation of the resulting symmetric and antisymmetric modes on a bonded interface between solids is analyzed by the two dimensional finite difference time domain method. The propagated patterns were visualized to improve understanding of the phenomena. It is found that the partition of the energy of the interface waves above and below the interface changes repeatedly with propagation distance due to interference between the two modes which have slightly different phase velocities. The destructive interference of those two modes results in dips in the amplitude spectrum of the interface waves, which shift in frequency with propagation distance. The Rayleigh wave received that is created by the interface wave at the exit corner of the joint also shows interference dips in its spectrum. Those dips depend on the interface properties and can potentially be used for interface characterization. Conversion factors related to the interface wave at the upward and downward corners are determined and discussed. As a result, the total transition factor through the upward and downward corners for the interface wave was estimated as 0.37 and would be sufficiently large to probe the interface by coupling from the Rayleigh to the interface wave. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2014-04-01

    We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that createsmore » them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.« less

  7. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  8. EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    1994-01-01

    New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.

  9. On the self-interference in electron scattering: Copenhagen, Bohmian and geometrical interpretations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2018-06-01

    Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.

  10. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  11. Astronomy LITE Demonstrations

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  12. Java-based PACS and reporting system for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  13. Secure web-based access to radiology: forms and databases for fast queries

    NASA Astrophysics Data System (ADS)

    McColl, Roderick W.; Lane, Thomas J.

    2002-05-01

    Currently, Web-based access to mini-PACS or similar databases commonly utilizes either JavaScript, Java applets or ActiveX controls. Many sites do not permit applets or controls or other binary objects for fear of viruses or worms sent by malicious users. In addition, the typical CGI query mechanism requires several parameters to be sent with the http GET/POST request, which may identify the patient in some way; this in unacceptable for privacy protection. Also unacceptable are pages produced by server-side scripts which can be cached by the browser, since these may also contain sensitive information. We propose a simple mechanism for access to patient information, including images, which guarantees security of information, makes it impossible to bookmark the page, or to return to the page after some defined length of time. In addition, this mechanism is simple, therefore permitting rapid access without the need to initially download an interface such as an applet or control. In addition to image display, the design of the site allows the user to view and save movies of multi-phasic data, or to construct multi-frame datasets from entire series. These capabilities make the site attractive for research purposes such as teaching file preparation.

  14. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  15. Retrocausation acting in the single-electron double-slit interference experiment

    NASA Astrophysics Data System (ADS)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  16. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    NASA Astrophysics Data System (ADS)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  17. A quantum trampoline for ultra-cold atoms

    NASA Astrophysics Data System (ADS)

    Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.

    2010-01-01

    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.

  18. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  19. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.

    2011-01-01

    The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924

  20. Gyroscopic effects in interference of matter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2005-11-15

    A new gyroscopic interference effect stemming from the Galilean translational factor in the matter wave function is pointed out. In contrast to the well-known Sagnac effect that stems from the geometric phase and leads to a shift of interference fringes, this effect causes slanting of the fringes. We illustrate it by calculations for two split cigar-shaped Bose-Einstein condensates under the conditions of a recent experiment, see Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004). Importantly, the measurement of slanting obviates the need of a third reference cloud.

  1. Macroscopic quantum interference from atomic tunnel arrays

    PubMed

    Anderson; Kasevich

    1998-11-27

    Interference of atomic de Broglie waves tunneling from a vertical array of macroscopically populated traps has been observed. The traps were located in the antinodes of an optical standing wave and were loaded from a Bose-Einstein condensate. Tunneling was induced by acceleration due to gravity, and interference was observed as a train of falling pulses of atoms. In the limit of weak atomic interactions, the pulse frequency is determined by the gravitational potential energy difference between adjacent potential wells. The effect is closely related to the ac Josephson effect observed in superconducting electronic systems.

  2. Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Changjian; Kendrick, Brian K.; Yarkony, David R.

    As a manifestation of the molecular Aharonov–Bohm effect, tunneling-facilitated dissociation under a conical intersection (CI) requires the inclusion of the geometric phase (GP) to ensure a single-valued adiabatic wave function encircling the CI. Here, we demonstrate using a simple two-dimensional model that the GP induces destructive interference for vibrational states with even quanta in the coupling mode, but it leads to constructive interference for those with odd quanta. The interference patterns are manifested in tunneling wave functions and clearly affect the tunneling lifetime. Furthermore, we show that the inclusion of the diagonal Born–Oppenheimer correction is necessary for agreement with exactmore » results.« less

  3. Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections

    DOE PAGES

    Xie, Changjian; Kendrick, Brian K.; Yarkony, David R.; ...

    2017-03-31

    As a manifestation of the molecular Aharonov–Bohm effect, tunneling-facilitated dissociation under a conical intersection (CI) requires the inclusion of the geometric phase (GP) to ensure a single-valued adiabatic wave function encircling the CI. Here, we demonstrate using a simple two-dimensional model that the GP induces destructive interference for vibrational states with even quanta in the coupling mode, but it leads to constructive interference for those with odd quanta. The interference patterns are manifested in tunneling wave functions and clearly affect the tunneling lifetime. Furthermore, we show that the inclusion of the diagonal Born–Oppenheimer correction is necessary for agreement with exactmore » results.« less

  4. Ramsey method for Auger-electron interference induced by an attosecond twin pulse

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Schafer, Kenneth J.

    2015-02-01

    We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.

  5. ADS's Dexter Data Extraction Applet

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Accomazzi, A.; Eichhorn, G.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template. This contribution both describes the operation of Dexter from a user's point of view and discusses some of the architectural issues we faced during implementation.

  6. Numerical study of the collar wave characteristics and the effects of grooves in acoustic logging while drilling

    NASA Astrophysics Data System (ADS)

    Yang, Yufeng; Guan, Wei; Hu, Hengshan; Xu, Minqiang

    2017-05-01

    Large-amplitude collar wave covering formation signals is still a tough problem in acoustic logging-while-drilling (LWD) measurements. In this study, we investigate the propagation and energy radiation characteristics of the monopole collar wave and the effects of grooves on reducing the interference to formation waves by finite-difference calculations. We found that the collar wave radiates significant energy into the formation by comparing the waveforms between a collar within an infinite fluid, and the acoustic LWD in different formations with either an intact or a truncated collar. The collar wave recorded on the outer surface of the collar consists of the outward-radiated energy direct from the collar (direct collar wave) and that reflected back from the borehole wall (reflected collar wave). All these indicate that the significant effects of the borehole-formation structure on collar wave were underestimated in previous studies. From the simulations of acoustic LWD with a grooved collar, we found that grooves broaden the frequency region of low collar-wave excitation and attenuate most of the energy of the interference waves by multireflections. However, grooves extend the duration of the collar wave and convert part of the collar-wave energy originally kept in the collar into long-duration Stoneley wave. Interior grooves are preferable to exterior ones because both the low-frequency and the high-frequency parts of the collar wave can be reduced and the converted inner Stoneley wave is relatively difficult to be recorded on the outer surface of the collar. Deeper grooves weaken the collar wave more greatly, but they result in larger converted Stoneley wave especially for the exterior ones. The interference waves, not only the direct collar wave but also the reflected collar wave and the converted Stoneley waves, should be overall considered for tool design.

  7. Imaging and control of interfering wave packets in a dissociating molecule.

    PubMed

    Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik

    2002-09-23

    Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.

  8. Wide forbidden band induced by the interference of different transverse acoustic standing-wave modes

    NASA Astrophysics Data System (ADS)

    Tao, Zhiyong; He, Weiyu; Xiao, Yumeng; Wang, Xinlong

    2008-03-01

    A non-Bragg nature forbidden band is experimentally observed in an axially symmetric hard-walled duct with a periodically varying cross section. Unlike the familiar Bragg ones, the observed bandgap is found to result from the interference of sound wave modes having different transverse standing-wave profiles, the so-called non-Bragg resonance. The experiments also show that the non-Bragg band can be comparably wider than the Bragg one; furthermore, the sound transmission loss within the band can be much more effective, exhibiting the great significance of the non-Bragg resonance in wave propagation in periodic waveguides.

  9. Optical vortex knots – one photon at a time

    PubMed Central

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-01-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot – one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing. PMID:27087642

  10. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Fenton, F. H.

    2008-12-01

    The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..

  11. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  12. Electronic recording of holograms with applications to holographic displays

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Merat, F. L.

    1979-01-01

    The paper describes an electronic heterodyne recording which uses electrooptic modulation to introduce a sinusoidal phase shift between the object and reference wave. The resulting temporally modulated holographic interference pattern is scanned by a commercial image dissector camera, and the rejection of the self-interference terms is accomplished by heterodyne detection at the camera output. The electrical signal representing this processed hologram can then be used to modify the properties of a liquid crystal light valve or a similar device. Such display devices transform the displayed interference pattern into a phase modulated wave front rendering a three-dimensional image.

  13. Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast.

    PubMed

    He, Jianfang; Fang, Xiaohui; Lin, Yuanhai; Zhang, Xinping

    2015-05-04

    Half-wave plates were introduced into an interference-lithography scheme consisting of three fibers that were arranged into a rectangular triangle. Such a flexible and compact geometry allows convenient tuning of the polarizations of both the UV laser source and each branch arm. This not only enables optimization of the contrast of the produced photonic structures with expected square lattices, but also multiplies the nano-patterning functions of a fixed design of fiber-based interference lithography. The patterns of the photonic structures can be thus tuned simply by rotating a half-wave plate.

  14. The Loss Spiral of Work Pressure, Work-Home Interference and Exhaustion: Reciprocal Relations in a Three-Wave Study

    ERIC Educational Resources Information Center

    Demerouti, Evangelia; Bakker, Arnold B.; Bulters, Annemieke J.

    2004-01-01

    This study tested the "loss spiral" hypothesis of work-home interference (WHI). Accordingly, work pressure was expected to lead to WHI and exhaustion, and, vice versa, exhaustion was expected to result in more WHI and work pressure over time. Results of SEM-analyses using three waves of data obtained from 335 employees of an employment agency…

  15. Wavefront division digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  16. False Paradoxes of Superposition in Electric and Acoustic Waves.

    ERIC Educational Resources Information Center

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  17. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  18. Two different kinds of rogue waves in weakly crossing sea states

    NASA Astrophysics Data System (ADS)

    Ruban, V. P.

    2009-06-01

    Formation of giant waves in sea states with two spectral maxima centered at close wave vectors k0±Δk/2 in the Fourier plane is numerically simulated using the fully nonlinear model for long-crested water waves [V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005)]. Depending on an angle θ between the vectors k0 and Δk , which determines a typical orientation of interference stripes in the physical plane, rogue waves arise having different spatial structure. If θ≲arctan(1/2) , then typical giant waves are relatively long fragments of essentially two-dimensional (2D) ridges, separated by wide valleys and consisting of alternating oblique crests and troughs. At nearly perpendicular k0 and Δk , the interference minima develop to coherent structures similar to the dark solitons of the nonlinear Schrodinger equation, and a 2D freak wave looks much as a piece of a one-dimensional freak wave bounded in the transversal direction by two such dark solitons.

  19. Spying on photons with photons: quantum interference and information

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2016-07-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  20. Interaction of a shock wave with multiple spheres suspended in different arrangements

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui

    2018-03-01

    In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.

  1. Interference and the Law of Energy Conservation

    ERIC Educational Resources Information Center

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  2. Interference Phenomenon with Mobile Displays

    ERIC Educational Resources Information Center

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  3. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2017-11-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  4. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2018-06-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  5. Magnetoplasma sheath waves on a conducting tether in the ionosphere with applications to EMI propagation on large space structures

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; James, H. G.; Bantin, C. C.

    1991-01-01

    A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit.

  6. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  7. Diffraction and interference of walking drops

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.

    2016-11-01

    A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.

  8. Classical-to-Quantum Transition with Broadband Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Vered, Rafi Z.; Shaked, Yaakov; Ben-Or, Yelena; Rosenbluh, Michael; Pe'er, Avi

    2015-02-01

    A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ˜80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.

  9. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    PubMed

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-11-05

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  10. Matter-wave coherence limit owing to cosmic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2017-12-01

    We study matter-wave interferometry in the presence of a stochastic background of gravitational waves. It is shown that if the background has a scale-invariant spectrum over a wide bandwidth (which is expected in a class of inflationary models of Big Bang cosmology), then separated-path interference cannot be observed for a lump of matter of size above a limit which is very insensitive to the strength and bandwidth of the fluctuations, unless the interferometer is servo-controlled or otherwise protected. For ordinary solid matter this limit is of order 1-10 mm. A servo-controlled or cross-correlated device would also exhibit limits to the observation of macroscopic interference, which we estimate for ordinary matter moving at speeds small compared to c.

  11. Wave propagation in metamaterials mimicking the topology of a cosmic string

    NASA Astrophysics Data System (ADS)

    Fernández-Núñez, Isabel; Bulashenko, Oleg

    2018-04-01

    We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.

  12. Quantum interference effects on tunneling conductance and shot noise in ferromagnet/ferromagnet/d-wave superconductor double tunnel junctions

    NASA Astrophysics Data System (ADS)

    Dong, Z. C.; Xing, D. Y.; Dong, Jinming

    2002-06-01

    We study the oscillatory behavior of differential conductance (G) and shot noise (S) in ferromagnet/insulator/ferromagnet/insulator/d-wave superconductor (FM/I/FM/I/d-wave SC) structures by applying an extended Blonder-Tinkham-Klapwijk approach. There are two oscillation components with different periods in either G or S. It is found that the short-period component can be separated from the long-period one by increasing the exchange splitting in FM's and the barrier strength at the FM/SC interface, and vice versa, indicating that the long- and short-period components arise from quantum interference effects, respectively, due to the Andreev and normal reflections at the FM/SC interface. It is also shown that zero-bias G and S in the d-wave SC case is quite different from in the s-wave SC case, which may be used to distinguish between d-wave and s-wave SC's.

  13. Ultracompact photonic crystal polarization beam splitter based on multimode interference.

    PubMed

    Lu, Ming-Feng; Liao, Shan-Mei; Huang, Yang-Tung

    2010-02-01

    We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB, and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

  14. Controlling EPICS from a web browser.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, K., Jr.

    1999-04-13

    An alternative to using a large graphical display manager like MEDM [1,2] to interface to a control system, is to use individual control objects, such as text boxes, meters, etc., running in a browser. This paper presents three implementations of this concept, one using ActiveX controls, one with Java applets, and another with Microsoft Agent. The ActiveX controls have performance nearing that of MEDM, but they only work on Windows platforms. The Java applets require a server to get around Web security restrictions and are not as fast, but they have the advantage of working on most platforms and withmore » both of the leading Web browsers. The agent works on Windows platforms with and without a browser and allows voice recognition and speech synthesis, making it somewhat more innovative than MEDM.« less

  15. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  16. Study of the Efficiency of the Polarization-Diversity Reception of a Very Low Frequency Signal Against the Background of Atmospheric Noise and Jamming in the Communication-Channel Model

    NASA Astrophysics Data System (ADS)

    Metelev, S. A.; Lvov, A. V.

    2017-12-01

    We propose a model of forming the signals and interference in the very low frequency wave range. Using this model, we determine the potentials of the space-polarization interference compensators in a communication channel with natural interference and jamming.

  17. Frequency Management Engineering Principles--Spectrum Measurements (Reference Order 6050.23).

    DTIC Science & Technology

    1982-08-01

    Interference 22 (a) Dielectric Heater Example 22 (b) High Power FM Interference Examle 22 (c) Radar Interference Example 22 (d) ARSR Interference Example...Localizer 23 (i) Dielectric Heaters 23 (j) High Power TV/FM 23 (k) Power Line Noise 23 (1) Incidental Radiating Devices 23 (m) Super-regenerative...employing broad band power amplifiers or and random spectrum analyzer instabilities traveling wave tubes. The "cleanest" spectrums create drift problems

  18. Modeling internal wave generation by seamounts in oceans

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  19. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    PubMed

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  20. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference

    NASA Astrophysics Data System (ADS)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-01

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.

  1. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference.

