NASA Technical Reports Server (NTRS)
Li, Xi-Zeng; Su, Bao-Xia
1996-01-01
It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.
Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer
NASA Astrophysics Data System (ADS)
Guan, Changlong
2017-04-01
The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.
On the Chemical Mixing Induced by Internal Gravity Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; McElwaine, J. N.
Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
Mixing induced by a propagating normal mode in long term experiments
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-04-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
NASA Astrophysics Data System (ADS)
Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh
2018-04-01
A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.
Mixing and Formation of Layers by Internal Wave Forcing
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-12-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long-term experiments in an idealized setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity KT and background potential energy BPE are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small-scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al. (). The mixing efficiency η is assessed by relating the BPE growth to the linearized KE input. One finds a value of Γ=12-19%, larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by Phillips (1972) argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.
The Fate and Impact of Internal Waves in Nearshore Ecosystems
NASA Astrophysics Data System (ADS)
Woodson, C. B.
2018-01-01
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
The Fate and Impact of Internal Waves in Nearshore Ecosystems.
Woodson, C B
2018-01-03
Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.
Near-inertial waves and deep ocean mixing
NASA Astrophysics Data System (ADS)
Shrira, V. I.; Townsend, W. A.
2013-07-01
For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.
Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.
Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G
2014-05-05
Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.
Wave Processes in Arctic Seas, Observed from TerraSAR-X
2015-09-30
in order to improve wave models as well as ice models applicable to a changing Arctic wave/ and ice climate . This includes observation and...fields retrieved from the TS-X image swaths. 4. “Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling”, by...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. “Wave Processes in Arctic Seas, Observed from TerraSAR-X
Impact of wave mixing on the sea ice cover
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel
2017-04-01
As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible positive feedback mechanism.
Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device
Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.
2016-01-01
We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841
NASA Astrophysics Data System (ADS)
Erickson, Robert R.
Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.
A laboratory investigation of mixing dynamics between biofuels and surface waters
NASA Astrophysics Data System (ADS)
Wang, Xiaoxiang; Cotel, Aline
2017-11-01
Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J.; Yang, Y.; Eaton, M.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, B. J., E-mail: lawriebj@ornl.gov; Pooser, R. C.; Yang, Y.
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein-Podolsky-Rosen entanglement and intensity difference squeezing. Diode-laser-pumped four-wave mixing processes have recently been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generated bymore » a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. This robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Robust and compact entanglement generation from diode-laser-pumped four-wave mixing
Lawrie, B. J.; Yang, Y.; Eaton, M.; ...
2016-04-11
Four-wave-mixing processes are now routinely used to demonstrate multi-spatial-mode Einstein- Podolsky-Rosen entanglement and intensity difference squeezing. Recently, diode-laser-pumped four-wave mixing processes have been shown to provide an affordable, compact, and stable source for intensity difference squeezing, but it was unknown if excess phase noise present in power amplifier pump configurations would be an impediment to achieving quadrature entanglement. Here, we demonstrate the operating regimes under which these systems are capable of producing entanglement and under which excess phase noise produced by the amplifier contaminates the output state. We show that Einstein-Podolsky-Rosen entanglement in two mode squeezed states can be generatedmore » by a four-wave-mixing source deriving both the pump field and the local oscillators from a tapered-amplifier diode-laser. In conclusion, this robust continuous variable entanglement source is highly scalable and amenable to miniaturization, making it a critical step toward the development of integrated quantum sensors and scalable quantum information processors, such as spatial comb cluster states.« less
Measurement of Coherence Decay in GaMnAs Using Femtosecond Four-wave Mixing
Webber, Daniel; de Boer, Tristan; Yildirim, Murat; March, Sam; Mathew, Reuble; Gamouras, Angela; Liu, Xinyu; Dobrowolska, Margaret; Furdyna, Jacek; Hall, Kimberley
2013-01-01
The application of femtosecond four-wave mixing to the study of fundamental properties of diluted magnetic semiconductors ((s,p)-d hybridization, spin-flip scattering) is described, using experiments on GaMnAs as a prototype III-Mn-V system. Spectrally-resolved and time-resolved experimental configurations are described, including the use of zero-background autocorrelation techniques for pulse optimization. The etching process used to prepare GaMnAs samples for four-wave mixing experiments is also highlighted. The high temporal resolution of this technique, afforded by the use of short (20 fsec) optical pulses, permits the rapid spin-flip scattering process in this system to be studied directly in the time domain, providing new insight into the strong exchange coupling responsible for carrier-mediated ferromagnetism. We also show that spectral resolution of the four-wave mixing signal allows one to extract clear signatures of (s,p)-d hybridization in this system, unlike linear spectroscopy techniques. This increased sensitivity is due to the nonlinearity of the technique, which suppresses defect-related contributions to the optical response. This method may be used to measure the time scale for coherence decay (tied to the fastest scattering processes) in a wide variety of semiconductor systems of interest for next generation electronics and optoelectronics. PMID:24326982
Time-reversed wave mixing in nonlinear optics
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-01-01
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
Small signal analysis of four-wave mixing in InAs/GaAs quantum-dot semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Ma, Shaozhen; Chen, Zhe; Dutta, Niloy K.
2009-02-01
A model to study four-wave mixing (FWM) wavelength conversion in InAs-GaAs quantum-dot semiconductor optical amplifier is proposed. Rate equations involving two QD states are solved to simulate the carrier density modulation in the system, results show that the existence of QD excited state contributes to the ultra fast recover time for single pulse response by serving as a carrier reservoir for the QD ground state, its speed limitations are also studied. Nondegenerate four-wave mixing process with small intensity modulation probe signal injected is simulated using this model, a set of coupled wave equations describing the evolution of all frequency components in the active region of QD-SOA are derived and solved numerically. Results show that better FWM conversion efficiency can be obtained compared with the regular bulk SOA, and the four-wave mixing bandwidth can exceed 1.5 THz when the detuning between pump and probe lights is 0.5 nm.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
NASA Astrophysics Data System (ADS)
Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.
2018-03-01
We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.
NASA Astrophysics Data System (ADS)
Sheen, K.; Naveira-Garabato, A. C.; Brearley, J. A.
2012-04-01
The principal objective of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is to investigate the role of turbulent mixing in mediating the vertical and horizontal transport of water masses, which shape the overturning circulation. Here, microstructure and finestructure data, collected as part of this multi-component experiment, are presented. Direct observations of turbulent energy dissipation rates show that mid-depth diapycnal diffusivities increase progressively from O(10-5 m2s-1) in the Pacific sector of the Antarctic Circumpolar Current (ACC) to O(10-4 m2s-1) in the Scotia Sea. Analysis of coincident LADCP and CTD data demonstrates that enhanced turbulent dissipation rates are associated with a more energetic, less inertial internal wave field and increased upward energy propagation. Breaking lee waves, a process enhanced by stronger flow and rougher topography found in the eastern sections, is likely to be a key mechanism in determining the distribution of turbulent mixing in the ACC. Spatially varying discrepancies between the microstructure and finestructure mixing observations indicate regions where wave-wave interaction models break down and internal waves interact with the mean flow. An episodic enhancement of current velocities at 2000 m depth is observed in the northwest Scotia Sea in both LADCP and mooring data. Finestructure analysis indicates that this mid-depth jet has a profound impact of the internal wave field, causing both internal wave reflection and critical layer dissipation.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
A universal quantum frequency converter via four-wave-mixing processes
NASA Astrophysics Data System (ADS)
Cheng, Mingfei; Fang, Jinghuai
2016-06-01
We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.
Surface boundary layer turbulence in the Southern ocean
NASA Astrophysics Data System (ADS)
Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto
2015-04-01
Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-07-14
Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.
Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing
NASA Astrophysics Data System (ADS)
Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig
2017-06-01
Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.
NASA Astrophysics Data System (ADS)
Malakyan, Yu P.
1990-04-01
A new effect is considered: self-induced suppression of electron stimulated Raman scattering involving generation of two new fields from the Stokes radiation as a result of four-wave mixing, interfering destructively with electron stimulated Raman scattering and suppressing it, which in turn suppresses the mixing process. The effect occurs in the steady-state case and not under transient conditions. The results account in a simple manner for the generation of the Stokes radiation in barium vapor as a result of different transitions, depending on the duration of the pump pulse.
The complex fluid dynamics of simple diffusion
NASA Astrophysics Data System (ADS)
Vold, Erik
2017-11-01
Diffusion as the mass transport process responsible for mixing fluids at the atomic level is often underestimated in its complexity. An initial discontinuity between two species of different atomic masses exhibits a mass density discontinuity under isothermal pressure equilibrium implying equal species molar densities. The self-consistent kinetic transport processes across such an interface leads to a zero sum of mass flux relative to the center of mass and so diffusion alone cannot relax an initially stationary mass discontinuity nor broaden the density profile at the interface. The diffusive mixing leads to a molar imbalance which drives a center of mass velocity which moves the heavier species toward the lighter species leading to the interfacial density relaxation. Simultaneously, the species non-zero molar flux modifies the pressure profile in a transient wave and in a local perturbation. The resulting center of mass velocity has two components; one, associated with the divergence of the flow, persists in the diffusive mixing region throughout the diffusive mixing process, and two, travelling waves at the front of the pressure perturbations propagate away from the mixing region. The momentum in these waves is necessary to maintain momentum conservation in the center of mass frame. Thus, in a number of ways, the diffusive mixing provides feedback into the small scale advective motions. Numerical methods which diffuse all species assuming P-T equilibrium may not recover the subtle dynamics of mass transport at an interface. Work performed by the LANS, LLC, under USDOE Contract No. DE-AC52-06NA25396, funded by the (ASC) Program.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon
NASA Astrophysics Data System (ADS)
Shi, Liping; Li, Wenxue; Zhou, Hui; Wang, Di; Ding, Liang'en; Zeng, Heping
2013-11-01
We demonstrate efficient generation of multicolor vacuum ultraviolet pulses with excellent mode quality through χ(3)-based four-wave sum-frequency mixing and third-order harmonic generation of 400- and 267-nm femtosecond laser pulses in argon gas. The χ(3)-based nonlinear optical processes were optimized with appropriate control of gas pressure and group velocity delay between the driving pulses. Furthermore, the pulse breakup effects were observed for tightly focused ultraviolet pulses.
Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long B 2O 3-based fiber
NASA Astrophysics Data System (ADS)
Scaffardi, M.; Fresi, F.; Meloni, G.; Bogoni, A.; Potì, L.; Calabretta, N.; Guglielmucci, M.
2006-12-01
One meter-long spool of bismuth oxide-based fiber, with nonlinear coefficient of 1250 W -1 km -1, is used to realize an optical 160-to-10 Gbit/s demultiplexer based on four wave mixing. Bit-Error-Rate measurements demonstrate a demultiplexing penalty lower than 2 dB confirming the suitability of bismuth oxide-based fiber for 160 Gbit/s all-optical processing.
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-04-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
NASA Astrophysics Data System (ADS)
Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.
2013-09-01
Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.
Signal Processing with Degenrate Four-Wave Mixing.
1987-03-17
warth [71 and Au Yueng er al. 1181 in CS, filled fibers. The first authors achieved high-fidelity conjugation with In the weakly guiding case, that...waves with. of course, taneously as its own pump wave. Au Yueng er al. [181 K 12, given by the "overlap integrals." In the absence of used single-mode
Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1997-01-01
The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from this paper is that even in the presence of growing, unstable waves, the mixing barriers around
Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing
NASA Astrophysics Data System (ADS)
Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.
2017-12-01
Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.
Main processes of the Atlantic cold tongue interannual variability
NASA Astrophysics Data System (ADS)
Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy
2018-03-01
The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to negative horizontal advection anomalies resulting from processes similar to those that occur during cold ACT events. This additional cooling process extends the period of cooling of the ACT, reducing SST anomalies.
GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation
NASA Astrophysics Data System (ADS)
Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.
2011-08-01
We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).
Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian
2013-12-15
Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.
Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing
Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook
2016-01-01
Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032
NASA Astrophysics Data System (ADS)
Li, Xinghua; Zhang, Dan; Sun, Ming; Li, Kangkang; Wang, Zhiguo; Zhang, Yanpeng
2018-04-01
We study different dressing effects in parametrically amplified four-wave mixing (PA-FWM) processes. By seeding a weak probe laser into the Stokes or anti-Stokes channel of the FWM, the gain process is generated in the so-called bright twin beams which are the probe and conjugate beams. The dressing types dramatically affect the gain factors in both the probe and conjugate channels. The gain factor of the FWM signal decreases under the cascade-type dressing and the signal's shape splits into two dips under this dressing type. However, the intensity of the FWM signal changes from suppression to enhancement under the parallel-type dressing. We will apply this switching process to all-optical switching.
Competing four-wave mixing processes in dispersion oscillating telecom fiber.
Finot, Christophe; Fatome, Julien; Sysoliatin, Alexej; Kosolapov, A; Wabnitz, Stefan
2013-12-15
We experimentally study the dynamics of the generation of multiple sidebands by means of a quasi-phase-matched four-wave mixing (FWM) process occurring in a dispersion-oscillating, highly nonlinear optical fiber. The fiber under test is pumped by a ns microchip laser operating in the normal average group-velocity dispersion regime and in the telecom C band. We reveal that the growth of higher-order sidebands is strongly influenced by the competition with cascade FWM between the pump and the first-order quasi-phase matched sidebands. The properties of these competing FWM processes are substantially affected when a partially coherent pump source is used, leading to a drastic reduction of the average power needed for sideband generation.
Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor
NASA Astrophysics Data System (ADS)
Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui
2018-03-01
Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.
NASA Astrophysics Data System (ADS)
Chen, X.; Settersten, T. B.; Radi, P. P.; Kouzov, A. P.
2008-10-01
The two-color resonant four-wave mixing (TC-RFWM) is advertised as a unique spectroscopic device enabling one to directly measure the collisional state-to-state transfer characteristics (rates and correlation times). In contrast to the laser-induced fluorescence, these characteristics are phase-sensitive and open wider opportunities to study the rotational relaxation processes. Further perspectives are offered by the recently recorded collision-induced picosecond TC-RFWM signals of OH. Their quantitative interpretation is now under development.
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Saruwatari, M.
1994-05-01
Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.
Devaux, Fabrice; Lantz, Eric
2013-11-01
We show that phase-conjugation by three-wave mixing allows turbidity suppression through biological tissues with thicknesses up to 5 mm, at a near-infrared wavelength included in the therapeutic window. Because of the ultrafast character of the imaging process, a motion of the tissue, which mimics in vivo imaging, can be exploited to significantly improve the signal-to-noise ratio and the resolution of the restored images. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2014-08-15
The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.
Nonlinear optical magnetometry with accessible in situ optical squeezing
Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.
2014-11-14
In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acousticmore » waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.« less
Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents
NASA Astrophysics Data System (ADS)
Diez, M.; Redondo, J. M.
2009-04-01
As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997
2015-09-30
Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field
Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2017-04-01
The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).
Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence
NASA Astrophysics Data System (ADS)
Mussot, Arnaud; Naveau, Corentin; Conforti, Matteo; Kudlinski, Alexandre; Copie, Francois; Szriftgiser, Pascal; Trillo, Stefano
2018-05-01
In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi-Pasta-Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.
Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V
2014-09-01
The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.
Cw hyper-Raman laser and four-wave mixing in atomic sodium
NASA Astrophysics Data System (ADS)
Klug, M.; Kablukov, S. I.; Wellegehausen, B.
2005-01-01
Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.
NASA Astrophysics Data System (ADS)
Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.
2012-06-01
The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.
RGB generation by four-wave mixing in small-core holey fibers
NASA Astrophysics Data System (ADS)
Horak, Peter; Dupriez, Pascal; Poletti, Francesco; Petrovich, Marco N.; Jeong, Yoonchan; Nilsson, Johan; Richardson, David J.; Payne, David N.
2007-09-01
We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser in submicron-sized cores of microstructured holey fibers. Picosecond pulses of green light are launched into a single suspended core of a silica holey fiber where energy is transferred by an efficient four-wave mixing process into a red and blue sideband whose wavelengths are fixed by birefringent phase matching due to a slight asymmetry of the structure arising during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of this white light source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt
A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to themore » borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.« less
Experimental realization of a feedback optical parametric amplifier with four-wave mixing
NASA Astrophysics Data System (ADS)
Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai
2018-04-01
Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.
NASA Astrophysics Data System (ADS)
Emel'yanov, Vladimir I.; Seval'nev, D. M.
2009-07-01
The self-organisation of the surface-relief nanostructures in solids under the action of energy and particle fluxes is interpreted as the instability of defect-deformation (DD) gratings produced by quasi-static Lamb and Rayleigh waves and defect-concentration waves. The allowance for the nonlocality in the defects—lattice atom interaction with a simultaneous account for both (normal and longitudinal) defect-induced forces bending the surface layer leads to the appearance of two maxima in the dependence of the instability growth rate of DD waves on the wave number. Three-wave interactions of quasi-static coupled DD waves (second harmonic generation and wave vector mixing) are considered for the first time, which are similar to three-wave interactions in nonlinear optics and acoustics and lead to the enrichment of the spectrum of surface-relief harmonics. Computer processing of experimental data on laser-induced generation of micro- and nanostructures of the surface relief reveals the presence of effects responsible for the second harmonic generation and wave vector mixing.
Parametric resonant triad interactions in a free shear layer
NASA Technical Reports Server (NTRS)
Mallier, R.; Maslowe, S. A.
1993-01-01
We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.
NASA Astrophysics Data System (ADS)
Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair
2017-11-01
We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.
Alfvén wave interactions in the solar wind
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.
2012-11-01
Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
NASA Astrophysics Data System (ADS)
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.
Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning
2018-07-01
This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
NASA Astrophysics Data System (ADS)
Davis, Kristen Alexis
The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.
Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading
NASA Astrophysics Data System (ADS)
Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun
2017-06-01
Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschudi, T.; Herden, A.; Goltz, J.
A theoretical and experimental study of two- and four-wave mixing in photorefractive crystals (BaTiO/sub 3/) is presented, giving special priority to image amplification in optical information processing systems.
Four-wave mixing response of solution-processed CH3NH3PbI3 thin films
NASA Astrophysics Data System (ADS)
March, Samuel A.; Riley, Drew B.; Clegg, Charlotte; Webber, Daniel; Todd, Seth; Hill, Ian G.; Hall, Kimberley C.
2017-02-01
The interest in perovskite-based solar cell absorber materials has skyrocketed in recent years due to the rapid rise in solar cell efficiency and the potential for cost reductions tied to solution-processed device fabrication. Due to complications associated with the presence of strong static and dynamic disorder in these organic-inorganic materials, the fundamental photophysical behavior of photo-excited charge carriers remains unclear. We apply four-wave mixing spectroscopy to study the charge carrier dynamics in CH3NH3PbI3 thin films. Our experiments reveal two discrete optical transitions below the band gap of the semiconductor with binding energies of 13 meV and 29 meV, attributed to free and defect-bound excitons respectively.
NASA Astrophysics Data System (ADS)
Wang, Wei; Cao, Leiming; Lou, Yanbo; Du, Jinjian; Jing, Jietai
2018-01-01
We theoretically and experimentally characterize the performance of the pairwise correlations from triple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The pairwise correlations between any two of the beams are theoretically calculated and experimentally measured. The experimental and theoretical results are in good agreement. We find that two of the three pairwise correlations can be in the quantum regime. The other pairwise correlation is always in the classical regime. In addition, we also measure the triple-beam correlation which is always in the quantum regime. Such unbalanced and controllable pairwise correlation structures may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. Our results also open the way for the classification and application of quantum states generated from the cascaded FWM processes.
Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms
NASA Astrophysics Data System (ADS)
Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan
2018-05-01
Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
Modelling non-hydrostatic processes in sill regions
NASA Astrophysics Data System (ADS)
Souza, A.; Xing, J.; Davies, A.; Berntsen, J.
2007-12-01
We use a non-hydrostatic model to compute tidally induced flow and mixing in the region of bottom topography representing the sill at the entrance to Loch Etive (Scotland). This site is chosen since detailed measurements were recently made there. With non-hydrostatic dynamics in the model our results showed that the model could reproduce the observed flow characteristics, e.g., hydraulic transition, flow separation and internal waves. However, when calculations were performed using the model in the hydrostatic form, significant artificial convective mixing occurred. This influenced the computed temperature and flow field. We will discuss in detail the effects of non-hydrostatic dynamics on flow over the sill, especially investigate non-linear and non-hydrostatic contributions to modelled internal waves and internal wave energy fluxes.
[Application of the mixed programming with Labview and Matlab in biomedical signal analysis].
Yu, Lu; Zhang, Yongde; Sha, Xianzheng
2011-01-01
This paper introduces the method of mixed programming with Labview and Matlab, and applies this method in a pulse wave pre-processing and feature detecting system. The method has been proved suitable, efficient and accurate, which has provided a new kind of approach for biomedical signal analysis.
Another Kind of Ambiguous Loss: Seventh-Day Adventist Women in Mixed-Orientation Marriages
ERIC Educational Resources Information Center
Hernandez, Barbara C.; Wilson, Colwick M.
2007-01-01
Narratives of five Seventh-day Adventist heterosexual women whose mixed-orientation marriages ended were analyzed through the lens of ambiguous loss. Thematic coding identified a wave-like process of changing emotional foci that emerged from their experience during marital dissolution. Elements of ambiguous loss included boundary ambiguity,…
NASA Astrophysics Data System (ADS)
Choi, J. W.; Sohn, B.-U.; Chen, G. F. R.; Ng, D. K. T.; Tan, D. T. H.
2018-04-01
The generation of broadband light within the telecommunication band has been instrumental to the design and characterization of advanced optical devices and systems. In this paper, stimulated degenerate four-wave mixing of an ultra-silicon rich nitride waveguide is investigated using a pulsed pump at 1.555 μm and incoherent broadband sources emitting in the 1.65 μm wavelength region as a signal. The waveguide possesses a large nonlinear parameter of 330 W-1/m as well as anomalous dispersion, required for phase matched parametric processes. The broadband idler ranging from 1.43 μm to 1.52 μm is generated using a coupled peak power of 4.6 W, spanning ˜100 nm at the -20 dB level, which is sufficient to cover parts of the E- and S-bands. The spectral span of the generated idler also agrees well with the calculation based on the phase-matching condition governing degenerate four-wave mixing. Cascaded incoherent four-wave mixing is also observed. Using a supercontinuum pump spanning from 1.1 to 1.7 μm with a coupled peak power of 26 W, an idler spanning from 1.2 to 1.4 μm is generated, equivalent to an idler on/off conversion efficiency of 27 dB.
Generation of high-power subpicosecond pulses at 155 nm.
Mossavi, K; Fricke, L; Liu, P; Wellegehausen, B
1995-06-15
Subpicosecond vacuum-ultraviolet radiation at 155 nm with pulse energies above 0.2 mJ has been obtained by near-resonant four-wave difference-frequency mixing in a Xe gas jet. Laser fields for the mixing process have been generated by a short-pulse KrF dye excimer laser system and a Raman converter. The process permits tuning in a broad vacuum-ultraviolet range and can be scaled up to higher output energies.
NASA Astrophysics Data System (ADS)
Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li
2018-07-01
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.
Resonantly enhanced four-wave mixing
Begley, Richard F.; Kurnit, Norman A.
1978-01-01
A method and apparatus for achieving large susceptibilities and long interaction lengths in the generation of new wavelengths in the infrared spectral region. A process of resonantly enhanced four-wave mixing is employed, utilizing existing laser sources, such as the CO.sub.2 laser, to irradiate a gaseous media. The gaseous media, comprising NH.sub.3, CH.sub.3 F, D.sub.2, HCl, HF, CO, and H.sub.2 or some combination thereof, are of particular interest since they are capable of providing high repetition rate operation at high flux densities where crystal damage problems become a limitation.
NASA Astrophysics Data System (ADS)
Sheen, K. L.; Brearley, J. A.; Naveira Garabato, A. C.; Smeed, D. A.; Waterman, S.; Ledwell, J. R.; Meredith, M. P.; St. Laurent, L.; Thurnherr, A. M.; Toole, J. M.; Watson, A. J.
2013-06-01
The spatial distribution of turbulent dissipation rates and internal wavefield characteristics is analyzed across two contrasting regimes of the Antarctic Circumpolar Current (ACC), using microstructure and finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Mid-depth turbulent dissipation rates are found to increase from O>(1×10-10Wkg -1>) in the Southeast Pacific to O>(1×10-
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
Process Contributions to Cool Java SST Anomalies at the Onset of Positive Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.
2016-12-01
The seasonal upwelling region along the south coast of Java is the first area to exhibit the negative SST anomalies associated with positive Indian Ocean Dipole (pIOD) events. The seasonal cooling in austral winter is driven by local wind forcing; however, recent observational studies have suggested that the anomalous Java cooling that starts during May-July of pIOD years is driven largely by intraseasonal wind variability along the equator, which forces upwelling Kelvin waves that propagate to the coast of Java. Using observations and an eddy-active ocean GCM simulation, the impacts of local wind stress and remotely-forced Kelvin waves are assessed and compared to the effects of mesoscale eddies and outflows from nearby Lombok Strait. A Kelvin wave coefficient computed from altimetry data shows anomalous levels of upwelling Kelvin wave activity during May-July of all pIOD years, indicating that Kelvin waves are an important and perhaps necessary precondition for pIOD events. Correlation analyses also suggest that flows through Lombok Strait and winds along the Indonesian Throughflow may be influential, though their impacts are more difficult to isolate. Composite temperature budgets from the ocean GCM indicate that advection and diabatic vertical mixing are the primary mechanisms for anomalous mixed layer cooling south of Java. The advection term is further decomposed by linearly regressing model velocity and temperature anomalies onto indices representing each process. According to this process decomposition, the local wind stress and Kelvin waves together account for most of the anomalous advective cooling, though the anomalous cooling effect of local wind stress may be overestimated in the model due to wind and stratification biases. The process decomposition also shows a very modest warming effect from mesoscale eddies. These results demonstrate both the IOD's resemblance to ENSO in the importance of Kelvin waves for its evolution, and notable differences from ENSO that arise from the complex interplay of local winds, planetary waves, stratification, eddies, and topography in the Indonesian region.
Efficient non-linear two-photon effects from the Cesium 6D manifold
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.
2018-02-01
We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.
Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai
2018-01-01
General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.
NASA Astrophysics Data System (ADS)
Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai
2018-01-01
General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene
2012-01-01
In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively-coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data and performing simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (I) wave deepening associated with wave shortening and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with bOlll1dary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.
NASA Astrophysics Data System (ADS)
Kardous, F.; El Fissi, L.; Friedt, J.-M.; Bastien, F.; Boireau, W.; Yahiaoui, R.; Manceau, J.-F.; Ballandras, S.
2011-05-01
The development of lab-on-chip devices is expected to dramatically change biochemical analyses, allowing for a notable increase of processing quality and throughput, provided the induced chemical reactions are well controlled. In this work, we investigate the impact of local acoustic mixing to promote or accelerate such biochemical reactions, such as antibody grafting on activated surfaces. During microarray building, the spotting mode leads to low efficiency in the ligand grafting and heterogeneities which limits its performances. To improve the transfer rate, we induce a hydrodynamic flow in the spotted droplet to disrupt the steady state during antibody grafting. To prove that acoustic mixing increases the antibody transfer rate to the biochip surface, we have used a Love-wave sensor allowing for real-time monitoring of the biological reaction for different operating conditions (with or without mixing). An analysis of the impact of the proposed mixing on grafting kinetics is proposed and finally checked in the case of antibody-antigen combination.
Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry
NASA Astrophysics Data System (ADS)
Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen
2017-06-01
We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.
Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves
NASA Astrophysics Data System (ADS)
Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.
2017-05-01
A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Dong, Gang; Jiang, Hua
2017-04-01
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A
2016-06-01
Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed.
Erskine, Jennifer; England, Duncan; Kupchak, Connor; Sussman, Benjamin
2018-02-15
Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique's validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5-30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.
Equatorial waves in the NCAR stratospheric general circulation model
NASA Technical Reports Server (NTRS)
Boville, B. A.
1985-01-01
Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics
NASA Astrophysics Data System (ADS)
Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan
2018-02-01
Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.
Turbulent mixing induced by Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.
2017-01-01
Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.
Characterization of vertical mixing in oscillatory vegetated flows
NASA Astrophysics Data System (ADS)
Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.
2016-02-01
Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene
2012-01-01
In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.
Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor.
Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min
2015-10-14
With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level "double-Λ" configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.
Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min
2015-10-01
With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.
Investigation of Tropical Transport with UARS Data
NASA Technical Reports Server (NTRS)
Dunkerton, Timothy J.
1999-01-01
Measurements of trace constituents obtained by instruments aboard the Upper Atmosphere Research Satellite (UARS) have been used to study transport processes associated with the quasi-biennial oscillation, laterally propagating Rossby waves, and upward propagating Kelvin waves in the tropical and subtropical upper troposphere and stratosphere. Mean vertical motions, vertical diffusivities and in-mixing rates were inferred from observations of the 'tape recorder' signal in near-equatorial stratospheric water vapor. The effect of the quasi-biennial oscillation (QBO) on tracer distributions in the upper half of the stratosphere was seen in a spectacular 'staircase' pattern, predominantly in the winter hemisphere, revealing the latitudinally asymmetric nature of QBO transport due to induced mean meridional circulations and modulation of lateral mixing associated with planetary Rossby waves. The propagation of Rossby waves across the equator in the westerly phase of the QBO was seen in tracer fields and corroborating United Kingdom Meteorological Office (UKMO) analyses; a modeling study of the effect of these waves on typical QBO wind profiles was performed. Water vapor in the upper troposphere and lower stratosphere was found to exhibit signatures of the tropical intraseasonal oscillation (TIO) and faster Kelvin waves in the two regions, respectively.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
NASA Astrophysics Data System (ADS)
Praturi, Divya Sri; Girimaji, Sharath
2017-11-01
Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.
