Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain
NASA Astrophysics Data System (ADS)
Farzadian, O.; Niry, M. D.
2018-09-01
We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.
The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers
NASA Astrophysics Data System (ADS)
Panahi, Nasser; Saviz, S.; Ghorannevis, M.
2017-12-01
In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.
Quantitative Evaluation of Delamination in Composites Using Lamb Waves
NASA Astrophysics Data System (ADS)
Michalcová, L.; Hron, R.
2018-03-01
Ultrasonic guided wave monitoring has become very popular in the area of structural health monitoring (SHM) of aerospace structures. Any possible type of damage must be reliably assessed. The paper deals with delamination length determination in DCB specimens using Lamb waves. An analytical equation based on the velocity dependence on variable thickness is utilized. The group velocity of the fundamental antisymmetric A0 mode rapidly changes in a particular range of the frequency-thickness product. Using the same actuation frequency the propagation velocity is different for delaminated structure. Lamb wave based delamination lengths were compared to the visually determined lengths. The method of the wave velocity determination proved to be essential. More accurate results were achieved by tracking the maximum amplitude of A0 mode than the first signal arrival. These findings are considered as the basis for the damage evaluation of complex structures.
Effects of geometrical parameters on thermal-hydraulic performance of wavy microtube
NASA Astrophysics Data System (ADS)
Khoshvaght-Aliabadi, Morteza; Chamanroy, Zohreh
2018-03-01
Laminar flow and heat transfer characteristics of water flow through wavy microtubes (WMTs) with different values of wave length ( l) and wave amplitude ( a) are investigated experimentally. The tested WMTs are fabricated from copper microtube with the internal diameter of 914 μm. Experiments encompass the Reynolds numbers from 640 to 1950. In order to validate the experimental setup and create a base line for comparison, initial tests are also carried out for a straight microtube. The results show that both the heat transfer coefficient and the pressure drop are strongly affected by the studied geometrical factors. For a given Reynolds number, these parameters increase as the wave length decreases and the wave amplitude increases. However, in the studied ranges, the effect of wave amplitude is more than that of wave length. A considerable thermal-hydraulic factor of 1.78 is obtained for a WMT with l = 14.3 mm and a = 6 mm. Finally, correlations are developed to predict the Colburn factor and friction factor of water flow in the WMTs.
2000-08-01
12345678901234567890123456789012345678901234567890123456789012345678901234567890 WAVL WAVE1 WAVE2 MULDV Name Units Typically Description WAVE1 µm 1.06 Wavelength used for...the calculation. Alternatively, one can specify either frequency or wavenumber by using a FREQ or WVNUM record instead of WAVL. If WAVE2 is not...specified, WAVE1 is the single wave- length used; if WAVE2 is specified, the modules will attempt to do their calculation for a range of wavelengths. There
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.
Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh
2013-01-28
Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.
Effect of canal length and curvature on working length alteration with WaveOne reciprocating files.
Berutti, Elio; Chiandussi, Giorgio; Paolino, Davide Salvatore; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano
2011-12-01
This study evaluated the working length (WL) modification after instrumentation with WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) reciprocating files and the incidence of overinstrumentation in relation to the initial WL. Thirty-two root canals of permanent teeth were used. The angles of curvature of the canals were calculated on digital radiographs. The initial WL with K-files was transferred to the matched WaveOne Primary reciprocating files. After glide paths were established with PathFile (Dentsply Maillefer, Ballaigues, Switzerland), canals were shaped with WaveOne Primary referring to the initial WL. The difference between the postinstrumentation canal length and the initial canal length was analyzed by using a fiberoptic inspection microscope. Data were analyzed with a balanced 2-way factorial analysis of variance (P < .05). Referring to the initial WL, 24 of 32 WaveOne Primary files projected beyond the experimental apical foramen (minimum-maximum, 0.14-0.76 mm). A significant decrease in the canal length after instrumentation (95% confidence interval ranging from -0.34 mm to -0.26 mm) was detected. The canal curvature significantly influenced the WL variation (F(1) = 30.65, P < .001). The interaction between the initial canal length and the canal curvature was statistically significant (F(2) = 4.38, P = .014). Checking the WL before preparation of the apical third of the root canal is recommended when using the new WaveOne NiTi single-file system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Richardson, J. D.; Liu, W.
2007-01-01
When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
Dual laser optical system and method for studying fluid flow
NASA Technical Reports Server (NTRS)
Owen, R. B.; Witherow, W. K. (Inventor)
1983-01-01
A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.
2018-04-01
In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.
Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories
NASA Astrophysics Data System (ADS)
Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid
2018-01-01
In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.
Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1974-01-01
Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
Non destructive examination of interface of molecular assembly
NASA Astrophysics Data System (ADS)
Perez, Guy; Richard, Isaline; Lecomte, Jean-Claude
2017-11-01
Molecular assembly interfaces can be characterised by mechanical testing and/or the interaction between waves and the interface. The disadvantage of the mechanical approach is that new defects may be produced at the interface, or existing defects may be destroyed. Using the interaction between waves and the interface is a non-destructive approach. But what kind of waves should be used? Electromagnetic waves in the visible range depend on wave attenuation in the material, infrared waves also depend on the thickness and X-ray waves have a too short a wave length to detect interface defects. In this article, the use of acoustic waves is proposed for non-destructive examination of molecular assembly interfaces. Acoustic wave propagation is very sensitive to variations in interface characteristics depending on whether the waves are reflected or transmitted. To improve the sensitivity and resolution of this technique, small wave lengths have been used with a scanning acoustic microscope (S.A.M.) with a band width from 1MHz to 400 MHz. After a short description of the principle of the method, results are given for different types of components. Different applications of acoustic microscopy are proposed for non-destructive examination of interfaces and defect detection in materials.
Schüler, D; Alonso, S; Torcini, A; Bär, M
2014-12-01
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Ill.
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Miller, M. S.; Liu, C. H.
1988-01-01
During 13 nights of Rayleigh lidar measurements at Urbana, Ill. in 1984 to 1986, thirty-six quasi-monochromatic gravity waves were observed in the 35 to 50 km altitude region of the stratosphere. The characteristics of the waves are compared with other lidar and radar measurements of gravity waves and the theoretical models of wave saturation and dissipation phenomena. The measured vertical wavelengths ranged from 2 to 11.5 km and the measured vertical phase velocities ranged from 10 to 85 cm/s. The vertical wavelengths and vertical phase velocities were used to infer observed wave periods which ranged from 100 to 1000 min and horizontal wavelengths which ranged from 70 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No significant seasonal variations were evident in the observed parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with wave periods, which is consistent with recent sodium lidar studies of quasi-monochromatic waves near the mesopause. An average amplitude growth length of 20.9 km for the rms wind perturbations was estimated from the data. Kinetic energy density associated with the waves decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.
NASA Astrophysics Data System (ADS)
Loot, A.; Hizhnyakov, V.
2018-05-01
A numerical study of the enhancement of the spontaneous parametric down-conversion in plasmonic and dielectric structures is considered. The modeling is done using a nonlinear transfer-matrix method which is extended to include vacuum fluctuations and realistic waves (e.g. Gaussian beam). The results indicate that in the case of short-range surface plasmon polaritons, the main limiting factor of the enhancement is the short length of the coherent buildup. In the case of long-range surface plasmon polaritons or dielectric guided waves, the very narrow resonances are the main limiting factor instead.
NASA Astrophysics Data System (ADS)
Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.
2018-03-01
In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.
Rod-cone interaction in light adaptation
Latch, M.; Lennie, P.
1977-01-01
1. The increment-threshold for a small test spot in the peripheral visual field was measured against backgrounds that were red or blue. 2. When the background was a large uniform field, threshold over most of the scotopic range depended exactly upon the background's effect upon rods. This confirms Flamant & Stiles (1948). But when the background was small, threshold was elevated more by a long wave-length than a short wave-length background equated for its effect on rods. 3. The influence of cones was explored in a further experiment. The scotopic increment-threshold was established for a short wave-length test spot on a large, short wave-length background. Then a steady red circular patch, conspicuous to cones, but below the increment-threshold for rod vision, was added to the background. When it was small, but not when it was large, this patch substantially raised the threshold for the test. 4. When a similar experiment was made using, instead of a red patch, a short wave-length one that was conspicuous in rod vision, threshold varied similarly with patch size. These results support the notion that the influence of small backgrounds arises in some size-selective mechanism that is indifferent to the receptor system in which visual signals originate. Two corollaries of this hypothesis were tested in further experiments. 5. A small patch was chosen so as to lift scotopic threshold substantially above its level on a uniform field. This threshold elevation persisted for minutes after extinction of the patch, but only when the patch was small. A large patch made bright enough to elevate threshold by as much as the small one gave rise to no corresponding after-effect. 6. Increment-thresholds for a small red test spot, detected through cones, followed the same course whether a large uniform background was long- or short wave-length. When the background was small, threshold upon the short wave-length one began to rise for much lower levels of background illumination, suggesting the influence of rods. This was confirmed by repeating the experiment after a strong bleach when the cones, but not rods, had fully recovered their sensitivity. Increment-thresholds upon small backgrounds of long or short wave-lengths then followed the same course. PMID:894602
The exact solution of a four-body Coulomb problem
NASA Astrophysics Data System (ADS)
Ray, Hasi
2018-03-01
The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Assessing Controls on the Geometry and Dimensions of Modern Barrier Islands
NASA Astrophysics Data System (ADS)
Mulhern, J.; Johnson, C. L.; Martin, J. M.
2015-12-01
Barrier islands are highly ephemeral features, shaped by wave, tide, and storm energy. The processes that govern the size, shape, and motion of barrier islands are not well constrained, yet central to coastal dynamics. While the global distribution of barrier islands has been mapped and assessed, there is little consensus on the forces controlling barrier island formation, motion, or preservation. This study presents a new semi-global database of modern barrier islands to better understand their morphology and spatial distribution. We have mapped, in Google Earth, the subaerial extent of >350 barrier islands and spits, measuring spatial characteristic such as exposed area, perimeter, length, and width. These objects are cross-referenced with parameters that potentially control morphology, including tidal range, wave height, climate, distance from the continental shelf, proximity to fluvial output, and tectonic setting. This approach provides a more optimal framework to assess controls on coastal features, including barrier island morphology, and to investigate potential geometric scaling relationships. Preliminary analysis shows trends in the spatial characteristics of barrier islands. There is a strong linear relationship between the perimeter and length (y= -0.59 + 0.42x, R2=0.95). Linear trends also relate length to area when the data are separated by tidal range to wave height ratio. Assessment of barrier island shape supports the hypothesis of Hayes (1979) that barrier islands in wave-dominated settings are long and linear while those in mixed energy setting are more rounded. The barrier islands of the Texas Gulf of Mexico are larger than the global average for the database, with distinctly longer length values (41.16 km vs. 15.77 km respectively) and larger areas (103.81 km2 vs. 42.14 km2 respectively). Initial assessment shows that tidal range and wave height are primary controls barrier island dimensions. Future work will consider climate, latitude, fluvial input, and tectonic regime as additional factors. Assessing modern barrier islands will lend insight into potential paleomorphodynamic relationships and help determine how islands are transferred into the rock record, with implications for sequence stratigraphy, subsurface reservoirs, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, D.; Alonso, S.; Bär, M.
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less
Internal wave observations made with an airborne synthetic aperture imaging radar
NASA Technical Reports Server (NTRS)
Elachi, C.; Apel, J. R.
1976-01-01
Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
The ISEE-C plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.
1978-01-01
The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
2016-03-24
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasmamore » temperature and the Langmuir wave-length.« less
Multitude of core-localized shear Alfvén waves in a high-temperature fusion plasma.
Nazikian, R; Berk, H L; Budny, R V; Burrell, K H; Doyle, E J; Fonck, R J; Gorelenkov, N N; Holcomb, C; Kramer, G J; Jayakumar, R J; La Haye, R J; McKee, G R; Makowski, M A; Peebles, W A; Rhodes, T L; Solomon, W M; Strait, E J; Vanzeeland, M A; Zeng, L
2006-03-17
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.
RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com
2015-02-10
We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20,more » with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.« less
NASA Astrophysics Data System (ADS)
Shi, Zhi-Dong; Lin, Jian-Qiang; Bao, Huan-Huan; Liu, Shu; Xiang, Xue-Nong
2008-03-01
A photoelectric measurement system for measuring the beat length of birefringence fiber is set up including a set of rotating-wave-plate polarimeter using single photodiode. And two improved cutback methods suitable for measuring beat-length within millimeter range of high birefringence fiber are proposed through data processing technique. The cut length needs not to be restricted shorter than one centimeter so that the auto-cleaving machine is freely used, and no need to carefully operate the manually cleaving blade with low efficiency and poor success. The first method adopts the parameter-fitting to a saw-tooth function of tried beat length by the criterion of minimum square deviations, without special limitation on the cut length. The second method adopts linear-fitting in the divided length ranges, only restrict condition is the increment between different cut lengths less than one beat-length. For a section of holey high-birefringence fiber, we do experiments respectively by the two methods. The detecting error of beat-length is discussed and the advantage is compared.
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
Millimeter-Wave Voltage-Controlled Oscillators in 0.13-micrometer CMOS Technology
2006-06-01
controlled oscillators. Varactor , transistor, and in- ductor designs are optimized to reduce the parasitic capacitances. An investigation of tradeoff between...quality factor and tuning range for MOS varactors at 24 GHz has shown that the polysilicon gate lengths between 0.18 and 0.24 m result both good...millimeter wave, MOS varactor , quality factor, transmission line, voltage-controlled oscillator (VCO). I. INTRODUCTION WITH THE RAPID advance of high
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
HIRASAWA, Shun; SHIMIZU, Miki; MARUI, Yuumi; KISHIMOTO, Miori; OKUNO, Seiichi
2014-01-01
We designed a new method of measuring the length of the ulnar nerve and determining standard values for F-wave parameters of the ulnar nerve in clinically normal beagles. Nerve length must be precisely measured to determine F-wave latency and conduction velocity. The length of the forelimb has served as the length of the ulnar nerve for F-wave assessments, but report indicates that F-wave latency is proportional to the length of the pathway traveled by nerve impulses. Therefore, we measured the surface distance from a stimulus point to the spinous process of the first thoracic vertebra (nerve length 1) and the anterior horn of the scapula (nerve length 2) as landmarks through the olecranon and the shoulder blade acromion. The correlation coefficients between the shortest F-wave latency and the length of nerves 1, 2 or the forelimb were 0.61, 0.7 and 0.58. Nerve length 2 generated the highest value. Furthermore, the anterior horn of the scapula was easily palpated in any dog regardless of well-fed body. We concluded that nerve length 2 was optimal for measuring the length of the ulnar nerve. PMID:25649942
Development of Procedures for Computing Site Seismicity
1993-02-01
surface wave magnitude when in the range of 5 to 7.5. REFERENCES Ambraseys, N.N. (1970). "Some characteristic features of the Anatolian fault zone...geology seismicity and environmental impact, Association of Engineering Geologists , Special Publication. Los Angeles, CA, University Publishers, 1973... Geologists ) Recurrenc.e Recurrence Slip Intervals (yr) at Intervals (yr) over Fault Rate Length a Point on Fault Length of Fault (cm/yI) (km) (Rý) (R
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Long period gratings in multimode optical fibers: application in chemical sensing
NASA Astrophysics Data System (ADS)
Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.
2003-09-01
We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.
NASA Astrophysics Data System (ADS)
Xu, Fangbo; Sadrzadeh, Arta; Xu, Zhiping; Yakobson, Boris I.
2013-08-01
Recent measurements of carbon nanotube (CNT) fibers electrical conductivity still show the values lower than that of individual CNTs, by about one magnitude order. The imperfections of manufacturing process and constituent components are described as culprits. What if every segment is made perfect? In this work, we study the quantum conductance through the parallel junction of flawless armchair CNTs using tight-binding method in conjunction with non-equilibrium Green's function approach. Short-range oscillations within the long-range oscillations as well as decaying envelopes are all observed in the computed Fermi-level (low bias) conductance as a function of contact length, L. The propagation of CNTs' Bloch waves is cast in the coupled-mode formalism and helps to reveal the quantum interference nature of various behaviors of conductance. Our analysis shows that the Bloch waves at the Fermi-level propagate through a parallel junction without reflection only at an optimal value of contact length. For quite a long junction, however, the conductance at the Fermi level diminishes due to the perturbation of periodic potential field of close-packed CNTs. Thus, a macroscopic fiber, containing an infinite number of junctions, forms a filter that permits passage of electrons with specific wave vectors, and these wave vectors are determined by the collection of all the junction lengths. We also argue that the energy gap introduced by long junctions can be overcome by small voltage (˜0.04 V) across the whole fiber. Overall, developing long individual all-armchair metallic CNTs serves as a promising way to the manufacture of high-conductivity fibers.
Applicability of modified effective-range theory to positron-atom and positron-molecule scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Karwasz, Grzegorz; Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87-100 Torun
2006-06-15
We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and themore » effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.« less
Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco
2014-08-06
The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of sand wave habitats by silver hake
Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.
2003-01-01
Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
Anisotropic charge density wave in layered 1 T - TiS e 2
Qiao, Qiao; Zhou, Songsong; Tao, Jing; ...
2017-10-04
We present a three-dimensional study on the anisotropy of the charge density wave (CDW) in 1T-TiSe 2, by means of in situ atomically resolved electron microscopy at cryogenic temperatures in both reciprocal and real spaces. Using coherent nanoelectron diffraction, we observed short-range coherence of the in-plane CDW component while the long-range coherence of out-of-plane CDW component remains intact. An in-plane CDW coherence length of ~10 nm and an out-of-plane CDW coherence length of 17.5 nm, as a lower bound, were determined. The electron modulation was observed using electron energy-loss spectroscopy and verified by an orbital-projected density of states. Our integratedmore » approach reveals anisotropic CDW domains at the nanoscale, and illustrates electron modulation-induced symmetry breaking of a two-dimensional material in three dimensions, offering an opportunity to study the effect of reduced dimensionality in strongly correlated systems.« less
Testing Fundamental Properties of Space with the Fermilab Holometer
Kamai, Brittany
2017-06-01
Precision length measurements provide valuable insights about the fundamental properties of space-time. The Holometer is a research program to both experimentally probe signatures of the Planck scale and to extend the accessible frequency range from kHz up to MHz for gravitational wave searches. The instrument consists of separate yet identical 39-meter Michelson interferometers operated at Fermi National Accelerator Laboratory, which can reach length sensitivities better thanmore » $${10}^{-20}\\mathrm{m/}\\sqrt{\\mathrm{Hz}}$$ within the 1-10 MHz frequency range. Lastly, the Holometer is fully operational with 130 of hours of science quality data obtained during the first observational campaign.« less
Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, G. R., E-mail: girjesh@iucaa.in
We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm linesmore » in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.« less
Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H
2008-08-15
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.
Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar
NASA Technical Reports Server (NTRS)
Martner, Brooks E.; Ralph, F. Martin
1993-01-01
Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.
Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder
NASA Astrophysics Data System (ADS)
Zhang, W.; Zou, L.; Zheng, X.; Wang, B.
2018-05-01
The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the γ -model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air-CO_2 ), sulfur hexafluoride cylinder in air (air-SF_6 ), and krypton cylinder in helium (He-Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45-78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.
A numerical solution method for acoustic radiation from axisymmetric bodies
NASA Technical Reports Server (NTRS)
Caruthers, John E.; Raviprakash, G. K.
1995-01-01
A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudzenko, L.I.; Evstigneev, V.V.; Yakovlenko, S.I.
1973-09-01
A calculation is made of the characteristics of the amplification of the radiation in the vaccum ultraviolet spectral range in the 2s-2p transition of Be ions in supercooled (intensely recombining) dense Be plasma. (tr-auth)
Transport of light, trace impurities in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.
2012-10-01
Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.
Acoustic propagation in curved ducts with extended reacting wall treatment
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation was employed to study the attenuation of acoustic waves propagating in two-dimensional S-curved ducts with absorbing walls without a mean flow. The reflection and transmission at the entrance and the exit of a curved duct were determined by coupling the finite-element solutions in the curved duct to the eigenfunctions of an infinite, uniform, hard wall duct. In the frequency range where the duct height and acoustic wave length are nearly equal, the effects of duct length, curvature (duct offset) and absorber thickness were examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. A means of reducing the number of elements in the absorber region was also presented. In addition, for a curved duct, power attenuation contours were examined to determine conditions for maximum acoustic power absorption. Again, wall curvature was found to significantly effect the optimization process.
A study of dynamical behavior of space environment
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler
NASA Astrophysics Data System (ADS)
Motamed-Jahromi, Leila; Hatami, Mohsen
2018-04-01
In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.
A model for attenuation and scattering in the Earth's crust
NASA Astrophysics Data System (ADS)
Toksöz, M. Nafi; Dainty, Anton M.; Reiter, Edmund; Wu, Ru-Shan
1988-03-01
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves Rg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1 10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedo B 0=0.8 0.9 and a scattering extinction length of 17 32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. The Rg results indicate that Q increases with depth in the upper kilometer or two of the crust, at least in New England. Coda Q appears to be equivalent to intrinsic (anelastic) Q and indicates that this Q increases with frequency as Q=Q o f n , where n is in the range of 0.2 0.9. The intrinsic attenuation in the crust can be explained by a high constant Q (500≤ Q o≤2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence ( Q≃ Q o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms. Q is low near the surface and high in the body of the crust.
Unified concept of effective one component plasma for hot dense plasmas
Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; ...
2016-03-17
Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less
Observations of infragravity motions for reef fringed islands and atolls
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2012-12-01
The frequency of flooding events that affect low lying islands and atolls in the Pacific is expected to increase under current sea level rise projections. Infragravity (IG) motions, with periods ranging from approximately 25 to 400 seconds, are an important component of wave driven flooding events for reef fringed islands and atolls. The IG variability during wave events is analyzed and interpreted dynamically from pressure and current observations at four cross-reef transects in the North Pacific Ocean that include sites in the Republic of the Marshall Islands and Guam. The IG motions are shown to depend upon the spectral properties of the incident wave forcing and reef flat characteristics that include reef flat length (ranging from 100m to 450m at the four sites) and total water level due to setup and tides. A small inundation event at one of the sites is shown to occur due to large shoreline infragravity energy.
Wake wash waves produced by High Speed Crafts:measurements vs prediction
NASA Astrophysics Data System (ADS)
Benassai, Guido
2010-05-01
The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in analogous speed and depth conditions. Finally some comments and conclusions were given about the accordance between the measurements and the predictions of wake wash waves.
Analytical Wave Functions for Ultracold Collisions.
NASA Astrophysics Data System (ADS)
Cavagnero, M. J.
1998-05-01
Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.
Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lenain, L.; Melville, W. K.
2016-02-01
While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, M.; Savin, D. W.
We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpointmore » of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.« less
A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range
NASA Astrophysics Data System (ADS)
Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.
2017-05-01
We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.
Emissivity of half-space random media. [in passive remote sensing
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1976-01-01
Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
Statistical evidence for the existence of Alfvénic turbulence in solar coronal loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; McIntosh, Scott W.; Bethge, Christian
2014-12-10
Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfvénic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loopsmore » using data from the Coronal Multi-channel Polarimeter instrument. We observe Alfvénic perturbations with phase speeds which range from 250 to 750 km s{sup –1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of Alfvénic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of Alfvénic turbulence in coronal loops.« less
Identifying the role of initial wave parameters on tsunami focusing
NASA Astrophysics Data System (ADS)
Aydın, Baran
2018-04-01
Unexpected local tsunami amplification, which is referred to as tsunami focusing, is attributed to two different mechanisms: bathymetric features of the ocean bottom such as underwater ridges and dipolar shape of the initial wave itself. In this study, we characterize the latter; that is, we explore how amplitude and location of the focusing point vary with certain geometric parameters of the initial wave such as its steepness and crest length. Our results reveal two important features of tsunami focusing: for mild waves maximum wave amplitude increases significantly with transverse length of wave crest, while location of the focusing point is almost invariant. For steep waves, on the other hand, increasing crest length dislocates focusing point significantly, while it causes a rather small increase in wave maximum.