    PubMed

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-09

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

  2. Thermal averages in a quantum point contact with a single coherent wave packet.

    PubMed

    Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C

    2005-07-01

    A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.

  3. Quantum Interference: How to Measure the Wavelength of a Particle

    ERIC Educational Resources Information Center

    Brom, Joseph M.

    2017-01-01

    The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…

  4. Galilean Moons, Kepler's Third Law, and the Mass of Jupiter

    NASA Astrophysics Data System (ADS)

    Bates, Alan

    2013-10-01

    Simulations of physical systems are widely available online, with no cost, and are ready to be used in our classrooms. ,2 Such simulations offer an accessible tool that can be used for a range of interactive learning activities. The Jovian Moons Applet2 allows the user to track the position of Jupiter's four Galilean moons with a variety of viewing options. For this activity, data are obtained from the orbital period and orbital radii charts. Earlier experiments have used telescopes to capture the orbital motion of the Galilean moons,3 although observation of astronomical events and the measurement of quantities may be difficult to achieve due to a combination of cost, training, and observing conditions. The applet allows a suitable set of data to be generated and data analysis that verifies Kepler's third law of planetary motion, which leads to a calculated value for the mass of Jupiter.

  5. Remote Sensing Information Gateway: A free application and web service for fast, convenient, interoperable access to large repositories of atmospheric data

    NASA Astrophysics Data System (ADS)

    Plessel, T.; Szykman, J.; Freeman, M.

    2012-12-01

    EPA's Remote Sensing Information Gateway (RSIG) is a widely used free applet and web service for quickly and easily retrieving, visualizing and saving user-specified subsets of atmospheric data - by variable, geographic domain and time range. Petabytes of available data include thousands of variables from a set of NASA and NOAA satellites, aircraft, ground stations and EPA air-quality models. The RSIG applet is used by atmospheric researchers and uses the rsigserver web service to obtain data and images. The rsigserver web service is compliant with the Open Geospatial Consortium Web Coverage Service (OGC-WCS) standard to facilitate data discovery and interoperability. Since rsigserver is publicly accessible, it can be (and is) used by other applications. This presentation describes the architecture and technical implementation details of this successful system with an emphasis on achieving convenience, high-performance, data integrity and security.

  6. NEW APPROACHES: Demonstration of a dancing interference fringe

    NASA Astrophysics Data System (ADS)

    Kagawa, K.; Yamanaka, H.; Yokoi, S.; Hattori, H.

    1997-11-01

    A unique and amusing piece of laser art is proposed for use in physics education. It is shown that a dynamic and beautiful interference fringe can be produced when a He - Ne laser beam illuminates a droplet, which is called Brandy's tear, on a glass surface. This interference fringe can be explained in terms of the interference of multiple spherical waves scattered by the droplet. This kind of demonstration experiment is very helpful for exciting students' curiosity.

  7. Wave-particle dualism and complementarity unraveled by a different mode

    PubMed Central

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.

    2012-01-01

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM01 pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561

  8. Bound and free waves in non-collinear second harmonic generation.

    PubMed

    Larciprete, M C; Bovino, F A; Belardini, A; Sibilia, C; Bertolotti, M

    2009-09-14

    We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference pattern.

  9. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    PubMed Central

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  10. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    PubMed

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  13. Stickney Crater on Phobos and some other outstanding planetary depressions as features of crustal wave interference origin

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    Some not fully understood (enigmatic) large planetary depressions and geoid minima on planets and satellites are better understood as regular wave woven features, not random large impacts [1]. A main reason for this is their similar tectonic position in a regular sectoral network produced by interfering crossing standing waves warping any celestial body. These waves arise in the bodies due to their movements in keplerian elliptical orbits with changing accelerations. The fundamental wave1 produces universal tectonic dichotomy, its first overtone wave2 superposes on it sectoring - a regular network of risen and fallen blocks [2, 3]. Thus, deeply subsided sectoral blocks are formed on uplifted highland segments -hemispheres [1]. Examples of this pattern are shown in Fig. 1 to 8 on various globes and irregular bodies. The Moon - the SPA basin, Earth - Indian geoid min imum, Phobos - Stickney Crater, Miranda - an ovoid, Phoebe - a sector, Mars - Hellas Planitia, Lutetia - a deep sector indentation. Fig. 9 - a geometrical model of dichotomy and sectors format ion by wave interference.

  14. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  15. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  16. DNS Rebinding Attacks

    DTIC Science & Technology

    2009-09-01

    active scripting, file downloads, installation of desktop items, signed and unsigned ActiveX controls, Java permissions, launching applications and...files in an IFRAME, running ActiveX controls and plug-ins, and scripting of Java applets [49]. This security measure is very effective against DNS

  17. Interference-Free and Interference-Dominated Photoionization: Synthesis of Ultrashort and Coherent Single-Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-04-01

    Ionization of hydrogen-like ions driven by intense, short, and circularly-polarized laser pulses is considered under the scope of the relativistic strong-field approximation. We show that the energy spectra of photoelectrons can exhibit two types of structures, i.e., interference-dominated or interference-free ones. These structures are analyzed in connection to the time-dependent ponderomotive energy of electrons in the laser field. A possibility of synthesis of ultrashort single-electron pulses from those structures is also investigated.

  18. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    PubMed

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  19. Singularities of interference of three waves with different polarization states.

    PubMed

    Kurzynowski, Piotr; Woźniak, Władysław A; Zdunek, Marzena; Borwińska, Monika

    2012-11-19

    We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.

  20. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  1. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.

    PubMed

    Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T

    2016-01-01

    In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.

  2. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  3. Determining the speed of sound in the air by sound wave interference

    NASA Astrophysics Data System (ADS)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  4. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.

  5. Sources of and Remedies for Removing Unwanted Reflections in Millimeter Wave Images of Complex SOFI-Covered Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2007-01-01

    In the recent years, continuous-wave near-field and lens-focused millimeter wave imaging systems have been effectively used to demonstrate their utility for producing high-resolution images of metallic structures covered with spay on foam insulation (SOFI) such as the Space Shuttle external fuel tank. However, for some specific structures a certain interference -pattern may be superimposed on the produced images. There are methods by which the influence of this unwanted interference can be reduced, such as the incorporation of an incidence .angle and the proper use of signal polarization. This paper presents the basics of this problem and describes the use of the methods for reducing this unwanted influence through specific examples.

  6. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  7. Primary Salvage Survey of the Interference of Radiowaves Emitted by Smartphones on Medical Equipment.

    PubMed

    Takao, Hiroyuki; Yeh, Yu Chih; Arita, Hiroyuki; Obatake, Takumi; Sakano, Teppei; Kurihara, Minoru; Matsuki, Akira; Ishibashi, Toshihiro; Murayama, Yuichi

    2016-10-01

    Use of mobile phones has become a standard reality of everyday living for many people worldwide, including medical professionals, as data sharing has drastically helped to improve quality of care. This increase in the use of mobile phones within hospitals and medical facilities has raised concern regarding the influence of radio waves on medical equipment. Although comprehensive studies have examined the effects of electromagnetic interference from 2G wireless communication and personal digital cellular systems on medical equipment, similar studies on more recent wireless technologies such as Long Term Evolution, wideband code division multiple access, and high-speed uplink access have yet to be published. Numerous tests targeting current wireless technologies were conducted between December 2012 and March 2013 in an anechoic chamber, shielded from external radio signals, with a dipole antenna to assess the effects of smartphone interference on several types of medical equipment. The interference produced by electromagnetic waves across five frequency bands from four telecommunication standards was assessed on 49 components from 22 pieces of medical equipment. Of the 22 pieces of medical equipment tested, 13 experienced interference at maximum transmission power. In contrast, at minimum transmission power, the maximum interference distance varied from 2 to 5 cm for different wireless devices. Four machines were affected at the minimum transmission power, and the maximum interference distance at the maximum transmission power was 38 cm. Results show that the interference from smartphones on medical equipment is very controllable.

  8. Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment

    NASA Astrophysics Data System (ADS)

    Long, GuiLu; Qin, Wei; Yang, Zhe; Li, Jun-Lin

    2018-03-01

    In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.

  9. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone

    PubMed Central

    Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.

    2008-01-01

    Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668

  10. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  11. Phase singularities, correlation singularities, and conditions for complete destructive interference.

    PubMed

    Rosenbury, Christopher; Gu, Yalong; Gbur, Greg

    2012-04-01

    A previously derived condition for the complete destructive interference of partially coherent light emerging from a trio of pinholes in an opaque screen is generalized to the case when the coherence properties of the field are asymmetric. It is shown by example that the interference condition is necessary, but not sufficient, and that the existence of complete destructive interference also depends on the intensity of light emerging from the pinholes and the system geometry; more general conditions for such interference are derived. The phase of the wave field exhibits both phase singularities and correlation singularities, and a number of nonintuitive situations in which complete destructive interference occurs are described and explained.

  12. Technology Tips: Using the Iterate Command to Construct Recursive Geometric Sketches

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2006-01-01

    How to iterate geometric shapes to construct Baravelle spirals and Pythagorean trees is demonstrated in this article. The "Surfing Note" sends readers to a site with applets that will generate fractals such as the Sierpinski gasket or the Koch snowflake.

  13. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicholas; Sanchez, Juana

    2008-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multi-faceted learning environments, which may facilitate student comprehension and information…

  14. Lunar ionosphere exploration method using auroral kilometric radiation

    NASA Astrophysics Data System (ADS)

    Goto, Yoshitaka; Fujimoto, Takamasa; Kasahara, Yoshiya; Kumamoto, Atsushi; Ono, Takayuki

    2011-01-01

    The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique.

  15. Basic optics of effect materials.

    PubMed

    Jones, Steven A

    2010-01-01

    Effect materials derive their color and effect primarily from thin-film interference. Effect materials have evolved over the decades from simple guanine crystals to the complex multilayer optical structures of today. The development of new complex effect materials requires an understanding of the optics of effect materials. Such an understanding would also benefit the cosmetic formulator as these new effect materials are introduced. The root of this understanding begins with basic optics. This paper covers the nature of light, interference of waves, thin-film interference, color from interference, and color travel.

  16. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  17. Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment

    NASA Astrophysics Data System (ADS)

    Luo, Jing

    Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.

  18. Fast interaction of atoms with crystal surfaces: coherent lighting

    NASA Astrophysics Data System (ADS)

    Gravielle, M. S.

    2017-11-01

    Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.

  19. Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?

    ERIC Educational Resources Information Center

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L

    2012-01-01

    We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these…

  20. Visualization of Sound Waves Using Regularly Spaced Soap Films

    ERIC Educational Resources Information Center

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  1. Internal Waves, Indian Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This photograph, taken in sunglint conditions, captures open ocean internal waves which are diffracting around shoals south of the Seychelle islands (4.5S, 55.5E) and recombining to form interference patterns. The clouds to the north of the waves cover two of the Seychelle islands: Silhouette and Mahe. Mahe is the main island of the archipelago. The small rocky island surrounded by reef around which the waves diffract is Platte Island.

  2. Quantum superposition at the half-metre scale.

    PubMed

    Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A

    2015-12-24

    The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.

  3. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    PubMed

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  4. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  5. Application and research of artificial water mist on photoelectric interference

    NASA Astrophysics Data System (ADS)

    He, Yuejun; Ren, Baolin

    2018-04-01

    Water mist is a new type of photoelectric interfering material. It can exert a strong interference and shielding effect on infrared light, laser and radar wave through scattering, reflection, refraction and absorption. Based on this, this paper illustrates the application of an artificial high pressure water mist technology in infrared interference system. First, the operating principle of the infrared interference system is introduced. Next, the design principle of self-excited rotary vortex nozzle, the key part of the system, is elaborated. Then, the calculation of the main control parameters of the system is clarified. In the end, the paper verifies interference and shielding effect of the system by experiment. Experiment shows that the interference system can significantly reduce infrared signature of the target, featuring excellent infrared interference performance and high practical value.

  6. The Moire Effect in Physics Teaching.

    ERIC Educational Resources Information Center

    Bernero, Bruce

    1989-01-01

    The Moire pattern is the shimmering pattern which looks like an odd interference pattern in window screens or folds of nylon shower curtain. Illustrates some of the ways the effect may be used, including demonstration of wave interference, detection of small displacement, persistence of vision, contour measurement, beats, and optical clearness.…

  7. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  8. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.

  9. DATAFERRETT AND DATAWEB

    EPA Science Inventory

    DataFerrett is a data extraction software and a data mining tool that accesses data stored in TheDataWeb through the Internet. It can be installed as an application on your desktop or use a java applet with an Internet browser. Census Bureau and Bureau of Labor Statistics release...

  10. A Java viewer to publish Digital Imaging and Communications in Medicine (DICOM) radiologic images on the World Wide Web.

    PubMed

    Setti, E; Musumeci, R

    2001-06-01

    The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.

  11. Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference.

    PubMed

    Vijayakumar, A; Rosen, Joseph

    2017-06-12

    Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.

  12. Measurement-induced decoherence and information in double-slit interference.

    PubMed

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-07-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.

  13. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  14. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  15. Active Learning Strategies for the Mathematics Classroom

    ERIC Educational Resources Information Center

    Kerrigan, John

    2018-01-01

    Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…

  16. A Modern Galileo Tale

    ERIC Educational Resources Information Center

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…

  17. Remote Access to Earth Science Data by Content, Space and Time

    NASA Technical Reports Server (NTRS)

    Dobinson, E.; Raskin, G.

    1998-01-01

    This demo presents the combination on an http-based client/server application that facilitates internet access to Earth science data coupled with a Java applet GUI that allows the user to graphically select data based on spatial and temporal coverage plots and scientific parameters.

  18. Shock wave interactions between slender bodies. Some aspects of three-dimensional shock wave diffraction

    NASA Astrophysics Data System (ADS)

    Hooseria, S. J.; Skews, B. W.

    2017-01-01

    A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.

  19. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  20. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  1. EPA Remote Sensing Information Gateway

    NASA Astrophysics Data System (ADS)

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct geographic position. Images, animations, and aggregated data can be saved or exported in a variety of data formats: Binary External Data Representation (XDR) format (simple, efficient), NetCDF-COARDS format, NetCDF-IOAPI format (regridding the data to a CMAQ grid), HDF (unsubsetted satellite files), ASCII tab-delimited spreadsheet, MCMC (used for input into HB model), PNG images, MPG movies, KMZ movies (for display in Google Earth and similar applications), GeoTIFF RGB format and 32-bit float format. RSIG’s source codes are freely available to researchers with permission from the EPA. Contacts for obtaining RSIG code are available at the RSIG website.

  2. Real-time single-molecule imaging of quantum interference.

    PubMed

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  3. Real-time single-molecule imaging of quantum interference

    NASA Astrophysics Data System (ADS)

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-05-01

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the ``most beautiful experiment in physics''. Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  4. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    ERIC Educational Resources Information Center

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  5. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  6. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    NASA Astrophysics Data System (ADS)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  7. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  8. Analysis of Quantum Information Test-Bed by Parametric Down-Converted Photons Interference Measurement

    NASA Technical Reports Server (NTRS)

    To, Wing H.

    2005-01-01

    Quantum optical experiments require all the components involved to be extremely stable relative to each other. The stability can be "measured" by using an interferometric experiment. A pair of coherent photons produced by parametric down-conversion could be chosen to be orthogonally polarized initially. By rotating the polarization of one of the wave packets, they can be recombined at a beam splitter such that interference will occur. Theoretically, the interference will create four terms in the wave function. Two terms with both photons going to the same detector, and two terms will have the photons each going to different detectors. However, the latter will cancel each other out, thus no photons will arrive at the two detectors simultaneously under ideal conditions. The stability Of the test-bed can then be inferred by the dependence of coincidence count on the rotation angle.

  9. Analytic Results for e+e- --> tt-bar and gammagamma --> tt-bar Observables near the Threshold up to the Next-to-Next-to-Leading Order of NRQCD

    NASA Astrophysics Data System (ADS)

    Penin, A. A.; Pivovarov, A. A.