NASA Astrophysics Data System (ADS)
Vinayagam, P. S.; Radha, R.; Al Khawaja, U.; Ling, Liming
2018-06-01
We investigate generalized nonlocal coupled nonlinear Schorödinger equation containing Self-Phase Modulation, Cross-Phase Modulation and four wave mixing involving nonlocal interaction. By means of Darboux transformation we obtained a family of exact breathers and solitons including the Peregrine soliton, Kuznetsov-Ma breather, Akhmediev breather along with all kinds of soliton-soliton and breather-soltion interactions. We analyze and emphasize the impact of the four-wave mixing on the nature and interaction of the solutions. We found that the presence of four wave mixing converts a two-soliton solution into an Akhmediev breather. In particular, the inclusion of four wave mixing results in the generation of a new solutions which is spatially and temporally periodic called "Soliton (Breather) lattice".
Four-wave-mixing suppression in Er 3+-fiber amplifiers by backward pumping
NASA Astrophysics Data System (ADS)
Adel, P.; Engelbrecht, M.; Wandt, D.; Fallnich, C.
2007-03-01
Amplification of chirped fs-pulses in an Erbium doped fiber amplifier upto 0.8 μJ resulted in an additional peak in the spectrum at 1584 nm. This peak, attributable to four-wave-mixing between the signal centered at 1559 nm and amplified spontaneous emission at 1534 nm, hinders the temporal recompression of the amplified chirped pulse. Compared to the forward pumping configuration, this four-wave-mixing in the amplifier was largely reduced in a backward pumping configuration. Based on simulations, explanations for the observed influence of the pump direction on the four-wave-mixing efficiency are presented. The results pointed out that the gain spectrum distribution along the fiber strongly influences four-wave-mixing effects in fiber amplifiers even for constant overall gain spectrum.
Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris
NASA Astrophysics Data System (ADS)
Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.
2016-02-01
Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.
Two dimensional fully nonlinear numerical wave tank based on the BEM
NASA Astrophysics Data System (ADS)
Sun, Zhe; Pang, Yongjie; Li, Hongwei
2012-12-01
The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.
Nonlinear oscillations and waves in multi-species cold plasmas
NASA Astrophysics Data System (ADS)
Verma, Prabal Singh
2016-12-01
The spatio-temporal evolution of nonlinear oscillations in multi-species plasma is revisited to provide more insight into the physics of phase mixing by constructing two sets of nonlinear solutions up to the second order. The first solution exhibits perfect oscillations in the linear regime and phase mixing appears only nonlinearly in the second order as a response to the ponderomotive forces. This response can be both direct and indirect. The indirect contribution of the ponderomotive forces appears through self-consistently generated low frequency fields. Furthermore, the direct and indirect contributions of the ponderomotive forces on the phase mixing process is explored and it is found that the indirect contribution is negligible in an electron-ion plasma and it disappears in the case of electron-positron plasma, yet represents an equal contribution in the electron-positron-ion plasma. However, the second solution does not exhibit any phase mixing due to the absence of ponderomotive forces but results in an undistorted nonlinear traveling wave. These investigations have relevance for laboratory/astrophysical multi-species plasma.
Four wave mixing as a probe of the vacuum
NASA Astrophysics Data System (ADS)
Tennant, Daniel M.
2016-06-01
Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.
Wave-mixing-induced transparency with zero phase shift in atomic vapors
NASA Astrophysics Data System (ADS)
Zhou, F.; Zhu, C. J.; Li, Y.
2017-12-01
We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.
EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.
Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A
2012-05-07
All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.
Supercontinuum generation in silicon waveguides relying on wave-breaking.
Castelló-Lurbe, David; Silvestre, Enrique
2015-10-05
Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.
Liu, Weimin; Zhu, Liangdong; Fang, Chong
2012-09-15
We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.
2016-02-01
Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.
Statistical models of global Langmuir mixing
NASA Astrophysics Data System (ADS)
Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean
2017-05-01
The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.
Generation of internal solitary waves by frontally forced intrusions in geophysical flows.
Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric
2016-12-06
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
Storage and retrieval of light pulse in coupled quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jibing, E-mail: liu0328@foxmail.com; Liu, Na; Shan, Chuanjia
In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, themore » results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.« less
Optical diagnostics of turbulent mixing in explosively-driven shock tube
NASA Astrophysics Data System (ADS)
Anderson, James; Hargather, Michael
2016-11-01
Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.
NASA Astrophysics Data System (ADS)
Lo Bue, N.; Artale, V.; Marullo, S.; Marinaro, G.; Embriaco, D.; Favali, P.; Beranzoli, L.
2017-12-01
The past general idea that the ocean-deep circulation is in quasi-stationary motion, has conditioned the observations of deep layers for a long time, excluding them from the majority of the surveys around the ocean world and influencing studies on the deep ocean processes. After the pioneering work of Munk (1966) highlighting the importance of bottom mixing processes, an underestimation of these issue has continued to persist for decades, due also to the difficulty to make reliable observations in the abyssal layers. The real awareness about the unsteady state of the abyssal layers has only risen recently and encourages us to wonder how the deep mechanisms can induce an internal instability and, consequently, affect the ocean circulation. The NIWs are characterized by a frequency near the inertial frequency f and can be generated by a variety of mechanisms, including wind, nonlinear interactions wave-shear flow and wave-topography, and geostrophic adjustments. NIWs represent one of the main high-frequency variabilities in the ocean, and they contain around half the kinetic energy observed in the oceans (Simmons et al. 2012) appearing as a prominent peak rising well above the Garrett & Munk (1975) continuum internal wave spectrum. As such, they upset the mixing processes in the upper ocean and they can interact strongly with mesoscale and sub-mesoscale motions. Likewise, NIWs likely affect the mixing of the deep ocean in ways that are just beginning to be understood. The analysis carried out on yearly time series collected by the bottom observatory SN1, the Western Ionian node of EMSO (European Multidisciplinary Seafloor and water column Observatory) Research Infrastructure, provides new important understanding on the role of the NIWs in the abyssal ocean. Also, this analysis is very useful to shed light on the possible mechanism that can trigger deep processes such as the abyssal vortex chains found by Rubino et al. (2012) in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin. Finally, spectral analysis, including the Singular Spectrum Analysis (SSA) and Wavelet, allow us to explain how the NIWs can contributes to activate and increase the mixing in the bottom layers with significant impact on overall abyssal and deep circulation at local and regional scale (Mediterranean Sea).
Time scales of circulation and mixing processes of San Francisco Bay waters
Walters, R.A.; Cheng, R.T.; Conomos, T.J.
1985-01-01
Conceptual models for tidal period and low-frequency variations in sea level, currents, and mixing processes in the northern and southern reaches of San Francisco Bay describe the contrasting characteristics and dissimilar processes and rates in these embayments: The northern reach is a partially mixed estuary whereas the southern reach (South Bay) is a tidally oscillating lagoon with density-driven exchanges with the northern reach. The mixed semidiurnal tides are mixtures of progressive and standing waves. The relatively simple oscillations in South Bay are nearly standing waves, with energy propagating down the channels and dispersing into the broad shoal areas. The tides of the northern reach have the general properties of a progressive wave but are altered at the constriction of the embayments and gradually change in an upstream direction to a mixture of progressive and standing waves. The spring and neap variations of the tides are pronounced and cause fortnightly varying tidal currents that affect mixing and salinity stratification in the water column. Wind stress on the water surface, freshwater inflow, and tidal currents interacting with the complex bay configuration are the major local forcing mechanisms creating low-frequency variations in sea level and currents. These local forcing mechanisms drive the residual flows which, with tidal diffusion, control the water-replacement rates in the estuary. In the northern reach, the longitudinal density gradient drives an estuarine circulation in the channels, and the spatial variation in tidal amplitude creates a tidally-driven residual circulation. In contrast, South Bay exhibits a balance between wind-driven circulation and tidally-driven residual circulation for most of the year. During winter, however, there can be sufficient density variations to drive multilayer (2 to 3) flows in the channel of South Bay. Mixing models (that include both diffusive and dispersive processes) are based on time scales associated with salt variations at the boundaries and those associated with the local forcing mechanisms, while the spatial scales of variations are dependent upon the configuration of the embayments. In the northern reach, where the estuarine circulation is strong, the salt flux is carried by the mean advection of the mean salt field. Where large salinity gradients are present, the tidal correlation part of the salt flux is of the same order as the advective part. Our knowledge of mixing and exchange rates in South Bay is poor. As this embayment is nearly isohaline, the salt flux is dominated entirely by the mean advection of the mean salt field. During and after peaks in river discharge, water mixing becomes more dynamic, with a strong density-driven current creating a net exchange of both water mass and salt. These exchanges are stronger during neap tides. Residence times of the water masses vary seasonally and differ between reaches. In the northern reach, residence times are on the order of days for high winter river discharge and of months for summer periods. The residence times for South Bay are fairly long (on the order of several months) during summer, and typically shorter (less than a month) during winter when density-driven exchanges occur. ?? 1985 Dr W. Junk Publishers.
Optical negative refraction by four-wave mixing in thin metallic nanostructures.
Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang
2011-10-30
The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.
Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event
NASA Astrophysics Data System (ADS)
Malott, Spencer; O'Carroll, Denis M.; Robinson, Clare E.
2016-07-01
Dynamic coastal forcing influences the transport of pollutants in nearshore aquifers and their ultimate flux to coastal waters. In this study, field data are presented that show, for the first time, the influence of a period of intensified wave conditions (wave event) on nearshore groundwater flows and geochemistry in a sandy beach. Field measurements at a freshwater beach allow wave effects to be quantified without other complex forcing that are present along marine shorelines (e.g., tides). Pressure transducer data obtained over an isolated wave event reveal the development of transient groundwater flow recirculations. The groundwater flows were simulated in FEFLOW using a phase-averaged wave setup approach to represent waves acting on the sediment-water interface. Comparison of measured and simulated data indicates that consideration of wave setup alone is able to adequately capture wave-induced perturbations in groundwater flows. While prior studies have shown sharp pH and redox spatial zonations in nearshore aquifers, this study reveals rapid temporal variations in conductivity, pH, and redox (ORP) in shallow sediments (up to 0.5 m depth) in response to varying wave conditions. Comparison of head gradients with calculated conductivity and pH mixing ratios indicates the controlling effect of the wave-induced water exchange and flows in driving the observed geochemical dynamics. While we are not able to conclusively determine the extent to which temporal variations are caused by conservative mixing versus reactive processes, the pH and ORP variations observed will have significant implications for the fate of reactive pollutants discharging through sandy nearshore aquifers.
Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber.
Londero, Pablo; Venkataraman, Vivek; Bhagwat, Amar R; Slepkov, Aaron D; Gaeta, Alexander L
2009-07-24
We demonstrate extremely efficient four-wave mixing with gains greater than 100 at microwatt pump powers and signal-to-idler conversion of 50% in Rb vapor confined to a hollow-core photonic band-gap fiber. We present a theoretical model that demonstrates such efficiency is consistent with the dimensions of the fiber and the optical depths attained. This is, to our knowledge, the largest four-wave mixing gain observed at such low total pump powers and the first demonstrated example of four-wave mixing in an alkali-metal vapor system with a large (approximately 30 MHz) ground state decoherence rate.
Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments
NASA Astrophysics Data System (ADS)
la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico
2016-04-01
Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.
Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.
Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh
2013-01-28
Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.
Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid
NASA Astrophysics Data System (ADS)
Jia, Xiao-Yue; Tian, Bo; Du, Zhong; Sun, Yan; Liu, Lei
2018-04-01
Under investigation in this paper is the variable-coefficient Kadomtsev-Petviashvili equation, which describes the long waves with small amplitude and slow dependence on the transverse coordinate in a single-layer shallow fluid. Employing the bilinear form and symbolic computation, we obtain the lump, mixed lump-stripe soliton and mixed rogue wave-stripe soliton solutions. Discussions indicate that the variable coefficients are related to both the lump soliton’s velocity and amplitude. Mixed lump-stripe soliton solutions display two different properties, fusion and fission. Mixed rogue wave-stripe soliton solutions show that a rogue wave arises from one of the stripe solitons and disappears into the other. When the time approaches 0, rogue wave’s energy reaches the maximum. Interactions between a lump soliton and one-stripe soliton, and between a rogue wave and a pair of stripe solitons, are shown graphically.
NASA Astrophysics Data System (ADS)
Shoda, Munehito; Yokoyama, Takaaki
2018-06-01
We conduct a 3D magnetohydrodynamic (MHD) simulation of the parametric decay instability of Alfvén waves and resultant compressible MHD turbulence, which is likely to develop in the solar wind acceleration region. Because of the presence of the mean magnetic field, the nonlinear stage is characterized by filament-like structuring and anisotropic cascading. By calculating the timescales of phase mixing and the evolution of Alfvén wave turbulence, we have found that the early nonlinear stage is dominated by phase mixing, while the later phase is dominated by imbalanced Alfvén wave turbulence. Our results indicate that the regions in the solar atmosphere with large density fluctuation, such as the coronal bottom and wind acceleration region, are heated by phase-mixed Alfvén waves, while the other regions are heated by Alfvén wave turbulence.
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.
2018-05-01
We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.
Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing.
Ueno, Y; Toda, Y; Adachi, S; Morita, R; Tawara, T
2009-10-26
We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (approximately 1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials.
Effect of winds and waves on salt intrusion in the Pearl River estuary
NASA Astrophysics Data System (ADS)
Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng
2018-02-01
Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.
Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew
2009-01-01
Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew
Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less
Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
Wang, Ke-Yao; Foster, Amy C
2012-04-15
We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America
Cold Electrons as the Drivers of Parallel, Electrostatic Waves in Asymmetric Reconnection
NASA Astrophysics Data System (ADS)
Holmes, J.; Ergun, R.; Newman, D. L.; Wilder, F. D.; Schwartz, S. J.; Goodrich, K.; Eriksson, S.; Torbert, R. B.; Russell, C. T.; Lindqvist, P. A.; Giles, B. L.; Pollock, C. J.; Le Contel, O.; Strangeway, R. J.; Burch, J. L.
2016-12-01
The Magnetospheric MultiScale mission (MMS) has observed several instances of asymmetric reconnection at Earth's magnetopause, where plasma from the magnetosheath encounters that of the magnetosphere. On Earth's dayside, the magnetosphere is often made up of a two-component distribution of cold (<< 10 eV) and hot ( 1 keV) plasma, sometimes including the cold ion plume. Magnetosheath plasma is primarily warm ( 100 eV) post-shock solar wind. Where they meet, magnetopause reconnection alters the magnetic topology such that these two populations are left cohabiting a field line and rapidly mix. There have been several events observed by MMS where the Fast Plasma Instrument (FPI) clearly shows cold ions near the diffusion region impinging upon the warm magnetosheath population. In many of these, we also see patches of strong electrostatic waves parallel to the magnetic field - a smoking gun for rapid mixing via nonlinear processes. Cold ions alone are too slow to create the same waves; solving for roots of a simplified dispersion relation shows the electron population damps out the ion modes. From this, we infer the presence of cold electrons; in one notable case found by Wilder et al. 2016 (in review), they have been observed directly by FPI. Vlasov simulations of plasma mixing for a number of these events closely reproduce the observed electric field signatures. We conclude from numerical analysis and direct MMS observations that cold plasma mixing, including cold electrons, is the primary driver of parallel electrostatic waves observed near the electron diffusion region in asymmetric magnetic reconnection.