Tonotopically Ordered Traveling Waves in the Hearing Organs of Bushcrickets in-vivo
NASA Astrophysics Data System (ADS)
Udayashankar, Arun Palghat; Kössl, Manfred; Nowotny, Manuela
2011-11-01
Experimental investigation of auditory mechanics in the mammalian cochlea has been difficult to address in-vivo due to its secure housing inside the temporal bone. Here we studied the easily accessible hearing organ of bushcrickets, located in their forelegs, known as the crista acustica. A characteristic feature of the organ is that it is lined with an array of auditory receptors in a tonotopic fashion with lower frequencies processed at the proximal part and higher frequencies at the distal part of the foreleg. Each receptor cell is associated with so called cap cells. The cap cells, graded in size, are directly involved in the mechanics of transduction along with the part of the acoustic trachea that supports the cap cells. Functional similarities between the crista acustica and the vertebrate cochlea such as frequency selectivity and distortion product otoacoustic emissions have been well documented. In this study we used laser Doppler vibrometry to study the mechanics of the organ and observed sound induced traveling waves (TW) along it's length. Frequency representation was tonotopic with TW propagating from the high frequency to the low frequency region of the organ similar to the situation in the cochlea. Traveling wave velocity increased monotonically from 4 to 12 m/s for a frequency range of 6 to 60 kHz, reflecting a smaller topographic spread (organ length: 1 mm) compared to the guinea pig cochlea (organ length: 18 mm). The wavelength of the traveling wave decreased monotonically from 0.67 mm to 0.27 mm for the same frequency range. Vibration velocity of the organ reached noise threshold levels (10 μm/s) at 30 dB SPL for a frequency of 21 kHz. A small non-linear compression (73 dB increase in velocity for an 80 dB increase in SPL) was also observed at the 21 kHz. Our results indicate that bushcrickets can be a good model system for exploration of auditory mechanics in-vivo.
Wave envelope technique for multimode wave guide problems
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Sudharsanan, S. I.
1986-01-01
A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.
Investigation of guided waves propagation in pipe buried in sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less
Terahertz wave polarization beam splitter using a cascaded multimode interference structure.
Li, Jiu-sheng; Liu, Han; Zhang, Le
2014-08-01
A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.
Synthesis and Electronic Properties of Length-Defined 9,10-Anthrylene-Butadiynylene Oligomers.
Nagaoka, Maiko; Tsurumaki, Eiji; Nishiuchi, Mai; Iwanaga, Tetsuo; Toyota, Shinji
2018-05-18
Linear π-conjugated oligomers consisting of anthracene and diacetylene units were readily synthesized by a one-pot process that involved desilylation and oxidative coupling from appropriate building units. We were able to isolate length-defined oligomers ranging from 2-mer to 6-mer as stable and soluble solids. The bathochromic shifts in the UV-vis spectra suggested that the π-conjugation was extended with elongation of the linear chain. Cyclic voltammetric measurements showed characteristic reversible oxidation waves that were dependent on the number of anthracene units.
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
Calculation of Linear Stability of a Stratified Gas-Liquid Flow in an Inclined Plane Channel
NASA Astrophysics Data System (ADS)
Trifonov, Yu. Ya.
2018-01-01
Linear stability of liquid and gas counterflows in an inclined channel is considered. The full Navier-Stokes equations for both phases are linearized, and the dynamics of periodic disturbances is determined by means of solving a spectral problem in wide ranges of Reynolds numbers for the liquid and vapor velocity. Two unstable modes are found in the examined ranges: surface mode (corresponding to the Kapitsa waves at small velocities of the gas) and shear mode in the gas phase. The wave length and the phase velocity of neutral disturbances of both modes are calculated as functions of the Reynolds number for the liquid. It is shown that these dependences for the surface mode are significantly affected by the gas velocity.
Chouet, B.; De Luca, G.; Milana, G.; Dawson, P.; Martini, M.; Scarpa, R.
1998-01-01
The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configued in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh and Love waves. Love and Rayleigh waves contribute 70% and 30%, respectively, of the surface-wave power. The phase velocities of Rayleigh waves range from 1000 m/sec at 2 Hz to 350 m/sec at 9 Hz, and those for Love waves range from 700 to 400 m/sec over the same frequency band. These velocities are similar to those measured near Puu Oo on the east rift of Kilauea Volcano, Hawaii, although the dispersion characteristics of Rayleigh waves at Stromboli show a stronger dependence on frequency. Such low velocities are consistent with values expected for densely cracked solidified basalt. The dispersion curves are inverted for a velocity model beneath the arrays, assuming those dispersions represent the fundamental modes of Rayleigh and Love waves.
Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki
Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less
Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki.
Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less
Validation of Born Traveltime Kernels
NASA Astrophysics Data System (ADS)
Baig, A. M.; Dahlen, F. A.; Hung, S.
2001-12-01
Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.
MM wave SAR sensor design: Concept for an airborne low level reconnaissance system
NASA Astrophysics Data System (ADS)
Boesswetter, C.
1986-07-01
The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.
Diagnostic Characteristics of Submesoscale Coastal Surface Currents
NASA Astrophysics Data System (ADS)
Soh, Hyun Sup; Kim, Sung Yong
2018-03-01
Submesoscale kinetic energy (KE) spectra and fluxes at the length scales ranging from 2 to 25 km are estimated from hourly and O(1) km-scale coastal surface current maps observed from shore-based high-frequency radars off southern San Diego. The one-dimensional wave number-domain KE spectra of the surface currents have decay slopes between k-2 and k-3 at a wave number (k) of 0.5 km-1. The KE spectra exhibit anisotropy associated with anisotropic circulation, which is constrained by the shoreline and bottom bathymetry. Moreover, the KE spectra exhibit weak seasonality related to the regional submesoscale eddies and low-frequency circulation with weak seasonal variability. The estimated KE fluxes are categorized into four cases of purely forward cascades and inverse cascades at all wave numbers, inverse-then-forward cascades with a single zero-crossing within the range of wave numbers (0.04 to 0.5 km-1), and residuals, which account for approximately 33%, 39%, 19%, and 9% of the total number of realizations, respectively. An injection scale where forward enstrophy cascade and inverse energy cascade occur is estimated to be 5 to 10 km from the cases of the inverse-then-forward cascade, which is consistent with the length scales of the regional submesoscale eddies. Thus, the regional submesoscale processes are initiated by surface frontogenesis due to the weak seasonal low-frequency surface circulation and topography-related currents, then maintained by baroclinic instabilities associated with the seasonal mixed layer and O(10) km-scale submesoscale eddies with weak seasonal variability.
Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave
NASA Astrophysics Data System (ADS)
Wen, Biyang; Li, Ke
2016-08-01
Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.
NASA Astrophysics Data System (ADS)
Cappon, Giacomo; Pedersen, Morten Gram
2016-05-01
Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.
Exact result in strong wave turbulence of thin elastic plates
NASA Astrophysics Data System (ADS)
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the
Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan
2017-10-01
Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Invariance property of wave scattering through disordered media
Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan
2014-01-01
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671
Full-wave multiscale anisotropy tomography in Southern California
NASA Astrophysics Data System (ADS)
Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei
2014-12-01
Understanding the spatial variation of anisotropy in the upper mantle is important for characterizing the lithospheric deformation and mantle flow dynamics. In this study, we apply a full-wave approach to image the upper-mantle anisotropy in Southern California using 5954 SKS splitting data. Three-dimensional sensitivity kernels combined with a wavelet-based model parameterization are adopted in a multiscale inversion. Spatial resolution lengths are estimated based on a statistical resolution matrix approach, showing a finest resolution length of ~25 km in regions with densely distributed stations. The anisotropic model displays structural fabric in relation to surface geologic features such as the Salton Trough, the Transverse Ranges, and the San Andreas Fault. The depth variation of anisotropy does not suggest a lithosphere-asthenosphere decoupling. At long wavelengths, the fast directions of anisotropy are aligned with the absolute plate motion inside the Pacific and North American plates.
The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms
NASA Astrophysics Data System (ADS)
Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert
2018-01-01
We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.
Generation of thermo-acoustic waves from pulsed solar/IR radiation
NASA Astrophysics Data System (ADS)
Rahman, Aowabin
Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals also showed "transient" behavior, meaning that the RMS amplitudes of TA signals varied over a time interval much greater than the time period of acoustic cycles. Acoustic amplitudes in the range of 75-95 dB were obtained using solar energy as the heat source, within the frequency range of 200 Hz-3 kHz.
Nonlinear Talbot effect of rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna
2017-01-01
In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.
Open Ocean Internal Waves, South China Sea
NASA Technical Reports Server (NTRS)
1989-01-01
These open ocean internal waves were seen in the south China Sea (19.5N, 114.5E). These sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond this photo for over 75 miles. At lower right, the surface waves are moving at a 30% angle to the internal waves, with parallel low level clouds.
Feasibility of Wave Energy in Hong Kong
NASA Astrophysics Data System (ADS)
Lu, M.; Hodgson, P.
2014-12-01
Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.
Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doty, F. D.; Boman, A.; Arnold, S.
2001-10-15
Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.
Plasma interface of the EC waves to the LHD peripheral region
NASA Astrophysics Data System (ADS)
Kubo, S.; Igami, H.; Tsujimura, T. I.; Shimozuma, T.; Takahashi, H.; Yoshimura, Y.; Nishiura, M.; Makino, R.; Mutoh, T.
2015-12-01
In order to realize an efficient ECRH and also to reduce stray radiation due to non-absorbed power during ECRH, it is necessary to excite a wave that is absorbed well near the electron cyclotron resonance. In the normal fusion magnetic field confinement machine and in the electron cyclotron frequency range, WKB approximation is valid almost all the way from antenna to the absorption region due to the large scale-length of the plasma density λn and the magnetic shear τs as compared with the local wavelength λ0. In these situation, it is well known that the O/X mode propagates as O/X mode if τs ≫ λ0. Even in these situation, if τs and λn are comparable and |1/λO-1/λX|τs ≪ 1, there still remains the question from where "X" - or "O" - mode become "X" - or "O" mode at the peripheral region. In order to simulate this situation, one dimensional full wave calculation code which solve electromagnetic wave equation under arbitrary magnetic field configuration and arbitrary density profile for a given polarization state are developed and incorporated in the upgraded ray tracing code LHDGauss. It is tried to find the density and shear scale lengths region where the mode mixing effect is not negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereyra, Brandon; Wendt, Fabian; Robertson, Amy
2017-03-09
The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less
Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereyra, Brandon; Wendt, Fabian; Robertson, Amy
2016-07-01
The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less
NASA Astrophysics Data System (ADS)
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei
2017-06-01
We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
Open ocean Internal Waves, Namibia Coast, Africa.
1990-12-10
These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.
Open ocean Internal Waves, Namibia Coast, Africa.
NASA Technical Reports Server (NTRS)
1990-01-01
These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Parametric instability, inverse cascade and the range of solar-wind turbulence
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.
2018-02-01
In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy +\\gg e-$ , where +$ and -$ are the frequency ( ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If +$ initially has a peak frequency 0$ (at which +$ is maximized) and an `infrared' scaling p$ at smaller with , then +$ acquires an -1$ scaling throughout a range of frequencies that spreads out in both directions from 0$ . At the same time, -$ acquires an -2$ scaling within this same frequency range. If the plasma parameters and infrared +$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an +$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed -1$ scaling at -4~\\text{Hz}$ . The results of this paper suggest that the -1$ spectrum seen by Helios in the fast solar wind at -4~\\text{Hz}$ is produced in situ by parametric decay and that the -1$ range of +$ extends over an increasingly narrow range of frequencies as decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.
Terahertz lens made out of natural stone.
Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook
2013-12-20
Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.
Directional bottom roughness associated with waves, currents, and ripples
Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.
Deployment and Simulation of the Astrod-Gw Formation
NASA Astrophysics Data System (ADS)
Wu, An-Ming; Ni, Wei-Tou
2013-01-01
Constellation or formation flying is a common concept in space Gravitational Wave (GW) mission proposals for the required interferometry implementation. The spacecraft of most of these mission proposals go to deep space and many have Earthlike orbits around the Sun. Astrodynamical Space Test of Relativity using Optical Devices optimized for Gravitation Wave detection (ASTROD-GW), Big Bang Observer (BBO) and DECIGO have spacecraft distributed in Earthlike orbits in formation. The deployment of orbit formation is an important issue for these missions. ASTROD-GW is to focus on the goal of detection of GWs. The mission orbits of the three spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The three spacecraft range interferometrically with one another with arm length about 260 million kilometers with the scientific goals including detection of GWs from Massive Black Holes (MBH) and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of MBH with galaxies. In this paper, we review the formation flying for fundamental physics missions, design the preliminary transfer orbits of the ASTROD-GW spacecraft from the separations of the launch vehicles to the mission orbits, and simulate the arm lengths of the triangular formation. From our study, the optimal delta-Vs and propellant ratios of the transfer orbits could be within about 2.5 km/s and 0.55, respectively. From the simulation of the formation for 10 years, the arm lengths of the formation vary in the range 1.73210 ± 0.00015 AU with the arm length differences varying in the range ±0.00025 AU for formation with 1° inclination to the ecliptic plane. This meets the measurement requirements. Further studies on the optimizations of deployment and orbit configurations for a period of 20 years and with inclinations between 1° to 3° are currently ongoing.
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
Rarefaction waves, solitons, and holes in a pure electron plasma
NASA Astrophysics Data System (ADS)
Moody, J. D.; Driscoll, C. F.
1995-12-01
The propagation of holes, solitons, and rarefaction waves along the axis of a magnetized pure electron plasma column is described. The time dependence of the radially averaged density perturbation produced by the nonlinear waves is measured at several locations along the plasma column for a wide range of plasma parameters. The rarefaction waves are studied by measuring the free expansion of the plasma into a vacuum. A new hydrodynamic theory is described that quantitatively predicts the free expansion measurements. The rarefaction is initially characterized by a self-similar plasma flow, resulting in a perturbed density and velocity without a characteristic length scale. The electron solitons show a small increase in propagation speed with increasing amplitude and exhibit electron bursts. The holes show a decrease in propagation speed with increasing amplitude. Collisions between holes and solitons show that these objects pass through each other undisturbed, except for a small offset.
Geometric Limitations Of Ultrasonic Measurements
NASA Astrophysics Data System (ADS)
von Nicolai, C.; Schilling, F.
2006-12-01
Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.
Coastal geomorphological study of pocket beaches in Crete, with the use of planview indices.
NASA Astrophysics Data System (ADS)
Alexandrakis, George; Karditsa, Aikaterini; Poulos, Serafim; Kampanis, Nikos
2013-04-01
The formation of pocket beaches is a result of a large number of processes and mechanisms that vary on space and time scales. This study aims in defining the planform characteristics of pocket beaches in Crete Isl. and to determine their sheltering effect, embaymentization and their status of equilibrium. Thus, data from 30 pocket beaches along the coastline of Crete, with different geomorphological and hydrodynamical setting, were collected. Planform parameters were applied and coastal planview indices from the bibliography were applied. The parameters included: length and orientation of the headlands between the pocket beach; length between the bay entrance and the center of the beach; lengths of the i) embayed shoreline, ii) embayed beach, iii) beach segment located at the shadow of a headland; linear distance and orientation between the edges of the embayed beach; direction of the incident wave energy flux; wave crest obliquity to the control line; beach area, maximum beach width and headland orientation and river/ torrent catchment areas in beach zones that an active river system existed (Bowman et al.2009). For the morphological mapping of the study areas, 1:5000 orthophoto maps were used. Wave regime has been calculated with the use of prognostic equations and utilising local wind data (mean annual frequency of wind speed and direction), provided by the Wind and Wave Atlas of the Eastern Mediterranean Sea. The diffraction and refraction of the waves has been simulated with the use of numerical models. The study shows that Cretan pocket beaches display a wide range of indentation, suggesting that is the result of several parameters that include tectonics, coastal hydrodynamics and river catchment areas. The more indented bays are, the shorter their beaches become, while low-indented pocket beaches are the widest and the longest ones. Beaches with headland with large length appear to be more protected and receive smaller amount of wave energy. Most of the Cretan pocket beaches have limited sediment supply for the mainland, while they appear to be in an unstable status. D. Bowman, J. Guillén, L. López, V. Pellegrino (2009), Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain). Geomorphology, 108, 191-199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Guozhang; Xiang, Nong; Huang, Yueheng
2016-01-15
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparablemore » to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.« less
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides.
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasaba, Y.; Ishisaka, K.; Kasahara, Y.; Imachi, T.; Yagitani, S.; Kojima, H.; Kurita, S.; Shoji, M.; Hori, T.; Shinbori, A.; Teramoto, M.; Miyoshi, Y.; Nakagawa, T.; Takahashi, N.; Nishimura, Y.; Matsuoka, A.; Tsuchiya, F.; Kumamoto, A.; Nomura, R.
2017-12-01
This paper summarizes the specifications and the evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), which are the key parts of Plasma Wave Experiment (PWE) aboard the Arase satellite, in their initial operations and the beginning phase of the full observations. WPT consists of the two dipole antennas as electric field sensors with 32m tip-to-tip length, with a sphere probe (6 cm diameter) attached at each end of wires (length: 15-m). They are extended orthogonally in the spin plane which is roughly perpendicular to the Sun. It enables the PWE to measure the E-field from DC to 10 MHz. This system is almost compatible to the WPT of the Plasma Wave Investigation (PWI) aboard BepiColombo Mercury Magnetospheric Orbiter, except the material of the spherical probe (ERG: Aluminium alloy, MMO: Titanium-alloy). This paper shows the extended length evaluated by the Lorentz force (spacecraft velocity x B-field) and the antenna impedance as the basic information of the E-field measurement capability of the PWE E-field receivers, with the evaluation for the possible degradation of the probe surface coated by TiAlN as BepiColombo. EFD is the 2-channel low frequency electric receiver as a part of EWO (EFD/WFC/OFA), for the measurement of 2ch electric field in the spin-plane with the sampling rate of 512 Hz (dynamic range: +-200 mV/m, +-3 V/m) and the 4ch spacecraft potential with the sampling rate of 128 Hz (dynamic range: +-100 V), respectively, with the bias control capability fed to the WPT probes. The electric field in DC - 232Hz provides the capability to detect (1) the fundamental information of the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves with their Poynting vectors with the data measured by MGF and PWE/WFC-B connected to PWE/SCM. The spacecraft potential provides the electron density information with UHR frequency. This paper also introduces the data sets and their calibration status.
Wave mode identification of electrostatic noise observed with ISEE 3 in the deep tail boundary layer
NASA Technical Reports Server (NTRS)
Tsutsui, M.; Matsumoto, H.; Strangeway, R. J.; Tsurutani, B. T.; Phillips, J. L.
1991-01-01
The characteristics of the VLF electrostatic noise observed with ISEE 3 in the low-latitude boundary layer of distant geomagnetic tail are examined using a display format for the wave dynamic spectra different from that used by Scarf et al. (1984). It is shown that the observed noise is composed of impulsive bursts. The results of the detailed analysis of the noise parameters are used to develop a model of plasma wave behavior in the plasma rest frame. A hypothesis is proposed that the wide frequency extent of the noise spectra is composed of Doppler effects of waves propagating nearly omnidirectionally within the plasma rest frame, which is moving with the electron bulk speed. On the basis of this hypothesis, the wavelength of the observed waves were determined from the width of the frequency extent and the measured electron bulk speed. It is shown that the wavelength ranges from 2 to 8 times the plasma Debye length.
Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations
NASA Astrophysics Data System (ADS)
Al-Saidi, W. A.; Walter, E. J.; Rappe, A. M.
2008-02-01
We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe , Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r , and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.
NASA Technical Reports Server (NTRS)
Engel, J.; Kennel, C.
1985-01-01
Intense (at least 10 mV/m) electrostatic plasma waves have been detected near the upper hybrid frequency between + or -50 deg MLAT during recent GEOS-1 crossings. Wave growth rate and convective amplification calculations were carried out in order to explain the occurrence of intense upper hybrid (IUH) events over such a wide range of latitudes. The effects of wave refractions were taken into account in the convective amplification calculations. Specific results are presented for the upper hybrid wave growth of an IUH event occurring at 10 deg MLAT. It is shown that a density gradient may be necessary to explain the observed amplification at 10 deg MLAT. At the equator, however, the long scale length of the magnetic field gradient enables large amplitudes to be attained without a density gradient. The results of a UH ray tracing analysis are discussed within the framework of current theories concerning magnetospheric continuum radiation.
Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser
NASA Astrophysics Data System (ADS)
Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo
2018-03-01
A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.
Wave packet analysis and break-up length calculations for an accelerating planar liquid jet
NASA Astrophysics Data System (ADS)
Turner, M. R.; Healey, J. J.; Sazhin, S. S.; Piazzesi, R.
2012-02-01
This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the range of values of a for which the jet can be considered completely quasi-steady increases to larger values of a. Finally, we investigate approximating the wave packet break-up length calculations with a method that follows the most unstable disturbance wave as the jet accelerates. This approach is similar to that used in CFD simulations as it greatly reduces computational time. We investigate whether or not this is a good approximation for the parameter values typically used in diesel engines.
Saccorotti, G.; Chouet, B.; Dawson, P.
2003-01-01
The properties of the surface wavefield at Kilauea Volcano are analysed using data from small-aperture arrays of short-period seismometers deployed in and around the Kilauea caldera. Tremor recordings were obtained during two Japan-US cooperative experiments conducted in 1996 and 1997. The seismometers were deployed in three semi-circular arrays with apertures of 300, 300 and 400 m, and a linear array with length of 1680 m. Data are analysed using a spatio-temporal correlation technique well suited for the study of the stationary stochastic wavefields of Rayleigh and Love waves associated with volcanic activity and scattering sources distributed in and around the summit caldera. Spatial autocorrelation coefficients are obtained as a function of frequency and are inverted for the dispersion characteristics of Rayleigh and Love waves using a grid search that seeks phase velocities for which the L-2 norm between data and forward modelling operators is minimized. Within the caldera, the phase velocities of Rayleigh waves range from 1400 to 1800 m s-1 at 1 Hz down to 300-400 m s-1 at 10 Hz, and the phase velocities of Love waves range from 2600 to 400 m s-1 within the same frequency band. Outside the caldera, Rayleigh wave velocities range from 1800 to 1600 m s-1 at 1 Hz down to 260-360 m s-1 at 10 Hz, and Love wave velocities range from 600 to 150 m s-1 within the same frequency band. The dispersion curves are inverted for velocity structure beneath each array, assuming these dispersions represent the fundamental modes of Rayleigh and Love waves. The velocity structures observed at different array sites are consistent with results from a recent 3-D traveltime tomography of the caldera region, and point to a marked velocity discontinuity associated with the southern caldera boundary.
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim
2014-01-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim
2014-10-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).
Experimental and theoretical study of Rayleigh-Lamb wave propagation
NASA Technical Reports Server (NTRS)
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference
ERIC Educational Resources Information Center
Hopper, Seth; Howell, John
2006-01-01
When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…
Araya, A; Telada, S; Tochikubo, K; Taniguchi, S; Takahashi, R; Kawabe, K; Tatsumi, D; Yamazaki, T; Kawamura, S; Miyoki, S; Moriwaki, S; Musha, M; Nagano, S; Fujimoto, M K; Horikoshi, K; Mio, N; Naito, Y; Takamori, A; Yamamoto, K
1999-05-01
A new method has been demonstrated for absolute-length measurements of a long-baseline Fabry-Perot cavity by use of phase-modulated light. This method is based on determination of a free spectral range (FSR) of the cavity from the frequency difference between a carrier and phase-modulation sidebands, both of which resonate in the cavity. Sensitive response of the Fabry-Perot cavity near resonant frequencies ensures accurate determination of the FSR and thus of the absolute length of the cavity. This method was applied to a 300-m Fabry-Perot cavity of the TAMA gravitational wave detector that is being developed at the National Astronomical Observatory, Tokyo. With a modulation frequency of approximately 12 MHz, we successfully determined the absolute cavity length with resolution of 1 microm (3 x 10(-9) in strain) and observed local ground strain variations of 6 x 10(-8).
High performance, low dissipation quantum cascade lasers across the mid-IR range.
Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine
2015-03-09
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
You, Qi-Sheng; Bartsch, Dirk-Uwe G.; Espina, Mark; Alam, Mostafa; Camacho, Natalia; Mendoza, Nadia; Freeman, William
2015-01-01
Purpose Macular pigment, composed of lutein, zeaxanthin, and meso-zeaxanthin, is postulated to protect against age-related macular degeneration (AMD), likely due to filtering blue light and its antioxidant properties. Macular pigment optical density (MPOD) is reported to be associated with macular function evaluated by visual acuity and multifocal electroretinogram. Given the importance of macular pigment, reliable and accurate measurement methods are important. The main purpose of current study is to determine the reproducibility of MPOD measurement by two-wave length auto-fluorescence method using scanning laser ophthalmoscopy. Methods Sixty eight eyes of 39 persons were enrolled in the study, including 11 normal eyes, 16 eyes with wet AMD, 16 eyes with dry AMD, 11 eyes with macular edema due to diabetic mellitus, branch retinal vein occlusion or macular telangiectasia and 14 eyes with tractional maculopathy including vitreomacular traction, epiretinal membrane or macular hole. MPOD was measured with a two-wavelength (488 and 514 nm) auto-fluorescence method with the Spectralis HRA+OCT after pupil dilation. The measurement was repeated for each eye 10 minutes later. The Analysis of variance (ANOVA) and Bland-Altman plot were used to assess the reproducibility between the two measurements. Results The mean MPOD at eccentricities of 1° and 2° was 0.36±0.17 (range: 0.04–0.69) and 0.15±0.08(range: −0.03, 0.35) for the first measurement and 0.35±0.17 (range: 0.02, 0.68) and 0.15±0.08 (range: −0.01, 0.33) for the second measurement respectively. The difference between the two measurements was not statistically significant, and the Bland-Altman plot showed 7.4% and 5.9% points outside the 95% limits of agreement, indicating an overall excellent reproducibility. Similarly, there is no significant difference between the first and second measurements of MPOD volume within eccentricities of 1°, 2° and 6° radius, and the Bland-Altman plot showed 8.8%, 2.9% and 4.4% points outside the 95% limits of agreement respectively. The data for the reproducibility did not differ significantly among the various disease and normal eyes. Conclusion Under routine examination conditions with pupil dilation, MPOD measurement by two-wave length auto-fluorescence method showed a high reproducibility. PMID:26655614
The effect of cosmic-ray acceleration on supernova blast wave dynamics
NASA Astrophysics Data System (ADS)
Pais, M.; Pfrommer, C.; Ehlert, K.; Pakmor, R.
2018-05-01
Non-relativistic shocks accelerate ions to highly relativistic energies provided that the orientation of the magnetic field is closely aligned with the shock normal (quasi-parallel shock configuration). In contrast, quasi-perpendicular shocks do not efficiently accelerate ions. We model this obliquity-dependent acceleration process in a spherically expanding blast wave setup with the moving-mesh code AREPO for different magnetic field morphologies, ranging from homogeneous to turbulent configurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates an oblate ellipsoidal shock surface due to the slower propagating blast wave in the direction of the magnetic field. This is because of the efficient cosmic ray (CR) production in the quasi-parallel polar cap regions, which softens the equation of state and increases the compressibility of the post-shock gas. We find that the solution remains self-similar because the ellipticity of the propagating blast wave stays constant in time. This enables us to derive an effective ratio of specific heats for a composite of thermal gas and CRs as a function of the maximum acceleration efficiency. We finally discuss the behavior of supernova remnants expanding into a turbulent magnetic field with varying coherence lengths. For a maximum CR acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested by kinetic plasma simulations), we find an average efficiency of about 5 per cent, independent of the assumed magnetic coherence length.
Microwave dielectric measurements of lunar soil with a coaxial line resonator method
NASA Technical Reports Server (NTRS)
Bussey, H. E.
1979-01-01
A method is given for sensitive dielectric measurements at a series of microwave frequencies using a section of coaxial line. The line is used as a 1-port cavity resonator; it resonates when the electrical length of the center conductor equals 1, 2 . . . , N half-wave lengths. The dielectric properties of an Apollo 17 dried soil sample were measured in vacuum over a temperature range of 173 to 373 K. The relative permittivity and the loss tangent were determined and the frequency dependence was very small. The derivative with respect to temperature, per degree, was 0.00045 for the permittivity and 0.00002 for the loss tangent.
Optical characterization of sputtered YBaCo 4O 7+ δ thin films
NASA Astrophysics Data System (ADS)
Montoya, J. F.; Izquierdo, J. L.; Causado, J. D.; Bastidas, A.; Nisperuza, D.; Gómez, A.; Arnache, O.; Osorio, J.; Marín, J.; Paucar, C.; Morán, O.
2011-02-01
Thin films of YBaCo 4O 7+ δ were deposited on r (1012)-oriented Al 2O 3 substrates by dc magnetron sputtering. The as-grown films were characterized after their structural, morphological and optical properties. Special attention is devoted to the analysis of the optical response of these films as reports on optical properties of YBaCo 4O 7+ δ, especially in thin film form, are not frequently reported in the literature. Transmittance/absorbance measurements allow for determining two well defined energy gaps at 3.7 and 2.2 eV. In turn, infrared (IR) measurements show infrared transparency in the wave length range 4000-2500 nm with a sharp absorption edge at wave lengths less than 2500 nm. Complementary Raman spectra measurements on the thin films allowed for identifying bands associated with vibrating modes of CoO 4 and YO 6 in tetrahedral and octahedral oxygen coordination, respectively. Additional bands which seemed to stem from Co ions in octahedral oxygen coordination were also clearly identified.
Landing Characteristics in Waves of Three Dynamic Models of Flying Boats
NASA Technical Reports Server (NTRS)
Benson, James M.; Havens, Robert F.; Woodward, David R.
1947-01-01
Powered models of three different flying boats were landed in oncoming wave of various heights and lengths. The resulting motions and acceleration were recorded to survey the effects of varying the trim at landing, the deceleration after landing, and the size of the waves. One of the models had an unusually long afterbody. The data for landing with normal rates of deceleration indicated that the most severe motions and accelerations were likely to occur at some period of the landing run subsequent to the initial impact. Landings made at abnormally low trims led to unusually severe bounces during the runout. The least severe landing occurred after a small lending when the model was rapidly decelerated at about 0.4 g in a simulation of the proposed use of braking devices. The severity of the landings increased with wave height and was at a maximum when the wave length was of the order of from one and one-half to twice the over-all length of the model. The models with afterbodies of moderate length frequently bounced clear of the water into a stalled attitude at speeds below flying speed. The model with the long afterbody had less tendency to bounce from the waves and consequently showed less severe accelerations during the landing run than the models with moderate lengths of afterbody.
NASA Astrophysics Data System (ADS)
Diekmann, Christian; Troebs, Michael; Steier, Frank; Bykov, Iouri; Heinzel, Gerhard; Danzmann, Karsten
The space-based interferometric gravitational-wave detector Laser Interferometer Space An-tenna (LISA) requires interferometry with subpicometer and nanoradian sensitivity in the fre-quency range between 3 mHz and 1 Hz. Currently, a first prototype of the optical bench for LISA is being designed. We report on a pre-experiment with the aim to demonstrate the required sensitivities and to thoroughly characterise the equipment. For this purpose, a quasi-monolithic optical setup has been built with two Mach-Zehnder interferometers (MZI) on an optical bench made of zerodur. In a first step the relative length change between these two MZI will be measured with a heterodyne modulation scheme in the kHz-range and the angle between two laser beams will be read out via quadrant photodiodes and a technique called differential wavefront sensing. These techniques have already been used for the LISA prede-cessor mission LISA Pathfinder and their sensitivity needs to be further improved to fulfill the requirements of the LISA mission. We describe the experiment and the characterization of the basic components. Measurements of the length and angular noise will be presented.
Correlation of wave propagation modes in helicon plasma with source tube lengths
NASA Astrophysics Data System (ADS)
Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang
2017-01-01
Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.
Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan
2016-04-14
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves
NASA Astrophysics Data System (ADS)
Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan
2017-06-01
The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galechyan, G.A.; Anna, P.R.
One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2}more » laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.« less
Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jamil, M.; Rasheed, A.
2015-07-15
The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less
NASA Technical Reports Server (NTRS)
Barnwell, R. W.; Davis, R. M.
1975-01-01
A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.
Resonances and wave propagation velocity in the subglottal airways.
Lulich, Steven M; Alwan, Abeer; Arsikere, Harish; Morton, John R; Sommers, Mitchell S
2011-10-01
Previous studies of subglottal resonances have reported findings based on relatively few subjects, and the relations between these resonances, subglottal anatomy, and models of subglottal acoustics are not well understood. In this study, accelerometer signals of subglottal acoustics recorded during sustained [a:] vowels of 50 adult native speakers (25 males, 25 females) of American English were analyzed. The study confirms that a simple uniform tube model of subglottal airways, closed at the glottis and open at the inferior end, is appropriate for describing subglottal resonances. The main findings of the study are (1) whereas the walls may be considered rigid in the frequency range of Sg2 and Sg3, they are yielding and resonant in the frequency range of Sg1, with a resulting ~4/3 increase in wave propagation velocity and, consequently, in the frequency of Sg1; (2) the "acoustic length" of the equivalent uniform tube varies between 18 and 23.5 cm, and is approximately equal to the height of the speaker divided by an empirically determined scaling factor; (3) trachea length can also be predicted by dividing height by another empirically determined scaling factor; and (4) differences between the subglottal resonances of males and females can be accounted for by height-related differences. © 2011 Acoustical Society of America
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.
2017-01-01
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233
NASA Astrophysics Data System (ADS)
Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.
2018-07-01
Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Effects of shock strength on shock turbulence interaction
NASA Technical Reports Server (NTRS)
Lee, Sangsan
1993-01-01
Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.
A 94 GHz imaging array using slot line radiators. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Korzeniowski, T. L.
1985-01-01
A planar endfire slotted-line antenna structure was investigated. It was found that the H-plane beamwidths are basically dependent upon the substrate properties, whereas the E-plane beamwidths are more strongly a function of the slot's shape and size. It is shown that these antennas produce symmetrical E and H-plane beamwidths while following Zucker's standard traveling-wave antenna beamwidth curves over some range of antenna normalized length. An empircally derived design formula for effective substrate thickness is shown to predict this range for linearly tapered slotted-line antennas. The experimental imaging properties of these arrays are presented and imaging theory is discussed. It is shown that a minimum spacing of elements is necessary for exact reconstruction for a sampled image in a diffraction limited system. Because these LTSA elements employ the traveling-wave mechanism of radiation, they can be spaced two times closer than a conical feed horn of comparable beamwidth.
Peled, Yair; Motil, Avi; Kressel, Iddo; Tur, Moshe
2013-05-06
We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20 m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10 ms (strip sampling rate of 100 Hz) with a spatial resolution of the order of 1m. A dynamic spatially and temporally continuous map of the strain was obtained, whose temporal behavior at four discrete locations was verified against co-located fiber Bragg gratings. With a trade-off among sampling rate, range and signal to noise ratio, kHz sampling rates and hundreds of meters of range can be obtained with resolution down to a few centimeters.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-02-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-05-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Synthetic range profiling in ground penetrating radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz
2009-06-01
The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Whisman, Mark A.; Robustelli, Briana L.; Sbarra, David A.
2016-01-01
Rationale Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. Objective This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥ 50 years of age. Method Participants were 3,526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Results Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Conclusion Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. PMID:27062452
Whisman, Mark A; Robustelli, Briana L; Sbarra, David A
2016-05-01
Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥50 years of age. Participants were 3526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic description of cyclotron-range oscillations of a non-neutral plasma column
NASA Astrophysics Data System (ADS)
Neu, S. C.; Morales, G. J.
1998-04-01
The kinetic analysis introduced by Prasad, Morales, and Fried [Prasad et al., Phys. Fluids 30, 3093 (1987)] is used to derive damping conditions and a differential equation for azimuthally propagating waves in a non-neutral plasma column in the limits rl/L≪1 and krl≪1 (where rl is the Larmor radius, k is the wave number, and L is the density scale length). The predictions of the kinetic analysis are verified using a two-dimensional particle-in-cell simulation of Bernstein modes in a thermal rigid-rotor equilibrium. Differences between modes in a strongly magnetized limit and near the Brillouin limit are studied in the simulation.
Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.
Chandran, Benjamin D G
2018-02-01
In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 < p < 1, then e + acquires an f -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .
NASA Astrophysics Data System (ADS)
Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.
2009-03-01
This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, C. L.; Lian, Y. H.; Cheng, N. H.
2012-11-15
The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less
Electromechanical Frequency Filters
NASA Astrophysics Data System (ADS)
Wersing, W.; Lubitz, K.
Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.
Elastic wave induced by friction as a signature of human skin ageing and gender effect.
Djaghloul, M; Morizot, F; Zahouani, H
2016-08-01
In this work, we propose an innovative approach based on a rotary tribometer coupled with laser velocimetry for measuring the elastic wave propagation on the skin. The method is based on a dynamic contact with the control of the normal force (Fn ), the contact length and speed. During the test a quantification of the friction force is produced. The elastic wave generated by friction is measured at the surface of the skin 35 mm from the source of friction exciter. In order to quantify the spectral range and the energy property of the wave generated, we have used laser velocimetry whose spot laser diameter is 120 μm, which samples the elastic wave propagation at a frequency which may reach 100 kHz. In this configuration, the speaker is the friction exciter and the listener the laser velocimetry. In order to perform non-invasive friction tests, the normal stress has been set to 0.3 N and the rotary velocity to 3 revolutions per second, which involves a sliding velocity of 63 mm/s. This newly developed innovative tribometer has been used for the analysis of the elastic wave propagation induced by friction on human skin during chronological ageing and gender effect. Measurements in vivo have been made on 60 healthy men and women volunteers, aged from 25 to 70. The results concerning the energy of the elastic wave signature induced by friction show a clear difference between the younger and older groups in the range of a low band of frequencies (0-200 Hz). The gender effect was marked by a 20% decrease in the energy of elastic wave propagation in the female group. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Prediction and near-field observation of skull-guided acoustic waves
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Prediction and near-field observation of skull-guided acoustic waves.
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-21
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket
NASA Technical Reports Server (NTRS)
Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin
2015-01-01
The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.
Optimal speckle noise reduction filter for range gated laser illuminated imaging
NASA Astrophysics Data System (ADS)
Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur
2016-09-01
Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.
Macroscopic character of composite high-temperature superconducting wires
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Spivak, B.
2015-11-01
The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.
Wave Breaking Dissipation in Fetch-Limited Seas
NASA Astrophysics Data System (ADS)
Schwendeman, M.; Thomson, J. M.; Gemmrich, J.
2012-12-01
Breaking waves on the ocean surface control wave growth and enhance air-sea interaction, yet field measurements of breaking are limited. A promising technique for field measurements of wave breaking uses the breaking crest length distribution Λ(c), introduced by Phillips (1985). However, calculating dynamic quantities from Λ(c) requires knowledge of the breaking strength parameter, b. Estimates of a b have varied over many orders of magnitude, and recent studies have attempted to model b in terms of sea state, such as wave steepness or saturation. We present comprehensive observations of breaking in fetch-limited conditions from Juan de Fuca Strait, WA. The wave evolution along fetch is explained by an observed energy budget using the radiative transfer equation (RTE), and the evolution is consistent with existing empirical fetch laws. Estimates of Λ(c) increase along fetch and are consistent with directly measured breaking rates. Using novel in situ measures of dissipation, as well as a residual term from the RTE budget, we obtain robust estimates of the wave breaking strength b. Results suggest that b decreases with wave steepness and saturation, in contrast with recent laboratory results (Drazen et al, 2008). This trend is discussed in terms of the fetch evolution and associated broadening of the equilibrium range in the wave spectra.Map of drifter tracks colored by wave height for two days in Juan de Fuca Strait, WA.
Dynamic aspects of apparent attenuation and wave localization in layered media
Haney, M.M.; Van Wijk, K.
2008-01-01
We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.
NASA Technical Reports Server (NTRS)
Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.
1981-01-01
Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005...Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
crest length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis ...Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a
Parameter identification of JONSWAP spectrum acquired by airborne LIDAR
NASA Astrophysics Data System (ADS)
Yu, Yang; Pei, Hailong; Xu, Chengzhong
2017-12-01
In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.
A phase-plane analysis of localized frictional waves
NASA Astrophysics Data System (ADS)
Putelat, T.; Dawes, J. H. P.; Champneys, A. R.
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
A phase-plane analysis of localized frictional waves
Dawes, J. H. P.; Champneys, A. R.
2017-01-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick–slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types. PMID:28804255
A phase-plane analysis of localized frictional waves.
Putelat, T; Dawes, J H P; Champneys, A R
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
In-situ Calibration Methods for Phased Array High Frequency Radars
NASA Astrophysics Data System (ADS)
Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.
2016-12-01
HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in the presence of reflecting structures (buildings, fences), or possibly fractal nature of the wavefronts; (e) amplitudes lack stability in time and azimuth to be usable as a-priori calibrations, confirming the accepted method of re-normalizing amplitudes by the signal of nearby cells prior to beam-forming.
Analysis of bubble plume spacing produced by regular breaking waves
NASA Astrophysics Data System (ADS)
Phaksopa, J.; Haller, M. C.
2012-12-01
The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the estimation of wavenumber spectrum, the density is high at low wavenumber and it decreases toward high wavenumber. The average spectrum bandwidth was estimated and represented as the bubble event spacing for each run. It is found that its magnitude varies with wave conditions range from 8.81 - 11.82 and is related to the waveheight. Additionally, the calculated wavenumbers from power density function vary in the range of 0.80 - 1.58 meters-1. It is found that the bubble wavenumbers are mostly higher than the wavenumbers calculated from the linear wave theory between 0.2L-0.7L. In other words, the bubble plume length does not exceed the progressive wavelength.
S-wave velocity measurements along levees in New Orleans using passive surface wave methods
NASA Astrophysics Data System (ADS)
Hayashi, K.; Lorenzo, J. M.; Craig, M. S.; Gostic, A.
2017-12-01
In order to develop non-invasive methods for levee inspection, geophysical investigations were carried out at four sites along levees in the New Orleans area: 17th Street Canal, London Avenue Canal, Marrero Levee, and Industrial Canal. Three of the four sites sustained damage from Hurricane Katrina in 2005 and have since been rebuilt. The geophysical methods used include active and passive surface wave methods, and capacitively coupled resistivity. This paper summarizes the acquisition and analysis of the 1D and 2D passive surface wave data. Twelve wireless seismic data acquisition units with 2 Hz vertical component geophones were used to record data. Each unit includes a GPS receiver so that all units can be synchronized over any distance without cables. The 1D passive method used L shaped arrays of three different sizes with geophone spacing ranging from 5 to 340 m. Ten minutes to one hour of ambient noise was recorded with each array, and total data acquisition took approximately two hours at each site. The 2D method used a linear array with a geophone spacing of 5m. Four geophones were moved forward every 10 minutes along 400 1000 m length lines. Data acquisition took several hours for each line. Recorded ambient noise was processed using the spatial autocorrelation method and clear dispersion curves were obtained at all sites (Figure 1a). Minimum frequencies ranged from 0.4 to 0.7 Hz and maximum frequencies ranged from 10 to 30 Hz depending on the site. Non-linear inversion was performed and 1D and 2D S-wave velocity models were obtained. The 1D method penetrated to depths ranging from 200 to 500 m depending on the site (Figure 1b). The 2D method penetrated to a depth of 40 60 m and provided 400 1000 m cross sections along the levees (Figure 2). The interpretation focused on identifying zones beneath the levees or canal walls having low S-wave velocities corresponding to saturated, unconsolidated sands, or low-rigidity clays. Resultant S-wave velocity profiles are generally consistent with existing drilling logs and the results of laboratory tests.
Simulations and analysis of asteroid-generated tsunamis using the shallow water equations
NASA Astrophysics Data System (ADS)
Berger, M. J.; LeVeque, R. J.; Weiss, R.
2016-12-01
We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.
Moulin, Emmanuel; Grondel, Sébastien; Assaad, Jamal; Duquenne, Laurent
2008-12-01
The work described in this paper is intended to present a simple and efficient way of modeling a full Lamb wave emission and reception system. The emitter behavior and the Lamb wave generation are predicted using a two-dimensional (2D) hybrid finite element-normal mode expansion model. Then the receiver electrical response is obtained from a finite element computation with prescribed displacements. A numerical correction is applied to the 2D results in order to account for the in-plane radiation divergence caused by the finite length of the emitter. The advantage of this modular approach is that realistic configurations can be simulated without performing cumbersome modeling and time-consuming computations. It also provides insight into the physical interpretation of the results. A good agreement is obtained between predicted and measured signals. The range of application of the method is discussed.
Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.
2015-04-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.
Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin
2015-04-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.
Chromospheric heating by acoustic shock waves
NASA Technical Reports Server (NTRS)
Jordan, Stuart D.
1993-01-01
Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.
Numerical modelling of nonlinear full-wave acoustic propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less
Time-Delay Interferometry for Space-based Gravitational Wave Searches
NASA Technical Reports Server (NTRS)
Armstrong, J.; Estabrook, F.; Tinto, M.
1999-01-01
Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.
50 CFR 216.175 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
...., FFG, DDG, or CG). (G) Length of time observers maintained visual contact with marine mammal. (H) Wave... height in feet (high, low and average during exercise). (I) Narrative description of sensors and... sensor. (F) Length of time observers maintained visual contact with marine mammal. (G) Wave height. (H...
Edge waves excited by underwater landslides : scenarios in the sea of Marmara
NASA Astrophysics Data System (ADS)
Sinan Özeren, Mehmet; Postacioglu, Nazmi; Canlı, Umut; Gasperini, Luca
2014-05-01
In this work we quantify the travel distance of edge waves created by submarine landslide over slopes of finite length. Edge waves, if generated, can constitute severe coastal hazard because they can travel long distances along the shores. In the Sea of Marmara there are several submarine masses susceptible to slide in case of a big earthquake on the Main Marmara Fault and some damage scenarios might involve edge waves. The edge waves generated by landslide Tsunamis over slopes of infinite lenghts are recently studied by Sammarco and Renzi (Landslide tsunamis propagating along a plane beach, 2008, Journal of Fluid Mech.). However the infinite slope length assumption causes a perfect confinement of the waves over the coastal slope, thereby overestimating the edge wave damage. Because of this, in their work there is no alongshore length scale over which these waves can lose their energy. In the real worls, the off-shore limiting depth will be finite and the off-shore direction wave vector will not be completely complex, pointing to radiation damping of these edge waves. In this work we analytically quantify the amount of this damping and we estimate the travel distance of the edge waves along the shoreline as a function of the limiting depth. We examine some some scenarios in the north coast of the Sea of Marmara and the northern shelf to quantify the edge waves. Since the method does not require high-resolution numerical computing, it can be used to calculate the edge-wave related risk factor anywhere with submarine landslide risk.
Macpherson, Morag F; Kleczkowski, Adam; Healey, John R; Hanley, Nick
2017-04-01
Forests deliver multiple benefits both to their owners and to wider society. However, a wave of forest pests and pathogens is threatening this worldwide. In this paper we examine the effect of disease on the optimal rotation length of a single-aged, single rotation forest when a payment for non-timber benefits, which is offered to private forest owners to partly internalise the social values of forest management, is included. Using a generalisable bioeconomic framework we show how this payment counteracts the negative economic effect of disease by increasing the optimal rotation length, and under some restrictive conditions, even makes it optimal to never harvest the forest. The analysis shows a range of complex interactions between factors including the rate of spread of infection and the impact of disease on the value of harvested timber and non-timber benefits. A key result is that the effect of disease on the optimal rotation length is dependent on whether the disease affects the timber benefit only compared to when it affects both timber and non-timber benefits. Our framework can be extended to incorporate multiple ecosystem services delivered by forests and details of how disease can affect their production, thus facilitating a wide range of applications.
Open ocean Internal Waves, Namibia Coast, Africa.
NASA Technical Reports Server (NTRS)
1990-01-01
These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.
Open ocean Internal Waves, Namibia Coast, Africa.
1990-12-10
These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.
Wave-ice interaction, observed and modelled
NASA Astrophysics Data System (ADS)
Gemmrich, Johannes
2017-04-01
The need for wide-spread, up-to-date sea state predictions and observations in the emerging ice-free Arctic will further increase as the region will open up to marine operations. Wave models for arctic regions have to capture the additional wave physics associated with wave-ice interactions, and different prediction schemes have to be tested against observations. Here we present examples of spatial wave field parameters obtained from TerraSAR-X StripMap swaths in the southern Beaufort Sea taken as part of the "Arctic Sea State and Boundary Layer DRI". Fetch evolution of the significant wave height and length in open waters, and dominant wave lengths and the high frequency cut-off of the wave spectrum in ice are readily extracted from the SAR (synthetic aperture radar) data. A surprising result is that wave evolution in off-ice wind conditions is more rapidly than the fetch evolution in off-land cases, suggesting seeding of the wave field within the ice-covered region.
Impedance of strip-traveling waves on an elastic half space - Asymptotic solution
NASA Technical Reports Server (NTRS)
Crandall, S. H.; Nigam, A. K.