    2001-02-01

    We present an analytical description of top-antitop pair production near the threshold in $e^+e^-$ annihilation and $\\g\\g$ collisions. A set of basic observables considered includes the total cross sections, forward-backward asymmetry and top quark polarization. The threshold effects relevant for the basic observables are described by three universal functions related to S wave production, P wave production and S-P interference. These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total $e^+e^-\\to t\\bar t$ cross section near the threshold is obtained in the next-to-next-to-leading order in the closed form including the contribution due to the axial coupling of top quark and mediated by the Z-boson. The effects of the running of the strong coupling constant and of the finite top quark width are taken into account analytically for the P wave production and S-P wave interference.

  10. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, J. T.; Priya, T. G.; Yu, S. J.

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequencymore » range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.« less

  11. Toward Technology Integration in Mathematics Education: A Technology-Integration Course Planning Assignment

    ERIC Educational Resources Information Center

    Kersaint, Gladis

    2007-01-01

    This article describes a technology integration course planning assignment that was developed to enhance preservice teachers' technological pedagogical content knowledge (TPCK). This assignment required preservice teachers work with peers to integrate various technological tools (e.g., graphing calculators, web-based mathematics applets, etc) in a…

  12. JSXGraph--Dynamic Mathematics with JavaScript

    ERIC Educational Resources Information Center

    Gerhauser, Michael; Valentin, Bianca; Wassermann, Alfred

    2010-01-01

    Since Java applets seem to be on the retreat in web application, other approaches for displaying interactive mathematics in the web browser are needed. One such alternative could be our open-source project JSXGraph. It is a cross-browser library for displaying interactive geometry, function plotting, graphs, and data visualization in a web…

  13. Technological Minimalism: A Cost-Effective Alternative for Course Design and Development.

    ERIC Educational Resources Information Center

    Lorenzo, George

    2001-01-01

    Discusses the use of minimum levels of technology, or technological minimalism, for Web-based multimedia course content. Highlights include cost effectiveness; problems with video streaming, the use of XML for Web pages, and Flash and Java applets; listservs instead of proprietary software; and proper faculty training. (LRW)

  14. Adapting the Mathematical Task Framework to Design Online Didactic Objects

    ERIC Educational Resources Information Center

    Bowers, Janet; Bezuk, Nadine; Aguilar, Karen

    2011-01-01

    Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…

  15. Measuring Single Photons

    Science.gov Websites

    Explore the World of Particle Physics Measuring Single Photons The web pages that follow presume phenomenon and then return to our study of single photon measurement. Your choices include: These choices University of Colorado. A Java applet by Phillip Warner. Dive right into the single photon pages here

  16. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  17. Measurement-induced decoherence and information in double-slit interference

    PubMed Central

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-01-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373

  18. Spin-wave interference in microscopic permalloy tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balhorn, Felix; Nagrodzki, Lukas; Mendach, Stefan

    2013-06-03

    We present permalloy coated needles which act as spin-wave resonators. The permalloy coated needles were investigated using microwave absorption spectroscopy. Thereby, we found up to three resonant modes which correspond to constructively interfering azimuthal spin waves. The resonant modes are well reproduced in calculations based on an analytical model for the spin-wave dispersion employing periodic boundary conditions. The dependence of the resonance frequencies on the needles' radii and the external magnetic field is demonstrated experimentally.

  19. Analysis of coal seam thickness and seismic wave amplitude: A wedge model

    NASA Astrophysics Data System (ADS)

    Zou, Guangui; Xu, Zhiliang; Peng, Suping; Fan, Feng

    2018-01-01

    Coal seam thickness is of great significance in mining coal resources. The focus of this study is to determine the relationship between coal seam thickness and seismic wave amplitude, and the factors influencing this relationship. We used a wedge model to analyze this relationship and its influencing factors. The results show that wave interference from the top and bottom interfaces is the primary reason for the linear relationship between seismic wave amplitude and wedge thickness, when the thickness of the wedge is less than one quarter of the wavelength. This relationship is influenced by the dominant frequency, reflection coefficients from the top and bottom boundaries, depth, thickness, and angle of the wedge. However, when the lateral shift between the reflected waves is smaller than the radius of the first Fresnel zone, the wedge angle and change in lithology at the top and bottom layers are considered to have little effect on the amplitude of the interference wave. The difference in the dominant frequency of seismic waves can be reduced by filtering, and the linear relationship between amplitude and coal thickness can be improved. Field data from Sihe coal mine was analyzed, and the error was found to be within 4% of the predicted seismic wave amplitude. The above conclusions could help predict the thickness of coal seam by seismic amplitude.

  20. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  1. Quantum versus simulated annealing in wireless interference network optimization.

    PubMed

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-16

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  2. Quantum versus simulated annealing in wireless interference network optimization

    PubMed Central

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  3. Quantum versus simulated annealing in wireless interference network optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  4. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  5. Summaries of Papers Presented at Photonic Switching Topical Meeting Held in Salt Lake City, Utah on 1-3 March 1989. Technical Digest

    DTIC Science & Technology

    1990-01-31

    a set of codes which will provide a large number of addresses while minimizing interference . We have analyzed the bit error rate (BER) of the...there will be significant crosstalk. The most severe interference will be caused by the unswitched component of the high-intensity pulses. For example...Diagram of Experimental Apparatus Q = Quarter-wave Plate P = Polarising Filter IF = Interference Filter Figure 2. I Oscilloscope trace a. of Kerr

  6. The photon: Experimental emphasis on its wave-particle duality

    NASA Technical Reports Server (NTRS)

    Shih, Yan-Hua; Sergienko, A. V.; Rubin, Morton H.; Kiess, Thomas E.; Alley, Carroll O.

    1994-01-01

    Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our laboratory. It is interesting to see that in an interference experiment (wave-like experiment) the photon exhibits its particle property, and in a beam-splitting experiment (particle-like experiment) the photon exhibits its wave property. The two-photon states are produced from Type 1 and Type 2 optical spontaneous parametric down conversion, respectively.

  7. Novel two-way artificial boundary condition for 2D vertical water wave propagation modelled with Radial-Basis-Function Collocation Method

    NASA Astrophysics Data System (ADS)

    Mueller, A.

    2018-04-01

    A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.

  8. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  9. Interference of birefractive waves in CdGa2S4 crystals

    NASA Astrophysics Data System (ADS)

    Syrbu, N. N.; Tiron, A. V.; Parvan, V. I.; Zalamai, V. V.; Tiginyanu, I. M.

    2015-04-01

    In СdGа2S4 crystals the Fabry-Perot and birefringence interference spectra were investigated. Spectral dependences of refraction indexes for ordinary (no) and extraordinary (ne) light waves are defined. The spectral dependence Δn=ne-no from the short and long-wavelength parts of isotropic wavelength λ0=485.7 nm (300 K) is determined. It is established that at λ>λ0 Δn is positive and at λ<λ0 Δn is negative. Wavelength λ0=485.7 nm shifts with decreasing temperature to short-wavelengths. The phase difference of ordinary and extraordinary light waves for λ>λ0 and λ<λ0 was determined. The band in reflection spectra observed at the isotropic wavelength has a small halfwidth (∽3-5 Å). Another isotropic wavelength was found in the short-wavelength region (433 nm) for crystals obtained by iodine transport method.

  10. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  11. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  12. Ultrathin Nonlinear Metasurface for Optical Image Encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-05-10

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.

  13. Discussion of a ``coherent artifact'' in four-wave mixing experiments

    NASA Astrophysics Data System (ADS)

    Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.

    1989-09-01

    In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effect is particularly relevant to transient hole-burning experiments, where one of these signals could easily be misinterpreted as a genuine hole-burning feature.

  14. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  15. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  16. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  17. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  18. If EM waves don't interfere, what causes interferograms?

    NASA Astrophysics Data System (ADS)

    Wellard, Stanley J.

    2012-10-01

    Photonics engineers involved in designing and operating Fourier transform spectrometers (FTS) often rely on Maxwell's wave equations and time-frequency (distance-wavenumber) Fourier theory as models to understand and predict the conversion of optical energy to electrical signals in their instruments. Dr. Chandrasekhar Roychoudhuri and his colleagues, at last year's conference, presented three significant concepts that might completely change the way we comprehend the interaction of light and matter and the way interference information is generated. The first concept is his non-interaction of waves (NIW) formulation, which puts in place an optical wave description that more accurately describe the properties of the finite time and spatial signals of an optical system. The second is a new description for the cosmic EM environment that recognizes that space is really filled with the ether of classical electromagnetics. The third concept is a new metaphysics or metaphotonics that compares the photon as a particle in a void against the photon as a wave in a medium to see which best explain the twelve different aspects of light. Dr. Henry Lindner presents a compelling case that photons are waves in a medium and particles (electrons, protons, atoms) are wave-structures embedded in the new ether. Discussion of the three new principles is intended to increase the curiosity of photonics engineers to investigate these changes in the nature of light and matter.

  19. The Power of L-Systems in Fractal Construction and Theory

    ERIC Educational Resources Information Center

    Perham, Arnold E.; Perham, Faustine L.

    2005-01-01

    The article discusses the use of L-systems, which provide students with a unique method to construct line fractals, including the Koch snowflake, the Sierpinski triangle, and the Harter-Heighway dragon. Applets that use L-system theory offer a graphics tool that promotes geometric reasoning, sparks enthusiasm, and connects to historical themes in…

  20. SOCR "Motion Charts": An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    ERIC Educational Resources Information Center

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2010-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality…

  1. Integrating an Educational Game in Moodle LMS

    ERIC Educational Resources Information Center

    Minovic, Miroslav; Milovanovic, Milos; Minovic, Jelena; Starcevic, Dusan

    2012-01-01

    The authors present a learning platform based on a computer game. Learning games combine two industries: education and entertainment, which is often called "Edutainment." The game is realized as a strategic game (similar to Risk[TM]), implemented as a module for Moodle CMS, utilizing Java Applet technology. Moodle is an open-source course…

  2. Astroblaster--A Fascinating Game of Multi-Ball Collisions

    ERIC Educational Resources Information Center

    Kires, Marian

    2009-01-01

    Multi-ball collisions inside the Astroblaster toy are explained from the conservation of momentum point of view. The important role of the coefficient of restitution is demonstrated in ideal and real cases. Real experimental results with the simple toy can be compared with a computer model represented by an interactive Java applet. (Contains 1…

  3. Is Seeing Believing? Training Users on Information Security: Evidence from Java Applets

    ERIC Educational Resources Information Center

    Ayyagari, Ramakrishna; Figueroa, Norilyz

    2017-01-01

    Information Security issues are one of the top concerns of CEOs. Accordingly, information systems education and research have addressed security issues. One of the main areas of research is the behavioral issues in Information Security, primarily focusing on users' compliance to information security policies. We contribute to this literature by…

  4. Rubrics for Evaluating Open Education Resource (OER) Objects

    ERIC Educational Resources Information Center

    Achieve, Inc., 2011

    2011-01-01

    The rubrics presented in this report represent an evaluation system for objects found within Open Education Resources. An object could include images, applets, lessons, units, assessments and more. For the purpose of this evaluation, any component that can exist as a stand-alone qualifies as an object. The rubrics in this packet can be applied…

  5. The Hebrewer: A Web-Based Inflection Generator

    ERIC Educational Resources Information Center

    Foster, James Q.; Harrell, Lane Foster; Raizen, Esther

    2004-01-01

    This paper reports on the grammatical and programmatical production aspects of the "Hebrewer," a cross-platform web-based reference work in the form of a Hebrew inflection generator. The Hebrewer, a Java applet/servlet combination, is currently capable of generating 2,500 nouns in full declension and 500 verbs in full conjugation,…

  6. Multiple-Choice Tests with Correction Allowed in Autism: An Excel Applet

    ERIC Educational Resources Information Center

    Martinez, Elisabetta Monari

    2010-01-01

    The valuation of academic achievements in students with severe language impairment is problematic if they also have difficulties in sustaining attention and in praxic skills. In severe autism all of these difficulties may occur together. Multiple-choice tests offer the advantage that simple praxic skills are required, allowing the tasks to be…

  7. Critical Evaluation of Internet Resources for Teaching Trend and Variability in Bivariate Data

    ERIC Educational Resources Information Center

    Forster, Pat

    2007-01-01

    A search on the Internet for resources for teaching statistics yields multiple sites with data sets, projects, worksheets, applets, and software. Often these are made available without information on how they might benefit learning. This paper addresses potential benefits from resources that target trend and variability relationships in bivariate…

  8. A Web-Based Tutor for Java™: Evidence of Meaningful Learning

    ERIC Educational Resources Information Center

    Emurian, Henry H.

    2006-01-01

    Students in a graduate class and an undergraduate class in Information Systems completed a Web-based programmed instruction tutor that taught a simple Java applet as the first technical training exercise in a computer programming course. The tutor is a competency-based instructional system for individualized distance learning. When a student…

  9. Pre-Service Teachers' Ability to Identify and Implement Cognitive Levels in Mathematics Learning

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2017-01-01

    This study analyzed pre-service teachers' ability to identify and implement cognitive levels. The framework involved the use of the Concrete, Pictorial and Abstract (CPA) cognitive levels combined with the Virtual-level (CPVA-levels). The V-level involves applets and apps, and three digital-dynamic sublevels: virtual-Concrete, virtual-Pictorial…

  10. Biomolecules in the Computer: Jmol to the Rescue

    ERIC Educational Resources Information Center

    Herraez, Angel

    2006-01-01

    Jmol is free, open source software for interactive molecular visualization. Since it is written in the Java[TM] programming language, it is compatible with all major operating systems and, in the applet form, with most modern web browsers. This article summarizes Jmol development and features that make it a valid and promising replacement for…

  11. Interactive Web-Based Pointillist Visualization of Hydrogenic Orbitals Using Jmol

    ERIC Educational Resources Information Center

    Tully, Shane P.; Stitt, Thomas M.; Caldwell, Robert D.; Hardock, Brian J.; Hanson, Robert M.; Maslak, Przemyslaw

    2013-01-01

    A Monte Carlo method is used to generate interactive pointillist displays of electron density in hydrogenic orbitals. The Web applet incorporating Jmol viewer allows for clear and accurate presentation of three-dimensional shapes and sizes of orbitals up to "n" = 5, where "n" is the principle quantum number. The obtained radial…

  12. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  13. Seeing the LITE

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2000-12-01

    We are developing a number of eyes-on experiments, lecture demonstrations and Web based JAVA applets about light, optics, color and visual perception as part of `Project LITE - Light Inquiry Through Experiments'. These are intended for incorporation into introductory level university science courses in astronomy, physics and other disciplines. In this presentation, several of the new LITE demonstrations applicable to large astronomy and physics classes will be shown. One demonstration involves novel materials to display Rayleigh scattering (blue skies, red sunsets and interstellar reddening - NOT redshift!) - including polarization effects. Others employ incandescent bulbs, LED's and laser pointers to illustrate fluorescence, diffraction and other physical and quantum optics phenomena. Still other demonstrations utilize transparent plastic moire overlays as well as computer animated moire patterns to show a variety of astronomical and physical phenomena. We will also display some of our applets posted at the Project LITE Web site (http://www.bu.edu/smec/lite) as well as the associated kit of optical materials we have developed for use by individual students in their own homes or dormitory rooms. This work was supported in part by NSF grant # DUE-9950551.

  14. A FBG pulse wave demodulation method based on PCF modal interference filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  15. Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models.