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
Generation and Evolution of Internal Waves in Luzon Strait
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and
Generation and Evolution of Internal Waves in Luzon Strait
2016-03-01
1 DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in...internal tides, inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of...mixing for ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of
Did Irving Langmuir Observe Langmuir Circulations?
NASA Astrophysics Data System (ADS)
D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.
2012-12-01
Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; Moortel, I. De; Doorsselaere, T. Van
Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. Inmore » the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s{sup −1}, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.« less
One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion
NASA Astrophysics Data System (ADS)
Ghantous, M.; Babanin, A. V.
2014-02-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into ocean mixing models, and real gains have been made in terms of increased fidelity to observational data. However, our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing parameterisations need refinement and propose an alternative one. We use two of the parameterisations to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2014-09-30
At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH
NASA Astrophysics Data System (ADS)
Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang
2018-01-01
Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable inversion layer was formed by the persistent warm and humid southwestern airflow, while the low-level inversion layer was initially produced by the surface long-wave radiation cooling in the nighttime and maintained by the reduction of surface solar radiation in the daytime. The obvious descending process of the upper-level inversion layer induced by the radiation process could be responsible for the enhancement of the low-level inversion layer and the lowering PBL height, as well as high aerosol loading for these polluted events. The reduction of surface solar radiation in the daytime could be around 35 % for the haze event and 94 % for the fog-haze mixed event. Therefore, the formation and subsequent descending processes of the upper-level inversion layer should be an important factor in maintaining and strengthening the long-lasting severe polluted events, which has not been revealed in previous publications. The interactions and feedbacks between PM2.5 concentration and PBL height linked by radiation process caused a more significant and long-lasting deterioration of air quality and visibility in fog-haze mixed events. The interactions and feedbacks of all processes were particularly strong when the PM2.5 mass concentration was larger than 150-200 µg m-3.
Internal waves and rectification in a linearly stratified fluid
NASA Astrophysics Data System (ADS)
Pérenne, Nicolas; Renouard, Dominique P.
Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
NASA Astrophysics Data System (ADS)
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
Rezk, Amgad R; Ramesan, Shwathy; Yeo, Leslie Y
2018-01-30
The microarray titre plate remains a fundamental workhorse in genomic, proteomic and cellomic analyses that underpin the drug discovery process. Nevertheless, liquid handling technologies for sample dispensing, processing and transfer have not progressed significantly beyond conventional robotic micropipetting techniques, which are not only at their fundamental sample size limit, but are also prone to mechanical failure and contamination. This is because alternative technologies to date suffer from a number of constraints, mainly their limitation to carry out only a single liquid operation such as dispensing or mixing at a given time, and their inability to address individual wells, particularly at high throughput. Here, we demonstrate the possibility for true sequential or simultaneous single- and multi-well addressability in a 96-well plate using a reconfigurable modular platform from which MHz-order hybrid surface and bulk acoustic waves can be coupled to drive a variety of microfluidic modes including mixing, sample preconcentration and droplet jetting/ejection in individual or multiple wells on demand, thus constituting a highly versatile yet simple setup capable of improving the functionality of existing laboratory protocols and processes.
Tropical waves and the quasi-biennial oscillation in the lower stratosphere
NASA Technical Reports Server (NTRS)
Miller, A. J.; Angell, J. K.; Korshover, J.
1976-01-01
By means of spectrum analysis of 11 years of lower stratospheric daily winds and temperatures at Balboa, Ascension and Canton-Singapore, evidence is presented supporting the existence of two principal wave modes with periods of about 11-17 days (Kelvin waves) and about 4-5 days (mixed Rossby-gravity waves). The structure of the two wave modes, as well as the vertical eddy momentum flux by the waves, is shown to be related to the quasi-biennial cycle, although for the mixed Rossby-gravity waves this is obvious only at Ascension. In addition, the Coriolis term, suggested as a source of vertical easterly momentum flux for the mixed Rossby-gravity waves, is investigated and found to be of the same magnitude as the vertical eddy flux term. Finally, we have examined the mean meridional motion and the meridional eddy momentum flux for its possible association with the quasi- biennial variation.
Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-03-01
An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads
NASA Astrophysics Data System (ADS)
Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector
2004-12-01
A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.
Influence of Internal Waves on Transport by a Gravity Current
NASA Astrophysics Data System (ADS)
Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart
2017-11-01
Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, W.R.; Moore, M.A.; Payne, M.G.
On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs.
Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation
NASA Astrophysics Data System (ADS)
Liu, Shengshuai; Wang, Hailong; Jing, Jietai
2018-04-01
We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.
NASA Astrophysics Data System (ADS)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai
2015-05-01
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.
Suppressing four-wave mixing in warm-atomic-vapor quantum memory
NASA Astrophysics Data System (ADS)
Vurgaftman, Igor; Bashkansky, Mark
2013-06-01
Warm-atomic-vapor cells may be employed as quantum-memory components in an experimentally convenient implementation of the Duan-Lukin-Cirac-Zoller protocol. Previous studies have shown the performance of these cells is limited by the combination of collisional fluorescence during the writing process and four-wave mixing during the reading process and have proposed to overcome this by a combination of optimized detuning and prepumping with circularly polarized write and read beams. Here we show that the Raman matrix elements involving the excited P (F'=I-(1)/(2) and F'=I+(1)/(2)) levels of all alkali atoms are always equal in magnitude and opposite in sign when the write and the anti-Stokes (Stokes) photons have the opposite helicity, and the Raman transitions via the two levels interfere destructively. The existence of an optimal detuning is demonstrated for a given dark-count rate of the single-photon detector. The predicted behavior is observed experimentally in a warm Rb cell with buffer gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn
2015-05-25
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiportmore » nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.« less
Measurements of a Lee Wave in the Southern Ocean: Energy and Momentum Fluxes and Mixing
NASA Astrophysics Data System (ADS)
Cusack, J. M.; Naveira Garabato, A.; Smeed, D.; Girton, J. B.
2016-02-01
Lee waves, internal waves generated by stratified flow over topographic features are thought to break and generate a significant proportion of the turbulent mixing required to close the abyssal overturning circulation. A lack of observations means that there is large uncertainty in the magnitude of contribution that lee waves make to turbulent transformations, as well as their importance in local and global momentum and energy budgets. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a large lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is presented and used to calculate absolute vertical water velocity in addition to horizontal velocity measurements made by the floats. The wave is observed to have velocity fluctuations in all three directions of over 15 cm s-1 and a frequency close to the local buoyancy frequency. Furthermore, the wave has a measured peak vertical flux of horizontal momentum of 6 N m-2, a value that is two orders of magnitude larger than the time mean wind forcing on the Southern Ocean. Linear internal wave theory was used to estimate wave energy density and fluxes, while a mixing parameterisation was used to estimate the magnitude of turbulent kinetic energy dissipation, which was found to be elevated above typical background levels by two orders of magnitude. This work provides the first direct measurement of a lee wave generated by ACC flow over topography with simultaneous estimates of energy fluxes and mixing.
NASA Astrophysics Data System (ADS)
Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong
2018-02-01
Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.
Featured Image: Mixing Chemicals in Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
How do stars mix chemicals in their interiors, leading to the abundances we measure at their surfaces? Two scientists from the Planetary Science Institute in Arizona, Tamara Rogers (Newcastle University, UK) and Jim McElwaine (Durham University, UK), have investigated the role that internal gravity waves have in chemical mixing in stellar interiors. Internal gravity waves not to be confused with the currently topical gravitational waves are waves that oscillate within a fluid that has a density gradient. Rogers and McElwaine used simulations to explore how these waves can cause particles in a stars interior to move around, gradually mixing the different chemical elements. Snapshots from four different times in their simulation can be seen below, with the white dots marking tracer particles and the colors indicating vorticity. You can see how the particles move in response to wave motion after the first panel. For more information, check out the paper below!CitationT. M. Rogers and J. N. McElwaine 2017 ApJL 848 L1. doi:10.3847/2041-8213/aa8d13
Evolution of scalar and velocity dynamics in planar shock-turbulence interaction
NASA Astrophysics Data System (ADS)
Boukharfane, R.; Bouali, Z.; Mura, A.
2018-01-01
Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.
Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.
Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien
2012-11-19
We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
Wave mixing in coupled phononic crystals via a variable stiffness mechanism
NASA Astrophysics Data System (ADS)
Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu
2016-10-01
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.
Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core
NASA Astrophysics Data System (ADS)
Liu, C.; Barnes, E. A.
2015-12-01
Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.
Modelling of upper ocean mixing by wave-induced turbulence
NASA Astrophysics Data System (ADS)
Ghantous, Malek; Babanin, Alexander
2013-04-01
Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into models, and real gains have been made in terms of increased fidelity to observational data. However our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing models need refinement and propose an alternative model. We use two of the models to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.
NASA Astrophysics Data System (ADS)
Zozulya, A. A.
1988-12-01
A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.
Wake-shock interaction at a Mach number of 6
NASA Technical Reports Server (NTRS)
Walsh, M. J.
1978-01-01
Measurements of mean pitot pressure, static pressure, and total temperature were made in the two dimensional turbulent mixing region of a wake downstream of an interaction with a shock-expansion wave system. The results indicated that: (1) the shock increased the mixing, and (2) the expansion field that followed the shock decreased the turbulent mixing. The overall effect of the shock-expansion wave interaction was dependent on the orientation of the expansion wave with respect to the intersecting shock wave. These data could be used to validate nonequilibrium turbulence modeling and numerical solution of the time averaged Navier-Stokes equations.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Yang, Bo; Fu, Xiouhua
2007-01-01
The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.
2017-07-01
Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.
Advanced Metacrystal Media for Aerospace Applications
2014-09-14
role of the surface C. Ciracì, E. Poutrina, M. Scalora , D. R. Smith Physical Review B 86, 115451 (2012) Plasmon ruler with Angstrom length...Poutrina, M. Scalora D. R. Smith Physical Review B 85, 201403(R) (2012) Enhancement of four-wave mixing processes by nanoparticle arrays coupled to
Complementary optical rogue waves in parametric three-wave mixing.
Chen, Shihua; Cai, Xian-Ming; Grelu, Philippe; Soto-Crespo, J M; Wabnitz, Stefan; Baronio, Fabio
2016-03-21
We investigate the resonant interaction of two optical pulses of the same group velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium and report on the complementary rogue wave dynamics which are unique to such a parametric three-wave mixing. Analytic rogue wave solutions up to the second order are explicitly presented and their robustness is confirmed by numerical simulations, in spite of the onset of modulation instability activated by quantum noise.
Multi-mode of Four and Six Wave Parametric Amplified Process
NASA Astrophysics Data System (ADS)
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-01
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
Multi-mode of Four and Six Wave Parametric Amplified Process.
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-03
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
2015-09-30
hour tidally -resolving transects showing the generation conditions leading to wave formation 6. Nine synthetic aperture images collected during...High resolution measurements of nonlinear internal waves and mixing on the Washington continental...email: jmickett@apl.washington.edu Grant Number: N00014-13-1-0390 LONG-TERM GOALS We are interested in the general problems of internal waves and
Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment
NASA Astrophysics Data System (ADS)
Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.
2016-02-01
Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.
Discrimination of Mixed Taste Solutions using Ultrasonic Wave and Soft Computing
NASA Astrophysics Data System (ADS)
Kojima, Yohichiro; Kimura, Futoshi; Mikami, Tsuyoshi; Kitama, Masataka
In this study, ultrasonic wave acoustic properties of mixed taste solutions were investigated, and the possibility of taste sensing based on the acoustical properties obtained was examined. In previous studies, properties of solutions were discriminated based on sound velocity, amplitude and frequency characteristics of ultrasonic waves propagating through the five basic taste solutions and marketed beverages. However, to make this method applicable to beverages that contain many taste substances, further studies are required. In this paper, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through mixed solutions composed of sweet and salty substance was measured. As a result, differences among solutions were clearly observed as differences in their properties. Furthermore, these mixed solutions were discriminated by a self-organizing neural network. The ratio of volume in their mixed solutions was estimated by a distance-type fuzzy reasoning method. Therefore, the possibility of taste sensing was shown by using ultrasonic wave acoustic properties and the soft computing, such as the self-organizing neural network and the distance-type fuzzy reasoning method.
Mountain waves modulate the water vapor distribution in the UTLS
NASA Astrophysics Data System (ADS)
Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus
2017-12-01
The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-05-01
In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800 nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
Environmental and Water Quality Operational Studies: An Assessment of Reservoir Mixing Processes
1986-07-01
Lake Calhoun, Minnesota 1974 Calibration 1975 Verification C. J. Brown Reservoir, 1974 Simulation of filling Ohio 1975 Calibration Lake Coralville , Iowa ...Conference, University of Iowa , Iowa City, pp 289-306. Koberg, G. E. 1962. "Methods to Compute Long Wave Radiation from the Atmosphere and Reflected Solar
Effect of gravity waves on the North Atlantic circulation
NASA Astrophysics Data System (ADS)
Eden, Carsten
2017-04-01
The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
NASA Astrophysics Data System (ADS)
Gallart, M.; Ziegler, M.; Crégut, O.; Feltin, E.; Carlin, J.-F.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P.
2017-07-01
Applying four-wave mixing spectroscopy to a high-quality GaN/AlGaN single quantum well, we report on the experimental determination of excitonic dephasing times at different temperatures and exciton densities in III-nitride heterostructures. By comparing the evolution with the temperature of the dephasing and the spin-relaxation rate, we conclude that both processes are related to the rate of excitonic collisions. When spin relaxation occurs in the motional-narrowing regime, it remains constant over a large temperature range as the spin-precession frequency increases linearly with temperature, hence compensating for the observed decrease in the dephasing time. From those measurements, a value of the electron-hole exchange interaction strength of 0.45 meV at T =10 K is inferred.
Observing and Simulating Diapycnal Mixing in the Canadian Arctic Archipelago
NASA Astrophysics Data System (ADS)
Hughes, K.; Klymak, J. M.; Hu, X.; Myers, P. G.; Williams, W. J.; Melling, H.
2016-12-01
High-spatial-resolution observations in the central Canadian Arctic Archipelago are analysed in conjunction with process-oriented modelling to estimate the flow pathways among the constricted waterways, understand the nature of the hydraulic control(s), and assess the influence of smaller scale (metres to kilometres) phenomena such as internal waves and topographically induced eddies. The observations repeatedly display isopycnal displacements of 50 m as dense water plunges over a sill. Depth-averaged turbulent dissipation rates near the sill estimated from these observations are typically 10-6-10-5 W kg-1, a range that is three orders of magnitude larger than that for the open ocean. These and other estimates are compared against a 1/12° basin-scale model from which we estimate diapycnal mixing rates using a volume-integrated advection-diffusion equation. Much of the mixing in this simulation is concentrated near constrictions within Barrow Strait and Queens Channel, the latter being our observational site. This suggests the model is capable of capturing topographically induced mixing. However, such mixing is expected to be enhanced in the presence of tides, a process not included in our basin scale simulation or other similar models. Quantifying this enhancement is another objective of our process-oriented modelling.