1973-01-01
The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
2016-07-19
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Pala, Nezih; Golmohammadi, Saeed
2015-05-01
Silicon nanorods in arrays on a glass substrate that are situated through a gap between two gold slots have been utilized to design efficient long-range optical nanostructures as splitters to function at near infrared spectrum. Designing silicon arrays in T and Y-shape regimes, we examined the optical responses of the proposed devices during guiding of transverse and longitudinal electric modes (TE and LE-modes). Transmission loss factors, group velocity of guided waves, the ratio of transmitted power, and the decay length for both of the devices have been reported using numerical methods. We showed that the proposed structures have strong potentials to employ in designing photonic structures with lower ratio of energy extinction and low radiation losses. The overall length of the structures is 2.2 μm which verifies its compaction in comparison to analogous splitters that are designed based on DLSPPWs and nanoparticle-based waveguides devices. Proposed subwavelength optical power transportation mechanisms are highly compatible to employ in photonic integration circuit (PIC) systems.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Damping factor estimation using spin wave attenuation in permalloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp; Yamanoi, Kazuto; Kasai, Shinya
2015-05-07
Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spinmore » waves attenuation can be useful tool for ferromagnetic thin films.« less
A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data
NASA Astrophysics Data System (ADS)
Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan
2016-07-01
This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
Pastore, J M; Girouard, S D; Laurita, K R; Akar, F G; Rosenbaum, D S
1999-03-16
Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209+/-46 bpm) that was significantly lower (by 57+/-36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG. Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death.
Structure and Optical Properties of Nanocrystalline Hafnium Oxide Thin Films (PostPrint)
2014-09-01
sputter-deposition. A large band gap coupled with low absorption provide optical transparency over a broad range in the electromagnetic spectrum; HfO2...k) in the middle of the visible spec- trum, and C influences n(k) to a greater extent in shorter wave - lengths [31]. Note that this principle behind...Approved for publicnanocrystalline HfO2 films crystallize in monoclinic structure. Fur - thermore, increasing Ts results in improved structural order and
Investigation of Doppler Effects on the Detection of Polyphase Coded Radar Waveforms
2003-02-01
wave2 = amp * sin(2*pi*two+(2*pi/7)); %the second modulated waveform %wave = [wavec wave1 wave2 wavec]; %the wave form put togther wave = amp...waveform wave1 = sin(2*pi*two+(pi/2)); %the first modulated waveform wave2 = sin(2*pi*two+(2*pi/7)); %the second modulated waveform...wave = [wavec wave1 wave2 wavec]; %the wave form put togther normval = max(abs(xcorr(wave,wave))); N=length
Jonsson, Ulf; Lindahl, Olof; Andersson, Britt
2014-12-01
To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.
Millimeter-wave spectroscopy of CoNO Produced by UV laser photolysis of Co(CO){sub 3}NO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Ai; Hayashi, Masato; Harada, Kensuke
2008-10-07
The rotational spectrum of cobalt mononitrosyl (CoNO) produced by ultraviolet photolysis of Co(CO){sub 3}NO was observed in the millimeter-wave region. Seven rotational transitions in the ground state ranging from J=6-5 to 12-11, with hyperfine splittings due to the Co nucleus (I=7/2), were detected in a supersonic jet environment, while higher-frequency transitions in the range from J=29-28 to 35-34 were measured in the ground, {nu}{sub 1}, {nu}{sub 2}, {nu}{sub 3}, and 2{nu}{sub 2} vibrational states using a free-space absorption cell. It was confirmed from the observed spectral pattern that the CoNO molecule has a linear structure with the electronic ground statemore » of {sup 1}{sigma}{sup +} symmetry. The rotational lines in the 2{nu}{sub 2}({sigma}) and {nu}{sub 3} states were observed to be perturbed by Fermi resonance. The equilibrium rotational constant B{sub e} is determined to be 4682.207(15) MHz. The CoN bond length is derived to be 1.5842 A assuming the NO bond length of 1.1823 A. A large nuclear spin-rotation interaction constant, C{sub I}=123.8(11) kHz, was determined, suggesting a {sup 1}{pi} electronic excited state lying close to the ground state.« less
Wan, Jianing; Zhu, Junda; Zhong, Ying; Liu, Haitao
2018-06-01
The electromagnetic enhancement by a metallic nanowire optical antenna on metallic substrate is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons in the nanogap between the antenna and the substrate, we build up an intuitive and comprehensive model that provides semianalytical expressions for the electromagnetic field in the nanogap to achieve an understanding of the mechanism of electromagnetic enhancement. Our results show that antennas with short lengths that support the lowest order of resonance can achieve a high electric-field enhancement factor over a large range of incidence angles. Two phase-matching conditions are derived from the model for predicting the antenna lengths at resonance. Excitation of symmetric or antisymmetric localized surface plasmon resonance is further explained with the model. The model also shows superior computational efficiency compared to the full-wave numerical method when scanning the antenna length, the incidence angle, or the wavelength.
NASA Astrophysics Data System (ADS)
Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas
2017-09-01
The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling
2017-09-01
In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.
Design and construction of prototype radio antenna for shortest radio wavelengths
NASA Technical Reports Server (NTRS)
Leighton, R. B.
1975-01-01
A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.
Fracture process zone in granite
Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.
2000-01-01
In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soler, R.; Oliver, R.; Ballester, J. L., E-mail: roberto.soler@wis.kuleuven.be
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations.more » For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.« less
On the modeling of wave-enhanced turbulence nearshore
NASA Astrophysics Data System (ADS)
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
An experimental study of turbulence by phase-contrast imaging in the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Coda, Stefano
1997-10-01
A CO2-laser imaging system employing the Zernike phase-contrast technique was designed, built, installed, and operated on the DIII-D tokamak. This system measures the line integrals of plasma density fluctuations along 16 vertical chords at the outer edge of the tokamak (0.85
Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains
NASA Astrophysics Data System (ADS)
Leng, Dingxin; Liu, Guijie; Sun, Lingyu
2018-01-01
In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.
NASA Astrophysics Data System (ADS)
Nurhidayati, I.; Suparmi, A.; Cari, C.
2018-03-01
The Schrödinger equation has been extended by applying the minimal length formalism for trigonometric potential. The wave function and energy spectra were used to describe the behavior of subatomic particle. The wave function and energy spectra were obtained by using hypergeometry method. The result showed that the energy increased by the increasing both of minimal length parameter and the potential parameter. The energy were calculated numerically using MatLab.
Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.
2018-03-01
We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
NASA Astrophysics Data System (ADS)
Farazmand, Mohammad; Sapsis, Themistoklis P.
2017-07-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. We assess the validity of this scheme in several cases of ocean wave spectra.
NASA Astrophysics Data System (ADS)
Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María
2016-01-01
Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.
A new empirical potential energy function for Ar2
NASA Astrophysics Data System (ADS)
Myatt, Philip T.; Dham, Ashok K.; Chandrasekhar, Pragna; McCourt, Frederick R. W.; Le Roy, Robert J.
2018-06-01
A critical re-analysis of all available spectroscopic and virial coefficient data for Ar2 has been used to determine an improved empirical analytic potential energy function that has been 'tuned' to optimise its agreement with viscosity, diffusion and thermal diffusion data, and whose short-range behaviour is in reasonably good agreement with the most recent ab initio calculations for this system. The recommended Morse/long-range potential function is smooth and differentiable at all distances, and incorporates both the correct theoretically predicted long-range behaviour and the correct limiting short-range functional behaviour. The resulting value of the well depth is ? cm-1 and the associated equilibrium distance is re = 3.766 (±0.002) Å, while the 40Ar s-wave scattering length is -714 Å.
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2006-11-01
The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.
NASA Astrophysics Data System (ADS)
Crossingham, Grant James
This thesis is concerned with the design of a new ocean going instrument to measure the local sea surface profile. The motivation behind this project was the need to investigate oceanographic features that have been observed using imaging radar aboard aircraft and satellites. The measurements made with this instrument will further the understanding of the processes involved in radar backscatter from the ocean surface and will enable further analysis of ocean phenomena detected using imaging radars. With an improved understanding of these processes it will be possible to analyse quantitatively satellite images generated from around the globe. This will allow global environmental monitoring which could lead to improved weather forecasting, pollution control such as oil slick monitoring and surface and subsurface operations. It is believed that radar signals having a wavelength of 10 to 300mm are backscattered from waves on the ocean surface of similar length. Earlier attempts to measure waves including those designed to measure millimetric waves are critically reviewed and an account of the evolution of the design of a new instrument to measure these small waves is presented. This new instrument has been tested in the laboratory, which has demonstrated that a repeatable wave slope measurement accuracy of +/-0.56° has been achieved in static tests. Dynamic tests made using a wave tank have generated a wave slope profile, clearly showing 10mm wavelengths present on the surface. The new Digital Slopemeter is designed to measure the small-scale sea surface roughness for wavelengths in the range 10mm to 224mm. This instrument uses two grids of wavelength shifting fibres to digitally record the slope of a refracted laser beam. The laser beam is rapidly scanned over the sea surface to ensure that the profile of the surface is effectively stationary over a length of 224mm. The wave slope is sampled at 3.5mm intervals along each scan, allowing 7mm wavelengths to be resolved. This efficient measurement of the sea surface roughness enables a real-time display of the data collected. The design of the instrument permits it to be deployed from the bow of a research vessel in moderate seas. This instrument is therefore simple and flexible to deploy.
3D radiation belt diffusion model results using new empirical models of whistler chorus and hiss
NASA Astrophysics Data System (ADS)
Cunningham, G.; Chen, Y.; Henderson, M. G.; Reeves, G. D.; Tu, W.
2012-12-01
3D diffusion codes model the energization, radial transport, and pitch angle scattering due to wave-particle interactions. Diffusion codes are powerful but are limited by the lack of knowledge of the spatial & temporal distribution of waves that drive the interactions for a specific event. We present results from the 3D DREAM model using diffusion coefficients driven by new, activity-dependent, statistical models of chorus and hiss waves. Most 3D codes parameterize the diffusion coefficients or wave amplitudes as functions of magnetic activity indices like Kp, AE, or Dst. These functional representations produce the average value of the wave intensities for a given level of magnetic activity; however, the variability of the wave population at a given activity level is lost with such a representation. Our 3D code makes use of the full sample distributions contained in a set of empirical wave databases (one database for each wave type, including plasmaspheric hiss, lower and upper hand chorus) that were recently produced by our team using CRRES and THEMIS observations. The wave databases store the full probability distribution of observed wave intensity binned by AE, MLT, MLAT and L*. In this presentation, we show results that make use of the wave intensity sample probability distributions for lower-band and upper-band chorus by sampling the distributions stochastically during a representative CRRES-era storm. The sampling of the wave intensity probability distributions produces a collection of possible evolutions of the phase space density, which quantifies the uncertainty in the model predictions caused by the uncertainty of the chorus wave amplitudes for a specific event. A significant issue is the determination of an appropriate model for the spatio-temporal correlations of the wave intensities, since the diffusion coefficients are computed as spatio-temporal averages of the waves over MLT, MLAT and L*. The spatiotemporal correlations cannot be inferred from the wave databases. In this study we use a temporal correlation of ~1 hour for the sampled wave intensities that is informed by the observed autocorrelation in the AE index, a spatial correlation length of ~100 km in the two directions perpendicular to the magnetic field, and a spatial correlation length of 5000 km in the direction parallel to the magnetic field, according to the work of Santolik et al (2003), who used multi-spacecraft measurements from Cluster to quantify the correlation length scales for equatorial chorus . We find that, despite the small correlation length scale for chorus, there remains significant variability in the model outcomes driven by variability in the chorus wave intensities.
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.
Rodriguez, George; Gilbertson, Steve M
2017-01-27
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve M.
2017-01-01
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve Michael
2017-01-27
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
Wave run-up on a high-energy dissipative beach
Ruggiero, P.; Holman, R.A.; Beach, R.A.
2004-01-01
Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.
1991-01-01
Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.
Hole pairing and ground state properties of high-Tc superconductivity within the t-t'-J-V model
NASA Astrophysics Data System (ADS)
Roy, Krishanu; Pal, Papiya; Nath, Subhadip; Ghosh, Nanda Kumar
2018-04-01
The t-t'-J-V model, one of the realistic models for studying high-Tc cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large V/t. A superconducting phase emerges at 0 ≤ V/t ≤ 4J. Hole-hole correlation calculation also suggests that the two holes of the pair are either at |i - j| = 1 or √2. Negative t'/t suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by V/t while d-(s-) wave susceptibility gets favored (suppressed) by t'/t. The charge gap shows a gapped behavior while a spin-gapless region exists at small V/t for finite t'/t.
Romantic Relationship Development: The Interplay between Age and Relationship Length
ERIC Educational Resources Information Center
Lantagne, Ann; Furman, Wyndol
2017-01-01
The present study explored how romantic relationship qualities develop with age and relationship length. Eight waves of data on romantic relationships were collected over 10.5 years during adolescence and early adulthood from a community-based sample in a Western U.S. city (100 males, 100 females; M age Wave 1 = 15.83). Measures of support,…
Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N
NASA Astrophysics Data System (ADS)
Barclay, Andrew H.; Toomey, Douglas R.
2003-08-01
Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.
Standing wave tube electro active polymer wave energy converter
NASA Astrophysics Data System (ADS)
Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.
2012-04-01
Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.
NASA Astrophysics Data System (ADS)
Albaba, Adel; Lambert, Stéphane; Faug, Thierry
2018-05-01
The present paper investigates the mean impact force exerted by a granular mass flowing down an incline and impacting a rigid wall of semi-infinite height. First, this granular flow-wall interaction problem is modeled by numerical simulations based on the discrete element method (DEM). These DEM simulations allow computing the depth-averaged quantities—thickness, velocity, and density—of the incoming flow and the resulting mean force on the rigid wall. Second, that problem is described by a simple analytic solution based on a depth-averaged approach for a traveling compressible shock wave, whose volume is assumed to shrink into a singular surface, and which coexists with a dead zone. It is shown that the dead-zone dynamics and the mean force on the wall computed from DEM can be reproduced reasonably well by the analytic solution proposed over a wide range of slope angle of the incline. These results are obtained by feeding the analytic solution with the thickness, the depth-averaged velocity, and the density averaged over a certain distance along the incline rather than flow quantities taken at a singular section before the jump, thus showing that the assumption of a shock wave volume shrinking into a singular surface is questionable. The finite length of the traveling wave upstream of the grains piling against the wall must be considered. The sensitivity of the model prediction to that sampling length remains complicated, however, which highlights the need of further investigation about the properties and the internal structure of the propagating granular wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.
2014-10-13
High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less
Chen, Xuemei; Fried, Eliot
2008-10-01
Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta < alpha, the range of wave numbers for which this law holds is extended by a factor of alphabeta . This suggests that simulations based on the Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.
Effects of varying inter-limb spacing to limb length ratio in metachronal swimming
NASA Astrophysics Data System (ADS)
Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind
2016-11-01
Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.
Catchings, Rufus D.; Goldman, Mark R.; Li, Yong-Gang; Chan, Joanne
2016-01-01
We measure peak ground velocities from fault‐zone guided waves (FZGWs), generated by on‐fault earthquakes associated with the 24 August 2014 Mw 6.0 South Napa earthquake. The data were recorded on three arrays deployed across north and south of the 2014 surface rupture. The observed FZGWs indicate that the West Napa fault zone (WNFZ) and the Franklin fault (FF) are continuous in the subsurface for at least 75 km. Previously published potential‐field data indicate that the WNFZ extends northward to the Maacama fault (MF), and previous geologic mapping indicates that the FF extends southward to the Calaveras fault (CF); this suggests a total length of at least 110 km for the WNFZ–FF. Because the WNFZ–FF appears contiguous with the MF and CF, these faults apparently form a continuous Calaveras–Franklin–WNFZ–Maacama (CFWM) fault that is second only in length (∼300 km) to the San Andreas fault in the San Francisco Bay area. The long distances over which we observe FZGWs, coupled with their high amplitudes (2–10 times the S waves) suggest that strong shaking from large earthquakes on any part of the CFWM fault may cause far‐field amplified fault‐zone shaking. We interpret guided waves and seismicity cross sections to indicate multiple upper crustal splays of the WNFZ–FF, including a northward extension of the Southhampton fault, which may cause strong shaking in the Napa Valley and the Vallejo area. Based on travel times from each earthquake to each recording array, we estimate average P‐, S‐, and guided‐wave velocities within the WNFZ–FF (4.8–5.7, 2.2–3.2, and 1.1–2.8 km/s, respectively), with FZGW velocities ranging from 58% to 93% of the average S‐wave velocities.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Integrated optical signal processing with magnetostatic waves
NASA Technical Reports Server (NTRS)
Fisher, A. D.; Lee, J. N.
1984-01-01
Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
NASA Astrophysics Data System (ADS)
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
Heterojunction Structures for Photon Detector Applications
2014-07-21
wavelength (SWIR), mid-wavelength (MWIR), and long wave- length-IR ( LWIR ), depending on the wavelength ranging from ~ 0.8 –5 µm, 5 – 30 µm and 30µm -1 mm...photovoltaic LWIR detection, Electron Devices, IEEE Transactions on, 39, pp. 234-241, 1992. [34] Kastalsky A, Duffield T, Allen S J, and Harbison J...62] Perera A G U, Silvestrov V G, Matsik S G, Liu H C, Buchanan M, Wasilewski Z R, and Ershov M, Nonuniform vertical charge transport and relaxation
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
NASA Astrophysics Data System (ADS)
Harms, Jan; Hild, Stefan
2014-09-01
In this article we propose a new method for reducing Newtonian noise (NN) in laser-interferometric gravitational wave detectors located on the Earth's surface. We show that by excavating meter-scale recesses in the ground around the main test masses of a gravitational wave detector it is possible to reduce the coupling of Rayleigh wave driven seismic disturbances to test mass displacement. A discussion of the optimal recess shape is given and we use finite element simulations to derive the scaling of the NN suppression with the parameters of the recess as well as the frequency of the seismic excitation. Considering an interferometer similar to an Advance LIGO configuration, our simulations indicate a frequency dependent NN suppression factor of 2-4 in the relevant frequency range for a recesses of 4 m depth and a width and length of 11 m and 5 m, respectively. Though a retrofit to existing interferometers seems not impossible, the application of our concept to future infrastructures seems to provide a better benefit/cost ratio and therefore a higher feasibility.
Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves
NASA Astrophysics Data System (ADS)
Gupta, Prateek; Scalo, Carlo
2017-11-01
Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.
Granular resistive force theory explains the neuromechanical phase lag during sand-swimming
NASA Astrophysics Data System (ADS)
Ding, Yang; Sharpe, Sarah; Goldman, Daniel
2012-11-01
Undulatory locomotion is a common gait used by a diversity of animals in a range of environments. This mode of locomotion is characterized by the propagation of a traveling wave of body bending, which propels the animal in the opposite direction of the wave. Previous studies of undulatory locomotion in fluids, on land, and even within sand revealed that the wave of muscle activation progresses faster than the traveling wave of curvature. This leads to an increasing phase lag between activation and curvature at more posterior segments, known as the neuromechanical phase lag. In this study, we compare biological measurements of phase lag during the sand-swimming of the sandfish lizard to predictions of a simple model of undulatory swimming that consists of prescribed kinematics and granular resistive forces. The neuromechanical phase lag measured using electromyography (EMG) quantitatively matches the predicted phase lag between the local body curvature and torque exerted by granular resistive forces. Two effects are responsible for the phase lag in this system: the yaw motion of the body and different integration length over a traveling force pattern for different positions along the body.
Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system
NASA Astrophysics Data System (ADS)
Wang, Yaoli; Chen, Yuanyuan
2018-07-01
An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.
Ground motion hazard from supershear rupture
Andrews, D.J.
2010-01-01
An idealized rupture, propagating smoothly near a terminal rupture velocity, radiates energy that is focused into a beam. For rupture velocity less than the S-wave speed, radiated energy is concentrated in a beam of intense fault-normal velocity near the projection of the rupture trace. Although confined to a narrow range of azimuths, this beam diverges and attenuates. For rupture velocity greater than the S-wave speed, radiated energy is concentrated in Mach waves forming a pair of beams propagating obliquely away from the fault. These beams do not attenuate until diffraction becomes effective at large distance. Events with supershear and sub-Rayleigh rupture velocity are compared in 2D plane-strain calculations with equal stress drop, fracture energy, and rupture length; only static friction is changed to determine the rupture velocity. Peak velocity in the sub-Rayleigh case near the termination of rupture is larger than peak velocity in the Mach wave in the supershear case. The occurrence of supershear rupture propagation reduces the most intense peak ground velocity near the fault, but it increases peak velocity within a beam at greater distances.
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1993-01-01
The nonlinear stability of an oblique mode propagating in a two-dimensional compressible boundary layer is considered under the long wave-length approximation. The growth rate of the wave is assumed to be small so that the concept of unsteady nonlinear critical layers can be used. It is shown that the spatial/temporal evolution of the mode is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity and density. Expressions for the linear growth rate show clearly the effects of wall heating and cooling and in particular how heating destabilizes the boundary layer for these long wavelength inviscid modes at O(1) Mach numbers. A generalized expression for the linear growth rate is obtained and is shown to compare very well for a range of frequencies and wave-angles at moderate Mach numbers with full numerical solutions of the linear stability problem. The numerical solution of the nonlinear unsteady critical layer problem using a novel method based on Fourier decomposition and Chebychev collocation is discussed and some results are presented.
Numerical study of nonlinear full wave acoustic propagation
NASA Astrophysics Data System (ADS)
Velasco-Segura, Roberto; Rendon, Pablo L.
2013-11-01
With the aim of describing nonlinear acoustic phenomena, a form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite-volume method using Roe's linearization has been implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is written for parallel execution on a GPU and improves performance by a factor of over 50 when compared to the standard CLAWPACK Fortran code. This code can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from modest models of diagnostic and therapeutic HIFU, parametric acoustic arrays, to acoustic wave guides. A couple of examples will be presented showing shock formation and oblique interaction. DGAPA PAPIIT IN110411, PAEP UNAM 2013.
Multiple competing interactions and reentrant ferrimagnetism in Tb 0.8Nd 0.2Mn 6Ge 6
NASA Astrophysics Data System (ADS)
Schobinger-Papamantellos, P.; André, G.; Rodríguez-Carvajal, J.; Duong, N. P.; Buschow, K. H. J.
2001-06-01
The magnetic ordering of the hexagonal compound Tb 0.8Nd 0.2Mn 6Ge 6 has been studied by neutron diffraction and magnetic measurements in the temperature range 1.5-800 K. This compound was found to undergo consecutive magnetic transitions with temperature. The magnetic phase diagram comprises four distinct regions and requires the wave vectors: q1=(0, 0, qz) and q2=0 for its description. The low temperature range (LT): 1.5 K< T< T1=85 K, is characterised by a triple ferrimagnetic conical (spiral) structure with qz=0.128 r.l.u and a net moment along the c direction ( q2=0). The intermediate temperature range displays two transitions: At T1=85 K the conical structure transforms to a simple triple (flat) spiral persisting in range (ITa) 85 K< T< T2≈340 K, with a small thermal variation of the wave vector. Above T2 in range (ITb) T2< T< TS≈390 K the destabilised spiral transforms to a FAN-like structure with a fast decrease of the wave vector length towards zero while a ferrimagnetic planar structure ( q2=0) develops at the cost of the spiral. The planar ferrimagnetic magnetic structure ( q2=0) dominates the high temperature range (HT) 390 K< T< Tc=450 K. The onset of re-entrant ferrimagnetism reflects the interplay of multiple competing inter- and intra- sublattice interactions of the three types of magnetic ions with different crystal field anisotropies. The Nd and Tb sublattices are coupled antiferromagnetically while the Tb-Mn and Nd-Mn interactions are negative and positive, respectively.
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
NASA Astrophysics Data System (ADS)
Wawerzinek, Britta; Buness, Hermann; Lüschen, Ewald; Thomas, Rüdiger
2017-04-01
To establish a dense area-wide network of geothermal facilities, the Stadtwerke München initiated the joint research project GRAME together with the Leibniz Institute for Applied Geophysics (GeoParaMoL*). As a database for the project, a 3D seismic survey was acquired from November 1015 to March 2016 and covers 170 km2 of the southern part of Munich. 3D seismic exploration is a well-established method to explore geothermal reservoirs, and its value for reservoir characterization of the Malm has been proven by several projects. A particular challenge often is the determination of geophysical parameters for facies interpretation without any borehole information, which is needed for calibration. A new approach to facilitate a reliable interpretation is to include shear waves in the interpretation workflow, which helps to tie down the range of lithological and petrophysical parameters. Shear wave measurements were conducted during the regular 3D seismic survey in Munich. In a passive experiment, the survey was additionally recorded on 467 single, 3-component (3C), digital receivers that were deployed along one main line (15 km length) and two crosslines (4 km length). In this way another 3D P-wave as well as a 3D shear wave dataset were acquired. In the active shear wave experiment the SHOVER technique (Edelmann, 1981) was applied to directly excite shear waves using standard vertical vibrators. The 3C recordings of both datasets show, in addition to the P-wave reflections on the vertical component, clear shear-wave signals on the horizontal components. The structural image of the P-waves recorded on the vertical component of the 3C receivers displays clear reflectors within the Molasse Basin down to the Malm and correlates well with the structural image of the regular survey. Taking into account a travel time ratio of 1.6 the reflection patterns of horizontal and vertical components approximately coincide. This indicates that Molasse sediments and the Malm can also be imaged by shear waves. Further processing steps will derive geophysical parameters (e.g. vp/vs) and clarify the amount of converted waves. GeoParaMoL (FKZ 0325787B) is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Edelmann, H.A.K. (1981): SHOVER shear-wave generation by vibration orthogonal to the polarization. Geophysical Prospecting 29, 541-549. * http://www.liag-hannover.de/en/fsp/ge/geoparamol.html
Laser-driven Mach waves for gigabar-range shock experiments
NASA Astrophysics Data System (ADS)
Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph
2017-10-01
Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Laser-driven Mach waves for gigabar-range shock experiments
NASA Astrophysics Data System (ADS)
Swift, Damian; Jenei, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph
2017-06-01
Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should perform well at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Nakata, N.; Hadziioannou, C.; Igel, H.