    PubMed

    van Luijtelaar, Gilles; Lüttjohann, Annika; Makarov, Vladimir V; Maksimenko, Vladimir A; Koronovskii, Alexei A; Hramov, Alexander E

    2016-02-15

    Genetic rat models for childhood absence epilepsy have become instrumental in developing theories on the origin of absence epilepsy, the evaluation of new and experimental treatments, as well as in developing new methods for automatic seizure detection, prediction, and/or interference of seizures. Various methods for automated off and on-line analyses of ECoG in rodent models are reviewed, as well as data on how to interfere with the spike-wave discharges by different types of invasive and non-invasive electrical, magnetic, and optical brain stimulation. Also a new method for seizure prediction is proposed. Many selective and specific methods for off- and on-line spike-wave discharge detection seem excellent, with possibilities to overcome the issue of individual differences. Moreover, electrical deep brain stimulation is rather effective in interrupting ongoing spike-wave discharges with low stimulation intensity. A network based method is proposed for absence seizures prediction with a high sensitivity but a low selectivity. Solutions that prevent false alarms, integrated in a closed loop brain stimulation system open the ways for experimental seizure control. The presence of preictal cursor activity detected with state of the art time frequency and network analyses shows that spike-wave discharges are not caused by sudden and abrupt transitions but that there are detectable dynamic events. Their changes in time-space-frequency characteristics might yield new options for seizure prediction and seizure control. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Molecular matter waves - tools and applications

    NASA Astrophysics Data System (ADS)

    Juffmann, Thomas; Sclafani, Michele; Knobloch, Christian; Cheshnovsky, Ori; Arndt, Markus

    2013-05-01

    Fluorescence microscopy allows us to visualize the gradual emergence of a deterministic far-field matter-wave diffraction pattern from stochastically arriving single molecules. We create a slow beam of phthalocyanine molecules via laser desorption from a glass window. The small source size provides the transverse coherence required to observe an interference pattern in the far-field behind an ultra-thin nanomachined grating. There the molecules are deposited onto a quartz window and can be imaged in situ and in real time with single molecule sensitivity. This new setup not only allows for a textbook demonstration of quantum interference, but also enables quantitative explorations of the van der Waals interaction between molecules and material gratings.

  17. Quantum erasure with causally disconnected choice.

    PubMed

    Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton

    2013-01-22

    The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

  18. Quantum erasure with causally disconnected choice

    PubMed Central

    Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton

    2013-01-01

    The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether. PMID:23288900

  19. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  20. MapApp: A Java(TM) Applet for Accessing Geographic Databases

    NASA Astrophysics Data System (ADS)

    Haxby, W.; Carbotte, S.; Ryan, W. B.; OHara, S.

    2001-12-01

    MapApp (http://coast.ldeo.columbia.edu/help/MapApp.html) is a prototype Java(TM) applet that is intended to give easy and versatile access to geographic data sets through a web browser. It was developed initially to interface with the RIDGE Multibeam Synthesis. Subsequently, interfaces with other geophysical databases were added. At present, multibeam bathymetry grids, underway geophysics along ship tracks, and the LDEO Borehole Research Group's ODP well logging database are accessible through MapApp. We plan to add an interface with the Ridge Petrology Database in the near future. The central component of MapApp is a world physiographic map. Users may navigate around the map (zoom/pan) without waiting for HTTP requests to a remote server to be processed. A focus request loads image tiles from the server to compose a new map at the current viewing resolution. Areas in which multibeam grids are available may be focused to a pixel resolution of about 200 m. These areas may be identified by toggling a mask. Databases may be accessed through menus, and selected data objects may be loaded into MapApp by selecting items from tables. Once loaded, a bathymetry grid may be contoured or used to create bathymetric profiles; ship tracks and ODP sites may be overlain on the map and their geophysical data plotted in X-Y graphs. The advantage of applets over traditional web pages is that they permit dynamic interaction with data sets, while limiting time consuming interaction with a remote server. Users may customize the graphics display by modifying the scale, or the symbol or line characteristics of rendered data, contour interval, etc. The ease with which users can select areas, view the physiography of areas, and preview data sets and evaluate them for quality and applicability, makes MapApp a valuable tool for education and research.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, H.; Watanabe, T.

    A new system was developed for the reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. In order to reduce interference from spurious waves due to reflections and mode conversions, a large cylindrical block of forged steel was prepared for the transfer medium, and direct and spurious waves were discriminated between on the basis of their arrival times. Frequency characteristics of velocity sensitivity to both the Rayleigh wave and longitudinal wave were determined in the range of 50 kHz{endash}1 MHz by means of electrical measurements without the use of mechanical sound sources or reference transducers. {copyright} {italmore » 1997 Acoustical Society of America.}« less

  2. 14 CFR 171.109 - Performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-locked so that within the half course sector, the demodulated 90 Hz and 150 Hz wave forms pass through... the combined 90 Hz and 150 Hz wave form. However, the phase need not be measured within the half... identification signals, if that operation does not interfere with the basic function. If a channel is provided...

  3. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  4. Student difficulties measuring distances in terms of wavelength: Lack of basic skills or failure to transfer?

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2013-06-01

    In a previous paper that focused on the transmission of periodic waves at the boundary between two media, we documented difficulties with the basic concepts of wavelength, frequency, and propagation speed, and with the relationship v=fλ. In this paper, we report on student attempts to apply this relationship in problems involving two-source and thin-film interference. In both cases, interference arises from differences in the path lengths traveled by two waves. We found that some students (up to 40% on certain questions) had difficulty with a task that is fundamental to understanding these phenomena: expressing a physical distance, such as the separation between two sources, in terms of the wavelength of a periodic wave. We administered a series of questions to try to identify factors that influence student performance. We concluded that most incorrect responses stemmed from erroneous judgment about the type of reasoning required, not an inability to do said reasoning. A number of students do not seem to treat the spacing of moving wave fronts as analogous to immutable measurement tools (e.g., rulers).

  5. Sound

    NASA Astrophysics Data System (ADS)

    Capstick, J. W.

    2013-01-01

    1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.

  6. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    NASA Astrophysics Data System (ADS)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  7. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  8. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Extinction by a Homogeneous Spherical Particle in an Absorbing Medium

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Videen, Gorden; Yang, Ping

    2017-01-01

    We use a recent computer implementation of the first principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wave front resulting from the blockage of the incident plane wave by the particle's geometrical projection.

  10. Quasiparticle interference in the heavy-fermion superconductor CeCoIn5

    NASA Astrophysics Data System (ADS)

    Akbari, Alireza; Thalmeier, Peter; Eremin, Ilya

    2011-10-01

    We investigate the quasiparticle interference in the heavy fermion superconductor CeCoIn5 as a direct method to confirm the d-wave gap symmetry. The ambiguity between dxy and dx2-y2 symmetry remaining from earlier specific heat and thermal transport investigations has been resolved in favor of the latter by the observation of a spin resonance that can occur only in dx2-y2 symmetry. However, these methods are all indirect and depend considerably on theoretical interpretation. Here we propose that quasiparticle interference (QPI) spectroscopy by scanning tunneling microscopy (STM) can give a direct fingerprint of the superconducting gap in real space that may lead to a definite conclusion on its symmetry for CeCoIn5 and related 115 compounds. The QPI pattern for both magnetic and nonmagnetic impurities is calculated for the possible d-wave symmetries and characteristic differences are found that may be identified by use of the STM method.

  11. Prototyping method for Bragg-type atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Brandon; Krygier, Michael; Heward, Jeffrey

    2011-10-15

    We present a method for rapid modeling of new Bragg ultracold atom-interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolutionmore » between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian variational method to facilitate rapid estimation of performance. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J. E. Simsarian et al., Phys. Rev. Lett. 85, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach-Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.« less

  12. Imaging, Sensing, And Communication Through Highly Scattering Complex Media

    DTIC Science & Technology

    2015-11-24

    lithography systems create the essential components of our computers and smartphones, which themselves contain ever more advanced optical systems that...the phase coherence of the light, scattered waves that arrive by ‘different paths’ through the sample show interference . Depending on the detailed...positions of the random scatterers, this interference is constructive at some positions and destructive at others. The result is a characteristic

  13. Concept of coherence of learning physical optics

    NASA Astrophysics Data System (ADS)

    Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.

    1995-10-01

    The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it is easier to recognize limitations of the model of light. For example, in the interpretation of the effect of retarding plates on polarizated light. When the plate is wider than the coherence length of the wavetrain of light, the effect disappears.

  14. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  15. Experience of Integrating Various Technological Tools into the Study and Future Teaching of Mathematics Education Students

    ERIC Educational Resources Information Center

    Gorev, Dvora; Gurevich-Leibman, Irina

    2015-01-01

    This paper presents our experience of integrating technological tools into our mathematics teaching (in both disciplinary and didactic courses) for student-teachers. In the first cycle of our study, a variety of technological tools were used (e.g., dynamic software, hypertexts, video and applets) in teaching two disciplinary mathematics courses.…

  16. Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers

    ERIC Educational Resources Information Center

    Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.

    2013-01-01

    This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…

  17. Equations with Technology: Different Tools, Different Views

    ERIC Educational Resources Information Center

    Drijvers, Paul; Barzel, Barbel

    2012-01-01

    Has technology revolutionised the mathematics classroom, or is it still a device waiting to be exploited for the benefit of the learner? There are applets that will enable the user to solve complex equations at the push of a button. So, does this jeopardise other methods, make other methods redundant, or even diminish other methods in the mind of…

  18. Why is "S" a Biased Estimate of [sigma]?

    ERIC Educational Resources Information Center

    Sanqui, Jose Almer T.; Arnholt, Alan T.

    2011-01-01

    This article describes a simulation activity that can be used to help students see that the estimator "S" is a biased estimator of [sigma]. The activity can be implemented using either a statistical package such as R, Minitab, or a Web applet. In the activity, the students investigate and compare the bias of "S" when sampling from different…

  19. Comparative Study of the Effectiveness of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations and Traditional Laboratory

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-01-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…

  20. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR PREDICTING AND VISUALIZING TRANSIENT WATER AND CHEMICAL MOVEMENT IN SOILS AND ASSOCIATED UNCERTAINTIES

    EPA Science Inventory

    An interactive Java applet and a stand-alone application program will be developed based on the CHEMFLO model developed in the mid-1980s and published as an EPA report (EPA/600/8-89/076). The model solves Richards Equation for transient water movement in unsaturated soils, and so...

  1. Bringing Interactivity to the Web: The JAVA Solution.

    ERIC Educational Resources Information Center

    Knee, Richard H.; Cafolla, Ralph

    Java is an object-oriented programming language of the Internet. It's popularity lies in its ability to create interactive Web sites across platforms. The most common Java programs are applications and applets, which adhere to a set of conventions that lets them run within a Java-compatible browser. Java is becoming an essential subject matter and…

  2. HYPATIA--An Online Tool for ATLAS Event Visualization

    ERIC Educational Resources Information Center

    Kourkoumelis, C.; Vourakis, S.

    2014-01-01

    This paper describes an interactive tool for analysis of data from the ATLAS experiment taking place at the world's highest energy particle collider at CERN. The tool, called HYPATIA/applet, enables students of various levels to become acquainted with particle physics and look for discoveries in a similar way to that of real research.

  3. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  4. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Image and Video Library

    1990-12-10

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  5. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  6. On the Presentation of Wave Phenomena of Electrons with the Young-Feynman Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio

    2011-01-01

    The Young-Feynman two-hole interferometer is widely used to present electron wave-particle duality and, in particular, the buildup of interference fringes with single electrons. The teaching approach consists of two steps: (i) electrons come through only one hole but diffraction effects are disregarded and (ii) electrons come through both holes…

  7. Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation

    DTIC Science & Technology

    2017-10-17

    Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF

  8. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    NASA Astrophysics Data System (ADS)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  9. Ultracompact beam splitters based on plasmonic nanoslits

    PubMed Central

    Zhou, Chuanhong; Kohli, Punit

    2011-01-01

    An ultracompact plasmonic beam splitter is theoretically and numerically investigated. The splitter consists of a V-shaped nanoslit in metal films. Two groups of nanoscale metallic grooves inside the slit (A) and at the small slit opening (B) are investigated. We show that there are two energy channels guiding light out by the splitter: the optical and the plasmonic channels. Groove A is used to couple incident light into the plasmonic channel. Groove B functions as a plasmonic scatter. We demonstrate that the energy transfer through plasmonic path is dominant in the beam splitter. We find that more than four times the energy is transferred by the plasmonic channel using structures A and B. We show that the plasmonic waves scattered by B can be converted into light waves. These light waves redistribute the transmitted energy through interference with the field transmitted from the nanoslit. Therefore, different beam splitting effects are achieved by simply changing the interference conditions between the scattered waves and the transmitted waves. The impact of the width and height of groove B are also investigated. It is found that the plasmonic scattering of B is changed into light scattering with increase of the width and the height of B. These devices have potential applications in optical sampling, signal processing, and integrated optical circuits. PMID:21647248

  10. Applications of the diffraction and interference of light and electronic waves

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Lanning, Robert

    2010-10-01

    As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.

  11. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  12. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  13. Sound Visualization and Holography

    ERIC Educational Resources Information Center

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  14. Is phase measurement necessary for incoherent holographic 3D imaging?

    NASA Astrophysics Data System (ADS)

    Rosen, Joseph; Vijayakumar, A.; Rai, Mani Ratnam; Mukherjee, Saswata

    2018-02-01

    Incoherent digital holography can be used for several applications, among which are high resolution fluorescence microscopy and imaging through a scattering medium. Historically, an incoherent digital hologram has been usually recorded by self-interference systems in which both interfering beams are originated from the same observed object. The self-interference system enables to read the phase distribution of the wavefronts propagating from an object and consequently to decode the 3D location of the object points. In this presentation, we survey several cases in which 3D holographic imaging can be done without the phase information and without two-wave interference.

  15. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  16. Realization of spin wave switch for data processing

    NASA Astrophysics Data System (ADS)

    Balinskiy, M.; Chiang, H.; Khitun, A.

    2018-05-01

    In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.

  17. Coherent perfect absorbers: linear control of light with light

    NASA Astrophysics Data System (ADS)

    Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong

    2017-12-01

    The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

  18. Transformation elastodynamics and cloaking for flexural waves

    NASA Astrophysics Data System (ADS)

    Colquitt, D. J.; Brun, M.; Gei, M.; Movchan, A. B.; Movchan, N. V.; Jones, I. S.

    2014-12-01

    The paper addresses an important issue of cloaking transformations for fourth-order partial differential equations representing flexural waves in thin elastic plates. It is shown that, in contrast with the Helmholtz equation, the general form of the partial differential equation is not invariant with respect to the cloaking transformation. The significant result of this paper is the analysis of the transformed equation and its interpretation in the framework of the linear theory of pre-stressed plates. The paper provides a formal framework for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm is proposed for designing a broadband square cloak for flexural waves, which employs a regularised push-out transformation. Illustrative numerical examples show high accuracy and efficiency of the proposed cloaking algorithm. In particular, a physical configuration involving a perturbation of an interference pattern generated by two coherent sources is presented. It is demonstrated that the perturbation produced by a cloaked defect is negligibly small even for such a delicate interference pattern.

  19. Direct observation of phase-sensitive Hong-Ou-Mandel interference

    NASA Astrophysics Data System (ADS)

    Marek, Petr; Zapletal, Petr; Filip, Radim; Hashimoto, Yosuke; Toyama, Takeshi; Yoshikawa, Jun-ichi; Makino, Kenzo; Furusawa, Akira

    2017-09-01

    The quality of individual photons and their ability to interfere are traditionally tested by measuring the Hong-Ou-Mandel photon bunching effect. However, this phase-insensitive measurement only tests the particle aspect of the quantum interference, leaving out the phase-sensitive aspects relevant for continuous-variable processing. To overcome these limitations we formulate a witness capable of recognizing both the indistinguishability of the single photons and their quality with regard to their continuous-variable utilization. We exploit the conditional nonclassical squeezing and show that it can reveal both the particle and the wave aspects of the quantum interference in a single set of direct measurements. We experimentally test the witness by applying it to a pair of independent single photons retrieved on demand.

  20. High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks

    DTIC Science & Technology

    2013-08-26

    MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications , vol. 6 , no. 3, pp. 805–810, Mar...Robert W. Heath, Nachiappan Valliappan. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication , IEEE Transactions on...in MIMO Interference Alignment Networks, IEEE Transactions on Wireless Communications , (02 2012): 0. doi: 10.1109/TWC.2011.120511.111088 TOTAL: 2

  1. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  2. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.

    2018-06-01

    We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.