NASA Astrophysics Data System (ADS)
Wang, Jian; Meng, Xiaohong; Zheng, Wanqiu
2017-10-01
The elastic-wave reverse-time migration of inhomogeneous anisotropic media is becoming the hotspot of research today. In order to ensure the accuracy of the migration, it is necessary to separate the wave mode into P-wave and S-wave before migration. For inhomogeneous media, the Kelvin-Christoffel equation can be solved in the wave-number domain by using the anisotropic parameters of the mesh nodes, and the polarization vector of the P-wave and S-wave at each node can be calculated and transformed into the space domain to obtain the quasi-differential operators. However, this method is computationally expensive, especially for the process of quasi-differential operators. In order to reduce the computational complexity, the wave-mode separation of mixed domain can be realized on the basis of a reference model in the wave-number domain. But conventional interpolation methods and reference model selection methods reduce the separation accuracy. In order to further improve the separation effect, this paper introduces an inverse-distance interpolation method involving position shading and uses the reference model selection method of random points scheme. This method adds the spatial weight coefficient K, which reflects the orientation of the reference point on the conventional IDW algorithm, and the interpolation process takes into account the combined effects of the distance and azimuth of the reference points. Numerical simulation shows that the proposed method can separate the wave mode more accurately using fewer reference models and has better practical value.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble
NASA Astrophysics Data System (ADS)
Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim
2017-04-01
Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.
Quantum steering in cascaded four-wave mixing processes.
Wang, Li; Lv, Shuchao; Jing, Jietai
2017-07-24
Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.
Storlazzi, Curt D.; Presto, Katherine; Brown, Eric K.
2011-01-01
More than 2.2 million measurements of oceanographic forcing and the resulting water-column properties were made off U.S. National Park Service's Kalaupapa National Historical Park on the north shore of Molokai, Hawaii, between 2008 and 2010 to understand the role of oceanographic processes on the health and sustainability of the area's marine resources. The tides off the Kalaupapa Peninsula are mixed semidiurnal. The wave climate is dominated by two end-members: large northwest Pacific winter swell that directly impacts the study site, and smaller, shorter-period northeast trade-wind waves that have to refract around the peninsula, resulting in a more northerly direction before propagating over the study site. The currents primarily are alongshore and are faster at the surface than close to the seabed; large wave events, however, tend to drive flow in a more cross-shore orientation. The tidal currents flood to the north and ebb to the south. The waters off the peninsula appear to be a mix of cooler, more saline, deeper oceanic waters and shallow, warmer, lower-salinity nearshore waters, with intermittent injections of freshwater, generally during the winters. Overall, the turbidity levels were low, except during large wave events. The low overall turbidity levels and rapid return to pre-event background levels following the cessation of forcing suggest that there is little fine-grained material. Large wave events likely inhibit the settlement of fine-grained sediment at the site. A number of phenomena were observed that indicate the complexity of coastal circulation and water-column properties in the area and may help scientists and resource managers to better understand the implications of the processes on marine ecosystem health.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunawan, H.; Puspito, N. T.; Ibrahim, G.
The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determinationmore » of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.« less
Nonlinear Alfvén wave propagating in ideal MHD plasmas
NASA Astrophysics Data System (ADS)
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere
NASA Astrophysics Data System (ADS)
Moore, R. C.
2015-12-01
It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.
Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu
2014-06-01
A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.
Declining availability of outdoor skating in Canada
NASA Astrophysics Data System (ADS)
Brammer, Jeremy R.; Samson, Jason; Humphries, Murray M.
2015-01-01
We find a mixed chirality $d$-wave superconducting state in the coexistence region between antiferromagnetism and interaction-driven superconductivity in lightly doped honeycomb materials. This state has a topological chiral $d+id$-wave symmetry in one Dirac valley but $d-id$-wave symmetry in the other valley and hosts two counter-propagating edge states, protected in the absence of intervalley scattering. A first-order topological phase transition, with no bulk gap closing, separates the chiral $d$-wave state at small magnetic moments from the mixed chirality $d$-wave phase.
Application of a Flip-Flop Nozzle on Plume Mixing Enhancement
NASA Technical Reports Server (NTRS)
Schreck, Stefan; Michaelian, Mark; Ho, Chih-Ming
1999-01-01
Mach wave radiation is a major source of noise in high speed jets. It is created by turbulent eddies which travel at supersonic speed within the shear layer of the jet. Downstream of the potential core, the convection speed of the eddies decays and noise production is reduced. Once the convection speeds drops below the speed of sound, eddy Mach wave radiation ceases. Mach wave radiation may be reduced by shortening the core length of the jet. This requires a faster growth of the shear layer, i.e. enhanced mixing in the jet. We investigated the possibility of mixing enhancement by the excitation of the instability waves in a supersonic rectangular jet.
Mixing in seasonally stratified shelf seas: a shifting paradigm.
Rippeth, Tom P
2005-12-15
Although continental shelf seas make up a relatively small fraction (ca 7%) of the world ocean's surface, they are thought to contribute significantly (20-50% of the total) to the open-ocean carbon dioxide storage through processes collectively known as the shelf sea pump. The global significance of these processes is determined by the vertical mixing, which drives the net CO(2) drawdown (which can occur only in stratified water). In this paper, we focus on identifying the processes that are responsible for mixing across the thermocline in seasonally stratified shelf seas. We present evidence that shear instability and internal wave breaking are largely responsible for thermocline mixing, a clear development from the first-order paradigm for the water column structure in continental shelf seas. The levels of dissipation observed are quantitatively consistent with the observed dissipation rates of the internal tide and near-inertial oscillations. It is perhaps because these processes make such a small contribution to the total energy dissipated in shelf seas that they are not well represented in current state-of-the-art numerical models of continental shelf seas. The results thus present a clear challenge to oceanographic models.
Numerical simulation of wave-current interaction under strong wind conditions
NASA Astrophysics Data System (ADS)
Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier
2017-04-01
Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).
Internal waves and Equatorial dynamics: an observational study in the West Atlantic Ocean
NASA Astrophysics Data System (ADS)
Rabitti, Anna; Maas, Leo R. M.; van Haren, Hans; Gerkema, Theo
2013-04-01
Internal waves present several fascinating aspects of great relevance for geo- and astro-physical fluid dynamics. These waves are supported by all kinds of stratified and rotating fluids, such as, for example, our ocean, atmosphere, a planet fluid core or a star. In a non linear regime, because of their oblique propagation, they are thought to play a key role in diapycnal mixing, as well as in angular momentum mixing. Unfortunately, a complete analytical description of internal waves in arbitrarily shaped enclosed domains is still an ongoing challenge. On the other hand, internal wave energy is observed travelling along rays, whose behaviour can be traced and whose reflections off the container's boundaries appears crucial in producing phenomena such as focussing of wave energy onto specific trajectories (attractors), and in triggering localized instabilities. Ray tracing studies have shown that equatorial regions of stratified and/or rotating spherical shells are likely affected by these features, being the place where the simplest shaped and most energetic attractors occur. In this study we aim to investigate the possible presence and role of internal wave attractors in determining the equatorial ocean dynamics. Internal wave attractors, observed in laboratory and numerical experiments, have not been observed in Nature, yet. A unique set of observations, collected in the deep Equatorial West Atlantic Ocean, will be used here in order to explore this possibility, the dataset consisting of 1.5 year long time series of current measured acoustically and with current meters moored between 0°and 2°N, at 37°W, off the Brazilian coast. In particular, angular momentum mixing due to internal wave focussing, is explored as a possible mechanism for maintaining the Equatorial Deep Jets. These jets are stacked alternating zonal currents that are ubiquitously observed in all the oceans and whose nature is still largely unknown. Remarkably, jet like structures are also observed in the equatorial regions of fluid planets, suggesting that their existence could be related to general properties of the system such as shape, stratification and rotation. The equatorial ocean shows a different dynamics compared to off-equatorial regions, in terms of mean flow, internal wave and mixing properties. Despite the crucial role it plays in the global circulation and in our climate, this region is still poorly understood. We propose that the use of a new framework of interpretation, together with long term, in situ measurements can shed some light on the processes taking place in this peculiar region, and constitutes a key step towards a better understanding of energy fluxes in the ocean, as well as in other stratified, rotating fluid domains.
Redistribution of energy available for ocean mixing by long-range propagation of internal waves.
Alford, Matthew H
2003-05-08
Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.
NASA Astrophysics Data System (ADS)
Gaillard, T.; Davidenko, D.; Dupoirieux, F.
2015-06-01
The paper presents the methodology and the results of a numerical study, which is aimed at the investigation and optimisation of different means of fuel and oxidizer injection adapted to rocket engines operating in the rotating detonation mode. As the simulations are achieved at the local scale of a single injection element, only one periodic pattern of the whole geometry can be calculated so that the travelling detonation waves and the associated chemical reactions can not be taken into account. Here, separate injection of fuel and oxidizer is considered because premixed injection is handicapped by the risk of upstream propagation of the detonation wave. Different associations of geometrical periodicity and symmetry are investigated for the injection elements distributed over the injector head. To analyse the injection and mixing processes, a nonreacting 3D flow is simulated using the LES approach. Performance of the studied configurations is analysed using the results on instantaneous and mean flowfields as well as by comparing the mixing efficiency and the total pressure recovery evaluated for different configurations.
Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing
NASA Astrophysics Data System (ADS)
Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.
2016-10-01
It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
NASA Technical Reports Server (NTRS)
Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.
2008-01-01
Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.
NASA Astrophysics Data System (ADS)
Chao, Winston C.; Yang, Bo; Fu, Xiouhua
2009-11-01
The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called “convectively coupled Kelvin (mixed Rossby-gravity) waves” are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of “convectively coupled Kelvin waves,” which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, “convectively coupled Kelvin waves” do show anti-symmetric components, and “convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)” do show a hint of symmetric components. These results bolster a published proposal that these waves should be called “chimeric Kelvin waves,” “chimeric mixed Rossby-gravity waves,” etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves.
Turbulent mixing& combustion in TNT explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Ferguson, R E; Oppenheim, A K
2000-12-12
Effects of turbulent mixing induced by explosion of a 1-g spherical TNT charge in air are investigated. The detonation wave in the charge transforms the solid explosive (C{sub 7}H{sub 5}N{sub 3}O{sub 6}) to gaseous products, rich in C{sub (S)}, and CO. The detonation pressure ({approx}210 kb) causes the products to expand rapidly, driving a blast wave into the surrounding air (Brode, 1959). The interface between the products and air is unstable (Richtmyer, 1960; Meshkov, 1960; Anisimov & Zel'dovich, 1977). As shown in Collage Ia-c, this region rapidly transitions into a turbulent mixing layer (Kuhl, 1996). As the embedded shock, I,more » implodes, it draws the mixing structures (Taylor cavities) into the origin (Collage Id-e). In this way air becomes distributed throughout the hot detonation products gases. This process is enhanced by shock reflections from confining walls. In either case (confined or unconfined), rapid combustion takes place where the expanded detonation products play the role of fuel. This leads to a dramatic increase in chamber pressure (Fig. 1)-in contrast to a corresponding TNT explosion in nitrogen. The problem was modeled as turbulent combustion in an unmixed system at large Reynolds, Peclet and Damkohler numbers (Kuhl et al, 1997). The numerical solution was obtained by a high-order Godunov scheme (Colella & Glaz, 1985). Adaptive Mesh Refinement (Berger & Colella, 1989) was used to follow the turbulent mixing on the computational grid in as much detail as possible. The results reveal all the dynamic features (Fig. 2) of the exothermic process of combustion controlled by fluid-mechanic transport in a highly turbulent field (Kuhl & Oppenheim, 1997), in contrast to the conventional reaction-diffusion mechanism of Zel'dovich & Frank-Kamenetskii (1938).« less
The Vetter-Sturtevant Shock Tube Problem in KULL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulitsky, M S
2005-10-06
The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less
Phase mismatched optical parametric generation in semiconductor magnetoplasma
NASA Astrophysics Data System (ADS)
Dubey, Swati; Ghosh, S.; Jain, Kamal
2017-05-01
Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.
Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P.
2005-01-01
Coastal landscapes evolve over wide-ranging spatial and temporal scales in response to physical and biological pro-cesses that interact with a wide range of variables. To develop better predictive models for these dynamic areas, we must understand the influence of these variables on coastal morphologies and ultimately how they influence coastal processes. This study defines the influence of geologic framework variability on a classic mixed-energy coastline, and establishes four categorical scales of spatial and temporal influence on the coastal system. The near-surface, geologic framework was delineated using high-resolution seismic profiles, shallow vibracores, detailed geomorphic maps, historical shorelines, aerial photographs, and existing studies, and compared to the long- and short-term development of two coastal compartments near Charleston, South Carolina. Although it is clear that the imprint of a mixed-energy tidal and wave signal (basin-scale) dictates formation of drumstick barriers and that immediate responses to wave climate are dramatic, island size, position, and longer-term dynamics are influenced by a series of inherent, complex near-surface stratigraphic geometries. Major near-surface Tertiary geometries influence inlet placement and drainage development (island-scale) through multiple interglacial cycles and overall channel morphology (local-scale). During the modern marine transgression, the halo of ebb-tidal deltas greatly influence inlet region dynamics, while truncated beach ridges and exposed, differentially erodable Cenozoic deposits in the active system influence historical shoreline dynamics and active shoreface morphologies (blockscale). This study concludes that the mixed-energy imprint of wave and tide theories dominates general coastal morphology, but that underlying stratigraphic influences on the coast provide site-specific, long-standing imprints on coastal evolution.
Rossignol, M; Philippot, P; Crommelinck, M; Campanella, S
2008-10-01
Controversy remains about the existence and the nature of a specific bias in emotional facial expression processing in mixed anxious-depressed state (MAD). Event-related potentials were recorded in the following three types of groups defined by the Spielberger state and trait anxiety inventory (STAI) and the Beck depression inventory (BDI): a group of anxious participants (n=12), a group of participants with depressive and anxious tendencies (n=12), and a control group (n=12). Participants were confronted with a visual oddball task in which they had to detect, as quickly as possible, deviant faces amongst a train of standard neutral faces. Deviant stimuli changed either on identity, or on emotion (happy or sad expression). Anxiety facilitated emotional processing and the two anxious groups produced quicker responses than control participants; these effects were correlated with an earlier decisional wave (P3b) for anxious participants. Mixed anxious-depressed participants showed enhanced visual processing of deviant stimuli and produced higher amplitude in attentional complex (N2b/P3a), both for identity and emotional trials. P3a was also particularly increased for emotional faces in this group. Anxious state mainly influenced later decision processes (shorter latency of P3b), whereas mixed anxious-depressed state acted on earlier steps of emotional processing (enhanced N2b/P3a complex). Mixed anxious-depressed individuals seemed more reactive to any visual change, particularly emotional change, without displaying any valence bias.
Zambon, Joseph B.; He, Ruoying; Warner, John C.
2014-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).
Murugesan, Sivananth; Iyyaswami, Regupathi
2017-08-15
Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.
Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.
Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng
2014-12-01
For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.
Non-contact physiological signal detection using continuous wave Doppler radar.
Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye
2014-01-01
The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.
NASA Astrophysics Data System (ADS)
Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.
2017-09-01
We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.
Breaking Gravity Waves Over Large-Scale Topography
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Shapiro, M. A.
2002-12-01
The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.