2017-12-01
Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.
Signatures of Air-Wave Interactions Over a Large Lake
NASA Astrophysics Data System (ADS)
Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc
2018-06-01
The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.
Sallenger, A.H.
1979-01-01
Field experiments on beach-cusp formation were undertaken to document how the cuspate form develops and to test the edge-wave hypothesis on the uniform spacing of cusps. These involved observations of cusps forming from an initially plane foreshore. The cuspate form was observed to be a product of swash modification of an intertidal beach ridge as follows. A ridge, cut by a series of channels quasi-equally spaced along its length, was deposited onto the lower foreshore. The ridge migrated shoreward with flood tide, while the longshore positions of the channels remained fixed. On ebb tide, changes in swash circulation over the ridge allowed the upwash to flow shoreward through the channels and the channel mouths were eroded progressively wider until adjacent mouths met, effecting a cuspate shape. Measured spacings of cusps, ranging in size from less than 1 m to more than 12 m, agree well with computed spacings due to either zero-mode subharmonic or zero-mode synchronous edge waves. Edge-wave-induced longshore variations in run up will cause water ponded behind a ridge to converge at points of low swash and flow seaward as relatively narrow currents eroding channels spaced at one edge-wave wavelength for synchronous edge waves or one half wavelength for subharmonic edge waves. The channels are subsequently modified into cusp troughs as described above.
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.
2016-12-01
Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.
Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges
NASA Astrophysics Data System (ADS)
Nies, Juliane M.; Gageik, Manuel A.; Klioutchnikov, Igor; Olivier, Herbert
2015-07-01
An investigation of pressure waves in compressible subsonic and transonic flow around a generic airfoil is performed in a modified shock tube. New comprehensive results are presented on pressure waves in compressible flow. For the first time, the influence of trailing edge serration will be examined in terms of the reduction in pressure wave amplitude. A generic airfoil is tested in two main configurations, one with blunt trailing edges and the other one with serrated trailing edges in a Mach number range from 0.6 to 0.8 and at chord Reynolds numbers of 1 × 106 < Re c < 5 ×106. The flow of the blunt trailing edge is characterized by a regular vortex street in the wake creating a regular pattern of upstream-moving pressure waves along the airfoil. The observed pressure waves lead to strong pressure fluctuations within the local flow field. A reduction in the trailing edge thickness leads to a proportional increase in the frequency of the vortex street in the wake as well as the frequency of the waves deduced from constant Strouhal number. By serrating the trailing edge, the formation of vortices in the wake is disturbed. Therefore, also the upstream-moving waves are influenced and reduced in their strength resulting in a steadier flow. An increasing length of the saw tooth enhances the three dimensionality of the structures in the wake and causes a strong decrease in the wave amplitude.
Shock wave attenuation in a micro-channel
NASA Astrophysics Data System (ADS)
Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.
2018-05-01
This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.
Breather Rogue Waves in Random Seas
NASA Astrophysics Data System (ADS)
Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.
2018-01-01
Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.
Jorgensen, Ben; Williamson, Anne; Chu, Rene; Qian, Fang
2017-06-01
This ex vivo study aimed to evaluate the efficacy of retreating GuttaCore (Dentsply Tulsa Dental Specialties, Tulsa, OK) and warm vertically condensed gutta-percha in moderately curved canals with 2 different systems: ProTaper Universal Retreatment (Dentsply Tulsa Dental) and WaveOne (Dentsply Tulsa Dental). Eighty mesial roots of mandibular molars were used in this study. The mesiobuccal canals in each sample were prepared to length with the WaveOne Primary file (Dentsply Tulsa Dental). The canals were obturated with either a warm vertical approach or with GuttaCore and divided into 4 retreatment groups with the same mean root curvature: warm vertical retreated with ProTaper, warm vertical retreated with WaveOne, GuttaCore retreated with ProTaper, and GuttaCore retreated with WaveOne. The warm vertical groups were obturated using a continuous-wave technique of gutta-percha compaction, and the GuttaCore groups were obturated according to the manufacturer's instructions. After allowing sealer to set, each specimen was retreated with either the ProTaper Universal Retreatment files D1, D2, or D3 or with the WaveOne Primary file to the predetermined working length. The time taken to reach the working length was recorded. Instrument fatigue and failure were also evaluated. The post hoc 2-sample t tests showed that the overall mean total time taken to reach the working length for the warm vertical groups was significantly greater than that observed for the GuttaCore groups (mean = 87.11 vs 60.16 seconds, respectively), and the overall mean total time taken to reach the working length for WaveOne was significantly greater than that observed for ProTaper (99.09 vs 48.18 seconds, respectively). Two-way analysis of variance showed a significant main effect for both the type of experiment groups (F 1,76 = 15.32, P = .0002) and the type of retreatments (F 1,76 = 54.67, P < .0001). Also, the WaveOne Primary file underwent more separations than the ProTaper files. The WaveOne Primary file underwent more separations and was unable to remove gutta-percha as efficiently as the ProTaper Universal Retreatment files. Also, canals obturated with GuttaCore were retreated more efficiently and with fewer file separations than the canals obturated using continuous wave of warm gutta-percha. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A note on sound radiation from distributed sources
NASA Technical Reports Server (NTRS)
Levine, H.
1979-01-01
The power output from a normally vibrating strip radiator is expressed in alternative general forms, one of these being chosen to refine and correct some particular estimates given by Heckl for different numerical ratios of strip width to wave length. An exact and explicit calculation is effected for sinusoidal velocity profiles when the strip width equals an integer number of half wave lengths.
Experimenting with End-Correction and the Speed of Sound
ERIC Educational Resources Information Center
LoPresto, Michael C.
2011-01-01
What follows is an alternative to the standard tuning fork and quarter-wave tube speed of sound experiment. Rather than adjusting the water level in a glass or plastic tube to vary the length of an air column, a set of resonance tubes of different lengths is used. The experiment still demonstrates the principles of standing waves in air columns…
NASA Technical Reports Server (NTRS)
Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.
1986-01-01
The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Modeled and Observed Transitions Between Rip Currents and Alongshore Flows
NASA Astrophysics Data System (ADS)
Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.
2014-12-01
Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.
NASA Astrophysics Data System (ADS)
Mukherjee, Arunava; Messenger, Chris; Riles, Keith
2018-02-01
The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Fairall, C. W.; Blomquist, B.; Brooks, I. M.; Tamura, H.; Yang, M.; Huebert, B. J.
2016-02-01
The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on the poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas were taken from the bow of the R/V Knorr. Visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz and directional wave spectra were obtained when on station from a wave rider buoy. Additional wave field statistics were computed from a laser altimeter as well as from a Wavewatch III hindcast. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we investigate how the fractional whitecap coverage (W) and gas transfer velocity (K) vary with sea state. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra, allowing contrasting pure windseas to swell dominated periods. For mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.
NASA Astrophysics Data System (ADS)
Burke, G. J.; King, R. J.; Miller, E. K.
1984-09-01
Relative communication efficiency (RCE) as defined by Fenwick and Weeks compares the field of a test antenna to that of a reference antenna at the same location for equal input plower to each antenna. Thus, RCE is similar to power gain but is definable in the presence of ground. The effectiveness of antennas in launching TM surface waves was compared. Antennas considered included the vertical dipole, monople on a ground stake, monopole on a radial-wire ground screen, Beverage antenna and vertical half rhombic. Since the performance of these antennas is strongly dependent on parameters such as the number wires in a ground screen or the length of a Beverage antenna, results are presented with parameters varying over a reasonable range. Thus, antenna performance can be weighed against the effort and limitations of construction.
The gravitational Schwinger effect and attenuation of gravitational waves
NASA Astrophysics Data System (ADS)
McDougall, Patrick Guarneri
This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.
NASA Astrophysics Data System (ADS)
Feng, Bo; Ribeiro, Artur Lopes; Ramos, Helena Geirinhas
2018-04-01
This paper presents a study of the characteristics of Lamb wave (S0 mode) testing signals in carbon fiber composite laminates containing delaminations. The study was implemented by using commercial finite element simulation software - ANSYS. The delamination signal is proven to be the superposition of the two waves travelling from upper and lower sub-laminates. Dispersion curves for the two sub-laminates were calculated to show the difference between phase velocities of the waves in the sub-laminates. Two models are specifically designed to get the phase difference between the waves that travel in each of the two sub-laminates. From the simulation results, it was found that the phase difference increases with the delamination length. Furthermore, the amplitude of delamination signal decreases first, then it starts to increase after reaching the minimum value. The minimum is reached when the waves from the two sub-laminates are 180° out of phase.
Cw hyper-Raman laser and four-wave mixing in atomic sodium
NASA Astrophysics Data System (ADS)
Klug, M.; Kablukov, S. I.; Wellegehausen, B.
2005-01-01
Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.
A comparison of solar wind and ionospheric ion acoustic waves
NASA Technical Reports Server (NTRS)
Kintner, P. M.; Kelley, M. C.
1980-01-01
Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderón; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelecsenyi, N.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vansuch, G.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.
2016-02-01
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 2 0h1 0m54.7 1s+3 3 ° 3 3'25.2 9'' , and the other (B) is 7.45° in diameter and centered on 8h3 5m20.6 1s-4 6 ° 4 9'25.15 1''. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5 ×10-9 Hz /s . A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3 ×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 ×10-24 for all polarizations and sky locations.
Fundamental plasma emission involving ion sound waves
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Parsons, Sean P; Huizinga, Jan D
2015-02-15
Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.
Side-band mutual interactions in the magnetosphere
NASA Technical Reports Server (NTRS)
Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.
1980-01-01
Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.
Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons
NASA Astrophysics Data System (ADS)
Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun
2017-12-01
This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ L<1 (2 b, grating constant; L, wave length) and the lower bound is h/ b≤1. The main reason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.
Ion sound instability driven by the ion flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre
2015-05-15
Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less
Ye, P D; Engel, L W; Tsui, D C; Lewis, R M; Pfeiffer, L N; West, K
2002-10-21
The insulator terminating the fractional quantum Hall series at low Landau level filling nu is generally taken to be a pinned Wigner crystal (WC), and exhibits a microwave resonance that is interpreted as a WC pinning mode. For a high quality sample at several densities, n, we find maxima in resonance peak frequency, f(pk), vs magnetic field, B. L, the correlation length of WC order, is calculated from f(pk). For each n, L vs nu tends at low nu toward a line with positive intercept; the fit is accurate over as much as a factor of 5 range of nu. The linear behavior is interpreted as due to B compressing the electron wave functions, to alter the effective electron-impurity interaction.
Quezada-Casasola, Andrés; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Ramírez-Godínez, José Alejandro; Correa-Calderón, Abelardo
2014-04-01
In beef and dairy cattle, the number of follicular waves affects endocrine, ovarian, and behavioral events during a normal estrous cycle. However, in Mexican-native Criollo cattle, a shortly and recently domesticated breed, the association between wave patterns and follicular development has not been studied. The objective of this study was to evaluate the effect of number of follicular waves in an estrous cycle on development of anovulatory and ovulatory follicles, corpus luteum (CL) development and functionality, as well as estrual behavior in Criollo cows. Ovarian follicular activities of 22 cycling multiparous Criollo cows were recorded daily by transrectal ultrasound examinations during a complete estrous cycle. Additionally, blood samples were collected daily to determine serum progesterone concentrations. Only two- (n = 17, 77.3%) and three-wave follicular (n = 5, 22.7%) patterns were observed. Duration of estrus, length of estrous cycle, and length of follicular and luteal phases were similar (P > 0.05) between cycles of two and three waves. Two-wave cows ovulated earlier (P < 0.05) after detection of estrus than three-wave cows. Detected day and maximum diameter of first anovulatory follicle were not affected (P > 0.05) by number of waves. Growth rate of first dominant follicle was higher (P < 0.05) in three-wave cycles. Onset of regression of the first dominant follicle was earlier (P < 0.01) in cycles with three waves than in those with two waves. In two-wave cycles, ovulatory follicles were detected earlier (P < 0.01) and had lower (P < 0.01) growth rate than in three-wave cycles. Development (i.e., maximum diameter and volume) and functionality (minimum and maximum progesterone concentration) of CL were similar (P > 0.05) between two- and three-wave patterns. In conclusion, Criollo cows have two or three follicular waves per estrous cycle, which alters partially ovulatory follicle development and ovulation time after detection of estrus. Length of estrous cycle, as well as CL development and functionality, was not affected by number of follicular waves.
Coherence lengths for three-dimensional superconductors in the BCS-Bose picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.M.; Casas, M.; Getino, J.M.
1995-12-01
Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less
Relationship between stress wave velocities of green and dry veneer
Brian K. Brashaw; Xiping Wang; Robert J. Ross; Roy F. Pellerin
2004-01-01
This paper evaluates the relationship between the stress wave velocities of green and dry southern pine and Douglas-fir veneers. A commercial stress wave timer and a laboratory signal analysis system were used to measure the transit time required for an induced stress wave to travel the longitudinal length of each veneer. Stress wave transit times were measured in the...
An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System
NASA Astrophysics Data System (ADS)
Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji
2012-11-01
The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.
Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells
Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.
2014-01-01
The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
Huang, Yen-Chieh; Wang, Tsong-Dong; Lin, Yen-Hou; Lee, Ching-Han; Chuang, Ming-Yun; Lin, Yen-Yin; Lin, Fan-Yi
2011-11-21
We report forward and backward THz-wave difference frequency generations at 197 and 469 μm from a PPLN rectangular crystal rod with an aperture of 0.5 (height in z) × 0.6 (width in y) mm(2) and a length of 25 mm in x. The crystal rod appears as a waveguide for the THz waves but as a bulk material for the optical mixing waves near 1.54 μm. We measured enhancement factors of 1.6 and 1.8 for the forward and backward THz-wave output powers, respectively, from the rectangular waveguide in comparison with those from a PPLN slab waveguide of the same length, thickness, and domain period under the same pump and signal intensity of 100 MW/cm(2). © 2011 Optical Society of America
WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac.
Miki, Hiroaki; Takenawa, Tadaomi
2002-04-26
We previously reported that IRSp53 binds both Rac and WAVE2, inducing formation of Rac/IRSp53/WAVE2 complex that is important for membrane ruffling. However, recent reports noted a specific interaction between IRSp53 and Cdc42 but not Rac, which led us to re-examine the binding of IRSp53 to Rac. Immunoprecipitation analysis and pull-down assay reveal that full-length IRSp53 binds Rac much less efficiently than the N-terminal fragment, which may be caused by intramolecular interaction. Interestingly, the intramolecular interaction is interrupted by the binding of WAVE2 and full-length IRSp53 associates with Rac in the presence of WAVE2. We also report that IRSp53 induces spreading and neurite formation of N1E-115 cells, which presumably reflect functional cooperation with Rac.
Magnetic resonances in perovskite-type layer structures
NASA Astrophysics Data System (ADS)
Strobel, K.; Geick, R.
1981-08-01
We have studied the q=0 magnetic excitations of the perovskite-type layer structures A 2MnCl 4 with A=Rb, C nH 2n+1NH 3 (n=1,2,3), and NH 3(CH 2) mNH 3MnCl 4 (m=2,4,5) in the antiferromagnetic and in the spin flop regime by means of magnetic resonance in the mm-wave range (30-130GHz) and microwave range (9.2GHz). The length of the organic molecules determines the separation of the MnCl 6 octahedra. With increasing separation the Néel temperature and the antiferromagnetic resonance frequency decrease, which mainly originates from a decrease of the anisotropy field.
NASA Astrophysics Data System (ADS)
Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara
2018-02-01
This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.
NASA Technical Reports Server (NTRS)
Shih, C. C.
1973-01-01
In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.
NASA Astrophysics Data System (ADS)
Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.
2014-03-01
The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.
High frequency material issues in scattering of sound by objects in water
NASA Astrophysics Data System (ADS)
Dudley, Christopher
Ray theoretic models were shown to predict scattering enhancements from laboratory scale cylindrical targets in water. Synthetic aperture sonar and acoustical holographic images were constructed from bistatic scattering. Targets of increasing complexity from material properties were investigated. Models range from simple ray optic style to corrections for transversely isotropic materials. To correctly model the complexity of anisotropic material such as fiberglass, the five independent elastic constants and the density were measured. In all of the cylindrical shells and solid targets, enhancements are observable for ka values ranging from 9 to 40 where k is the wavenumber and a is the cylinder radius. The simpler targets consist of a low sound speed fluid within a thin plastic or fiberglass shell (11 < ka < 40). Shells were taken to be sufficiently thin so that the shell dynamics could be neglected in the models. The fluid has a density near that of water with a sound speed less than water. It is straightforward to construct the location and length of bright features for the fluid filled shells. Solid finite cylinders of polystyrene (9 < ka < 23) and fiberglass (ka = 17 and 22) were found to have more structure in echoes than the fluid filled shells. Bright image features existed from longitudinal as well as shear wave propagation within the polystyrene. A model including shear and longitudinal wave components showed good agrement with experiments with respect to timing and length of features for RexoliteRTM. Fiberglass is the most complex due to the anisotropic symmetry of the material. The slowness matrix allowed for modeling of timing aspects of the solid fiberglass cylinder. For a flat polystyrene half-space there is predicted to be a prominent enhancement of the acoustic reflection for an angle of incidence near 40°. Measurements showed the existence of a related peak in the reflection from solid Rexolite cylinders with ka near 9. Related peaks in the reflection from coated cylinders were observed. The properties of sound transmitted by a stainless steel plate in water was investigated. The relevant S2b leaky Lamb waves have been previously demonstrated on spherical shells [Kaduchak et al., J. Acoust. Soc. Am. 96, 3704 (1994)]. Directional properties of guided waves excited on a stainless steel plate in water were observed. Guided waves could be excited on the plate having group and phase velocities oppositely directed and such waves could profoundly influence the transmission of sound.
NASA Astrophysics Data System (ADS)
Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi
1992-06-01
Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.
Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing
2017-02-23
Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined.
Two-dimensional linear and nonlinear Talbot effect from rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing
2017-01-01
Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined. PMID:28241503
Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.
Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F
2015-12-01
We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
NASA Astrophysics Data System (ADS)
Sapsis, Themistoklis; Farazmand, Mohammad
2017-11-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.
Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere
NASA Technical Reports Server (NTRS)
Miller, M. S.; Gardner, C. S.; Liu, C. H.
1987-01-01
Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.
Observations on the normal reflection of gaseous detonations
NASA Astrophysics Data System (ADS)
Damazo, J.; Shepherd, J. E.
2017-09-01
Experimental results are presented examining the behavior of the shock wave created when a gaseous detonation wave normally impinges upon a planar wall. Gaseous detonations are created in a 7.67-m-long, 280-mm-internal-diameter detonation tube instrumented with a test section of rectangular cross section enabling visualization of the region at the tube-end farthest from the point of detonation initiation. Dynamic pressure measurements and high-speed schlieren photography in the region of detonation reflection are used to examine the characteristics of the inbound detonation wave and outbound reflected shock wave. Data from a range of detonable fuel/oxidizer/diluent/initial pressure combinations are presented to examine the effect of cell-size and detonation regularity on detonation reflection. The reflected shock does not bifurcate in any case examined and instead remains nominally planar when interacting with the boundary layer that is created behind the incident wave. The trajectory of the reflected shock wave is examined in detail, and the wave speed is found to rapidly change close to the end-wall, an effect we attribute to the interaction of the reflected shock with the reaction zone behind the incident detonation wave. Far from the end-wall, the reflected shock wave speed is in reasonable agreement with the ideal model of reflection which neglects the presence of a finite-length reaction zone. The net far-field effect of the reaction zone is to displace the reflected shock trajectory from the predictions of the ideal model, explaining the apparent disagreement of the ideal reflection model with experimental reflected shock observations of previous studies.
Predicting wind-driven waves in small reservoirs
USDA-ARS?s Scientific Manuscript database
The earthen levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. The design of bank protection measures relies on adequate prediction of wave characteristics based on wind conditions and fetch length. Current formulations are ba...
Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander
2014-01-01
Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893
Analytical model for vibration prediction of two parallel tunnels in a full-space
NASA Astrophysics Data System (ADS)
He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui
2018-06-01
This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.
Nonlinear lower hybrid structures in auroral plasmas: comparison of theory with observations
NASA Astrophysics Data System (ADS)
Robinson, P. A.
1999-01-01
Intense, localized lower hybrid wave structures are widely observed in auroral plasmas, often associated with density depletions. Commonly it is concluded without further analysis that these structures are solitons, collapsing wave packets, or other nonlinear entities. Such conclusions are often not justified on theoretical grounds. This review outlines theoretical constraints on field intensity, wave-packet scale length, timescales, and levels of density perturbations that must be met before nonlinear phenomena such as wave collapse and strong turbulence can occur. These criteria are determined within the framework of the modern nucleation scenario for the maintenance of strong turbulence, which involves collapse and dissipation (burnout) of each wave packet, followed by relaxation of its associated density perturbation, then renucleation of further energy into fields trapped in this relaxing perturbation, often leading to further collapse. The criteria are illustrated by applying them to a range of in situ auroral data that have been commonly interpreted in terms of lower hybrid solitons. It will be shown that the data are consistent with some of these criteria, but violate others if packets are all assumed to be observed in the collapse phase. However, theory and observations are consistent within the full nucleation scenario in which packets spend most of their time in the relaxation and renucleation phases, rather than undergoing collapse or burnout.
Short wavelength ion waves upstream of the earth's bow shock
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Gurnett, D. A.
1984-01-01
The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328
An ultrasonic technique for measuring stress in fasteners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K. J.; Day, P.; Byron, D.
1999-12-02
High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less
Elastic wave manipulation by using a phase-controlling meta-layer
NASA Astrophysics Data System (ADS)
Shen, Xiaohui; Sun, Chin-Teh; Barnhart, Miles V.; Huang, Guoliang
2018-03-01
In this work, a high pass meta-layer for elastic waves is proposed. An elastic phase-controlling meta-layer is theoretically realized using parallel and periodically arranged metamaterial sections based on the generalized Snell's law. The elastic meta-layer is composed of periodically repeated supercells, in which the frequency dependent elastic properties of the metamaterial are used to control a phase gradient at the interface between the meta-layer and conventional medium. It is analytically and numerically demonstrated that with a normal incident longitudinal wave, the wave propagation characteristics can be directly manipulated by the periodic length of the meta-layer element at the sub-wavelength scale. It is found that propagation of the incident wave through the interface is dependent on whether the working wavelength is longer or shorter than the periodic length of the meta-layer element. Specifically, a mode conversion of the P-wave to an SV-wave is investigated as the incident wave passes through the meta-layer region. Since the most common and damaging elastic waves in civil and mechanical industries are in the low frequency region, the work in this paper has great potential in the seismic shielding, engine vibration isolation, and other highly dynamic fields.
Heat Wave Changes in the Eastern Mediterranean since 1960
NASA Astrophysics Data System (ADS)
Kuglitsch, Franz G.; Toreti, Andrea; Xoplaki, Elena; Della-Marta, Paul M.; Zerefos, Christos S.; Türkes, Murat; Luterbacher, Jürg
2010-05-01
Heat waves have discernible impacts on mortality and morbidity, infrastructure, agricultural resources, the retail industry, ecosystem and tourism and consequently affect human societies. A new definition of socially relevant heat waves is presented and applied to new data sets of high-quality homogenized daily maximum and minimum summer air temperature series from 246 stations in the eastern Mediterranean region (including Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Romania, Serbia, Slovenia, Turkey). Changes in heat wave number, length and intensity between 1960 and 2006 are quantified. Daily temperature homogeneity analysis suggest that many instrumental measurements in the 1960s are warm-biased, correcting for these biases regionally averaged heat wave trends are up to 8% higher. We find significant changes across the western Balkans, southwestern and western Turkey, and along the southern Black Sea coastline. Since the 1960s, the mean heat wave intensity, heat wave length and heat wave number across the eastern Mediterranean region have increased by a factor 7.6 ±1.3, 7.5 ±1.3 and 6.2 ±1.1, respectively. These findings suggest that the heat wave increase in this region is higher than previously reported.
Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.
Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali
2018-02-17
The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P < 0.05). Also a Weibull analysis was performed on TF data. The cyclic fatigue resistance values of the WaveOne Gold Glider and R-Pilot were significantly higher than those of the ProGlider (P < 0.05), with no significant difference between them (P > 0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.
NASA Astrophysics Data System (ADS)
Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.
2017-12-01
The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.
Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.
Jagnandan, Kevin; Sanford, Christopher P
2013-12-01
An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts. © 2013 Wiley Periodicals, Inc.
Total and dissociative photoionization cross sections of N2 from threshold to 107 eV
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.
1986-01-01
The absolute cross sections for the production of N(+) and N2(+) were measured from the dissociative ionization threshold of 115 A. In addition, the absolute photoabsorption and photoionization cross sections were tabulated between 114 and 796 A. The ionization efficiencies were also given at several discrete wave lengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range of 24 to 44 eV.
Hopping transport through an array of Luttinger liquid stubs
NASA Astrophysics Data System (ADS)
Chudnovskiy, A. L.
2004-01-01
We consider a thermally activated transport across and array of parallel one-dimensional quantum wires of finite length (quantum stubs). The disorder enters as a random tunneling between the nearest-neighbor stubs as well as a random shift of the bottom of the energy band in each stub. Whereas one-particle wave functions are localized across the array, the plasmons are delocalized, which affects the variable-range hopping. A perturbative analytical expression for the low-temperature resistance across the array is obtained for a particular choice of plasmon dispersion.
Subwavelength dielectric nanorod chains for energy transfer in the visible range.
Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua
2017-10-15
We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.
Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong
2017-06-10
A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.
Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong
2017-01-01
A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved. PMID:28604603
Physics. Creating and probing electron whispering-gallery modes in graphene.
Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D; Rodriguez-Nieva, Joaquin F; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S; Zhitenev, Nikolai B; Stroscio, Joseph A
2015-05-08
The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators. Copyright © 2015, American Association for the Advancement of Science.
Permittivity of water at millimeter wave-lengths
NASA Technical Reports Server (NTRS)
Blue, M. D.
1976-01-01
Work performed on the permittivity of seawater and ice at 100 GHz was described. Measurements on water covered the temperature range from 0 to 50 C, while the measurements on ice were taken near - 10 C. In addition, a small number of measurements were made on the reflectivity of absorber materials used in a previous program on research in millimeter wave techniques. Normal incidence reflectivity was measured, and the result was used to obtain the index of refraction. For the case of normal incidence, reflectivity at a fixed temperature was reproducible to 1% for values near 40%. For reflectivity measurements on ice, the lack of attenuation leads to reflection from the back surface of the sample; this complication was circumvented by using a wedge shaped sample and freezing the water in a container lined with absorber material.
First low frequency all-sky search for continuous gravitational wave signals
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
Mesoscale Waves in Jupiter's Atmosphere
NASA Technical Reports Server (NTRS)
1997-01-01
These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.
Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoHigh power broadband millimeter wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1999-05-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
Amplitudes and Anisotropies at Kinetic Scales in Reflection-Driven Turbulence
NASA Astrophysics Data System (ADS)
Chandran, B. D. G.; Perez, J. C.
2016-12-01
The dissipation processes in solar-wind turbulence depend critically on the amplitudes and anisotropies of the fluctuations at kinetic scales. For example, the efficiencies of nonlinear dissipation mechanisms such as stochastic heating are a strongly increasing function of the kinetic-scale fluctuation amplitudes. In addition, ``slab-like'' fluctuations that vary most rapidly parallel to the background magnetic field dissipate very differently than ``quasi-2D'' fluctuations that vary most rapidly perpendicular to the magnetic field. Both the amplitudes and anisotropies of the kinetic-scale fluctuations are heavily influenced by the cascade mechanisms and spectral scalings in the inertial range of the turbulence. More precisely, the properties and dynamics of the turbulence within the inertial range (at ``fluid length scales'') to a large extent determine the amplitudes and anisotropies of the fluctuations at the proton kinetic scales, which bound the inertial range from below. In this presentation I will describe recent work by Jean Perez and myself on direct numerical simulations of non-compressive turbulence at ``fluid length scales'' between the Sun and a heliocentric distance of 65 solar radii. These simulations account for the non-WKB reflection of outward-propagating Alfven-wave-like fluctuations. This partial reflection produces Sunward-propagating fluctuations, which interact with the outward-propagating fluctuations to produce turbulence and a cascade of energy from large scales to small scales. I will discuss the relative strength of the parallel and perpendicular energy cascades in our simulations, and the implications of our results for the spatial anisotropies of non-compressive fluctuations at the proton kinetic scales near the Sun. I will also present results on the parallel and perpendicular power spectra of both outward-propagating and inward-propagating Alfven-wave-like fluctuations at different heliocentric distances. I will discuss the implications of these inertial-range spectra for the relative importance of cyclotron heating, stochastic heating, and Landau damping.
Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G
2008-05-12
In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.
Collective cell migration without proliferation: density determines cell velocity and wave velocity
NASA Astrophysics Data System (ADS)
Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François
2018-05-01
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
Characterization of Acoustic Streaming Beyond 100 MHz
NASA Astrophysics Data System (ADS)
Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.
The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.
Effects of antenna length and material on output power and detection of miniature radio transmitters
Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.
2007-01-01
The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.
NASA Technical Reports Server (NTRS)
Isenberg, P. A.
1995-01-01
Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.
Air transparent soundproof window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun
2014-11-15
A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
2017-12-05
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
Subcritical collisionless shock waves. [in earth space plasma
NASA Technical Reports Server (NTRS)
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
Observation of sand waves in the Taiwan Banks using HJ-1A/1B sun glitter imagery
NASA Astrophysics Data System (ADS)
Zhang, Hua-guo; Lou, Xiu-lin; Shi, Ai-qin; He, Xie-kai; Guan, Wei-bing; Li, Dong-ling
2014-01-01
This study focuses on the large sand waves in the Taiwan Banks. Our goals are to observe the sand waves as completely as possible, to obtain their direction, wavelength, density, and ridge length, to analyze their spatial distributions, and to understand the effects of the current field and water depth on the sand waves. This study demonstrates the possibility of using HJ-1A/1B sun glitter imagery with a large swath width and rapid coverage in studying sand waves. Six cloud-free HJ-1A/1B optical images with sun glitter signals received during 2009 to 2011 were processed. The sand waves were mapped based on their features in the images; their direction, wavelength, density, and ridge length were measured and analyzed. We identified 4604 sand waves distributed in an area of 16,400 km2. The distributions of sand waves and their characteristics were analyzed, and the differences of sand waves between the northwestern subregion and the southeastern subregion are reported. Further analysis and discussion of the relationships between spatial distribution of the sand waves and both the tidal current field from a numerical simulation and water depth led to some interesting conclusions. The current field determines the orientation of the sand wave, while the hydrodynamic conditions and water depth influence the shape, size, and density of sand waves to a certain degree.
Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.
2007-01-01
The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive detection methods for locating vertical discontinuities (e.g., fractures or crevices) in infrastructure such as dams and highway pavement. ?? 2007 Elsevier B.V. All rights reserved.
First Test of Long-Range Collisional Drag via Plasma Wave Damping
NASA Astrophysics Data System (ADS)
Affolter, Matthew
2017-10-01
In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ
Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone
NASA Astrophysics Data System (ADS)
Carini, R. J.; Chickadel, C. C.; Jessup, A. T.
2016-02-01
In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.
A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures
NASA Astrophysics Data System (ADS)
Datta, S. K.; Kumar, Lalit; Basu, B. N.
2009-04-01
Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.
The application of the Wigner Distribution to wave type identification in finite length beams
NASA Technical Reports Server (NTRS)
Wahl, T. J.; Bolton, J. Stuart
1994-01-01
The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.
Precisely proportioned: intertidal barnacles alter penis form to suit coastal wave action
Neufeld, Christopher J; Palmer, A. Richard
2008-01-01
For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification—female choice, sexual conflict and male–male competition—can influence genital form. PMID:18252665
Precisely proportioned: intertidal barnacles alter penis form to suit coastal wave action.
Neufeld, Christopher J; Palmer, A Richard
2008-05-07
For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification--female choice, sexual conflict and male-male competition--can influence genital form.
Secondary Flows and Sediment Transport due to Wave - Current Interaction
NASA Astrophysics Data System (ADS)
Ismail, Nabil; Wiegel, Robert
2015-04-01
Objectives: The main purpose of this study is to determine the modifications of coastal processes driven by wave-current interaction and thus to confirm hydrodynamic mechanisms associated with the interaction at river mouths and tidal inlets where anthropogenic impacts were introduced. Further, the aim of the work has been to characterize the effect of the relative strength of momentum action of waves to the opposing current on the nearshore circulation where river flow was previously effective to entrain sediments along the shoreline. Such analytical information are useful to provide guidelines for sustainable design of coastal defense structures. Methodology and Analysis: Use is made of an earlier study reported by the authors (1983) on the interaction of horizontal momentum jets and opposing shallow water waves at shorelines, and of an unpublished laboratory study (1980). The turbulent horizontal discharge was shore-normal, directed offshore, and the incident wave direction was shore-normal, travelling toward shore. Flow visualization at the smooth bottom and the water surface, velocity and water surface elevation measurements were made. Results were obtained for wave , current modifications as well as the flow pattern in the jet and the induced circulation on both sides of the jet, for a range of wave and jet characteristics. The experimental data, obtained from measurement in the 3-D laboratory basin, showed several distinct flow pattern regimes on the bottom and the water surface. The observed flow circulation regimes were found to depend on the ratio of the wave momentum action on the jet to the jet initial momentum. Based on the time and length scales of wave and current parameters and using the time average of the depth integrated conservation equations, it is found that the relative strength of the wave action on the jet could be represented by a dimensionless expression; Rsm ( ) 12ρSa20g-L0h-Cg- 2 Rsm ≈ (C0 - U) /ρ0U w (1) In the above dimensionless expression, ρs is the seawater mass density, ρ is the river current mass density, a0 is the deep water wave amplitude, g is the acceleration of gravity, Cg is the wave group velocity, L is the deep water wave length, h is the average water depth near the river mouth, C0 is the deep water wave phase velocity, U is the average jet exit velocity and w is the river or the tidal inlet effective width. The values of the above number were found to be in the range between 1.0 and 6.0-8.0 for the examined laboratory and field case studies for non-buoyant jets. Upper bound corresponds to cases of higher wave activity on the coast while the lower bound corresponds to cases of tidal currents with minimum wave activity, Coastal Processes Modifications due to River and Ebb Current Interaction with Opposing Waves: Confirmation of the obtained theoretical expression was obtained by comparison against field data for shoreline variability at river mouths and the formation of accretion shoals and erosion spots at tidal inlets and ocean outfalls in the USA and the Nile delta coastline. The predicted extent of the coast reshaping process, due to shoreline erosion and subsequent accretion, due to the absence of the river Nile current after 1965, east of the Rosetta headland, was determined. The obtained shoreline erosion spatial extent using the above correlation showed that the long term length of coastline recession would be in the neighborhood of 16-20 km east of Rosetta headland (1990-2014). Such results were further confirmed by the recent satellite data (Ghoneim, et al, 2015). The results of the present work were well compared to the data on Fort Pierce Inlet, Florida, where severe erosion is known to exist on both sides of the inlet (Joshi, 1983). The current results are qualitatively in parallel to that obtained recently by the numerical model Delft3D coupled with the wave model SWAN ( Nardin, et al, 2013) on wave- current interaction at river mouths and the formation of mouth bars. Further analyses were also conducted to test the validity of the derived expression to the cases of wave interaction with buoyant currents in shallow waters. The buoyant jets represent the thermal discharges from power plants on coastlines of Diablo Canyon cove in CA at the Pacific Ocean (Ismail, et al,1988) and at the northern coast of Egypt at Al-Arish. The comparison showed higher values range of Rsm for the cases of buoyant jets. References: Ghoneim, E., Mashaly , J., Gamble, D., Halls, J., and AbuBakr, M. (2015). "Nile Delta Exhibited a Spatial Reversal in the Rates of Shoreline Retreat on the Rosetta Promontory; comparing pre- and post-beach protection", Geomorphology, 228,1-14. Ismail, N. (2007). "Reynolds Stresses and Velocity Distributions in a Wave-Current Coexisting Environment', Discussion, J. Waterway, Port, Coastal, and Ocean Engineering,10.1061/(ASCE)0733-950X(2007)133:2(168),168-170. Ismail, N.M., Wiegel, R.L., Ryan, P.J., and Tu, S. W. (1988). "Mixing of Thermal Discharges in Coastal Waters" , 21 st International Conference on Coastal Engineering, ASCE, Malaga, Spain, 2521-2535. Ismail, N. (1984). "Wave-Current Models for Design of Marine Structures" , Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 110, No. 4, 432-447. Ismail, N.M. and Wiegel, R.L. (1983). "Opposing Waves Effect on Momentum Jets Spreading Rate", J. Waterways, Port, Coastal and Ocean Division, Proc., ASCE, vol. 109, No.4, 465-483. Joshi, P. and Taylor, R. (1983). 'Circulation Induced by Tidal Jets.' J. Waterway, Port, Coastal, Ocean Eng., 109(4), 445-464. Nardin, W., Mariotti, G., Edmonds, D., Guercio, R., and Fagherazzi, S. (2013). "Growth of River Mouth Bars in Sheltered Bays in the Presence of Frontal Waves." Journal of Geophysical Research: Earth Surface,10, 872-886.
Universal relations for range corrections to Efimov features
Ji, Chen; Braaten, Eric; Phillips, Daniel R.; ...
2015-09-09
In a three-body system of identical bosons interacting through a large S-wave scattering length a, there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range r s. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentummore » scale at a rate proportional to r s/a. The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a. Furthermore, the accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.« less
Hindmarsh, Mark
2018-02-16
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark
2018-02-01
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Electrical and optical characterization of surface passivation in GaAs nanowires.
Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B
2012-09-12
We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.
An experimental investigation of thermoacoustic lasers operating in audible frequency range
NASA Astrophysics Data System (ADS)
Kolhe, Sanket Anil
Thermoacoustic lasers convert heat from a high-temperature heat source into acoustic power while rejecting waste heat to a low temperature sink. The working fluids involved can be air or noble gases which are nontoxic and environmentally benign. Simple in construction due to absence of moving parts, thermoacoustic lasers can be employed to achieve generation of electricity at individual homes, water-heating for domestic purposes, and to facilitate space heating and cooling. The possibility of utilizing waste heat or solar energy to run thermoacoustic devices makes them technically promising and economically viable to generate large quantities of acoustic energy. The research presented in this thesis deals with the effects of geometric parameters (stack position, stack length, tube length) associated with a thermoacoustic laser on the output sound wave. The effects of varying input power on acoustic output were also studied. Based on the experiments, optimum operating conditions were identified and qualitative and/or quantitative explanations were provided to justify our observations. It was observed that the maximum sound pressure level was generated for the laser with the stack positioned at a distance of quarter lengths of a resonator from the closed end. Higher sound pressure levels were recorded for the laser with longer stack lengths and longer resonator lengths. Efforts were also made to develop high-frequency thermoacoustic lasers.
Self-adaptive method for high frequency multi-channel analysis of surface wave method
USDA-ARS?s Scientific Manuscript database
When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...
Makarov, D V; Kon'kov, L E; Uleysky, M Yu; Petrov, P S
2013-01-01
The problem of sound propagation in a randomly inhomogeneous oceanic waveguide is considered. An underwater sound channel in the Sea of Japan is taken as an example. Our attention is concentrated on the domains of finite-range ray stability in phase space and their influence on wave dynamics. These domains can be found by means of the one-step Poincare map. To study manifestations of finite-range ray stability, we introduce the finite-range evolution operator (FREO) describing transformation of a wave field in the course of propagation along a finite segment of a waveguide. Carrying out statistical analysis of the FREO spectrum, we estimate the contribution of regular domains and explore their evanescence with increasing length of the segment. We utilize several methods of spectral analysis: analysis of eigenfunctions by expanding them over modes of the unperturbed waveguide, approximation of level-spacing statistics by means of the Berry-Robnik distribution, and the procedure used by A. Relano and coworkers [Relano et al., Phys. Rev. Lett. 89, 244102 (2002); Relano, Phys. Rev. Lett. 100, 224101 (2008)]. Comparing the results obtained with different methods, we find that the method based on the statistical analysis of FREO eigenfunctions is the most favorable for estimating the contribution of regular domains. It allows one to find directly the waveguide modes whose refraction is regular despite the random inhomogeneity. For example, it is found that near-axial sound propagation in the Sea of Japan preserves stability even over distances of hundreds of kilometers due to the presence of a shearless torus in the classical phase space. Increasing the acoustic wavelength degrades scattering, resulting in recovery of eigenfunction localization near periodic orbits of the one-step Poincaré map.
1975-09-01
In the Visible and Near Ultraviolet CHEMICAL FORMULA WAVE LENGTH (A) N02 3000-6000 NITROGEN DIOXIDE N20 2800-3065 NITROUS OXIDE CH3CHO 2500-3500...Electronic Transitions In the Visible and Near Ultraviolet (Cont.) i i i CHEMICAL FORMULA WAVE LENGTH (Ä) PrF 5172 Br20 3330.4011 ci2 4796 AND AN...of characteristic frequency v . The total elastic scattering cross section is given by the classical formula [3-1] : o = —*- r* ; r = • (3-1
Spatial resolution study and power calibration of the high-k scattering system on NSTX.
Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C
2008-10-01
NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.
On the response to ocean surface currents in synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Phillips, O. M.
1984-01-01
The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.
Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia
NASA Astrophysics Data System (ADS)
Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.
2017-05-01
We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.
F wave index: A diagnostic tool for peripheral neuropathy.
Sathya, G R; Krishnamurthy, N; Veliath, Susheela; Arulneyam, Jayanthi; Venkatachalam, J
2017-03-01
Each skeletal muscle is usually supplied by two or more nerve roots and if one nerve root is affected and the other is spared, the clinically used F wave minimum latency can still be normal. An F wave index was constructed taking into consideration the other parameters of the F wave such as persistence, chronodispersion, latency, arm-length to determine its usefulness in the diagnosis of peripheral neuropathy. This study was undertaken to construct the F wave index in the upper limb for the median nerve in normal healthy adult males and in patients with peripheral neuropathy and to compare the values obtained in both groups. This hospital-based study was carried out on 40 males who were diagnosed to have peripheral neuropathy and on 40 age matched healthy males who served as the control group. The F wave recording was done using a digitalized nerve conduction/electromyography/EP machine in a quiet and dimly lit room. All recordings were done between 0900 and 1100 h at an ambient temperature of 22°C. The F wave recording was obtained from a fully relaxed muscle by stimulating the median nerve. The median value for F wave index obtained from median nerve (abductor pollicis brevis) in patients with peripheral neuropathy [right arm - 35.85, interquartile range (IQR) - 35.26; left arm - 39.49, IQR - 39.49] was significantly lower (P=0.001) as compared to the control group (right arm - 102.62, IQR - 83.76; left arm - 77.43, IQR - 58.02). Our results showed that F wave index in upper limb was significantly lower in patients with peripheral neuropathy than the healthy controls, and could be used for early detection of peripheral neuropathy.
Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes.
Schutten, J; Dainty, J; Davy, A J
2004-03-01
Hydraulic pulling forces arising from wave action are likely to limit the presence of freshwater macrophytes in shallow lakes, particularly those with soft sediments. The aim of this study was to develop and test experimentally simple models, based on linear wave theory for deep water, to predict such forces on individual shoots. Models were derived theoretically from the action of the vertical component of the orbital velocity of the waves on shoot size. Alternative shoot-size descriptors (plan-form area or dry mass) and alternative distributions of the shoot material along its length (cylinder or inverted cone) were examined. Models were tested experimentally in a flume that generated sinusoidal waves which lasted 1 s and were up to 0.2 m high. Hydraulic pulling forces were measured on plastic replicas of Elodea sp. and on six species of real plants with varying morphology (Ceratophyllum demersum, Chara intermedia, Elodea canadensis, Myriophyllum spicatum, Potamogeton natans and Potamogeton obtusifolius). Measurements on the plastic replicas confirmed predicted relationships between force and wave phase, wave height and plant submergence depth. Predicted and measured forces were linearly related over all combinations of wave height and submergence depth. Measured forces on real plants were linearly related to theoretically derived predictors of the hydraulic forces (integrals of the products of the vertical orbital velocity raised to the power 1.5 and shoot size). The general applicability of the simplified wave equations used was confirmed. Overall, dry mass and plan-form area performed similarly well as shoot-size descriptors, as did the conical or cylindrical models of shoot distribution. The utility of the modelling approach in predicting hydraulic pulling forces from relatively simple plant and environmental measurements was validated over a wide range of forces, plant sizes and species.
PASOTRON high-energy microwave source
NASA Astrophysics Data System (ADS)
Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.
1992-04-01
A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.
Ultra-wideband optical leaky-wave slot antennas.
Wang, Yan; Helmy, Amr S; Eleftheriades, George V
2011-06-20
We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin
2018-01-10
Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.
NASA Astrophysics Data System (ADS)
Park, Jong Yul; Kim, Sung-Ho; Rok Kim, Kyung
2015-06-01
In this work, we propose extended design window which is helpful to judge whether the plasma-wave transistor (PWT) operates as a resonant terahertz (THz) electromagnetic (EM) wave emitter. When metal-oxide-semiconductor field-effect transistor (MOSFET) is on strong inversion which is believed to be an operation regime of PWT THz emitter, Boltzmann statistics is no longer valid and degenerate Fermi-Dirac distribution should be considered. Based on degenerate carrier velocity model, we report the increased maximum channel length (Lmax) to 17 nm for strained silicon (s-Si) PWT with assuming μ = 500 cm2·V-1·s-1. As mobility is enhanced, it is possible to observe two emission spectrums [fundamental (N = 1) and third (N = 3) harmonics] in a specific operation range. Theoretically, increment of Lmax for enhanced μ is limited to near 35 nm by the Pauli’s principle in the case of s-Si PWT. This theoretical value of Lmax should be compromised by considering actual PWT operation voltage for gate oxide breakdown.
Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Yoon, H.
2016-05-01
Cross-shore pressure and current observations from four fringing reefs of lengths ranging from 135 to 420 m reveal energetic low-frequency (˜0.001-0.05 Hz) motions. The spatial structure and temporal amplitudes of an empirical orthogonal function analysis of the pressure measurements suggest the dominant low-frequency variability is modal. Incoming and outgoing linear flux estimates also support partially standing modes on the reef flat during energetic events. A cross-covariance analysis suggests that breakpoint forcing excites these partially standing modes, similar to previous findings at other steep reefs. The dynamics of Symonds et al. (1982) with damping are applied to a step reef, with forcing obtained by extending a point break model of Vetter et al. (2010) for breaking wave setup to the low-frequency band using the shoaled envelope of the incident free surface elevation. A one parameter, linear analytical model for the reef flat free surface elevation is presented, which describes between 75% and 97% of the variance of the observed low-frequency shoreline significant wave height for all reefs considered over a range of conditions. The linear model contains a single dimensionless parameter that is the ratio of the inertial to dissipative time scales, and the observations from this study exhibit more low-frequency variability when the dissipative time scale is greater than the inertial time scale for the steep reefs considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, George; Gilbertson, Steve Michael
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
Design of a panoramic long-wave infrared athermal system
NASA Astrophysics Data System (ADS)
Yao, Yuan; Geng, Anbing; Bai, Jian; Wang, Haitao; Guo, Jie; Xiong, Tao; Luo, Yujie; Huang, Zhi; Hou, Xiyun
2016-12-01
A panoramic long-wave infrared athermal system is introduced in this paper. The proposed system includes a panoramic annular lens (PAL) block providing a stereo field of view of (30 deg - 100 deg) × 360 deg without the need to move its components. Moreover, to ensure the imaging quality at different temperatures, a refractive/diffractive hybrid lens is introduced to achieve optical passive athermalization. The system operates in a spectral band between 8 and 12 μm, with a total length of 175 mm and a focal length of 3.4 mm. To get a bright and clear image, the aperture of the system was set to f/1.15. The introduction of aspherical surface and even-order diffractive surface not only eliminates the differential thermal but also makes the structure simple and lightweight and improves the image quality. The results show that the modulation transfer function below 20 lp/mm of the system is above 0.2 at each temperature ranging from -20°C to +60°C, which is close to the diffraction limit. The system is suitable to be applied in an uncooled infrared focal plane array detector and will serve as a static alert system. It has a number of pixels of 640×480, and the pixel size is 25 μm.