  3. An Investigation into Digital Media: Characteristics of Learning Objects Which K-12 Teachers Determine Meet Their Instructional Needs

    ERIC Educational Resources Information Center

    Guthrie, Patricia Ann

    2010-01-01

    In recent years, learning objects have emerged as an instructional tool for teachers. Digital libraries and collections provide teachers with free or fee-base access to a variety of learning objects from photos and famous speeches to Flash animations and interactive Java Applets. Learning objects offer opportunities for students to interact with…

  4. Using a Technology-Supported Approach to Preservice Teachers' Multirepresentational Fluency: Unifying Mathematical Concepts and Their Representations

    ERIC Educational Resources Information Center

    McGee, Daniel; Moore-Russo, Deborah

    2015-01-01

    A test project at the University of Puerto Rico in Mayagüez used GeoGebra applets to promote the concept of multirepresentational fluency among high school mathematics preservice teachers. For this study, this fluency was defined as simultaneous awareness of all representations associated with a mathematical concept, as measured by the ability to…

  5. The Use of Applets for Developing Understanding in Mathematics: A Case Study Using Maplets for Calculus with Continuity Concepts

    ERIC Educational Resources Information Center

    Patenaude, Raymond E.

    2013-01-01

    The Common Core State Standards for Mathematics (CCSSM) are founded on a long history of mathematics education research emphasizing the importance of teaching mathematics for understanding. The CCSSM along with the National Council of Teachers of Mathematics (NCTM) recommend the use of technology in the teaching of mathematics. New mobile…

  6. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated Geogebra Constructions and Student-Generated Screencast Videos

    ERIC Educational Resources Information Center

    Lazarus, Jill; Roulet, Geoffrey

    2013-01-01

    This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our…

  7. Flipping between Languages? An Exploratory Analysis of the Usage by Spanish-Speaking English Language Learner Tertiary Students of a Bilingual Probability Applet

    ERIC Educational Resources Information Center

    Lesser, Lawrence M.; Wagler, Amy E.; Salazar, Berenice

    2016-01-01

    English language learners (ELLs) are a rapidly growing part of the student population in many countries. Studies on resources for language learners--especially Spanish-speaking ELLs--have focused on areas such as reading, writing, and mathematics, but not introductory probability and statistics. Semi-structured qualitative interviews investigated…

  8. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  9. Calculation and observation of thermal electrostatic noise in solar wind plasma

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.

    1981-01-01

    Calculations, both approximate algebraic and numerical, have been carried out for the noise due to electrostatic waves incident on a dipole antenna. The noise is calculated both for a thermal equilibrium plasma, and one having several components at different temperatures. The results are compared with measurements from the IMP-6 satellite. In various frequency ranges, the noise power is dominated by Langmuir oscillations, by electron acoustic waves and by ion acoustic waves. The measurements are consistent with all of these, although the ion waves are not definitely observed, due to interference from shot noise.

  10. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  11. TIM, a ray-tracing program for METATOY research and its dissemination

    NASA Astrophysics Data System (ADS)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  12. Planck's constant and the three waves (TWs) of Einstein's covariant ether

    NASA Astrophysics Data System (ADS)

    Kostro, L.

    1985-11-01

    The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.

  13. Interference between light and heavy neutrinos for 0 νββ decay in the left–right symmetric model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Fahim; Neacsu, Andrei; Horoi, Mihai

    Neutrinoless double-beta decay is proposed as an important low energy phenomenon that could test beyond the Standard Model physics. There are several potentially competing beyond the Standard Model mechanisms that can induce the process. It thus becomes important to disentangle the different processes. In the present study we consider the interference effect between the light left-handed and heavy right-handed Majorana neutrino exchange mechanisms. The decay rate, and consequently, the phase-space factors for the interference term are derived, based on the left–right symmetric model. The numerical values for the interference phase-space factors for several nuclides are calculated, taking into consideration themore » relativistic Coulomb distortion of the electron wave function and finite-size of the nucleus. As a result, the variation of the interference effect with the Q-value of the process is studied.« less

  14. Interference with electrons: from thought to real experiments

    NASA Astrophysics Data System (ADS)

    Matteucci, Giorgio

    2013-11-01

    The two-slit interference experiment is usually adopted to discuss the superposition principle applied to radiation and to show the peculiar wave behaviour of material particles. Diffraction and interference of electrons have been demonstrated using, as interferometry devices, a hole, a slit, double hole, two-slits, an electrostatic biprism etc. A number of books, short movies and lectures on the web try to popularize the mysterious behaviour of electrons on the basis of Feynman thought experiment which consists of a Young two-hole interferometer equipped with a detector to reveal single electrons. A short review is reported regarding, i) the pioneering attempts carried out to demonstrate that interference patterns could be obtained with single electrons through an interferometer and, ii) recent experiments, which can be considered as the realization of the thought electron interference experiments adopted by Einstein-Bohr and subsequently by Feynman to discuss key features of quantum physics.

  15. Interference between light and heavy neutrinos for 0 νββ decay in the left–right symmetric model

    DOE PAGES

    Ahmed, Fahim; Neacsu, Andrei; Horoi, Mihai

    2017-03-31

    Neutrinoless double-beta decay is proposed as an important low energy phenomenon that could test beyond the Standard Model physics. There are several potentially competing beyond the Standard Model mechanisms that can induce the process. It thus becomes important to disentangle the different processes. In the present study we consider the interference effect between the light left-handed and heavy right-handed Majorana neutrino exchange mechanisms. The decay rate, and consequently, the phase-space factors for the interference term are derived, based on the left–right symmetric model. The numerical values for the interference phase-space factors for several nuclides are calculated, taking into consideration themore » relativistic Coulomb distortion of the electron wave function and finite-size of the nucleus. As a result, the variation of the interference effect with the Q-value of the process is studied.« less

  16. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  17. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  18. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  19. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  20. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  1. Detonation wave augmentation of gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1984-01-01

    The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.

  2. Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions

    NASA Astrophysics Data System (ADS)

    Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.

    2018-04-01

    We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

  3. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  4. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  5. Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions.

    PubMed

    Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N

    2018-04-20

    We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

  6. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  7. Normal mode Rossby waves observed in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Hirooka, T.; Hirota, I.

    1985-01-01

    In recent years, observational evidence has been obtained for westward traveling planetary waves in the middle atmosphere with the aid of global data from satellites. There is no doubt that the fair portion of the observed traveling waves can be understood as the manifestation of the normal mode Rossby waves which are theoretically derived from the tidal theory. Some observational aspects of the structure and behavior of the normal model Rossby waves in the upper stratosphere are reported. The data used are the global stratospheric geopotential thickness and height analyses which are derived mainly from the Stratospheric Sounding Units (SSUs) on board TIROS-N and NOAA satellites. A clear example of the influence of the normal mode Rossby wave on the mean flow is reported. The mechanism considered is interference between the normal mode Rossby wave and the quasi-stationary wave.

  8. Electromechanical Frequency Filters

    NASA Astrophysics Data System (ADS)

    Wersing, W.; Lubitz, K.

    Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.

  9. Autonomous Warplanes: NASA Rovers Lead the Way

    DTIC Science & Technology

    2016-04-01

    communications over long distances. Radio waves do not arrive instantaneously although they travel though space at the speed of light. While the...such as radio frequency interference, thunderstorms near the satellite ground station, solar flares and charged particle events in space, and poor...satellite communications but to an even greater ex- tent. While the speed of light, and thus radio waves, does not contribute significantly to the latency

  10. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  11. Shear wave speed recovery in sonoelastography using crawling wave data.

    PubMed

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-07-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.

  12. Shear wave speed recovery in sonoelastography using crawling wave data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-01-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204

  13. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  14. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  15. 33 CFR 148.725 - What are the design, construction and operational criteria?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: GENERAL Environmental Review... permanent interference with natural processes or features that are important to natural currents and wave...

  16. First measurement of the beam asymmetry in photoproduction off the proton near threshold

    NASA Astrophysics Data System (ADS)

    Levi Sandri, P.; Mandaglio, G.; De Leo, V.; Bartalini, O.; Bellini, V.; Bocquet, J.-P.; Capogni, M.; Curciarello, F.; Didelez, J.-P.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Girolami, B.; Giusa, A.; Lapik, A.; Lleres, A.; Mammoliti, F.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Nedorezov, V.; Randieri, C.; Rebreyend, D.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.

    2015-07-01

    The beam asymmetry in photoproduction off the proton was measured at the GrAAL polarised photon beam with incoming photon energies of 1.461 and 1.480 GeV. For both energies the asymmetry as a function of the meson production angle shows a clear structure, more pronounced at the lowest one, with a change of sign around . The observed behaviour is compatible with P-wave D-wave (or S-wave F-wave) interference, the closer to threshold the stronger. The results are compared to the existing state-of-the-art calculations that fail to account for the data.

  17. Laser-speckle-visibility acoustic spectroscopy in soft turbid media.

    PubMed

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  18. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  19. Advanced wave field sensing using computational shear interferometry

    NASA Astrophysics Data System (ADS)

    Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.

    2014-07-01

    In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.

  20. Electronic heterodyne recording and processing of optical holograms using phase modulated reference waves

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Pao, Y.-H.; Claspy, P. C.

    1978-01-01

    The use of a phase-modulated reference wave for the electronic heterodyne recording and processing of a hologram is described. Heterodyne recording is used to eliminate the self-interference terms of a hologram and to create a Leith-Upatnieks hologram with coaxial object and reference waves. Phase modulation is also shown to be the foundation of a multiple-view hologram system. When combined with hologram scale transformations, heterodyne recording is the key to general optical processing. Spatial filtering is treated as an example.

  1. Méthode de traitement des intérferogrammes à deux ondes pour accroître leur sensibilité.

    PubMed

    Roblin, G; Prévost, M

    1980-08-01

    Two-beam interference fringes are not always able to give sufficient information to determine the topography of very weakly deformed wave surfaces. The process described allows us to intercalate several intermediate levels, which vary linearly in terms of the phase, between the brightness extrema of a fringe. The interference pattern is submitted to an optoelectronics treatment where the photoelectric signal is compared with an adjustable electric reference signal.

  2. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    DTIC Science & Technology

    1993-10-01

    constructive and destructive wave interaction that produces interference fringes on the holographic plate. If the object moves more than a fraction of a...wavelength during the duration of the laser exposure these interference fringes are lost and with it the holographic image of the object. However there...interest, it is possible to use magnification optics such as microscope objectives or lithography lenses between the holographic plate and the impact

  3. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  4. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    NASA Technical Reports Server (NTRS)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  5. Full-wave effects on shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei

    2014-02-01

    Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.

  6. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    PubMed

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  7. A cryocooler for applications requiring low magnetic and mechanical interference

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.; Daney, D. E.; Sullivan, D. B.

    1983-01-01

    A very low-power, low-interference Stirling cryocooler is being developed based on principles and techniques described in several previous publications over the last four years. It differs in several important details from those built previously. It uses a tapered displacer based upon an analytical optimization procedure. The displacer is driven by an auxiliary piston and cylinder (rather than by mechanical linkage) using some of the working fluid itself to provide the driving force. This provides smooth, vibration-free motion, and, more importantly, allows complete mechanical and spatial separation of the cryostat from the pressure-wave generator. Either of two different pressure-wave generators can be used. One is a non-contaminating, unlubricated ceramic piston and cylinder. The other is a compressed-air-operated rubber diaphragm with motor-driven valves to cycle the pressure between appropriate limits.

  8. Phonon wave interference in graphene and boron nitride superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming

    2016-07-11

    The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less

  9. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  10. Wave propagation in a strongly nonlinear locally resonant granular crystal

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  11. Detection of concealed explosives at stand-off distances using wide band swept millimetre waves

    NASA Astrophysics Data System (ADS)

    Andrews, David A.; Rezgui, Nacer D.; Smith, Sarah E.; Bowring, Nicholas; Southgate, Matthew; Baker, John G.

    2008-10-01

    Millimetre waves in the range 20 to 110 GHz have been used to detect the presence and thickness of dielectric materials, such as explosives, by measuring the frequency response of the return signal. Interference between the reflected signals from the front and back surfaces of the dielectric provides a characteristic frequency variation in the return signal, which may be processed to yield its optical depth [Bowring et al, Meas. Sci. Technol. 19, 024004 (2008)]. The depth resolution depends on the sweep bandwidth, which is typically 10 to 30 GHz. By using super-heterodyne detection the range of the object can also be determined, which enables a signal from a target, such as a suicide bomber to be extracted from background clutter. Using millimetre wave optics only a small area of the target is illuminated at a time, thus reducing interference from different parts of a human target. Results are presented for simulated explosive materials with water or human backing at stand-off distances. A method of data analysis that involves pattern recognition enables effective differentiation of target types.

  12. Time-Dependent Traveling Wave Tube Model for Intersymbol Interference Investigations

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)

    2001-01-01

    For the first time, a computational model has been used to provide a direct description of the effects of the traveling wave tube (TWT) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion, gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black-box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW.

  13. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)

    2001-01-01

    For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).

  14. Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyang; Zhao, Daomu

    2016-08-01

    Based on the first-order Born approximation, the scattering of an electromagnetic plane wave from a relatively more realistic random medium, a quasi-homogeneous medium with semisoft boundary, has been investigated. The analytic expressions for the spectral density, the spectral degree of coherence and the spectral degree of polarization have been derived, and the effects of the characteristics of the medium and the polarization of the incident light wave on the far-zone scattered field are determined. The numerical simulations indicate that, with the increasing of the edge softness M of the medium, the spectral density presents a pattern with interference fringes, and the number, position and width of interference fringes can be modified by the parameter. It is also found that there is an obvious value saltation in the coherence profile. Besides, unlike the intensity and the coherence are significantly affected by the properties of the medium, the polarization of the scattered field is irrelevant to them due to the quasi-homogeneity and isotropy of the medium, and it is only connected with the polarization of the incident light.

  15. Lamb Waves Decomposition and Mode Identification Using Matching Pursuit Method

    DTIC Science & Technology

    2009-01-01

    Wigner - Ville distribution ( WVD ). However, WVD suffers from severe interferences, called cross-terms. Cross- terms are the area of a time-frequency...transform (STFT), wavelet transform, Wigner - Ville distribution , matching pursuit decomposition, etc. 1 Report Documentation Page Form ApprovedOMB No...MP decomposition using chirplet dictionary was applied to a simulated S0 mode Lamb wave shown previously in Figure 2a. Wigner - Ville distribution of

  16. Demonstrations of Wave Optics (Interference and Diffraction of Light) for Large Audiences Using a Laser and a Multimedia Projector

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2011-01-01

    This article presents a new technique for performing most well-known demonstrations of wave optics. Demonstrations which are normally very hard to show to more than a few people can be presented easily to very large audiences with excellent visibility for everyone. The proposed setup is easy to put together and use and can be very useful for…

  17. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  18. Integration of multiple theories for the simulation of laser interference lithography processes

    NASA Astrophysics Data System (ADS)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  19. Measurement of the configuration of a concave surface by the interference of reflected light

    NASA Technical Reports Server (NTRS)

    Kumazawa, T.; Sakamoto, T.; Shida, S.

    1985-01-01

    A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.

  20. Integration of multiple theories for the simulation of laser interference lithography processes.

    PubMed

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  1. Diagnosing the Role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Nonstationary Magnetic Perturbations During an Interval of Northward IMF

    NASA Astrophysics Data System (ADS)

    Pakhotin, I. P.; Mann, I. R.; Lysak, R. L.; Knudsen, D. J.; Gjerloev, J. W.; Rae, I. J.; Forsyth, C.; Murphy, K. R.; Miles, D. M.; Ozeke, L. G.; Balasis, G.

    2018-01-01

    High-resolution multispacecraft Swarm data are used to examine magnetosphere-ionosphere coupling during a period of northward interplanetary magnetic field (IMF) on 31 May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 s apart along track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω → 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements.