Diagnostic principles of four-wave mixing for plasmas
NASA Astrophysics Data System (ADS)
Meng, Yuedong; Li, Jiangang; Luo, Jiarong
1994-11-01
A new method is used to diagnose plasma density space-profiles that involves phase conjugate reflection of four-wave mixing. Theoretical calculations for plasma parameters in the HT-6M tokamak show that two pump-wave beams (HCN laser), with a power of 1 W together with a signal beam (D2O or CH3F laser) of 0.1 W, can create a reflection of 0.1 to 0.43 mW with a phase conjugate to the signal where the cross section of all external beams is 1 cm2. This means that the reflective ratio of four-wave mixing is two orders larger than the ratio of laser superheating scatter. The lower power laser, therefore, can be used to diagnose plasmas.
Simulations of heterogeneous detonations and post-detonation turbulent mixing and afterburning
NASA Astrophysics Data System (ADS)
Gottiparthi, Kalyana Chakravarthi; Menon, Suresh
2012-03-01
We conduct three-dimensional numerical simulations of the propagation of blast waves resulting from detonation of a nitromethane charge of radius 5.9 cm loaded with aluminum particles and analyze the afterburn process as well as the generation of multiple scales ofmixing in the post detonation flow field. In the current study, the particle combustion is observed to be dependent on particle dispersal and mixing of gases in the flow where particle dispersal spreads aluminum within the flow and mixing provides the necessary oxidizer. Thus, 5 μm aluminum particles are burnt more effectively in comparison to 10 μm particles for a fixed initial mass of particles. Also, for a fixed initial particle size, increase in the initial mass of aluminum particles resulted in greater mixing.
Two-beam-excited conical emission.
Kauranen, M; Maki, J J; Gaeta, A L; Boyd, R W
1991-06-15
We describe a conical emission process that occurs when two beams of near-resonant light intersect as they pass through sodium vapor. The light is emitted on the surface of a circular cone that is centered on the bisector of the two applied beams and has an angular extent equal to the crossing angle of the two applied beams. We ascribe the origin of this effect to a perfectly phase-matched four-wave mixing process.
Optical computing and image processing using photorefractive gallium arsenide
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Liu, Duncan T. H.
1990-01-01
Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.
Langmuir circulation inhibits near-surface water turbulence
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-07-01
In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.
NASA Astrophysics Data System (ADS)
Švarc, A.; Wunderlich, Y.; Osmanović, H.; Hadžimehmedović, M.; Omerović, R.; Stahov, J.; Kashevarov, V.; Nikonov, K.; Ostrick, M.; Tiator, L.; Workman, R.
2018-05-01
Unconstrained partial -wave amplitudes, obtained at discrete energies from fits to complete sets of eight independent observables, may be used to reconstruct reaction amplitudes. These partial-wave amplitudes do not vary smoothly with energy and are in principle nonunique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we show how an unknown overall phase, depending on energy and angle, mixes the structures seen in the associated partial-wave amplitudes. This process is illustrated using a simple toy model. We then apply these principles to pseudoscalar meson photoproduction, showing how the above effect can be removed through a phase rotation, allowing a consistent comparison with model amplitudes. The effect of this phase ambiguity is also considered for Legendre expansions of experimental observables.
Entanglement of light-shift compensated atomic spin waves with telecom light.
Dudin, Y O; Radnaev, A G; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A
2010-12-31
Entanglement of a 795 nm light polarization qubit and an atomic Rb spin-wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S=2.65±0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infrared (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S=2.66±0.09), at 10 ms storage, confirms preservation of memory-light entanglement through the two stages of light qubit frequency conversion.
NASA Astrophysics Data System (ADS)
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
Imaging across the interface of small-scale breaking waves
NASA Astrophysics Data System (ADS)
Techet, Alexandra H.; Belden, Jesse L.
2007-11-01
Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.
Variability of Martian Turbopause Altitudes
NASA Astrophysics Data System (ADS)
Slipski, Marek; Jakosky, Bruce; Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith K.; Kass, David M.; Gonzalez-Galindo, Francisco
2017-10-01
The transition region between the well-mixed, turbulent lower atmosphere and the diffusive upper atmosphere - the turbopause - is an area of coupled physical processes that can have significant impacts on the structure and dynamics of the mesosphere and thermosphere. Above the turbopause, molecular diffusion dominates and species fractionate according to their masses. Below, turbulence is strong and waves dissipate and break. We have used density measurements from MAVEN's NGIMS instrument and temperatures from MRO's MCS to calculate turbopause altitudes over the course of a Martian year.The homopause, or "mixing-turbopause,” is defined with respect to the mixing ratio of a given atmospheric species. The mean molecular mass of the atmosphere remains essentially constant below, but each species has its own scale height above. We determined this altitude for each MAVEN orbit between Feb 2015 - Dec 2016 by extrapolating the ratio of N2 and 40Ar densities downward to where their ratio equals that measured by Curiosity. To determine the "wave-turbopause" (Offermann et al., 2007) we used variations in monthly-averaged temperature profiles of the upper and lower atmosphere. Because the dissipation of waves produces turbulence the turbopause altitude is set by the transition from strong to weak dissipation. If no energy were lost, the amplitude of a vertically propagating gravity wave would increase exponentially with altitude. Using the monthly standard deviation in temperatures as a proxy for wave amplitude, we show that waves are strongly dissipated at low altitudes but freely propagating in the lower thermosphere. The altitude at which the standard deviation begins to increase substantially from low values at mid-altitudes determines the altitude of the "wave-turbopause."The observed range of turbopause altitudes is 80-140 km. The turbopause is highest during the day and for Ls values near 270°. Homopause altitudes correlate well with changes in CO2 densities. The variation in turbopause altitudes means that energy, mass, and momentum transported vertically are deposited at different altitudes across the planet, which can have a substantial effect on the thermal and dynamical state of the middle-upper atmosphere.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
Fluid dynamics of the shock wave reactor
NASA Astrophysics Data System (ADS)
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter dependence of shock recompression in ducts. Distinct variation of the flow Reynolds and Mach numbers and section height allow unique mapping of each of these parameter dependencies. Agreement with a new one-dimensional model is demonstrated, predicting an exponential pressure profile characterized by two key parameters, the maximum pressure recovery and a characteristic length scale. Transition from one to two-dimensional dependence of the length parameter is observed as the duct aspect ratio varies significantly from unity.
Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington
Miller, I.M.; Warrick, J.A.; Morgan, C.
2011-01-01
Mixed beaches, with poorly sorted grains of multiple sizes, are a common and globally distributed shoreline type. Despite this, rates and mechanisms of sediment transport on mixed beaches are poorly understood. A series of tracer deployments using native clasts implanted with Radio Frequency Identifier (RFID) tags was used to develop a better understanding of sediment transport directions and magnitudes on the mixed grain-size beach of the Elwha River delta. Using tracer samples selected to match the distribution of the coarse fraction on the beach we find that all grain sizes, up to large cobbles (128-256 mm), were mobile under most measured wave conditions and move in relationship to the direction of the alongshore component of wave energy as estimated by incident breaking wave angles. In locations where the breaking wave is normal to the shoreline we find that tracers move in both alongshore directions with approximately equal frequency. In locations where breaking waves are oblique to the shoreline we find that alongshore transport is more unidirectional and tracers can approach average velocities of 100. m/day under winter wave conditions. We use the tracer cloud to estimate the beach active width, the mobile layer depth and sediment velocity. Our results suggest that, while sediment velocity increases under increased incident wave angles, the active layer depth and width decrease, reducing sediment flux at the site with the more oblique breaking waves. This result is contrary to what is suggested by traditional wave energy transport models of alongshore sediment transport. ?? 2011 Elsevier B.V.
Digital optical processing of optical communications: towards an Optical Turing Machine
NASA Astrophysics Data System (ADS)
Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.
2017-01-01
Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.
Metastable state en route to traveling-wave synchronization state
NASA Astrophysics Data System (ADS)
Park, Jinha; Kahng, B.
2018-02-01
The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Thermodynamics of saline and fresh water mixing in estuaries
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Savenije, Hubert H. G.
2018-03-01
The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.
Conservation Laws and Ponderomotive Force for Non-WKB, MHD Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Webb, G. M.; Zank, G. P.; Kaghashvili, E. K.; Ratkiewicz, R. E.
2004-12-01
The interaction of non-WKB Alfvén waves in the Solar Wind was investigated by Heinemann and Olbert (1980), MacGregor and Charbonneau (1994) and others. MacGregor and Charbonneau (1994) investigated non-WKB Alfvén wave driven winds. We discuss both the canonical and physical wave stress energy tensors for non-WKB, MHD waves and the ponderomotive force exerted by the waves on the wind for the case where both compressible (magneto-acoustic type waves) and incompressible waves (Alfvén waves) are present. The equations for the waves include the effects of wave mixing (i.e. the interaction of the waves with each other via gradients in the background flow). Wave mixing is known to be an important element of turbulence theory in the Solar Wind. However, only the wave mixing of Alfvénic type disturbances have been accounted for in present models of Solar Wind turbulence (e.g. Zhou and Matthaeus, 1990), which use Elssässer variables to describe the perturbations. The relationship between the present analysis and nearly incompressible MHD (reduced MHD) is at present unclear. Also unclear is the relationship between the present analysis and theories using wave-mean field interactions (e.g. Grimshaw (1984), Holm (1999)). The analysis is based on a theory for wave and background stress-energy tensors developed by Webb et al. (2004a,b) using a Lagrangian formulation of the total system of waves and background plasma (see e.g. Dewar (1970) for the WKB case). Conservation laws for the total system of waves and background plasma result from application of Noether's theorems relating Lie symmetries of the action to conservation laws.
Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer
NASA Astrophysics Data System (ADS)
Jourdan, G.; Billiotte, M.; Houas, L.
1996-06-01
An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
A new numerical model of the middle atmosphere. 2: Ozone and related species
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Solomon, Susan
1994-01-01
A new two-dimensional model with detailed photochemistry is presented. The model includes descriptions of planetary wave and gravity wave propagation and dissipation to characterize the wave forcing and associated mixing in the stratosphere and mesosphere. Such a representation allows for explicit calculation of the regions of strong mixing in the middle atmosphere required for accurate simulation of trace gas transport. The new model also includes a detailed description of photochemical processes in the stratosphere and mesosphere. The downward transport of H2, H2O, and NO(y) from the mesosphere to the stratosphere is examined, and it is shown that mesospheric processes can influence the distributions of these chemical species in polar regions. For HNO3 we also find that small concentrations of liquid aerosols above 30 km could play a major role in determining the abundance in polar winter at high latitudes. The model is also used to examine the chemical budget of ozone in the midlatitude stratosphere and to set constraints on the effectiveness of bromine relative to chlorine for ozone loss and the role of the HO2 + BrO reaction. Recent laboratory data used in this modeling study suggest that this process greatly enhances the effectiveness of bromine for ozone destruction, making bromine-catalyzed chemistry second only to HO(x)-catalyzed ozone destruction in the contemporary stratosphere at midlatitudes below about 18 km. The calculated vertical distribution of ozone in the lower stratosphere agrees well with observations, as does the total column ozone during most seasons and latitudes, with the important exception of southern hemisphere winter and spring.
Discussion of a ``coherent artifact'' in four-wave mixing experiments
NASA Astrophysics Data System (ADS)
Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.
1989-09-01
In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effect is particularly relevant to transient hole-burning experiments, where one of these signals could easily be misinterpreted as a genuine hole-burning feature.
Damage characterization in dimension limestone cladding using noncollinear ultrasonic wave mixing
NASA Astrophysics Data System (ADS)
McGovern, Megan; Reis, Henrique
2016-01-01
A method capable of characterizing artificial weathering damage in dimension stone cladding using access to one side only is presented. Dolomitic limestone test samples with increasing levels of damage were created artificially by exposing undamaged samples to increasing temperature levels of 100°C, 200°C, 300°C, 400°C, 500°C, 600°C, and 700°C for a 90 min period of time. Using access to one side only, these test samples were nondestructively evaluated using a nonlinear approach based upon noncollinear wave mixing, which involves mixing two critically refracted dilatational ultrasonic waves. Criteria were used to assure that the detected scattered wave originated via wave interaction in the limestone and not from nonlinearities in the testing equipment. Bending tests were used to evaluate the flexure strength of beam samples extracted from the artificially weathered samples. It was observed that the percentage of strength reduction is linearly correlated (R2=98) with the temperature to which the specimens were exposed; it was noted that samples exposed to 400°C and 600°C had a strength reduction of 60% and 90%, respectively. It was also observed that results from the noncollinear wave mixing approach correlated well (R2=0.98) with the destructively obtained percentage of strength reduction.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Telecom-band degenerate-frequency photon pair generation in silicon microring cavities.
Guo, Yuan; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde
2014-04-15
In this Letter, telecom-band degenerate-frequency photon pairs are generated in a specific mode of a silicon microring cavity by the nondegenerate spontaneous four-wave mixing (SFWM) process, under two continuous-wave pumps at resonance wavelength of two different cavity modes. The ratio of coincidence to accidental coincidence is up to 100 under a time bin width of 5 ns, showing their characteristics of quantum correlation. Their quantum interference in balanced and unbalanced Mach-Zehnder interferometers is investigated theoretically and experimentally, and the results show potential in quantum metrology and quantum information.
Diagnostic principles of four-wave mixing for plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Y.; Li, J.; Luo, J.
1994-11-01
A new method is used to diagnose plasma density space-profiles that involves phase conjugate reflection of four-wave mixing. Theoretical calculations for plasma parameters in the HT-6M tokamak show that two pump-wave beams (HCN laser), with a power of 1 W together with a signal beam (D[sub 2]O or CH[sub 3]F laser) of 0.1 W, can create a reflection of 0.1 to 0.43 mW with a phase conjugate to the signal where the cross section of all external beams is 1 cm. This means that the reflective ratio of four-wave mixing is two orders larger than the ratio of laser superheatingmore » scatter. The lower power laser, therefore, can be used to diagnose plasmas.« less
Complete energy conversion by autoresonant three-wave mixing in nonuniform media.
Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R
2013-01-28
Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.
NASA Astrophysics Data System (ADS)
Amaral, J. T.; Becker, V. M.
2018-05-01
We investigate ρ vector meson production in e p collisions at HERA with leading neutrons in the dipole formalism. The interaction of the dipole and the pion is described in a mixed-space approach, in which the dipole-pion scattering amplitude is given by the Marquet-Peschanski-Soyez saturation model, which is based on the traveling wave solutions of the nonlinear Balitsky-Kovchegov equation. We estimate the magnitude of the absorption effects and compare our results with a previous analysis of the same process in full coordinate space. In contrast with this approach, the present study leads to absorption K factors in the range of those predicted by previous theoretical studies on semi-inclusive processes.
Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Meyer, Grant D.; Bourdon, Christopher Jay
2005-11-01
We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO 3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves createdmore » at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s -1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.« less
SiGe BiCMOS manufacturing platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
NASA Astrophysics Data System (ADS)
Huang, S. Y.; Nakamura, N.