High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Furumura, T.
2013-12-01
In many parts of the ocean high-frequency seismic energy is carried to very great distances from the source. The onsets of the P and S energy travel with speeds characteristic of the mantle lithosphere. The complex and elongated waveforms of such Po and So waves and their efficient transport of high frequencies (>10 Hz) have proved difficult to explain in full. Much of the character can be captured with stratified models, provided a full allowance is made for reverberations in the ocean and the basal sediments. The nature of the observations implies a strong scattering environment. By analysing the nature of the long-distance propagation we are able to identify the critical role played by shallow reverberations in the water and sediments, and the way that these link with propagation in a heterogeneous mantle. 2-D finite difference modelling to 10 Hz for ranges over 1000 km demonstrates the way in which heterogeneity shapes the wavefield, and the way in which the properties of the lithosphere and asthenosphere control the nature of the propagation processes. The nature of the Po and So phases are consistent with pervasive heterogeneity in the oceanic lithosphere with a horizontal correlation length (˜10 km) much larger than the vertical correlation length (˜0.5 km).
Pressure fluctuation caused by moderate acceleration
NASA Astrophysics Data System (ADS)
Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito
2017-11-01
Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.
NASA Astrophysics Data System (ADS)
Løvholt, F.; Lynett, P.; Pedersen, G.
2013-06-01
Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing) model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
NASA Astrophysics Data System (ADS)
Mohandie, R. K.; Teng, M. H.
2009-12-01
Numerical and experimental studies were carried out to examine the mitigating capabilities of coral reefs and vegetations on tsunami and storm surge inundation. For long waves propagating over variable depth such as that over a reef, the nonlinear and dispersive Boussinesq equations were applied. For run-up onto dry land where the nonlinear effect dominates, the nonlinear and nondispersive shallow water equations were used. Long waves with various amplitudes and wavelengths propagating over coral reefs of different length and height were investigated to quantify under which conditions a coral reef may be effective in reducing the wave impact. It was observed that a reef can make a long wave separate into several smaller waves and it can also cause wave breaking resulting in energy dissipation. Our data suggest that both wave separation and breaking induced by coral reefs are effective at mitigating long wave run-up, with the latter being noticeably more effective than the former. As expected, it was observed that the higher the coral reef height, the more the reduction in wave run-up especially when the reef height is greater than 50% of the water depth. For reefs to be effective as a barrier for long waves such as tsunamis and storm surges, it was found that the reefs must be sufficiently long in the wave propagation direction, for example, with its length to be at least of the same magnitude as the wavelength or longer. In this study, it was shown that an effective reef can reduce the long wave run-up by as much as 25% and 50% by wave separation and wave breaking, respectively. Three types of vegetation, namely, grass, shrub and coconut trees, were modeled and tested in a wave tank against various initial wave amplitude and beach slopes in the Hydraulics Lab at the University of Hawaii (UH) to examine each particular type’s effectiveness in reducing wave run-up and to determine its roughness coefficient for wave run-up through numerical simulation and experimental measurement. These roughness coefficients were shown to be higher than the traditional Manning’s coefficient values for vegetation in channel flows. Also, the coefficients were shown to be a function of the ratio of the initial wave amplitude over the vegetation height and are relatively independent of the beach slope. The vegetation spacing and tree diameters in the lab models were selected based on the typical spacing and tree diameter observed in the field through a reduced scale. All three types of vegetation were found to be effective in reducing wave run-up especially on mildly sloped beaches with a reduction rate ranging from 20% to more than 50%. A numerical simulation that incorporated the effects of coral reef and the combined vegetation types showed that on a 5 degree slope the reduction in run-up was 61% as compared to an unprotected scenario. A larger scale experimental study on coconut and bushes in the NSF-funded tsunami basin at the OSU also showed these vegetations are effective at reducing wave run-up. These results can be helpful in achieving a better understanding of the role that coral reefs and vegetation play in tsunami and storm surge mitigation.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
2018-01-01
After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz-100 mHz) and middle frequency band (100 mHz-10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz-10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.
Experimental Investigation of the Formation of Complex Craters
NASA Astrophysics Data System (ADS)
Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.
2017-09-01
The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.
Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti
2016-02-08
Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.
NASA Technical Reports Server (NTRS)
Murrow, H. N.; Mccain, W. E.; Rhyne, R. H.
1982-01-01
Measurements of three components of clear air atmospheric turbulence were made with an airplane incorporating a special instrumentation system to provide accurate data resolution to wavelengths of approximately 12,500 m (40,000 ft). Flight samplings covered an altitude range from approximately 500 to 14,000 m (1500 to 46,000 ft) in various meteorological conditions. Individual autocorrelation functions and power spectra for the three turbulence components from 43 data runs taken primarily from mountain wave and jet stream encounters are presented. The flight location (Eastern or Western United States), date, time, run length, intensity level (standard deviation), and values of statistical degrees of freedom for each run are provided in tabular form. The data presented should provide adequate information for detailed meteorological correlations. Some time histories which contain predominant low frequency wave motion are also presented.
A small-volume PVTX system for broadband spectroscopic calibration of downhole optical sensors
NASA Astrophysics Data System (ADS)
Jones, Christopher Michael; Pelletier, Michael T.; Atkinson, Robert; Shen, Jing; Moore, Jeff; Anders, Jimmy; Perkins, David L.; Myrick, Michael L.
2017-07-01
An instrument is presented that is capable of measuring the optical spectrum (long-wave ultraviolet through short-wave mid-infrared) of fluids under a range of temperature and pressure conditions from ambient pressure up to 138 MPa (20 000 psi) and 422 K (300 °F) using ˜5 ml of fluid. Temperature, pressure, and density are measured in situ in real-time, and composition is varied by adding volatile and nonvolatile components. The stability and accuracy of the conditions are reported for pure ethane, and the effects of temperature and pressure on characteristic regions of the optical spectrum of ethane are illustrated after correction for temperature and pressure effects on the optical cell path length, as well as normalization to the measured density. Molar absorption coefficients and integrated molar absorption coefficients for several vibrational combination bands are presented.
Landing characteristics in waves of three dynamic models of flying boats
NASA Technical Reports Server (NTRS)
Benson, James M; Havens, Robert F; Woodward, David R
1952-01-01
Powered models of three different flying boats were landed in oncoming waves of various heights and lengths. The effects of varying the trim at landing, the deceleration after landing, and the size of the waves were determined. Data are presented on the motions and accelerations obtained during landings in rough water.
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The elastic constants of a fiberglass epoxy unidirectional composite are determined by measuring the phase velocities of longitudinal and shear stress waves via the through transmission ultrasonic technique. The waves introduced into the composite specimens were generated by piezoceramic transducers. Geometric lengths and the times required to travel those lengths were used to calculate the phase velocities. The model of the transversely isotropic medium was adopted to relate the velocities and elastic constants.
An experimental study of the Rayleigh-Taylor instability critical wave length
NASA Astrophysics Data System (ADS)
Kong, Xujing; Wang, Youchun; Zhang, Shufei; Xu, Hongkun
1992-06-01
A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins, which is based on visual observation in experiment. The results of analysis using this model confirms the validity of the critical wave length formula obtained from Rayleigh-Taylor stability analysis. This formula may be used as a criterion to design horizontal downward-facing surfaces with fins that can best destabilize the condensate film, thus enhancing condensation heat transfer.
Lamb Wave Propagation in a Restricted Geometry Composite PI-Joint Specimen (Preprint)
2011-11-01
adhesive, and were located along the length and height of the specimen as depicted in Figure 3. The sensors were 6.35 mm round disks of PZT , with a...in both cases for R1, R2, and R3. 3D Finite Element Model Geometry 200mm length 50mm width 140mm height x z y PZT Actuation Sensor...health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection”, Smart Mater. Struct., Vol. 14, No. 6, 2005. 16
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.
Collisional damping of helicon waves in a high density hydrogen linear plasma device
Caneses, Juan F.; Blackwell, Boyd D.
2016-09-28
In this paper, we investigate the propagation and damping of helicon waves along the length (~50 cm) of a helicon-produced 20 kW hydrogen plasma ( ~1-2 1019 m-3, ~1-6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50-200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (~10 G and ~ 10-15 cm) propagating away from the antenna region which become collisionally absorbed within 40 to 50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based onmore » experimental measurements. By comparing theory and experiment, we show that for the conditions associated with this paper classical collisions are sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in our device (MAGPIE).« less
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483
Proofs for the Wave Theory of Plants
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
1997-03-01
Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.
Breakdown simulations in a focused microwave beam within the simplified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.
2016-07-15
The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less
Spectral sensitivity of cones of the monkey Macaca fascicularis.
Baylor, D A; Nunn, B J; Schnapf, J L
1987-01-01
1. Spectral sensitivities of cones in the retina of cynomolgus monkeys were determined by recording photocurrents from single outer segments with a suction electrode. 2. The amplitude and shape of the response to a flash depended upon the number of photons absorbed but not the wave-length, so that the 'Principle of Univariance' was obeyed. 3. Spectra were obtained from five 'blue', twenty 'green', and sixteen 'red' cones. The wave-lengths of maximum sensitivity were approximately 430, 531 and 561 nm, respectively. 4. The spectra of the three types of cones had similar shapes when plotted on a log wave number scale, and were fitted by an empirical expression. 5. There was no evidence for the existence of subclasses of cones with different spectral sensitivities. Within a class, the positions of the individual spectra on the wave-length axis showed a standard deviation of less than 1.5 nm. 6. Psychophysical results on human colour matching (Stiles & Burch, 1955; Stiles & Burch, 1959) were well predicted from the spectral sensitivities of the monkey cones. After correction for pre-retinal absorption and pigment self-screening, the spectra of the red and green cones matched the respective pi 5 and pi 4 mechanisms of Stiles (1953, 1959). PMID:3443931
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, Arturo
2017-03-01
We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.
NASA Technical Reports Server (NTRS)
Land, Norman S.; Zeck, Howard
1947-01-01
Tests of a 1/7 size model of the Grumman XJR2F-1 amphibian were made in Langley tank no.1 to examine the landing behavior in rough water and to measure the normal and angular accelerations experienced by the model during these landings. All landings were made normal to the direction of wave advance, a condition assumed to produce the greatest accelerations. Wave heights of 4.4 and 8.0 inches (2.5 and 4.7 ft, full size) were used in the tests and the wave lengths were varied between 10 and 50 feet (70 and 350 ft, full size). Maximum normal accelerations of about 6.5g were obtained in 4.4 inch waves and 8.5g were obtained in 8.0 inch waves. A maximum angular acceleration corresponding to 16 radians per second per second, full size, was obtained in the higher waves. The data indicate that the airplane will experience its greatest accelerations when landing in waves of about 20 feet (140 ft, full size) in length.
Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus
NASA Astrophysics Data System (ADS)
Wibowo, Bagus Adi; Ngadmanto, Drajat; Daryono
2015-04-01
A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wave in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
The fine structure of Langmuir waves observed upstream of the bow shock at Venus
NASA Technical Reports Server (NTRS)
Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.
1994-01-01
Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with time scales as short as 0.15 milliseconds, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wavepackets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.
Traveling Theta Waves in the Human Hippocampus
Zhang, Honghui
2015-01-01
The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915
Anisotropic tomography of the European lithospheric structure from surface wave studies
NASA Astrophysics Data System (ADS)
Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul
2016-06-01
We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.
NASA Technical Reports Server (NTRS)
Onsager, T. G.; Winske, D.; Thomsen, M. F.
1991-01-01
The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. It is found that interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long.
Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles
NASA Astrophysics Data System (ADS)
Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.
2005-02-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.
NASA Astrophysics Data System (ADS)
Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.
2017-07-01
Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.
Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less
Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers.
Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-02
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5 o and 1.94 o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
Highly localized distributed Brillouin scattering response in a photonic integrated circuit
NASA Astrophysics Data System (ADS)
Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.
2018-03-01
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.
NASA Astrophysics Data System (ADS)
Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal
2018-04-01
We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.
Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers
NASA Astrophysics Data System (ADS)
Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-01
In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Takeshi; Palczewski, Ari; Hamaya, Yoichiro
We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between (T*) and T pair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occursmore » (T pair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Takeshi; Palczewski, Ari D.; Hamaya, Yoichiro
We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T* and Tpair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (Tpair)more » either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less
Salt Neutrino Detector for Ultrahigh-Energy Neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiba, M.; Yasuda, O.; Kamijo, T.
2004-11-01
Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar'yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbedmore » cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2 x 2 x 2 km would detect 10 UHE neutrino/yr generated through the GZK process.« less
Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag
NASA Technical Reports Server (NTRS)
Adams, Mac C.
1951-01-01
By use of an approximate equation for the wave drag of slender bodies of revolution in a supersonic flow field, the optimum shapes of certain boattail bodies are determined for minimum wave drag. The properties of three specific families of bodies are determined, the first family consisting of bodies having a given length and base area and a contour passing through a prescribed point between the nose and base, the second family having fixed length, base area, and maximum area, and the third family having given length, volume, and base area. The method presented is easily generalized to determine minimum-wave-drag profile shapes which have contours that must pass through any prescribed number of points. According to linearized theory, the optimum profiles are found to have infinite slope at the nose but zero radius of curvature so that the bodies appear to have pointed noses, a zero slope at the body base, and no variation of wave drag with Mach number. For those bodies having a specified intermediate.diameter (that is, location and magnitude given), the maximum body diameter is shown to be larger, in general, than the specified diameter. It is also shown that, for bodies having a specified maximum diameter, the location of the maximum diameter is not arbitrary but is determined from the ratio of base diameter to maximum diameter.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Landau damping and steepening of interplanetary nonlinear hydromagnetic waves
NASA Technical Reports Server (NTRS)
Barnes, A.; Chao, J. K.
1977-01-01
According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.
Simple wave drivers: electric toothbrush, shaver and razor
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2018-05-01
This study was conducted to develop simple and low-cost wave drivers that can be used in experiments on string waves. These wave drivers were made using a toothbrush (Oral-B Vitality), an electric shaver (Braun 7505) and a razor (Gillette Fusion Proglide Power). A common feature of all of these product is that they have vibration motors. In the experiments, string waves were generated by transferring these vibrations to a stretched string. By changing the tightness and length of the string, standing waves were generated, and various harmonics were observed.
Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.
Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan
2015-06-20
Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.
Large wave at Daytona Beach, Florida, explained as a squall-line surge
Sallenger, A.H.; List, J.H.; Gelfenbaum, G.; Stumpf, R.P.; Hansen, M.
1995-01-01
On a clear calm evening during July 1992, an anomalously large wave, reportedly 6 m high struck the Daytona Beach, Florida area. It is hypothesized that a squall line and associated pressure jump, travelling at the speed of a free gravity wave, coupled resonantly with the sea surface forming the large wave or "squall-line surge'. The wave was forced along the length of the squall line, with the greatest amplitude occurring at the water depth satisfying the resonant condition. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkuch, E.
1984-01-17
The apparatus comprises at least one positive displacement pump, which is driven by the sea waves. The quantity of delivery of this pump is adjustable in accordance with the lengths of strokes made by the ocean waves. This is made possible in that the positive displacement pump comprises pistons having different volume displacements. The height of the incoming waves is measured by a membrane box connected to a transducer which generates signals such that only that piston of the plurality of pistons is made to operate, which has by design a volume displacement which gives the optimal recovery of themore » energy of the ocean waves. The or these pistons pump a working fluid into a storage vessel, which allows the generation of peak load as well as base load electrical energy.« less
Stringent limitations on reductive perturbation studies of nonplanar acoustic solitons in plasmas
NASA Astrophysics Data System (ADS)
Verheest, Frank; Hellberg, Manfred A.
2016-06-01
More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic ease of using reductive perturbation theory, intensive research followed on a wide range of wave types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two decades many authors followed this approach, but almost all have ignored the severe restrictions in parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justification is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence, there is a need to critically assess this approach to nonplanar modes and to use it with the utmost care, respecting the restrictions on its validity. Only inward propagation may be meaningfully studied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are quasi-planar and not particularly interesting. Most papers disregard these constraints and hence reach questionable conclusions.
Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen
NASA Astrophysics Data System (ADS)
Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.
2018-05-01
We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.
NASA Astrophysics Data System (ADS)
Ptok, Andrzej; Jerzy Kapcia, Konrad
2015-04-01
The effects of a single non-magnetic impurity on superconducting states in the Penson-Kolb-Hubbard model have been analyzed. The investigations have been performed within the Hartree-Fock mean field approximation in two steps: (i) the homogeneous system is analysed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.
Space gravitational wave detector DECIGO/pre-DECIGO
NASA Astrophysics Data System (ADS)
Musha, Mitsuru
2017-09-01
The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l < 10-24 /?Hz at the observation band between 0.1 and 1 Hz, and is planed to be launched in 2030s. Before launching DECIGO, we planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.
2018-02-01
Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.
33 CFR 165.1325 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington.
Code of Federal Regulations, 2013 CFR
2013-07-01
... type of vessel, sea state, winds, wave period, and tidal currents. When a bar is restricted, the... representative and carrying not more than six passengers. (13) Unsafe condition exists when the wave height... than the maximum wave height determined by the formula L/10 + F = W where: L = Overall length of a...
33 CFR 165.1325 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington.
Code of Federal Regulations, 2014 CFR
2014-07-01
... type of vessel, sea state, winds, wave period, and tidal currents. When a bar is restricted, the... representative and carrying not more than six passengers. (13) Unsafe condition exists when the wave height... than the maximum wave height determined by the formula L/10 + F = W where: L = Overall length of a...
33 CFR 165.1325 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington.
Code of Federal Regulations, 2012 CFR
2012-07-01
... type of vessel, sea state, winds, wave period, and tidal currents. When a bar is restricted, the... representative and carrying not more than six passengers. (13) Unsafe condition exists when the wave height... than the maximum wave height determined by the formula L/10 + F = W where: L = Overall length of a...
33 CFR 165.1325 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington.
Code of Federal Regulations, 2011 CFR
2011-07-01
... type of vessel, sea state, winds, wave period, and tidal currents. When a bar is restricted, the... representative and carrying not more than six passengers. (13) Unsafe condition exists when the wave height... than the maximum wave height determined by the formula L/10 + F = W where: L = Overall length of a...
Wave-formed structures and paleoenvironmental reconstruction
Clifton, H.E.; Dingler, J.R.
1984-01-01
Wave-formed sedimentary structures can be powerful interpretive tools because they reflect not only the velocity and direction of the oscillatory currents, but also the length of the horizontal component of orbital motion and the presence of velocity asymmetry within the flow. Several of these aspects can be related through standard wave theories to combinations of wave dimensions and water depth that have definable natural limits. For a particular grain size, threshold of particle movement and that of conversion from a rippled to flat bed indicate flow-velocity limits. The ratio of ripple spacing to grain size provides an estimate of the length of the near-bottom orbital motion. The degree of velocity asymmetry is related to the asymmetry of the bedforms, though it presently cannot be estimated with confidence. A plot of water depth versus wave height (h-H diagram) provides a convenient approach for showing the combination of wave parameters and water depths capable of generating any particular structure in sand of a given grain size. Natural limits on wave height and inferences or assumptions regarding either water depth or wave period based on geologic evidence allow refinement of the paleoenvironmental reconstruction. The assumptions and the degree of approximation involved in the different techniques impose significant constraints. Inferences based on wave-formed structures are most reliable when they are drawn in the context of other evidence such as the association of sedimentary features or progradational sequences. ?? 1984.
The first Messenger data supporting main theses of the wave planetology
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2008-09-01
The first fundamental statement of the wave planetology [1-6 & others] is about ubiquity of tectonic dichotomy. All celestial bodies move, as it was established by I. Kepler, in non-round but elliptical orbits. This means that they all notwithstanding their sizes, masses, physical states and chemical compositions have alternating increasing and decreasing accelerations producing forces (Newton: F = m·a) warping celestial bodies. This wave warping rotating bodies (but all bodies rotate!) is decomposed into four orthogonal and diagonal directions of standing waves. An interference of these directions gives tectonic blocks of three kinds: uplifting (+), subsiding (-) and neutral (0). The block sizes depend on warping wavelengths. The fundamental wave long 2πR (R - a body radius) is present in all bodies thus making one hemisphere rising and the opposite one falling (more precise relation is 1/3 to 2/3 or 2/3 to 1/3). A geometrical proof of this relation is given in [6] where two famous tectonic dichotomies of Earth and Mars were explained by one wave reason. This ubiquitous phenomenon was described as the first theorem of the wave planetology: "Celestial bodies are dichotomous". There are many examples proving it among planets, satellites and asteroids, even Sun is dichotomous. But up to recent time the studied partially Mercury's surface was not a good example of this phenomenon as not fully visible Caloris basin didn't show its real dimension. Now, after the Messenger flyby we know that it is about 1500 km in diameter, that is about 1/3 of the Mercury's diameter and the rule is not violated. The third theorem of the wave planetary tectonics states: "Celestial bodies are granular". This means that celestial bodies are warped by individual waves lengths of which are inversely proportional to their orbital frequencies: higher frequency - finer granules, lower frequency - larger granules (Fig. 1). Observations fully support it not only in sense of granules diameters but also in granules amplitudes reflected in planetary relief range. It increases with the solar distances: Venus ~14, Earth ~20, Mars ~28-30 km. Without good topography on Mercury we theoretically assumed that this planet's relief range must be significantly lower (3-6 km) just to not violate the observed sequence (Fig. 2). The Messenger's measurements show that the real range does not exceed ~5 km. (small vertical relief differentiation is accompanied by small petrological differentiation expressed by a low albedo range, Fig. 2). One of Mercury's surprises is Caloris basin. Basins on planetary surfaces are normally lowlands filled with denser material (basalts for the terrestrial planets). Subsiding tectonic blocks - depressions - basins - occupying narrower and narrower space must be contracted, squeezed, wrinkled, rippled. This is confirmed in many occasions. But in the case of Caloris there is an extension confirmed by concentric and radial cracks. Uplifting and extending basin is a consequence of the wave tectonics. Waves have two phases (up and down) and a period after which the phases change. That is why initially subsided block - basin now (it started maybe a few milliards or hundreds millions years ago: the larger block - the longer wave phase period) experiences uplifting with extension. Is it the only case in the Solar system? Quite not. And Earth is a good example. Its southern mainly oceanic (thus subsided) hemisphere is filled with basalts, what is normal for planetary depressions. But precise geodynamic measurements show that the southern hemisphere increases lengths of its parallels that is expending. This dynamics is confirmed by widening modern planetary rifts in Atlantic, Indian ocean, Pacific in the southern direction and around Antarctic ("Southern" ocean) - a kind of the radial-concentric structure. A geochemical anomaly in oceanic basalts of this region ("DUPAL" anomaly after S.R. Hart, 1984) is characterized by relatively high Rb/Sr, Th/Pb, Th/U - a continental (uplifting) trend related to potassium enrichment. P. Castillo (1988) correlates this the largest mantle geochemical anomaly with a zone of decreased seismic velocities in the lower mantle - again decreased densities are tied to uplifting. The majority of hotspots are above the low velocity regions. Mesozoic continental flood basalts of the southern hemisphere (the Ferrar magmatic province) are low-Ti and high in Si, Rb/Sr, 87Sr/86Sr (initial 0. 707 - 0. 713)[7]. So, the shrunk planet due to cooling and important loss of volatiles [8] is no exception from the regular row of planets structurized by wave warping according to their solar distances.