  2. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOEpatents

    Heebner, John E [Livermore, CA

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  3. Performance Evaluation of MIMO-UWB Systems Using Measured Propagation Data and Proposal of Timing Control Scheme in LOS Environments

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    Ultrawide-band impulse radio (UWB-IR) technology and multiple-input multiple-output (MIMO) systems have attracted interest regarding their use in next-generation high-speed radio communication. We have studied the use of MIMO ultrawide-band (MIMO-UWB) systems to enable higher-speed radio communication. We used frequency-domain equalization based on the minimum mean square error criterion (MMSE-FDE) to reduce intersymbol interference (ISI) and co-channel interference (CCI) in MIMO-UWB systems. Because UWB systems are expected to be used for short-range wireless communication, MIMO-UWB systems will usually operate in line-of-sight (LOS) environments and direct waves will be received at the receiver side. Direct waves have high power and cause high correlations between antennas in such environments. Thus, it is thought that direct waves will adversely affect the performance of spatial filtering and equalization techniques used to enhance signal detection. To examine the feasibility of MIMO-UWB systems, we conducted MIMO-UWB system propagation measurements in LOS environments. From the measurements, we found that the arrival time of direct waves from different transmitting antennas depends on the MIMO configuration. Because we can obtain high power from the direct waves, direct wave reception is critical for maximizing transmission performance. In this paper, we present our measurement results, and propose a way to improve performance using a method of transmit (Tx) and receive (Rx) timing control. We evaluate the bit error rate (BER) performance for this form of timing control using measured channel data.

  4. High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.

    We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecommore » components and detectors.« less

  5. Single-photon interference experiment for high schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  6. Development of Interference Lithography Capability Using a Helium Cadmium Ultraviolet Multimode Laser for the Fabrication of Sub-Micron-Structured Optical Materials

    DTIC Science & Technology

    2011-03-01

    into separate parts, transmitted into different directions , and then recombined upon a surface to produce interference. The concern with this type of...photoresist (PR), is a radiation sensitive compound that is classified as positive or negative, depending on how it responds to radiation . Each is designed...emerging waves, and are referred to as diffraction gratings. Upon reflection from these kinds of gratings, light scattered from the periodic surface

  7. Two-photon geometrical phase

    NASA Astrophysics Data System (ADS)

    Strekalov, D. V.; Shih, Y. H.

    1997-10-01

    An advanced wave model is applied to a two-photon interference experiment to show that the observed interference effect is due to the geometrical phase of a two-photon state produced in spontaneous parametric down-conversion. The polarization state of the signal-idler pair is changed adiabatically so that the ``loop'' on the Poincaré sphere is opened in the signal channel and closed in the idler channel. Therefore, we observed an essentially nonlocal geometrical phase, shared by the entangled photon pair, or a biphoton.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  9. WebScope: A New Tool for Fusion Data Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Dang, Ningning; Xiao, Bingjia

    2010-04-01

    A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.

  10. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  11. Using Visualisations in Secondary School Physics Teaching and Learning: Evaluating the Efficacy of an Instructional Program to Facilitate Understanding of Gas and Liquid Pressure Concepts

    ERIC Educational Resources Information Center

    Oh, Elisabeth Yian Yian; Treagust, David F.; Koh, Thiam Seng; Phang, Wei Lian; Ng, Shuh Lit; Sim, Gary; Chandrasegaran, A. L.

    2012-01-01

    An instructional program using four simulation applets was used to facilitate understanding of gas and liquid pressure concepts among twenty-two students in a Year 9 class from an independent secondary school in Singapore. A comparison group consisting of twenty-two students was taught using traditional didactic, chalk-and-talk instruction.…

  12. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  13. Genetics Home Reference: Vohwinkel syndrome

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. The variant form of Vohwinkel ...

  14. Investigation on bandgap, diffraction, interference, and refraction effects of photonic crystal structure in GaN/InGaN LEDs for light extraction.

    PubMed

    Patra, Saroj Kanta; Adhikari, Sonachand; Pal, Suchandan

    2014-06-20

    In this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode. Beyond a certain periodicity, diffraction effect starts dominating and light extraction improves further. The interference effect is observed in embedded photonic crystal LEDs, where depth of etching supports constructive interference of outward light waves. We have also shed light on refraction effects exhibited by the PhCs and whether negative refraction properties of PhCs may be useful in case of LED light extraction.

  15. Unpredictable interference of new transcranial motor-evoked potential monitor against the implanted pacemaker.

    PubMed

    Hayashi, Kazuko

    2016-12-01

    Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Observation of van Hove singularity and quasiparticle interference in KFe2 As2 superconductors revealed by STM/STS measurements

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Fang, Delong; Du, Zengyi; Wang, Zhenyu; Yang, Huan; Ding, Xiaxin

    2015-03-01

    We have conducted STM/STS investigations on the KFe2As2 superconducting single crystals down to 0.45 K under magnetic field. Clear electronic standing waves have been observed allowing us to investigate the quasiparticle interference (QPI). Interestingly we observed a sharp peak of local density of states (LDOS) near the Fermi energy showing evidence of strongly enhanced DOS both below and above Tc. We demonstrate that this is induced by a van Hove singularity with the saddle point locating only 4 meV below the Fermi energy. Below Tc it is found that only 20% of the normal state DOS is gapped away by superconductivity, with the major part of DOS due to VHS ungapped. Combing with the ARPES data, we find that the VHS points locate on the (π,0) point, which gives strong constraint on the gap function and pairing mechanism. In the mixed state we clearly observed the mixture of vortices and the standing waves due to quasiparticle interference, giving support to above picture. In collaboration with X. Shi, P. Richard, T. Qian and H. Ding et al. in Institute of Physics, CAS.

  17. Noise reduction in digital holography based on a filtering algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David

    2018-02-01

    Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.

  18. Dynamique et interférence de paquets d'ondes dans les atomes et dimères d'alcalins

    NASA Astrophysics Data System (ADS)

    Bouchene, M. A.

    2002-11-01

    Wave packet dynamics and interference experiments in alkaline atoms and dimers This work deals with time resolved experimental study of the dynamics of atomic and molecular processes occurring on a femtosecond time scale. The first part concerns with wave packet dynamics in alkaline atoms and dimers (K, K2) studied by pump-probe methods. In the case of potassium atoms, the wave packet is a superposition of fine structure states of 4p level and represents an electronic spin wave packet. We study the temporal dynamics of this wave packet and we show that it corresponds to a spin flip. We show that the bright state-dark state formalism is appropriate to describe the dynamics in this case and we present an original method that utilises this spin flip to produce spin-polarized electrons on the femtosecond scale. In the case of molecules, the wave packet created is a superposition of vibrational states. We present the results of the study of the vibrational wave packet dynamics in states A^1Σ^+_u et 2^1Pi_g. The pump-probe signal depends on the competition between the various wave packets dynamics in the two electronic states. The second part deals with wave packets interference experiments in similar systems (K, Cs, Cs2). This technique, complementary with the first one, is based on the interaction of two identical pulses with an atomic or molecular system. This gives rise to the interference of two wave packets created by the two laser pulses. This interference allows us to control coherently the excitation probability. In the case of atoms, we present the results of experiments obtained when exciting one photon transition 4s 4p in potassium and two-photon transition 6s 7d in cesium. Two kinds of interference are identified: the optical interference regime that occurs when the two pulses overlap in time and the regime of quantum interference that occurs when the two pulses are well separated. We investigate the behaviour of these interference in many new situations (saturation regime, chirped pulse, ...) that allow us to determine the advantages and limits of this technique. In the case of molecules, the interaction of the two-pulse sequence leads to the interference of vibrational wave packets. We analyse and discuss in this case the effects of a thermal distribution of initial states on the temporal coherent control signal. Ce travail porte sur l'étude expérimentale résolue en temps de la dynamique atomique et moléculaire prenant place sur une échelle de temps femtoseconde. Il présente deux orientations distinctes et complémentaires. La première concerne l'étude de la dynamique de paquets d'ondes dans des atomes et dimères d'alcalins (K, K2) par des méthodes pompe-sonde. Dans le cas du potassium atomique le paquet d'ondes est une superposition des états de structure fine de l'état 4p et représente un paquet de spin électronique. Nous observons la dynamique de ce paquet d'ondes au cours du temps et montrons que celle-ci correspond à une inversion du sens d'orientation du spin. Le formalisme théorique des états brillants et noirs est particulièrement adapté à la description de ce type de dynamique. Nous présentons alors une méthode originale qui, tirant avantage du mouvement d'inversion du spin, permet de produire des électrons polarisés en spin à l'échelle femtoseconde. Dans le cas des molécules, le paquet d'ondes créé est une superposition d'états vibrationnels. Nous présentons les résultats d'une étude systématique de la dynamique de paquet d'ondes vibrationnel dans les états électroniques A^1Σ^+_u et 2^1Pi_g. Le signal pompe-sonde dépend alors de la compétition entre les dynamiques associées aux paquets d'ondes créés dans les deux états électroniques. La deuxième partie traite d'expériences d'interférences de paquets d'ondes dans des systèmes similaires (K, Cs, Cs2). Cette technique, complémentaire de la première, consiste à faire interagir une séquence de deux impulsions identiques avec un système atomique ou moléculaire. Cette interaction résulte de l'interférence des deux paquets d'ondes créés par les deux impulsions laser. Ces interférences permettent de réaliser le contrôle cohérent de la probabilité d'excitation. Dans le cas des atomes, nous présentons les résultats des expériences réalisés sur la transition à un photon 4s 4p du potassium et à deux photons 6s 7d du césium. Deux régimes d'interférences sont mis en évidence : le régime d'interférences optiques qui se produit quand les deux impulsions se chevauchent dans le temps et le régime d'interférences quantiques qui se produit quand les deux impulsons sont séparés dans le temps. Nous explorons le comportement de ces deux types d'interférences dans un grand nombre de situations originales (régime saturé, cas d'impulsions à dérive de fréquence, etc.) qui nous permettent de mieux comprendre les avantages et les limites de cette technique. Dans le cas des molécules, l'interaction de la séquence des deux impulsions conduit à l'interférence des paquets d'ondes vibrationnels. Nous analysons et discutons dans ce cas-là des effets d'une distribution thermique dans l'état initial sur le signal de contrôle cohérent.

  19. Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.

    2012-03-01

    It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with 1/(distance)2 when one represents the propagation in terms of spherical waves while it is independent of the distance if it is considered as a plane wave. In order to understand this puzzle, the propagation by a spherical wave form is reexamined. It is found that conversion of fields into particle (vice versa), via the field quantization process, explains several dilemma related with the radiation propagation.

  20. Real world ocean rogue waves explained without the modulational instability.

    PubMed

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-06-21

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas.

  1. Real world ocean rogue waves explained without the modulational instability

    PubMed Central

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-01-01

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas. PMID:27323897

  2. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  3. The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram

    NASA Astrophysics Data System (ADS)

    Janicijevic, L.

    1985-03-01

    Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.

  4. BetaPIX and GIT1 regulate HGF-induced lamellipodia formation and WAVE2 transport.

    PubMed

    Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide

    2009-05-08

    Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of betaPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of betaPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that betaPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.

  5. Spin waves in micro-structured yttrium iron garnet nanometer-thick films

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; ...

    2015-03-24

    Here, we investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of 40 nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spinwave amplitude of 10 μm was observed. This leads to an estimated Gilbert damping constant of α = (8.79 ± 0.73) x 10 $-$4, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. Furthermore, we compared the theoretically calculated spatial interference of waveguide modes to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.

  6. Intensification and refraction of acoustical signals in partially choked converging ducts

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1980-01-01

    A computer code based on the wave-envelope technique is used to perform detailed numerical calculations for the intensification and refraction of sound in converging hard walled and lined circular ducts carrying high mean Mach number flows. The results show that converging ducts produce substantial refractions toward the duct center for waves propagating against near choked flows. As expected, the magnitude of the refraction decreases as the real part of the admittance increases. The pressure wave pattern is that of interference among the different modes, and hence the variation of the magnitude of pressure refraction with frequency is not monotonic.

  7. Military Implications of Societal Vulnerabilities

    DTIC Science & Technology

    1973-01-01

    in negotiation, through expropriation, or by environmental smokescreens. Economic shock waves can interfere with price structures, alter consumer ... preferences and demands, reduce foreign exchange reserves, or destroy credit. Surpluses can be withheld from buyers. Biological agents can take their toll

  8. Genetics Home Reference: Bart-Pumphrey syndrome

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. Learn more about the gene ...

  9. Genetics Home Reference: palmoplantar keratoderma with deafness

    MedlinePlus

    ... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. Palmoplantar keratoderma with deafness can ...

  10. Dual-reference digital holographic interferometry for analyzing high-density gradients in fluid mechanics.

    PubMed

    Desse, Jean-Michel; Olchewsky, François

    2018-04-15

    This Letter proposes a dual-reference digital holographic interferometer for analyzing the high refractive index encountered in transonic and supersonic flows. For that, a Wollaston prism is inserted in the reference arm in order to simultaneously generate two orthogonally polarized reference waves. As a consequence, recorded interferograms contain two crossed and perpendicular interference patterns that give two orders fully separated in the Fourier spectrum. It is then possible to analyze a transparent object regardless of the orientation of the refractive index gradient using the two phase maps reconstructed with each of the two first interference orders. Fusion of the phase maps yields a single phase map in which the phase singularities are removed. Experimental results demonstrate the suitability of the proposed approach for analyzing shock waves in the unsteady wake flow around a circular cylinder at Mach 0.75.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Pedro, E-mail: pereyrapedro@gmail.com; Mendoza-Figueroa, M. G.

    Transport properties of electrons through biased double barrier semiconductor structures with finite transverse width w{sub y}, in the presence of a channel-mixing transverse electric field E{sub T} (along the y-axis), were studied. We solve the multichannel Schrödinger equation using the transfer matrix method and transport properties, like the conductance G and the transmission coefficients T{sub ij} have been evaluated as functions of the electrons' energy E and the transverse and longitudinal (bias) electric forces, f{sub T} and f{sub b}. We show that peak-suppression effects appear, due to the applied bias. Similarly, coherent interference of wave-guide states induced by the transversemore » field is obtained. We show also that the coherent interference of resonant wave-guide states gives rise to resonant conductance, which can be tuned to produce broad resonant peaks, implying operation frequencies of the order of 10 THz or larger.« less

  12. Reconstruction methods for phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raven, C.

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less

  13. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    PubMed

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  14. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  15. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  16. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    NASA Astrophysics Data System (ADS)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  17. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    PubMed

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  18. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  19. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  20. Phase-dependent above-barrier ionization of excited-state electrons.

    PubMed

    Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin

    2012-05-21

    The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.

  1. Thin transparent film characterization by photothermal reflectance (abstract)

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Wright, O. B.; Matsuda, O.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal reflectance methods have been intensively applied to the nondestructive testing of opaque thin films [D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996); C. Bento and D. P. Almond, Meas. Sci. Technol. 6, 1022 (1995); J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. Opt. 22, 3169 (1983)]. The basic principle is based on thermal wave interferometry: the opaque specimen is illuminated by a laser beam, periodically chopped at the frequency f, so as to generate a plane thermal wave in the surface region. This wave propagates in the film, approaches the rear interface (film-bulk), is partially reflected back, reaches the front surface, is again partially reflected back and so on, giving rise to thermal wave interference. A consequence of this interference is that the surface temperature may be enhanced (constructive interference) or reduced (destructive interference) by simply scanning the frequency f (that is, the thermal diffusion length μ=√D/πf ), so as to observe damped oscillations as a function of f; in practice only the first oscillation may be clearly resolved and used to measure either the film thickness d or the film thermal diffusivity D, and this situation occurs when μ≈d. In general, photothermal reflectance does not measure directly the surface temperature variation, but rather a directly related signal determined by the thermo-optic coefficients and the sample geometry; for detection it is common to monitor the optical reflectivity variation of a probe beam normally incident on the sample. If the thin film is partially transparent to the probe, the theory becomes more difficult [O. Matsuda and O. B. Wright, J. Opt. Soc. Am. B (in press)] and one should consider the probe beam multiple reflections in the thin film. The probe modulation is optically inhomogeneous due to the temperature-induced changes in refractive index. Although in the past the complexity of the analysis has impeded research in this field, we show how a general analytical method can be used to deal with photothermal reflectance data for transparent thin films. We apply this method to a thin film of silica on a silicon substrate [O. B. Wright, R. Li Voti, O. Matsuda, M. C. Larciprete, C. Sibilia, and M. Bertolotti, J. Appl. Phys. 91 5002 (2002)].