2016-12-01
The finite-amplitude local wave activity (LWA) identifies both the locations and magnitudes of anomalous wave events (Huang and Nakamura 2016, JAS), which are often associated with extreme weather conditions such as heat waves and storms at the rim. Variance in LWA in synoptic timescale is well-explained by the wave activity flux variance (i.e. conservative dynamics), while beyond seasonal time scale, the convergence/divergence of wave activity flux is balanced by non-conservative processes (e.g. vertical fluxes of heat and momentum at the surface, mixing, radiative forcing etc.). Analysis of ERA-Interim data during 1979-2015 shows that there is generally an increasing trend in the vertically-integrated interior LWA in Northern Winter, except over Central Pacific and Southern Europe. There is, in contrast, a decreasing trend in LWA in Northern summer, except over the high-latitude oceanic regions and low-latitude continental regions. The trends in the wave activity flux convergence in both seasons are consistent with such observations in LWA except over the Atlantic sector. In this presentation, I will illustrate how the change in circulation in a warming climate is associated with change in spatial distribution and frequency of extreme weather events by comparing the change in wave activity flux vectors with the observed change in LWA climatology. I will also quantify the permanent effect of non-conservative processes in terms of decadal change in eddy-free reference states of zonal wind and temperature (Nakamura and Solomon 2011).
NASA Astrophysics Data System (ADS)
Nazarian, Robert H.; Legg, Sonya
2017-10-01
When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.
Observations of apparent superslow wave propagation in solar prominences
NASA Astrophysics Data System (ADS)
Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.
2017-06-01
Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at http://www.aanda.org
Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.
Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P
2016-06-01
We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.
Confinement-induced p-wave resonances from s-wave interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
2010-12-15
We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less
An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls.
Ozcelik, Adem; Ahmed, Daniel; Xie, Yuliang; Nama, Nitesh; Qu, Zhiguo; Nawaz, Ahmad Ahsan; Huang, Tony Jun
2014-05-20
During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ~0.01) in less than 100 ms.
Hydraulic and Wave Aspects of Novorossiysk Bora
NASA Astrophysics Data System (ADS)
Shestakova, Anna A.; Moiseenko, Konstantin B.; Toropov, Pavel A.
2018-02-01
Bora in Novorossiysk (seaport on the Black Sea coast of the Caucasus) is one of the strongest and most prominent downslope windstorms on the territory of Russia. In this paper, we evaluate the applicability of the hydraulic and wave hypotheses, which are widely used for downslope winds around the world, to Novorossiysk bora on the basis of observational data, reanalysis, and mesoscale numerical modeling with WRF-ARW. It is shown that mechanism of formation of Novorossiysk bora is essentially mixed, which is expressed in the simultaneous presence of gravity waves breaking and a hydraulic jump, as well as in the significant variability of the contribution of wave processes to the windstorm dynamics. Effectiveness of each mechanism depends on the elevated inversion intensity and mean state critical level height. Most favorable conditions for both mechanisms working together are moderate or weak inversion and high or absent critical level.
Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones
NASA Astrophysics Data System (ADS)
Clément, Louis; Thurnherr, Andreas M.
2018-03-01
Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.
NASA Astrophysics Data System (ADS)
Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji
2005-09-01
A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 micron diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2 to 10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33 degrees on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz 'pump' wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz 'probe' wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
Langmuir cells and mixing in the upper ocean
NASA Astrophysics Data System (ADS)
Carniel, S.; Sclavo, M.; Kantha, L. H.; Clayson, C. A.
2005-01-01
The presence of surface gravity waves at the ocean surface has two important effects on turbulence in the oceanic mixed layer (ML): the wave breaking and the Langmuir cells (LC). Both these effects act as additional sources of turbulent kinetic energy (TKE) in the oceanic ML, and hence are important to mixing in the upper ocean. The breaking of high wave-number components of the wind wave spectrum provides an intense but sporadic source of turbulence in the upper surface; turbulence thus injected diffuses downward, while decaying rapidly, modifying oceanic near-surface properties which in turn could affect the air-sea transfer of heat and dissolved gases. LC provide another source of additional turbulence in the water column; they are counter-rotating cells inside the ML, with their axes roughly aligned in the direction of the wind (Langmuir I., Science871938119). These structures are usually made evident by the presence of debris and foam in the convergence area of the cells, and are generated by the interaction of the wave-field-induced Stokes drift with the wind-induced shear stress. LC have long been thought to have a substantial influence on mixing in the upper ocean, but the difficulty in their parameterization have made ML modelers consistently ignore them in the past. However, recent Large Eddy Simulations (LES) studies suggest that it is possible to include their effect on mixing by simply adding additional production terms in the turbulence equations, thus enabling even 1D models to incorporate LC-driven turbulence. Since LC also modify the Coriolis terms in the mean momentum equations by the addition of a term involving the Stokes drift, their effect on the velocity structure in the ML is also quite significant and could have a major impact on the drift of objects and spilled oil in the upper ocean. In this paper we examine the effect of surface gravity waves on mixing in the upper ocean, focusing on Langmuir circulations, which is by far the dominant part of the surface wave contribution to mixing. Oceanic ML models incorporating these effects are applied to an observation station in the Northern Adriatic Sea to see what the extent of these effects might be. It is shown that the surface wave effects can indeed be significant; in particular, the modification of the velocity profile due to LC-generated turbulence can be large under certain conditions. However, the surface wave effects on the bulk properties of the ML, such as the associated temperature, while significant, are generally speaking well within the errors introduced by uncertainties in the external forcing of the models. This seems to be the reason why ML models, though pretty much ignoring surface wave effects until recently, have been reasonably successful in depicting the evolution of the mixed layer temperature (MLT) at various timescales.
Nonlinear processes generated by supercritical tidal flow in shallow straits
NASA Astrophysics Data System (ADS)
Bordois, Lucie; Auclair, Francis; Paci, Alexandre; Dossmann, Yvan; Nguyen, Cyril
2017-06-01
Numerical experiments have been carried out using a nonhydrostatic and non-Boussinesq regional oceanic circulation model to investigate the nonlinear processes generated by supercritical tidal flow in shallow straits. Our approach relies on idealized direct numerical simulations inspired by oceanic observations. By analyzing a large set of simulations, a regime diagram is proposed for the nonlinear processes generated in the lee of these straits. The results show that the topography shape of the strait plays a crucial role in the formation of internal solitary waves (ISWs) and in the occurrence of local breaking events. Both of these nonlinear processes are important turbulence producing phenomena. The topographic control, observed in mode 1 ISW formation in previous studies [Y. Dossmann, F. Auclair, and A. Paci, "Topographically induced internal solitary waves in a pycnocline: Primary generation and topographic control," Phys. Fluids 25, 066601 (2013) and Y. Dossmann et al., "Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements," Phys. Fluids 26, 056601 (2014)], is clearly reproducible for mode-2 ISW above shallow straits. Strong plunging breaking events are observed above "narrow" straits (straits with a width less than mode 1 wavelength) when the fluid velocity exceeds the local mode 1 wave speed. These results are a step towards future works on vertical mixing quantification and localization around complex strait areas.
Optical triple-in digital logic using nonlinear optical four-wave mixing
NASA Astrophysics Data System (ADS)
Widjaja, Joewono; Tomita, Yasuo
1995-08-01
A new programmable optical processor is proposed for implementing triple-in combinatorial digital logic that uses four-wave mixing. Binary-coded decimal-to-octal decoding is experimentally demonstrated by use of a photorefractive BaTiO 3 crystal. The result confirms the feasibility of the proposed system.
Stochastic Optimization for Unit Commitment-A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Qipeng P.; Wang, Jianhui; Liu, Andrew L.
2015-07-01
Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave ismore » focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications.« less
Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes
NASA Astrophysics Data System (ADS)
Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David
2017-04-01
This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non-stationary dynamicss and structure of stratified fluid flows around a wedge were also studied based of the fundamental equations set using numerical modeling. Due to breaking of naturally existing background diffusion flux of stratifying agent by an impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. The flow is characterized by a wide range of values of internal scales that are absent in a homogeneous liquid. Numerical solution of the fundamental system with the boundary conditions is constructed using a solver such as stratifiedFoam developed within the frame of the open source computational package OpenFOAM using the finite volume method. The computations were performed in parallel using computing resources of the Scientific Research Supercomputer Complex of MSU (SRCC MSU) and the technological platform UniHUB. The evolution of the flow pattern of the wedge by stratified flow has been demonstrated. The complex structure of the fields of physical quantities and their gradients has been shown. Observed in experiment are multiple flow components, including upstream disturbances, internal waves and the downstream wake with submerged transient vortices well reproduced. Structural elements of flow differ in size and laws of variation in space and time. Rich fine flow structure visualized in vicinity and far from the obstacle. The global efficiency of the mixing process is measured and compared with previous estimates of mixing efficiency.
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T.; Goossens, M.
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less
NASA Astrophysics Data System (ADS)
March, Samuel A.; Clegg, Charlotte; Riley, Drew B.; Webber, Daniel; Hill, Ian G.; Hall, Kimberley C.
2016-12-01
Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The exciton binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron- hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
NASA Astrophysics Data System (ADS)
Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng
2018-01-01
A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study)
NASA Astrophysics Data System (ADS)
Rippeth, Tom P.; Vlasenko, Vasiliy; Stashchuk, Nataliya; Scannell, Brian D.; Green, J. A. Mattias; Lincoln, Ben J.; Bacon, Sheldon
2017-12-01
The tides are a major source of the kinetic energy supporting turbulent mixing in the global oceans. The prime mechanism for the transfer of tidal energy to turbulent mixing results from the interaction between topography and stratified tidal flow, leading to the generation of freely propagating internal waves at the period of the forcing tide. However, poleward of the critical latitude (where the period of the principal tidal constituent exceeds the local inertial period), the action of the Coriolis force precludes the development of freely propagating linear internal tides. Here we focus on a region of sloping topography, poleward of the critical latitude, where there is significant conversion of tidal energy and the flow is supercritical (Froude number, Fr > 1). A high-resolution nonlinear modeling study demonstrates the key role of tidally generated lee waves and supercritical flow in the transfer of energy from the barotropic tide to internal waves in these high-latitude regions. Time series of flow and water column structure from the region of interest show internal waves with characteristics consistent with those predicted by the model, and concurrent microstructure dissipation measurements show significant levels of mixing associated with these internal waves. The results suggest that tidally generated lee waves are a key mechanism for the transfer of energy from the tide to turbulence poleward of the critical latitude.
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
Zhou, Binbin; Bache, Morten
2015-09-15
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phase-matching wavelengths due to degenerate four-wave mixing to the soliton. We also observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations.
Liu, Xing; Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-08-15
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between λ=2.2-2.4 μm as a resonant dispersive wave. This process relies on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Tuning the group delay of optical wave packets in liquid-crystal light valves
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Residori, S.; Huignard, J. P.
2009-05-01
By performing two-wave mixing experiments in a liquid-crystal light valve, optical pulses are slowed down to group velocities as slow as a few tenths of mm/s, corresponding to a very large group index. We present experiments and model of the slow-light process occurring in the liquid-crystal light valve, showing that this is characterized by multiple-beam diffraction in the Raman-Nath regime. Depending on the initial frequency detuning between pump and signal, the different output order beams are distinguished by different group delays. The group delay can be tuned by changing the main parameters of the experiment: the detuning between the pump and the input wave packet, the strength of the nonlinearity, and the intensity of the pump beam.
NASA Astrophysics Data System (ADS)
Mulligan, Ryan P.; Hanson, Jeffrey L.
2016-06-01
Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.
A numerical study of non-collinear wave mixing and generated resonant components.
Sun, Zhenghao; Li, Fucai; Li, Hongguang
2016-09-01
Interaction of two non-collinear nonlinear ultrasonic waves in an elastic half-space with quadratic nonlinearity is investigated in this paper. A hyperbolic system of conservation laws is applied here and a semi-discrete central scheme is used to solve the numerical problem. The numerical results validate that the model can be used as an effective method to generate and evaluate a resonant wave when two primary waves mix together under certain resonant conditions. Features of the resonant wave are analyzed both in the time and frequency domains, and variation trends of the resonant waves together with second harmonics along the propagation path are analyzed. Applied with the pulse-inversion technique, components of resonant waves and second harmonics can be independently extracted and observed without distinguishing times of flight. The results show that under the circumstance of non-collinear wave mixing, both sum and difference resonant components can be clearly obtained especially in the tangential direction of their propagation. For several rays of observation points around the interaction zone, the further it is away from the excitation sources, generally the earlier the maximum of amplitude arises. From the parametric analysis of the phased array, it is found that both the length of array and the density of element have impact on the maximum of amplitude of the resonant waves. The spatial distribution of resonant waves will provide necessary information for the related experiments. Copyright © 2016 Elsevier B.V. All rights reserved.
Wave-induced ripple development in mixed clay-sand substrates
NASA Astrophysics Data System (ADS)
Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben
2016-04-01
This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results for sediment dynamics in mixed-bed substrates are highlighted and discussed.
Physical response of a back-barrier estuary to a post-tropical cyclone
Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo
2017-01-01
This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.
Separating Internal Waves and Vortical Motions: Analysis of LatMix -EM-APEX Float Measurements
2015-09-30
vortical motions and internal waves and quantify their effects on horizontal dispersion and diapycnal mixing. WORK COMPLETED...defined as Π = ( + ∇×)⋅∇( − η) (e.g., Kunze and Sanford 1993), where f is the Coriolis frequency, U the velocity vector, z the vertical coordinate
Four-Wave Mixing Spectroscopy of Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Sitek, A.; Machnikowski, P.
2007-08-01
We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.
Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme
NASA Astrophysics Data System (ADS)
Bhavsar, Tanvi; Shah, Manan; Vinodkumar, P. C.
2018-03-01
Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J^{PC} = 1^{-} mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states.
NASA Astrophysics Data System (ADS)
Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed
2015-03-01
The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.
Turbulent mixing within the Kuroshio in the Tokara Strait
NASA Astrophysics Data System (ADS)
Tsutsumi, Eisuke; Matsuno, Takeshi; Lien, Ren-Chieh; Nakamura, Hirohiko; Senjyu, Tomoharu; Guo, Xinyu
2017-09-01
Turbulent mixing and background current were observed using a microstructure profiler and acoustic Doppler current profilers in the Tokara Strait, where many seamounts and small islands exist within the route of the Kuroshio in the East China Sea. Vertical structure and water properties of the Kuroshio were greatly modified downstream from shallow seamounts. In the lee of a seamount crest at 200 m depth, the modification made the flow tend to shear instability, and the vertical eddy diffusivity is enhanced by nearly 100 times that of the upstream site, to Kρ ˜ O(10-3)-O(10-2) m2 s-1. A one-dimensional diffusion model using the observed eddy diffusivity reproduced the observed downstream evolution of the temperature-salinity profile. However, the estimated diffusion time-scale is at least 10 times longer than the observed advection time-scale. This suggests that the eddy diffusivity reaches to O(10-1) m2 s-1 in the vicinity of the seamount. At a site away from the abrupt topography, eddy diffusivity was also elevated to O(10-3) m2 s-1, and was associated with shear instability presumably induced by the Kuroshio shear and near-inertial internal-wave shear. Our study suggests that a better prediction of current, water-mass properties, and nutrients within the Kuroshio requires accurate understanding and parameterization of flow-topography interaction such as internal hydraulics, the associated internal-wave processes, and turbulent mixing processes.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
NASA Astrophysics Data System (ADS)
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
1991-11-26
WAVE MIXING IN SATURABLE ABSORPTIVEIRESONANTINONRESONANT SYSTEMS I Final Report Putcha Venkateswarlu November 26, 1991 U.S. ARMY RESEARCH OFFICE GRANT...and Optical Phase Conjugation Through Degenerate Four Wave Mixin2 in Saturable Absorptive/Resonant/Nonresonant System DAAL03-87-G-0078 6. AUTHOR(S) P...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other
Interhemispheric Asymmetry in the Mesosphere and Lower Thermosphere Observed by SABER/TIMED
NASA Astrophysics Data System (ADS)
Yee, J. H.