Liao, Sam; Neidlin, Michael; Li, Zhiyong; Simpson, Benjamin; Gregory, Shaun D
2018-04-27
Left ventricular assist devices are associated with thromboembolic events, which are potentially caused by altered intraventricular flow. Due to patient variability, differences in apical wall thickness affects cannula insertion lengths, potentially promoting unfavourable intraventricular flow patterns which are thought to be correlated to the risk of thrombosis. This study aimed to present a 3D multiscale computational fluid dynamic model of the left ventricle (LV) developed using a commercial software, Ansys, and evaluate the risk of thrombosis with varying inflow cannula insertion lengths in a severely dilated LV. Based on a HeartWare HVAD inflow cannula, insertion lengths of 5, 19, 24 and 50 mm represented cases of apical hypertrophy, typical ranges of apical thicknesses and an experimental length, respectively. The risk of thrombosis was evaluated based on blood washout, residence time, instantaneous blood stagnation and a pulsatility index. By introducing fresh blood to displace pre-existing blood in the LV, after 5 cardiac cycles, 46.7%, 45.7%, 45.1% and 41.8% of pre-existing blood remained for insertion lengths of 5, 19, 24 and 50 mm, respectively. Compared to the 50 mm insertion, blood residence time was at least 9%, 7% and 6% higher with the 5, 19 and 24 mm insertion lengths, respectively. No instantaneous stagnation at the apex was observed directly after the E-wave. Pulsatility indices adjacent to the cannula increased with shorter insertion lengths. For the specific scenario studied, a longer insertion length, relative to LV size, may be advantageous to minimise thrombosis by increasing LV washout and reducing blood residence time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pressure measurements of a three wave journal air bearing
NASA Technical Reports Server (NTRS)
Dimofte, Florin; Addy, Harold E., Jr.
1994-01-01
In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.
NASA Astrophysics Data System (ADS)
Paldor, N.
2017-12-01
The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966
SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium
NASA Astrophysics Data System (ADS)
Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.
2017-12-01
Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies are available on the Seismic Sound Lab (LDEO) website. Here, we will present a subset of the methods an overview of the aims of the program.
Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd
2001-01-01
Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground water; and (3) an increase in primary or secondary porosity and an associated change in mineral assemblage, or decrease in ground water specific conductance, was characterized in two of the boreholes below 300 m.The results of the radar reflection logging indicate that even where data quality is marginal, borehole-radar reflection logging can provide useful information for ground-water characterization studies in fractured rock and insights into the nature and extent of fractures and fracture zones in and near boreholes.
Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones
NASA Astrophysics Data System (ADS)
Karaman, Kadir; Kaya, Ayberk; Kesimal, Ayhan
2015-12-01
Ultrasonic P-wave velocity (UPV) is commonly used in different fields such as civil, mining, geotechnical, and rock engineering. One of the significant parameters which affect the UPV of rock materials is likely to be the length of test cores although it is not mentioned in the literature. In this study, in order to explore the influence of the specimen length on the UPV, rock samples were collected from eight different locations in Turkey. The NX-sized core specimens having different length of 50, 75, 100, 125, and 150 mm were prepared. Before the analyses, rocks were divided into two groups in terms of their geological origins such as volcanic and chemical sedimentary (limestone) rocks. The UPV tests were carried out under dry and saturated conditions for each 200 core specimens. By evaluating the test results, it was shown that the length of the specimens significantly affects the UPV values. Based on the regression analyses, a method was developed to determine the threshold specimen length of studied rocks. Fluctuations in UPVdry and UPVsat values were generally observed for cores smaller than the threshold specimen length. In this study, the threshold specimen length was determined as 79 mm for volcanic rocks and 109 mm for limestones.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
Pairing versus quarteting coherence length
NASA Astrophysics Data System (ADS)
Delion, D. S.; Baran, V. V.
2015-02-01
We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.
Fermions in Two Dimensions: Scattering and Many-Body Properties
Galea, Alexander; Zielinski, Tash; Gandolfi, Stefano; ...
2017-08-10
Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to themore » scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. Here, we close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we also use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.« less
Fermions in Two Dimensions: Scattering and Many-Body Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galea, Alexander; Zielinski, Tash; Gandolfi, Stefano
Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to themore » scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. Here, we close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we also use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.« less
Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Yu, Qingxu; Zhou, Xinlei
2011-03-01
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
Tsunami focusing and leading wave height
NASA Astrophysics Data System (ADS)
Kanoglu, Utku
2016-04-01
Field observations from tsunami events show that sometimes the maximum tsunami amplitude might not occur for the first wave, such as the maximum wave from the 2011 Japan tsunami reaching to Papeete, Tahiti as a fourth wave 72 min later after the first wave. This might mislead local authorities and give a wrong sense of security to the public. Recently, Okal and Synolakis (2016, Geophys. J. Int. 204, 719-735) discussed "the factors contributing to the sequencing of tsunami waves in the far field." They consider two different generation mechanisms through an axial symmetric source -circular plug; one, Le Mehaute and Wang's (1995, World Scientific, 367 pp.) formalism where irritational wave propagation is formulated in the framework of investigating tsunamis generated by underwater explosions and two, Hammack's formulation (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) which introduces deformation at the ocean bottom and does not represent an immediate deformation of the ocean surface, i.e. time dependent ocean surface deformation. They identify the critical distance for transition from the first wave being largest to the second wave being largest. To verify sequencing for a finite length source, Okal and Synolakis (2016) is then used NOAA's validated and verified real time forecasting numerical model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng., 124, 157-171) through Synolakis et al. (2008, Pure Appl. Geophys. 165, 2197-2228). As a reference, they used the parameters of the 1 April 2014 Iquique, Chile earthquake over real bathymetry, variants of this source (small, big, wide, thin, and long) over a flat bathymetry, and 2010 Chile and 211 Japan tsunamis over both real and flat bathymetries to explore the influence of the fault parameters on sequencing. They identified that sequencing more influenced by the source width rather than the length. We extend Okal and Synolakis (2016)'s analysis to an initial N-wave form (Tadepalli and Synolakis, 1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112) with a finite crest length, which is most common tsunami initial waveform. We fit earthquake initial waveform calculated through Okada (1985, Bull. Seismol. Soc. Am. 75, 1135-1040) to the N-wave form presented by Tadepalli and Synolakis (1994). First, we investigate focusing phenomena as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015) and compare our results with their non-dispersive and dispersive linear analytical solutions. We confirm focusing phenomena, which amplify the wave height in the leading depression side. We then study sequencing of an N-wave profile with a finite crest length. Our preliminary results show that sequencing is more pronounced on the leading depression side. We perform parametric study to understand sequencing in terms of N-wave, hence earthquake, parameters. We then discuss the results both in terms of tsunami focusing and leading wave amplitude. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1991-01-01
A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Webb, Ian K.; Garimella, Sandilya V. B.
Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined inmore » the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.« less
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
NASA Technical Reports Server (NTRS)
Murthy, G.; Yost, W. T.; Ballard, R. E.; Watenpaugh, D. E.; Kawai, Y.; Hargens, A. R.
1994-01-01
Headaches are commonly experienced by astronauts in microgravity and by subjects undergoing head-down tilt (simulated microgravity on Earth). Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP) and in turn cause headache. Due to the slightly compliant nature of the cranial vault and the encasement of brain and its vasculature within this vault, any increase of ICV will increase ICP and slightly distend the cranium. Previous studies document perivascular edema and increased ICP in rhesus monkeys during head-down tilt. Elevated ICP has also been reported in humans during head-down tilt. ICP measurements in healthy humans are rare because of the invasiveness of currently-available measurement techniques. Therefore, we proposed a noninvasive ultrasound technique to assess changes of ICV and JCP. The ultrasound principle is based on compliance of the cranial vault. A 450 kHz ultrasound stimulus is transmitted through the cranium by a transducer every 7.5-10 msec. The ultrasound wave enters the brain tissue, reflects off the opposite side of the cranium and is received by the same transducer. The detected wave is compared for phase quadrature (90 deg.to transmitted wave). Because the electronic circuitry of the device maintains a 90 deg. phase (phi), any alterations in the detected wave caused by an increase of ICV and ICP will be reflected as a change in the wave frequency. Phase shift is directly proportional to path length of the wave, DELTA x, which is expressed as DELTA x = phi lambda/2 pi where lambda is wavelength. Elevated ICV and ICP expand the cranial vault and increase path length of the wave (a measure of intracranial distance). Increased path length equals reduced frequency of the detected wave. Reduced frequency is then related to elevated ICP. This technique has potential uses for ICP studies of astronauts in space and head trauma patients on Earth.
Research on effect of rough surface on FMCW laser radar range accuracy
NASA Astrophysics Data System (ADS)
Tao, Huirong
2018-03-01
The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.
Four-state rock-paper-scissors games in constrained Newman-Watts networks.
Zhang, Guo-Yong; Chen, Yong; Qi, Wei-Kai; Qing, Shao-Meng
2009-06-01
We study the cyclic dominance of three species in two-dimensional constrained Newman-Watts networks with a four-state variant of the rock-paper-scissors game. By limiting the maximal connection distance Rmax in Newman-Watts networks with the long-range connection probability p , we depict more realistically the stochastic interactions among species within ecosystems. When we fix mobility and vary the value of p or Rmax, the Monte Carlo simulations show that the spiral waves grow in size, and the system becomes unstable and biodiversity is lost with increasing p or Rmax. These results are similar to recent results of Reichenbach et al. [Nature (London) 448, 1046 (2007)], in which they increase the mobility only without including long-range interactions. We compared extinctions with or without long-range connections and computed spatial correlation functions and correlation length. We conclude that long-range connections could improve the mobility of species, drastically changing their crossover to extinction and making the system more unstable.
A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers
NASA Technical Reports Server (NTRS)
Chorey, Christopher M.; Ferendeci, Altan; Bhasin, Kul B.
1988-01-01
Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
NASA Astrophysics Data System (ADS)
Yu, Haiming; Kelly, O. D'allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-10-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
Yu, Haiming; Kelly, O. d'Allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-01-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition. PMID:25355200
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
A lazy way to design infrared lens
NASA Astrophysics Data System (ADS)
Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen
2017-08-01
We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.
Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C
2010-03-10
We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.
Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves
NASA Astrophysics Data System (ADS)
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei
2018-05-01
Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu
We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.
Oliveira, Bruna Paloma de; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes
2017-01-01
The objective of this study was to evaluate the effect of root canal preparation with single-file reciprocating systems at different working lengths on the development of apical microcracks using micro-computed tomographic (micro-CT) imaging. Forty extracted human mandibular incisors were randomly assigned to 4 groups (n=10) according to the systems and working length used to prepare the root canals: Group A - WaveOne Gold at apical foramen (AF), Group B - WaveOne Gold 1 mm short of the AF (AF-1 mm), Group C - Unicone (AF) and Group D - Unicone (AF-1 mm). Micro-CT scanning was performed before and after root canal preparation at an isotropic resolution of 14 µm. Then, three examiners assessed the cross-sectional images generated to detect microcracks in the apical portion of the roots. Apical microcracks were visualized in 3, 1, 1, and 3 specimens in groups A, B, C, and D, respectively. All these microcracks observed after root canal preparation already existed prior to instrumentation, and no new apical microcrack was detected. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal preparation with WaveOne Gold and Unicone, regardless of the working length, was not associated with apical microcrack formation.
Infinite-range Heisenberg model and high-temperature superconductivity
NASA Astrophysics Data System (ADS)
Tahir-Kheli, Jamil; Goddard, William A., III
1993-11-01
A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.
Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4 +δ
NASA Astrophysics Data System (ADS)
Tabis, W.; Yu, B.; Bialo, I.; Bluschke, M.; Kolodziej, T.; Kozlowski, A.; Blackburn, E.; Sen, K.; Forgan, E. M.; Zimmermann, M. v.; Tang, Y.; Weschke, E.; Vignolle, B.; Hepting, M.; Gretarsson, H.; Sutarto, R.; He, F.; Le Tacon, M.; Barišić, N.; Yu, G.; Greven, M.
2017-10-01
We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa2CuO4 +δ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa2Cu3O6 +δ , the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic c axis of up to 16 T, provides information on the form factor of the CDW order. As expected from the single-CuO2-layer structure of Hg1201, the CDW correlations vanish at half-integer values of L and appear to be peaked at integer L . We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO2 layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, Christa; Agner, Josef A.; Merkt, Frederic
2013-06-28
A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis
2012-11-01
We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.
Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis
NASA Astrophysics Data System (ADS)
Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.
2018-04-01
Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous frequency, which makes weak reflections more noticeable. The mode mixing phenomenon is observed in several tests, but this does not markedly affect the identification results due to the simple medium in bolt tests. The mode mixing can be reduced by ensemble EMD (EEMD) or complete ensemble EMD with adaptive noise (CEEMDAN), which are powerful tools to used analyze the test signal in a complex medium and may play an important role in future studies. The HHT bolt signal analysis method is a self-adaptive and automatic process, which can be programed as analysis software and will make bolt tests more convenient in practice.
Statistical characterization of Earth’s heterogeneities from seismic scattering
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, R.
2009-12-01
The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.
Collective pulsatile expansion and swirls in proliferating tumor tissue
NASA Astrophysics Data System (ADS)
Yang, Taeseok Daniel; Kim, Hyun; Yoon, Changhyeong; Baek, Seung-Kuk; Lee, Kyoung J.
2016-10-01
Understanding the dynamics of expanding biological tissues is essential to a wide range of phenomena in morphogenesis, wound healing and tumor proliferation. Increasing evidence suggests that many of the relevant phenomena originate from complex collective dynamics, inherently nonlinear, of constituent cells that are physically active. Here, we investigate thin disk layers of proliferating, cohesive, monoclonal tumor cells and report the discovery of macroscopic, periodic, soliton-like mechanical waves with which cells are collectively ratcheting, as in the traveling-wave chemotaxis of dictyostelium discodium amoeba cells. The relevant length-scale of the waves is remarkably large (∼1 mm), compared to the thickness of a mono-layer tissue (∼ 10 μ {{m}}). During the tissue expansion, the waves are found to repeat several times with a quite well defined period of approximately 4 h. Our analyses suggest that the waves are initiated by the leading edge that actively pulls the tissue in the outward direction, while the cells within the bulk tissue do not seem to generate a strong self-propulsion. Subsequently, we demonstrate that a simple mathematical model chain of nonlinear springs that are constantly pulled in the outward direction at the leading edge recapitulates the observed phenomena well. As the areal cell density becomes too high, the tissue expansion stalls and the periodic traveling waves yield to multiple swirling vortices. Cancer cells are known to possess a broad spectrum of migration mechanisms. Yet, our finding has established a new unusual mode of tumor tissue expansion, and it may be equally applicable for many different expanding thin layers of cell tissues.
Lee, Hee Yoon; Raphael, Patrick D.; Park, Jesung; Ellerbee, Audrey K.; Applegate, Brian E.; Oghalai, John S.
2015-01-01
Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date. PMID:25737536
NASA Astrophysics Data System (ADS)
Awasthi, Suman; Nautiyal, B. B.; Kumar, Rajiv; Bandyopadhyay, P. K.
2012-09-01
In recent years multi-spectral device is steadily growing popularity. Multi-spectral antireflection coating effective in visible region for sighting system, laser wavelength for ranging and MWIR region for thermal system can use common objective/receiver optics highly useful for state of art thermal instrumentation. In this paper, design and fabrication of antireflection coating simultaneously effective in visible region (450-650 nm), Eye safe laser wave length (1540 nm) and MWIR region (3.6-4.9 μm) has been reported. Comprehensive search method of design was used and the number of layers in the design was optimised with lowest evaluated merit function studied with respect to various layers. Finally eight-layer design stack was established using hafnium oxide as high index layer and silicon-di-oxide as low index coating material combination. The multilayer stack had been fabricated by using electron beam gun evaporation system in Symphony 9 vacuum coating unit. During layer deposition the substrate was irradiated with End-Hall ion gun. The evaporation was carried out in presence of oxygen and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 85% average transmission from 450 to 650 nm in visible region, 95% transmission at 1540 nm and 96% average transmission from 3.6 to 4.9 μm in MWIR region.
Harvey, E. Newton
1926-01-01
1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark's observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution. PMID:19872301
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis
2016-03-01
Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro
2017-12-01
We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.
Ideal charge-density-wave order in the high-field state of superconducting YBCO
Jang, H.; Lee, W. -S.; Nojiri, H.; ...
2016-12-05
The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa 2Cu 3O 2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ( H c2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlationmore » length as well as significant correlations between neighboring CuO 2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to H c2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. Furthermore, this is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less
In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts
NASA Technical Reports Server (NTRS)
Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.
2012-01-01
The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.
NASA Astrophysics Data System (ADS)
Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.
2017-12-01
The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
A Q-Band Free-Space Characterization of Carbon Nanotube Composites
Hassan, Ahmed M.; Garboczi, Edward J.
2016-01-01
We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than −40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate. Experimental results were validated by reconstructing the relative dielectric permittivity of known dielectric materials and then used to determine the conductivity of nano-carbon composite laminates. This error correction model can simplify routine characterization of thin conducting laminates to just one measurement of scattering parameters, making the method attractive for research, development, and for quality control in the manufacturing environment. PMID:28057959
Understanding the dimensional and mechanical properties of coastal Langmuir Circulations
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Kuehl, Joseph; Anderson, William
2017-11-01
Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event
NASA Astrophysics Data System (ADS)
McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.
2005-12-01
The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.
Shock interaction behind a pair of cylindrical obstacles
NASA Astrophysics Data System (ADS)
Liu, Heng; Mazumdar, Raoul; Eliasson, Veronica
2014-11-01
The body of work focuses on two-dimensional numerical simulations of shock interaction with a pair of cylindrical obstacles, varying the obstacle separation and incident shock strength. With the shock waves propagating parallel to the center-line between the two cylindrical obstacles, the shock strengths simulated vary from a Mach of 1.4 to a Mach of 2.4, against a wide range of obstacle separation distance to their diameters. These cases are simulated via a software package called Overture, which is used to solve the inviscid Euler equations of gas dynamics on overlapping grids with adaptive mesh refinement. The goal of these cases is to find a so-called ``safe'' region for obstacle spacing and varying shock Mach numbers, such that the pressure in the ``safe'' region is reduced downstream of the obstacles. The benefits apply to both building and armor design for the purpose of shock wave mitigation to keep humans and equipment safe. The results obtained from the simulations confirm that the length of the ``safe'' region and the degree of shock wave attenuation depend on the ratio of obstacle separation distance to obstacle diameter. The influence of various Mach number is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis
2014-08-19
Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris–Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris–Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ~7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ~19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us tomore » investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.« less
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoxiao; Tian, Jingxuan; Wen, Weijia, E-mail: phwen@ust.hk
2016-04-18
We report a metasurface for focusing reflected ultrasonic waves over a wide frequency band of 0.45–0.55 MHz. The broadband focusing effect of the reflective metasurface is studied numerically and then confirmed experimentally using near-field scanning techniques. The focusing mechanism can be attributed to the hyperboloidal reflection phase profile imposed by different depths of concentric grooves on the metasurface. In particular, the focal lengths of the reflective metasurface are extracted from simulations and experiments, and both exhibit good linear dependence on frequency over the considered frequency band. The proposed broadband reflective metasurface with tunable focal length has potential applications in the broadmore » field of ultrasonics, such as ultrasonic tomographic imaging, high intensity focused ultrasound treatment, etc.« less
NASA Astrophysics Data System (ADS)
Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw
2011-04-01
Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.
Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber
NASA Technical Reports Server (NTRS)
Brobst, William D.; Allen, John E., Jr.
1987-01-01
An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.
An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes
NASA Technical Reports Server (NTRS)
Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.
1976-01-01
Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.
On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons
Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...
2015-09-21
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Theory of fiber-optic, evanescent-wave spectroscopy and sensors
NASA Astrophysics Data System (ADS)
Messica, A.; Greenstein, A.; Katzir, A.
1996-05-01
A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2008-01-01
and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form...297. Jessup , A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-05-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Hydroelastic analysis of ice shelves under long wave excitation
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.
2015-08-01
The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.
Multi-dynamic range compressional wave detection using optical-frequency comb
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Masuoka, Takashi; Oe, Ryo; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Compressional wave detection is useful means for health monitoring of building, detection of abnormal vibration of moving objects, defect evaluation, and biomedical imaging such as echography and photoacoustic imaging. The frequency of the compressional wave is varied from quasi-static to a few tens of megahertz depending on applications. Since the dynamic range of general compressional wave detectors is limited, we need to choose a proper compressional wave detector depending on applications. For the compressional wave detection with wide dynamic range, two or more detectors with different detection ranges is required. However, these detectors with different detection ranges generally has different accuracy and precision, disabling the seamless detection over these detection ranges. In this study, we proposed a compressional wave detector employing optical frequency comb (OFC). The compressional wave was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The compressional wave-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. To enhance the dynamic range of the compressional wave detection, we developed a cavityfeedback-based system and a phase-sensitive detection system, both of which the accuracy and precision are coherently linked to these of the OFC. We provided a proof-of-principle demonstration of the detection of compressional wave from quasi-static to ultrasound wave by using the OFC-based compressional wave sensor. Our proposed approach will serve as a unique and powerful tool for detecting compressional wave versatile applications in the future.
Polariton resonances in multilayered piezoelectric superlattices
NASA Astrophysics Data System (ADS)
Piliposyan, D.
2018-04-01
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-length superlattice with identical piezoelectric materials in a unit cell are considered in the framework of the full system of Maxwell’s electrodynamic equations. In the long wavelength region, coupling between electro-magnetic and elastic waves creates frequency band gaps. It is shown that for piezoelectric superlattice at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell. The results of the paper may be useful in design of narrow band filters or multi-channel piezoelectric filters.
Preadoption adversity and long-term clinical-range behavior problems in adopted Chinese girls.
Tan, Tony Xing; Camras, Linda A; Kim, Eun Sook
2016-04-01
In this study, we report findings on the role of preadoption adversity on long-term clinical-range problems in adopted Chinese girls. Four waves (2005, 2007, 2009 and 2011) of problem behavior data on 1,223 adopted Chinese girls (M = 4.86 years, SD = 2.82 in 2005) were collected from the adoptive mothers with the Child Behavior Checklist (CBCL). At Wave 1 (2005), data on the following indicators of preadoption adversity was collected: age at adoption, physical signs/symptoms (e.g., sores) of preadoption adversity, developmental delays at arrival, refusal/avoidance behaviors and crying/clinging behaviors toward adoptive parents during the first 3 weeks of adoption. We found that the percentage of clinical-range internalizing problems was 11.1%, 16.5%, 11.3%, and 16.1% at Wave 1, Wave 2, Wave 3, and Wave 4, respectively; the corresponding percentage of clinical-range externalizing problems was 8.4%, 10.5%, 8.4% and 9.9% respectively; and the corresponding percentage of clinical-range total CBCL problems was 9.3%, 13.0%, 9.8% and 12.6% respectively. Analyses with Mplus showed that controlling for demographic variables, indicators of preadoption adversity, except age at adoption, increased the odds for clinical-range behavior problems. Longitudinal path models revealed that controlling for demographic variables and the children's adjustment status in the previous wave, refusal/avoidance remained significant in predicting clinical-range internalizing, externalizing and total CBCL problems at Wave 2, delays at arrival and signs/symptoms were significant in predicting clinical-range internalizing problems at Wave 3. Overall, adoptees with clinical-range CBCL problems in earlier waves were 9-28 times as likely to show clinical-range CBCL problems in subsequent waves. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Teramoto, M.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Nagatsuma, T.; Shiokawa, K.; Obana, Y.; Miyoshi, Y.; Takashima, T.; Shinohara, I.
2017-12-01
The ARASE (ERG) satellite was successfully launched on December 20 2016. A fluxgate magnetometer (MGF) was built for the ARASE satellite to measure DC and low-frequency magnetic field. The requirements to the magnetic field measurements by ARASE was defined as (1) accuracy of the absolute field intensity is within 5 nT (2) angular accuracy of the field direction is within 1 degree (3) measurement frequency range is from DC to 60Hz or wider. MGF measures the vector magnetic field with the original sampling frequency of 256 Hz. The dynamic range is switched between +/-8000nT and +/- 60000nT according to the background field intensity. The MGF initial checkout was carried on January 10th 2017, when the MGF normal performance and downlinked data were confirmed. The 5-m length MAST for the sensor was deployed on 17th January. The nominal operation of MGF started in March 2017. The MGF data are calibrated based on the results from the ground experiments and in-orbit data analysis. The MGF CDF files are distributed by the ARASE Science Center and available by Space Physics Environment Data Analysis Software (SPEDAS). The acceleration process of the charged particles in the inner magnetosphere is considered to be closely related to the deformation and perturbation of the magnetic field. Accurate measurement of the magnetic field is required to understand the acceleration mechanism of the charged particles, which is one of the major scientific objectives of the ARASE mission. We designed a fluxgate magnetometer which is optimized to investigate following topics; (1) accurate measurement of the background magnetic field - the deformation of the magnetic field and its relationship with the particle acceleration. (2) MHD waves - measurement of the ULF electromagnetic waves of frequencies about 1mHz (Pc4-5), and investigation of the radiation-belt electrons radially diffused by the resonance with the ULF waves. (3) EMIC waves - measurement of the electromagnetic ion-cyclotron waves of frequencies about 1Hz, and investigation of the ring-current ions and radiation-belt electrons dissipated by the interaction with the EMIC waves.These scientific subjects are now investigated by the ARASE working team colleagues.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.