  2. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    NASA Astrophysics Data System (ADS)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  3. The spatial sensitivity of Sp converted waves-kernels and their applications

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Fischer, K. M.

    2017-12-01

    We have developed a framework for improved imaging of strong lateral variations in crust and upper mantle seismic discontinuity structure using teleseismic S-to-P (Sp) scattered waves. In our framework, we rapidly compute scattered wave sensitivities to velocity perturbations in a one-dimensional background model using ray-theoretical methods to account for timing, scattering, and geometrical spreading effects. The kernels accurately describe the amplitude and phase information of a scattered waveform, which we confirm by benchmarking against kernels derived from numerical solutions of the wave equation. The kernels demonstrate that the amplitude of an Sp converted wave at a given time is sensitive to structure along a quasi-hyperbolic curve, such that structure far from the direct ray path can influence the measurements. We use synthetic datasets to explore two potential applications of the scattered wave sensitivity kernels. First, we back-project scattered energy back to its origin using the kernel adjoint operator. This approach successfully images mantle interfaces at depths of 120-180 km with up to 20 km of vertical relief over lateral distances of 100 km (i.e., undulations with a maximal 20% grade) when station spacing is 10 km. Adjacent measurements sum coherently at nodes where gradients in seismic properties occur, and destructively interfere at nodes lacking gradients. In cases where the station spacing is greater than 10 km, the destructive interference can be incomplete, and smearing along the isochrons can occur. We demonstrate, however, that model smoothing can dampen these artifacts. This method is relatively fast, and accurately retrieves the positions of the interfaces, but it generally does not retrieve the strength of the velocity perturbations. Therefore, in our second approach, we attempt to invert directly for velocity perturbations from our reference model using an iterative conjugate-directions scheme.

  4. Imaging electron wave functions inside open quantum rings.

    PubMed

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  5. Multi-Orbital contributions in High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Guehr, Markus

    2009-05-01

    The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  6. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  7. Studying Biological Rhythms of Person's Skin-galvanic Reaction and Dynamics of Light Transmission by Isomeric Substance in Space Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glushko, Vladimir

    2004-01-01

    Intensity and amplitude of human functional systems and human most important organs are wavelike, rhythmic by nature. These waves have constant periodicity, phase and amplitude. The mentioned characteristics can vary, however their variations have a pronounced reiteration in the course of time. This indicates a hashing of several wave processes and their interference. Stochastic changes in wave processes characteristics of a human organism are explained either by 'pulsations' associated with hashing (superposition) of several wave processes and their interference, or by single influence of environmental physical factors on a human organism. Human beings have respectively periods of higher and lower efficiency, state of health and so on, depending not only of environmental factors, but also of 'internal' rhythmic factor. Sometimes peaks and falls periodicity of some or other characteristics is broken. Disturbance of steady-state biological rhythms is usually accompanied by reduction of activity steadiness of the most important systems of a human organism. In its turn this has an effect on organism's adaptation to changing living conditions as well as on general condition and efficiency of a human being. The latter factor is very important for space medicine. Biological rhythmology is a special branch of biology and medicine, it studies rhythmic activity mechanisms of organs, their systems, individuals and species. Appropriate researches were also carried out in space medicine.

  8. Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)

    2002-01-01

    For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.

  9. Photon beam asymmetry Σ in the reaction γ → p → pω for Eγ = 1.152 to 1.876 GeV

    NASA Astrophysics Data System (ADS)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Klein, F. J.; Anisovich, A. V.; Klempt, E.; Nikonov, V. A.; Sarantsev, A.; Adhikari, K. P.; Adhikari, S.; Adikaram, D.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Cao, T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.

    2017-10-01

    Photon beam asymmetry Σ measurements for ω photoproduction in the reaction γ → p → ωp are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between t-channel meson exchange and s- and u-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the Σ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the JP = 3 /2+ partial wave), as well as the resonant portions of the smaller partial waves with JP = 1 /2-, 3 /2-, and 5 /2+.

  10. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty

    2002-01-01

    For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.

  11. LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Thompson, David E.; Thirumalainambi, Rajkumar

    2006-01-01

    This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.

  12. Spatial effects in intrinsic optical bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haus, J.W.; Wang, L.; Scalora, M.

    Using the nonlinear oscillator model as a prototype medium exhibiting intrinsic optical bistability, we investigate the inhomogeneous absorption of the electromagnetic field. The forward- and backward-field amplitudes and diffraction effects are retained in the mathematical description. Analytic results are given in the limit of plane-wave propagation under steady-state conditions. The transmitted and reflected intensity exhibit a structure that is determined by the spatial inhomogeneity of the absorption in the longitudinal direction. The transmitted intensity has a structure that is dependent on the length of the medium. The reflected intensity has an interference structure from light reflected at the front surfacemore » and the internal boundary separating a high-polarization from a low-polarization branch. A degenerate-four-wave-mixing experiment is predicted to be a very sensitive probe of the internal boundary and the interference between the forward and backward field. The phase-conjugate signal develops large oscillations as the input field is varied. Numerical results for diffraction effects are also given, and we find that the plane-wave results for the center of the beam remain reliable down to Fresnel numbers of order unity and in media that are smaller than the linear absorption length.« less

  13. HOMER: the Holographic Optical Microscope for Education and Research

    NASA Astrophysics Data System (ADS)

    Luviano, Anali

    Holography was invented in 1948 by Dennis Gabor and has undergone major advancements since the 2000s leading to the development of commercial digital holographic microscopes (DHM). This noninvasive form of microscopy produces a three-dimensional (3-D) digital model of a sample without altering or destroying the sample, thus allowing the same sample to be studied multiple times. HOMER-the Holographic Optical Microscope for Education and Research-produces a 3-D image from a two-dimensional (2-D) interference pattern captured by a camera that is then put through reconstruction software. This 2-D pattern is created when a reference wave interacts with the sample to produce a secondary wave that interferes with the unaltered part of the reference wave. I constructed HOMER to be an efficient, portable in-line DHM using inexpensive material and free reconstruction software. HOMER uses three different-colored LEDs as light sources. I am testing the performance of HOMER with the goal of producing tri-color images of samples. I'm using small basic biological samples to test the effectiveness of HOMER and plan to transition to complex cellular and biological specimens as I pursue my interest in biophysics. Norwich University.

  14. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping

    2017-01-01

    A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.

  15. Extinction of quasiparticle interference in underdoped cuprates with coexisting order

    NASA Astrophysics Data System (ADS)

    Andersen, Brian M.; Hirschfeld, P. J.

    2009-04-01

    Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].

  16. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  17. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  18. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.

    PubMed

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-06-16

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.

  19. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  20. Simulated Assessment of Interference Effects in Direct Sequence Spread Spectrum (DSSS) QPSK Receiver

    DTIC Science & Technology

    2014-03-27

    bit error rate BPSK binary phase shift keying CDMA code division multiple access CSI comb spectrum interference CW continuous wave DPSK differential... CDMA ) and GPS systems which is a Gold code. This code is generated by a modulo-2 operation between two different preferred m-sequences. The preferred m...10 SNR Sim (dB) S N R O ut ( dB ) SNR RF SNR DS Figure 3.26: Comparison of input S NRS im and S NROut of the band-pass RF filter (S NRRF) and

  1. Atom Interferometry in a Warm Vapor

    DOE PAGES

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...

    2017-04-17

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  2. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  3. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  4. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  5. Laser speckle visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-03-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).

  6. Wave cancellation small waterplane multihull ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.C.; Wilson, M.B.

    1994-12-31

    A new patented wave cancellation multihull ship concept (Hsu, 1993) is presented. Such ships consist of various arrangements of tapered hull elements. The tapered hull design provides a small waterplane area for enhanced seakeeping while producing smaller surface disturbances. In addition, proper arrangement of hull elements provides favorable wave interference effects. The saving in effective horsepower with a realistic wave cancellation tri-hull arrangement, was found to be about 30 percent compared to small waterplane area twin-hull ships. Power reductions of this magnitude translate to considerably fuel consumptions and improved range. Applications to several ship types, such as for fast ferries,more » cruise and container ships, appear promising, wherever good seakeeping, large deck space and high speed in the design.« less

  7. Milestones in Broadcasting: Antennas.

    ERIC Educational Resources Information Center

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  8. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  9. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  10. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  11. Towards anti-causal Green's function for three-dimensional sub-diffraction focusing

    NASA Astrophysics Data System (ADS)

    Ma, Guancong; Fan, Xiying; Ma, Fuyin; de Rosny, Julien; Sheng, Ping; Fink, Mathias

    2018-06-01

    In causal physics, the causal Green's function describes the radiation of a point source. Its counterpart, the anti-causal Green's function, depicts a spherically converging wave. However, in free space, any converging wave must be followed by a diverging one. Their interference gives rise to the diffraction limit that constrains the smallest possible dimension of a wave's focal spot in free space, which is half the wavelength. Here, we show with three-dimensional acoustic experiments that we can realize a stand-alone anti-causal Green's function in a large portion of space up to a subwavelength distance from the focus point by introducing a near-perfect absorber for spherical waves at the focus. We build this subwavelength absorber based on membrane-type acoustic metamaterial, and experimentally demonstrate focusing of spherical waves beyond the diffraction limit.

  12. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.

    PubMed

    Liu, Liqin; Luo, Yunfei; Zhao, Zeyu; Zhang, Wei; Gao, Guohan; Zeng, Bo; Wang, Changtao; Luo, Xiangang

    2016-07-28

    In this paper, large area and deep sub-wavelength interference patterns are realized experimentally by using odd surface plasmon modes in the metal/insulator/metal structure. Theoretical investigation shows that the odd modes possesses much higher transversal wave vector and great inhibition of tangential electric field components, facilitating surface plasmon interference fringes with high resolution and contrast in the measure of electric field intensity. Interference resist patterns with 45 nm (∼λ/8) half-pitch, 50 nm depth, and area size up to 20 mm × 20 mm were obtained by using 20 nm Al/50 nm photo resist/50 nm Al films with greatly reduced surface roughness and 180 nm pitch exciting grating fabricated with conventional laser interference lithography. Much deeper resolution down to 19.5 nm is also feasible by decreasing the thickness of PR. Considering that no requirement of expensive EBL or FIB tools are employed, it provides a cost-effective way for large area and nano-scale fabrication.

  13. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  14. On cuff imbalance and tripolar ENG amplifier configurations.

    PubMed

    Triantis, Iasonas F; Demosthenous, Andreas; Donaldson, Nick

    2005-02-01

    Electroneurogram (ENG) recording techniques benefit from the use of tripolar cuffs because they assist in reducing interference from sources outside the cuff. However, in practice the performance of ENG amplifier configurations, such as the quasi-tripole and the true-tripole, has been widely reported to be degraded due to the departure of the tripolar cuff from ideal behavior. This paper establishes the presence of cuff imbalance and investigates its relationship to cuff asymmetry, cuff end-effects and interference source proximity. The paper also presents a comparison of the aforementioned amplifier configurations with a new alternative, termed the adaptive-tripole, developed to automatically compensate for cuff imbalance. The output signal-to-interference ratio of the three amplifier configurations were compared in vivo for two interference signals (stimulus artifact and M-wave) superimposed on compound action potentials. The experiments showed (for the first time) that the two interference signals result in different cuff imbalance values. Nevertheless, even with two distinct cuff imbalances present, the adaptive-tripole performed better than the other two systems in 61.9% of the trials.

  15. Interference pattern period measurement at picometer level

    NASA Astrophysics Data System (ADS)

    Xiang, Xiansong; Wei, Chunlong; Jia, Wei; Zhou, Changhe; Li, Minkang; Lu, Yancong

    2016-10-01

    To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.

  16. Minimum Wave Drag for Arbitrary Arrangements of Wings and Bodies

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1957-01-01

    Studies of various arrangements of wings and bodies designed to provide favorable wave interference at supersonic speeds lead to the problem of determining the minimum possible valve of the wave resistance obtainable by any disposition of the elements of an aircraft within a definitely prescribed region. Under the assumptions that the total lift and the total volume of the aircraft are given, conditions that must be satisfied if the drag is to be a minimum are found. The report concludes with a discussion of recent developments of the theory which lead to an improved understanding of the drag associated with the production of lift.

  17. Bell Test experiments explained without entanglement

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    2011-04-01

    by Jeffrey H. Boyd. Jeffreyhboyd@gmail.com. John Bell proposed a test of what was called "local realism." However that is a different view of reality than we hold. Bell incorrectly assumed the validity of wave particle dualism. According to our model waves are independent of particles; wave interference precedes the emission of a particle. This results in two conclusions. First the proposed inequalities that apply to "local realism" in Bell's theorem do not apply to this model. The alleged mathematics of "local realism" is therefore wrong. Second, we can explain the Bell Test experimental results (such as the experiments done at Innsbruck) without any need for entanglement, non-locality, or particle superposition.

  18. Soldier Perceptions of the Rapid Decision Trainer

    DTIC Science & Technology

    2005-05-01

    utility. "* Integrated 3D spatialized sound, supporting SCORM Integration the most common sound formats including Wav and Midi . A major objective of this...34low" and "very low" ratings in a similar manner for the lowest ratings categories. Pre-LFX Questionnaire Overall training value of the RDT. Lieutenants...on school computers and has issues are similar to ActiveX, however applets issued the RDT on CD-ROM to each IOBC student installed on the client

  19. Malware Memory Analysis of the IVYL Linux Rootkit: Investigating a Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-04-01

    report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet

  20. Optimization of WAVE2 complex–induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac

    PubMed Central

    Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi

    2006-01-01

    WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP3-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP3. PMID:16702231

  1. Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi

    2006-05-22

    WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP(3)-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP(3).

  2. About the Nature of a Coherence of Light Waves

    NASA Astrophysics Data System (ADS)

    Demyaneko, P. O.; Zinkovskiy, Y. F.; Savenko, Y. V.

    The confrontation of corpuscular and wave hypotheses was not partly stacked in frameworks of the uniform theory. Fundamental works of Fresnel and Fraunhofer on a diffraction of light have erected a wave theory in a rank of dominant true. The wave theory did not so effectively explain developments of corpuscular properties of a light. Its feeble place was also necessity for concept "coherence", introduced for explanation of a light interference. The wave coherence is properly understood as waves ability to interfere. The problem of a light coherence continues to be interesting for investigators [L], but clear understanding of its nature is not yet appeared. Because, it is unconvincing to consider an attribution to the act of separate atom radiation of electromagnetic waves "zug" of a few meters length as explanation of the coherence nature, when it has become possible to generate light pulses by duration ˜ 10 -15 s. Let's note there is the spatial separation of a primary luminous flux on two secondary ones in a basis of all ways of deriving of coherent luminous fluxes. And these fluxes are able to interfere when are brought together. Their coherence was explained that at partitioning each "zug" was bisected, and at joining again met mutual coherent "its halves". There was not disputed the question, how happens " separation of each waves "zug" in halves". M. Plank postulated (1900) heated bodies radiate electromagnetic waves not continuously, but by separate portions he called "quantums" of energy. Its have a quantity is proportional to frequency of electromagnetic waves. A. Einstein has entered (1905) a hypothesis of light quantums -- light is indeed generated as quantums, and in further it exists as a flux of quantums and interacts with matter also, as a flux of separate quantums. The term "photon" was entered by G.N. Lewis (1929) properly for emphasising of light quantums and that one underlined corpuscularity of a light. At investigation of an atom structure there was set (E. Rutherford, N. Bohr, 1911) quantums are generated in atoms at transitions of excited electrons from higher energy levels onto lowest levels. At that, there are radiated quantums-waves of electromagnetic energy into environmental space. In different light sources "working body" has the "own" structure of energy levels defining spectral characteristics of these sources. So, the development of representations about the nature of a light returns to a corpuscular hypothesis. It has become clear, that the light organically combines in itself both property of waves and the properties of particles. It depends on requirements of experiment which one from developments will be prevalent. Inseparable unity of corpuscular and wave properties is proper for all microparticles (a hypothesis De Brogle, 1924) and has received a title of "wave-corpuscle dualism". Let's make a common view about "sizes" of a photon. As was mentioned, the light pulses can have duration ˜ 10 -15 s. Spatial length of such pulses in direction of motion ˜ 10 -6 m, that comparable with a light wavelength λ . It is possible to suspect that it will be a size of a photon in direction of its propagation. An estimate of "cross" of the sizes of a photon we shall obtain by analyzing of light diffraction on a narrow slot. The angular size of central diffraction peak at decreasing of width of a slot b is increased, and it reaches 180 at b = λ . Then the light intensity promptly impinges behind it. From this it is possible to assume, that the cross sectional dimensions of photon also is comparable with λ . It is necessary to clear understand, that photon, as the wave formation, does not have sharp borders. It is possible to speak only about the sizes of area containing a dominant share of photon energy. So, photon is a spatial localized electromagnetic perturbation, that allows to allot it with properties of a particle. Essential properties of a photon are indivisibility and existence only in a motion. So, the light is a photons flux: both light wave and light electromagnetic field consist of final number of photons. At that, it is important to remember that in any light source along with spontaneous mechanism it also operates a mechanism of induced radiation, generating identical (coherent) quantums. Due to it, there is radiated a partially coherent flux, consisting of large or small groups of quantums ("quantum packets"), from any light source. In limits of a separate packet its component quantums are coherent, because all of them are originated by one quantum which has appeared spontaneously, which induced occurrence of other quantums of this packet, passing by other excited atoms. The representation about quantum packets gives clear physical explanation to concept of "light waves zugs". Quantum packet is that "zug of waves". "Quality" of a light source (in sense of its coherence) is determined by sizes of quantum packets -- the larger they the more qualitative source, radiating them. There are understandable a better coherence of a gas light sources: the atoms in gas are arranged on large distances and do not hinder for spontaneously generated light quantum to overcome without absorption or dispersion that large distance, challenging on it an induced radiation of other excited atoms. The low coherence of glow-discharge tubes is stipulated by that the radiation in them goes only from surface layer of atoms and the requirements for development of the mechanism of induced radiation are unfavorable. It is also obvious the high coherence of a laser radiation due to a positive optical back coupling. The coherent quantums of one quantum packet exist a long time inside the resonator; they are reproducing there during all this time. Due to this the lasers are capable to generate multi-km quantum packets ("zugs"). By the way, it could not to explain "by emissive opportunities" of one atom. It is understandable a division of quantum packets on semi transparent mirrors: the part of quantums of each packet simply transits through a semi transparent mirrors, and remaining ones are simply reflected from it. The model of quantum packets gives clear explanation of coherence parameters of light flux. A length of coherence is a spatial extent of a quantum packet in direction of its propagation. A coherence time is a time of flight of quantum packet by a fixed spectator. A coherence radius (size) is a spatial extent of a quantum packet in direction, perpendicular to direction of its propagation. A volume of coherence is simply a volume of quantum packet. Separately it is necessary to tell about the fact of increasing of coherence radius of a light flux, propagating in space. Iterated, including by us, assertion: "at induced transitions there are generated the same quantums as ones induced them". It is not necessary to understand it too literally. What perfect was a light source, the spectral line of its radiation always has final width. That means, there is a certain frequency dispersion of quantums, generated by source, or modules of their wave vectors. Apparently, it is necessary to expect as well certain dispersion of particular straggling of wave vectors directions inside separate quantum packets. Beginning with experimentally obtained radius of sunlight coherence on surface of the Earth, it was determined a value of angular divergence of quantum packets. With the help of the obtained thus value, there were calculated values of coherence radiuses of light, coming on the Earth from more remote stars. Obtained calculated values are well compared with experimentally obtained values of light coherence radiuses for these stars. Starting from proposed concept of quantum packets, we have given explanation to such development of wave properties of the light as interference, in particular, its variety, when superimposed coherent fluxes interfere. It is not less important from a point of view of the coordination of their explanations with our representations about luminous flux structure, there is an analysis also such developments of wave properties of light, as its interference on thin films, "Newton's ringes", etc. For explanation of this variety of interference there is no need for concept coherence, as in such interference is watched always and for a light from any sources. There is a special interest to phenomenas bound with diffraction of light, from a point of view of quantum packets model. The prime task here is to give a corresponding explanation to the content both senses of Huygens' and Huygens-Fresnel principles. These problems will be considered in following our works. [L] Mandel L., Wolf E. Optical Coherence and Quantum Optics / Cambrige, 1995

  3. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  4. Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers

    NASA Technical Reports Server (NTRS)

    Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.

    1984-01-01

    A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

  5. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.

    PubMed

    Fedele, Francesco; Lugni, Claudio; Chawla, Arun

    2017-09-11

    We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.

  6. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.

  7. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    NASA Astrophysics Data System (ADS)

    Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano

    2017-04-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.

  8. New Editions for the Apple II of the Chelsea Science Simulations.

    ERIC Educational Resources Information Center

    Pipeline, 1983

    1983-01-01

    Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)

  9. Holographic evaluation of fatigue cracks by a compressive stress (HYSTERESIS) technique

    NASA Technical Reports Server (NTRS)

    Freska, S. A.; Rummel, W. D.

    1974-01-01

    Holographic interferometry compares unknown field of optical waves with known one. Differences are displayed as interference bands or fringes. Technique was evaluated on fatigue-cracked 2219-T87 aluminum-alloy panels. Small cracks were detected when specimen was incrementally unloaded.

  10. Rayleigh wave acoustic emission during crack propagation in steel

    NASA Astrophysics Data System (ADS)

    Horne, Michael R.

    2003-07-01

    An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the SSP.

  11. Rayleigh wave acoustic emission during crack propagation in steel

    NASA Astrophysics Data System (ADS)

    Horne, Michael R.

    An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the SSP.

  12. Influence of damping on quantum interference - An exactly soluble model

    NASA Technical Reports Server (NTRS)

    Caldeira, A. O.; Leggett, A. J.

    1985-01-01

    This paper reports the result of a calculation which shows the effect of damping on the quantum interference of two Gaussian wave packets in a harmonic potential. The influence-functional method, which seems to be the most appropriate one for this kind of calculation, is used. It is shown that quantum-interference effects are severely diminished by the presence of damping even when its influence on the system is only light. The corrections to the undamped formulas are always expressible in terms of the phenomenological damping constant, the temperature (in the high-temperature limit), the cutoff frequency of the reservoir oscillators, and the mean number of quanta of energy intially present in the system. Both weakly and strongly damped systems are analyzed in the regime of low and high temperatures.

  13. The Optical Society's 2016 topical meeting on optical interference coatings: introduction.

    PubMed

    Ristau, Detlev; Li, Li; Sargent, Robert; Sytchkova, Anna

    2017-02-01

    This feature issue of Applied Optics is dedicated to the 13th Topical Meeting on Optical Interference Coatings, which was held June 19-24, 2016, in Tucson, Arizona, USA. The conference, taking place every three years, is a focal point for global technical interchange in the field of optical interference coatings and provides premier opportunities for people working in the field to present their new advances in research and development. Papers presented at the meeting covered a broad range of topics, including fundamental research on coating design theory, new materials, and deposition and characterization technologies, as well as the vast and growing number of applications in electronic displays, communication, optical instruments, high power and ultra-fast lasers, solar cells, space missions, gravitational wave detection, and many others.

  14. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  15. c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading.

    PubMed

    Stuart, Jeremy R; Gonzalez, Francis H; Kawai, Hidehiko; Yuan, Zhi-Min

    2006-10-20

    The Wiskott-Aldrich syndrome-related protein WAVE2 promotes Arp2/3-dependent actin polymerization downstream of Rho-GTPase activation. The Abelson-interacting protein-1 (Abi-1) forms the core of the WAVE2 complex and is necessary for proper stimulation of WAVE2 activity. Here we have shown that the Abl-tyrosine kinase interacts with the WAVE2 complex and that Abl kinase activity facilitates interaction between Abl and WAVE2 complex members. We have characterized various interactions between Abl and members of the WAVE2 complex and revealed that Abi-1 promotes interaction between Abl and WAVE2 members. We have demonstrated that Abl-dependent phosphorylation of WAVE2 is necessary for its activation in vivo, which is highlighted by the findings that RNA interference of WAVE2 expression in Abl/Arg-/- cells has no additive effect on the amount of membrane ruffling. Furthermore, Abl phosphorylates WAVE2 on tyrosine 150, and WAVE2-deficient cells rescued with a Y150F mutant fail to regain their ability to ruffle and form microspikes, unlike cells rescued with wild-type WAVE2. Together, these data show that c-Abl activates WAVE2 via tyrosine phosphorylation to promote actin remodeling in vivo and that Abi-1 forms the crucial link between these two factors.

  16. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  17. Real-time shear velocity imaging using sonoelastographic techniques.

    PubMed

    Hoyt, Kenneth; Parker, Kevin J; Rubens, Deborah J

    2007-07-01

    In this paper, a novel sonoelastographic technique for estimating local shear velocities from propagating shear wave interference patterns (termed crawling waves) is introduced. A relationship between the local crawling wave spatial phase derivatives and local shear wave velocity is derived with phase derivatives estimated using an autocorrelation technique. Results from homogeneous phantoms demonstrate the ability of sonoelastographic shear velocity imaging to quantify the true underlying shear velocity distributions as verified using time-of-flight measurements. Heterogeneous phantom results reveal the capacity for lesion detection and shear velocity quantification as validated from mechanical measurements on phantom samples. Experimental results obtained from a prostate specimen illustrated feasibility for shear velocity imaging in tissue. More importantly, high-contrast visualization of focal carcinomas was demonstrated introducing the clinical potential of this novel sonoelastographic imaging technique.

  18. Holographic nondestructive tests performed on composite samples of ceramic-epoxy-fiberglass sandwich structure

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.; Liu, H. K.

    1974-01-01

    When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented.

  19. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  20. Readout of the atomtronic quantum interference device

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  1. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  2. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  3. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  4. A universal matter-wave interferometer with optical ionization gratings in the time-domain

    PubMed Central

    Haslinger, Philipp; Dörre, Nadine; Geyer, Philipp; Rodewald, Jonas; Nimmrichter, Stefan; Arndt, Markus

    2015-01-01

    Matter-wave interferometry with atoms1 and molecules2 has attracted a rapidly growing interest throughout the last two decades both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere3-11. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings12,13. We observe quantum interference of fast molecular clusters, with a composite de Broglie wavelength as small as 275 fm. Optical ionization gratings are largely independent of the specific internal level structure and are therefore universally applicable to different kinds of nanoparticles, ranging from atoms to clusters, molecules and nanospheres. The interferometer is sensitive to fringe shifts as small as a few nanometers and yet robust against velocity-dependent phase shifts, since the gratings exist only for nanoseconds and form an interferometer in the time-domain. PMID:25983851

  5. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  6. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  7. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    DOE PAGES

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; ...

    2016-08-08

    In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm –1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less

  8. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.

    PubMed

    Lin, Chun-I; Lee, Yung-Chun

    2014-08-01

    Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  10. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices.

    PubMed

    Ravichandran, Jayakanth; Yadav, Ajay K; Cheaito, Ramez; Rossen, Pim B; Soukiassian, Arsen; Suresha, S J; Duda, John C; Foley, Brian M; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W; Moore, Joel E; Muller, David A; Schlom, Darrell G; Hopkins, Patrick E; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A

    2014-02-01

    Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.

  11. An assessment of thermal, wind, and planetary wave changes in the middle and lower atmosphere due to 11-year UV flux variations

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Alpert, J. C.; Geller, M. A.

    1985-01-01

    Hines (1974) speculated that solar-induced modifications of the middle and upper atmosphere may alter the transmissivity of the stratosphere to upwardly propagating atmospheric waves. It was suggested that subsequent constructive or destructive interference may result in a change of phase or amplitude of these waves in the troposphere leading to weather or climate changes. The present investigation has the objective to bring together both radiative transfer and planetary wave studies in an effort to assess specifically whether Hines mechanism can be initiated by the solar ultraviolet flux variability assumed to be associated with the 11-year solar cycle. The obtained results suggest that the presently studied mechanism, which links solar-induced zonal wind changes in the stratosphere and mesosphere to planetary wave changes in the troposphere, is not strong enough to cause substantive changes in the troposphere.

  12. An SU-8 liquid cell for surface acoustic wave biosensors

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Friedt, Jean-Michel; Bartic, Carmen; Campitelli, Andrew

    2004-08-01

    One significant challenge facing biosensor development is packaging. For surface acoustic wave based biosensors, packaging influences the general sensing performance. The acoustic wave is generated and received thanks to interdigital transducers and the separation between the transducers defines the sensing area. Liquids used in biosensing experiments lead to an attenuation of the acoustic signal while in contact with the transducers. We have developed a liquid cell based on photodefinable epoxy SU-8 that prevents the presence of liquid on the transducers, has a small disturbance effect on the propagation of the acoustic wave, does not interfere with the biochemical sensing event, and leads to an integrated sensor system with reproducible properties. The liquid cell is achieved in two steps. In a first step, the SU-8 is precisely patterned around the transducers to define 120 μm thick walls. In a second step and after the dicing of the sensors, a glass capping is placed manually and glued on top of the SU-8 walls. This design approach is an improvement compared to the more classical solution consisting of a pre-molded cell that must be pressed against the device in order to avoid leaks, with negative consequences on the reproducibility of the experimental results. We demonstrate the effectiveness of our approach by protein adsorption monitoring. The packaging materials do not interfere with the biomolecules and have a high chemical resistance. For future developments, wafer level bonding of the quartz capping onto the SU-8 walls is envisioned.

  13. How does a planet excite multiple spiral arms?

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-01-01

    Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.

  14. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  15. Formation of nanotunnels inside a resist film in laser interference lithography.

    PubMed

    Wei, Qi; Hu, Fanhua; Wang, Liyuan

    2015-05-19

    A few kinds of 2-diazo-1-naphthoquinone-4-sulfonates of poly(4-hydroxylstyrene) were prepared to form one-component i-line photoresists. In the laser interference lithography experiments of some of the photoresists, nanotunnels were observed to be aligned in the interior of the resist film. The shape and size of the nanotunnels remain virtually unchanged even under an increased exposure dose, indicating that the exposure energy is confined within the tunnel space. The formation of the nanotunnels results from the effect of standing waves and the permeation of developer from the surface deep into the resist films.

  16. Interference patterns of a horizontal electric dipole over layered dielectric media.

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Simmons, G.

    1973-01-01

    Interference patterns for electromagnetic fields due to a subsurface reflector below a layered lossy dielectric are calculated with the geometrical optics approximation for use in interpreting data to be collected on the moon by Apollo 17 as well as data currently being obtained on terrestrial glaciers. The radiating antenna lies on the surface. All six field components are calculated and studied. For the endfire solutions, the peak of the first reflected wave is found to be different from that of the broadside ones. To facilitate a physical discussion, we plotted the radiation patterns due to the antenna on the surface.

  17. Summaries of Papers Presented at the Short Wavelength Coherent Radiation: Generation and Applications Topical Meeting Held in Cape Cod, Massachusetts on September 26-29, 1988

    DTIC Science & Technology

    1989-03-01

    characteristics of the plasma. (p. 75) xi Hx transition at 54.19 A is reported. (p. 86) TuC20 Quantum Mechanical Interference in Four-Wave TuC28 Gain Measurement...E.MixingtK.ctivH.iBaldwinenAustralean Ntwoiofenal untue Miura. Y. Kitagawa, K. Nishihara, Y. Kato. H. Nishimura. C. and destructive interference between...Incidence Optics for Synchrotron TuC25 Spectra of Lead, Bismuth, Thorium, and Uranium X-Ray Lithography , R. J. Rosser, P. M. J. H. Wormell, R

  18. Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre

    1996-09-01

    An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

  19. Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajda, Mariusz

    2006-02-15

    Using a model many-body wave function I analyze the standard criterion for Bose-Einstein condensation and its relation to coherence properties of the system. I pay special attention to an attractive condensate under such a condition that a characteristic length scale of the spatial extension of its center of mass differs significantly from length scales of relative coordinates. I show that although no interference fringes are produced in the two-slit Young interference experiment performed on this system, fringes of a high visibility can be observed in a conditional simultaneous detection of two particles.

  20. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

Top