2017-12-01
In this paper we analyze nearly 15 years of satellite observations of temperature, airglow, and composition in the Mesosphere and Lower Thermosphere (MLT) to quantify their interhemispheric asymmetries ao one can provide quantitative links between observed asymmetries and the spatial and temporal variations of the gravity wave activity. Two processes are believed to be responsible for observed interhemispheric differences in the MLT. The first is the direct radiation effect from the eccentricity of the Earth orbit amd the other is the difference in gravity wave source distribution and filtering due to asymmetries in mean winds of the lower atmosphere. Both processes have been theoretically investigated to explain the observed asymmetry in some of the atmospheric parameters, but not self-consistently in all observed parameters together. In this paper we will show the asymmetry in the time-varying zonal-mean latitudinal structures of temperature, airglow emission rate, and composition observed by TIMED/SABER. We will quantify their interhemispheric asymmetries for different seasons under different solar activity conditions. In addition, temperature measurements will also be used to obtain temporal and spatial morphology of gravity wave potential energies. We will interpret the asymmetry in the observed fields and examine qualitatively their consistency with the two responsible processes, especially the one due to gravity wave filtering process. Our goal is to introduce and to share the spatial and temporal morphologies of all the observed fields to the modeling community so, together self-consistently, they be can be used to gain physical insights into the relative importance of various drivers responsible for the observed asymmetry, especially the role of gravity wave induced eddy drag and mixing, a critical, but least quantitatively understood process.
Unique, Non-Earthlike, Meteoritic Ion Behavior in Upper Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Benna, M.; Plane, J. M. C.; Collinson, G. A.; Mahaffy, P. R.; Jakosky, B. M.
2017-01-01
Abstract Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earths sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars.
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
NASA Astrophysics Data System (ADS)
Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun
2018-06-01
We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits ‘U-shaped’ bistable FWM signals. We also map out bistability phase diagrams within the system’s parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.
Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun
2018-06-22
We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.
Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanpeng; Li Long; Ma Ruiqiong
2005-07-15
Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi
2016-09-01
We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.
Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng
2014-12-01
In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.
2017-01-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls
2015-01-01
During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ∼0.01) in less than 100 ms. PMID:24754496
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Mei, Chao; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-09-15
In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of P av =450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for P av =650 mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.
Determination of s- and p-wave I = 1/2 Kπ scattering amplitudes in Nf = 2 + 1 lattice QCD
NASA Astrophysics Data System (ADS)
Brett, Ruairí; Bulava, John; Fallica, Jacob; Hanlon, Andrew; Hörz, Ben; Morningstar, Colin
2018-07-01
The elastic I = 1 / 2, s- and p-wave kaon-pion scattering amplitudes are calculated using a single ensemble of anisotropic lattice QCD gauge field configurations with Nf = 2 + 1 flavors of dynamical Wilson-clover fermions at mπ = 230 MeV. A large spatial extent of L = 3.7 fm enables a good energy resolution while partial wave mixing due to the reduced symmetries of the finite volume is treated explicitly. The p-wave amplitude is well described by a Breit-Wigner shape with parameters mK* /mπ = 3.808 (18) and gK*Kπ BW = 5.33 (20) which are insensitive to the inclusion of d-wave mixing and variation of the s-wave parametrization. An effective range description of the near-threshold s-wave amplitude yields mπa0 = - 0.353 (25).
NASA Astrophysics Data System (ADS)
Robin, C.; Pillet, N.; Dupuis, M.; Le Bloas, J.; Peña Arteaga, D.; Berger, J.-F.
2017-04-01
Background: The variational multiparticle-multihole configuration mixing approach to nuclei has been proposed about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this method has only been recently completed and applied in C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger, [Phys. Rev. C 93, 024302 (2016)], 10.1103/PhysRevC.93.024302 to 12C as a test-case. Purpose: The main objective of the present paper is to carry on the study that was initiated in that reference, in order to put the variational multiparticle-multihole configuration mixing method to more stringent tests. To that aim we perform a systematic study of even-even s d -shell nuclei. Method: The wave function of these nuclei is taken as a configuration mixing built on orbitals of the s d -shell, and both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently from the same variational principle. As in the previous works, the calculations are done using the D1S Gogny force. Results: Various ground-state properties are analyzed. In particular, the correlation content and composition of the wave function as well as the single-particle orbitals and energies are examined. Binding energies and charge radii are also calculated and compared to experiment. The description of the first excited state is also examined and the corresponding transition densities are used as input for the calculation of reaction processes such as inelastic electron and proton scattering. Special attention is paid to the effect of the optimization of the single-particle states consistently with the correlations of the system. Conclusions: The variational multiparticle-multihole configuration mixing approach is systematically applied to the description of even-even s d -shell nuclei. Globally, the results are satisfying and encouraging. In particular, charge radii and excitation energies are nicely reproduced. However, the chosen valence-space truncation scheme precludes achieving maximum collectivity in the studied nuclei. Further refinement of the method and a better-suited interaction are necessary to remedy this situation.
Heating by transverse waves in simulated coronal loops
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.; Antolin, P.
2017-08-01
Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Sciberras, M.; Hiddink, J. G.; Powell, C.; Parker, R.; Krӧger, S.; Bolam, S. G.; Robertson, C.
2016-02-01
Sediment resuspension and bed reworking by tides, waves and biological activity are frequent in the energetic coastal environments. Sediment mixing by tides and waves are generally more important in regulating sediment processes in advection-dominated system such as sandy sediments, whereas sediment reworking by bioturbation is more important in diffusion-dominated systems such as muddy sediments. Bottom fishing constitutes an additional significant impact on benthic communities and sediment biogeochemical processes in coastal areas through physical changes in sediment resuspension and mixing and changes to bioturbating fauna. This study examined the biological (macro-infaunal) and biogeochemical responses to fishing at a muddy and sandy site in the Irish Sea that were predominantly impacted by otter trawls and scallop dredges, respectively. The sandy habitat (>90% sand) was typical of a hydrodynamic environment characterized by a diverse array of small infaunal species, low organic carbon levels and fast remineralisation of organic matter in the sediment. The muddier habitat (>65% fines) was dominated by fewer but larger bioturbating species compared to sand, and illustrated highly diffusional solute transport, higher organic carbon content and a shallower oxygen penetration depth. Generally there appeared to be no clear statistically significant changes in the biogeochemistry of the sandy or muddy habitat that could be attributed to different intensities of fishing. However, pore-water nutrient profiles of ammonium, phosphate and silicate provided clear evidence of organic matter burial and/or mixing as a result of trawling at the muddy site. The biogeochemistry at the sandy site appeared to remain dominated by the natural physical environment, so impact of fishing disturbance was less evident. These results suggest that fishing does not have comparable effects on the biology and biogeochemical processes in all benthic habitats.
Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials
NASA Astrophysics Data System (ADS)
Ju, Taeho
To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear mixing technique is adapted to develop an NDE technique for characterizing thermal aging of adhesive joints. To this end, a nonlinear spring model is used to simulate the effect of the adhesive layer. Based on this nonlinear spring model, analytical expressions of the resonant wave generated by the adhesive layers is obtained through an asymptotic analysis when the adhesive layer thickness is much smaller than the pertinent wavelength. The solutions are expressed in terms of the properties of the adhesive layer. The nonlinear spring model shows a good agreement with the finite layer model solutions in the limit of a small thickness to wavelength ratio. Third, to demonstrate the effectiveness of this newly developed technique, measurements are conducted on adhesive joint samples made of two aluminum adherends bonded together by a polymer adhesive tape. The samples are aged in a thermal chamber to induce thermal ageing degradation in the adhesive layer. Using the developed wave-mixing technique in conjunction with the nonlinear spring model, we show that the thermal aging damage of the adhesive layer can be quantified from only one side of the sample. Finally, by mixing two L-waves, we develop a mixing technique to nondestructively evaluate the damage induced by alkali-silica reaction (ASR) in concrete. Experimental measurements are conducted on concrete prism samples that contain reactive aggregates and have been subjected to different ASR conditioning. This new technique takes into consideration of the significant attenuation caused by ASR-induced microcracks and scattering by the aggregates. The measurement results show that the ANLP has a much greater sensitivity to ASR damage than other parameters such as attenuation and wave speed. More remarkably, it is also found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage. Thus, ANLP can be used to nondestructively track ASR damage in concrete.
Yang, Z; Goto, H; Matsumoto, M; Maeda, R
2000-01-01
A micromixer using direct ultrasonic vibration is first reported in this paper. The ultrasonic vibration was induced by a bulk lead-zirconate-titanate (PZT; 5 x 4 x 0.2 mm), which was excited by a 48 kHz square wave at 150 V (peak-to-peak). Liquids were mixed in a chamber (6 x 6 x 0.06 mm) with an oscillating diaphragm driven by the PZT. The oscillating diaphragm was in the size of 6 x 6 x 0.15 mm. Ethanol and water were used to test the mixing effectiveness. The laminar flows of ethanol (115 microL/min) and water (100 microL/min) were mixed effectively when the PZT was excited. The entire process was recorded using a video camera.
NASA Astrophysics Data System (ADS)
Wiśniewska, Daria; Kramkowski, Mateusz; Tyszkowski, Sebastian
2016-04-01
The studies of the laminated lacustrine sediments play a very important role in the analysis of climate change. They provide valuable information related to the response of the ecosystem to changes in the environment. The condition for the development of the annual lamination is calm sedimentation, which can be compromised by the movement of water caused by waving. The depth to which this movement affects depends on the shape of the lake basin as well as the velocity and direction of the wind. During the study of sedimentary processes of laminated deposits in Lake Czechowskie (Tuchola Forest, North Poland, 53°52'N, 18°14' E, 108 m asl), the following question arose: How strong was the influence of the wind on the processes of lacustrine sedimentation? The key in getting the answers was the use of GIS techniques. Lake Czechowskie has an area of 76.6 hectares; it has two deeps separated by a threshold: a deeper one of 33 m (maximum depth of the basin) in the central-eastern part, and a shallower of 13 m in the western part. The speed of movement of water that is able to move sediment from the bottom of the lake, called the orbital wave velocity, is the basis for the designation of areas where re-suspension takes place. To calculate the wave parameters, the process of mixing, as well as the designation of re-suspension zones, the tool-script Wave Model (Rohweder et al. 2008) in the program ArsGIS 10.1 was used. The input data were wind direction and velocity from the meteorological station of Wirty about 15 km away, bathymetric data from acoustic profiling, and the Maximum Orbital Wave Velocity. The elements taken into account include maximum wind velocity of the multi-year 1996-2013, with particular emphasis on hurricanes Ksawery (December 2013) and Yoda (November 2011), during which wind velocity exceeded 120 km/h. In addition, maximum wind velocity ever recorded in the Polish Lowlands was considered. On the basis of the modelling, the authors delimited the areas where re-suspension takes place in medium and extreme conditions, and those in which wind waving does not affect the mixing of the sediment. The areas particularly predisposed to accumulation and preservation of laminated sediments have been identified. The analysis results allow a better understanding of the re-suspension processes, especially in the littoral zone of the lake. This analysis is also helpful in research of the laminated sediments, and is essential for determining locations for their sampling. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boville, B.A.; Randel, W.J.
1992-05-01
Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
Observations of planetary mixed Rossby-gravity waves in the upper stratosphere
NASA Technical Reports Server (NTRS)
Randel, William J.; Boville, Byron A.; Gille, John C.
1990-01-01
Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.
High-power beam steering using phase conjugation through Brillouin-induced four-wave mixing.
Jones, D C; Cook, G; Ridley, K D; Scott, A M
1991-10-15
We report an experimental demonstration of a beam-steering concept. A high-reflectivity phase-conjugate mirror is used to steer a high-power phase-conjugate beam using a low-power signal beam. The high reflectivity phase conjugation is achieved using Brillouin-induced four-wave mixing in a cell containing carbon disulfide.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Influence of QBO on stratospheric Kelvin and Mixed Rossby gravity waves in high-top CMIP5 models
NASA Astrophysics Data System (ADS)
Indah Solihah, Karina; Lubis, Sandro W.; Setiawan, Sonni
2018-05-01
It is well established that quasi-biennial oscillation (QBO) has a substantial influence on Kelvin and mixed Rossby gravity (MRG) wave activity in the tropical lower stratosphere. In this study, we examined how QBO influences Kelvin and MRG wave activity in the lower stratosphere, based on nine high-top CMIP5 models. The results show that the Kelvin and MRG wave signals are stronger in the models with QBO, and relatively weaker in the models without QBO. The results are consistent with established theory, whereby upward-propagating Kelvin waves occurs more frequently during the easterly QBO phase, while upward-propagating MRG waves occurs during the westerly QBO phase. Without the QBO, the mean flow exhibits a near-zero easterly wind, which prevents the waves from propagating and penetrating into the stratosphere. Our analysis also shows that models with the QBO tend to have more robust signatures (in terms of amplitude and phase speed) of Kelvin and MRG waves.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves
2012-10-16
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Romanelli, M; Leyder, C; Karr, J Ph; Giacobino, E; Bramati, A
2007-03-09
We demonstrate a novel kind of polariton four wave mixing oscillation. Two pump polaritons scatter towards final states that emit two beams of equal intensity, separated both spatially and in polarization with respect to the pumps. The measurement of the intensity fluctuations of the emitted light demonstrates that the final states are strongly correlated.
Spontaneous Wave Generation from Submesoscale Fronts and Filaments
NASA Astrophysics Data System (ADS)
Shakespeare, C. J.; Hogg, A.
2016-02-01
Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.
NASA Astrophysics Data System (ADS)
Yue, Y.; Jiang, T.; Zhou, Q.
2017-12-01
In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in the meeting. In summary, we can safely draw the conclusion that ICA can not only extract high quality data from the mixed signals, but also can separate P and S waves effectively.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
AGN Heating in Simulated Cool-core Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu
We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less
NASA Technical Reports Server (NTRS)
Dash, S. M.; Wolf, D. E.
1983-01-01
A new computational model, SCIPVIS, has been developed to predict the multiple-cell wave/shock structure in under or over-expanded turbulent jets. SCIPVIS solves the parabolized Navier-Stokes jet mixing equations utilizing a shock-capturing approach in supersonic regions of the jet and a pressure-split approach in subsonic regions. Turbulence processes are represented by the solution of compressibility corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive turbulent mixing process occurring behind the disc are handled in a detailed fashion. SCIPVIS presently analyzes jets exhausting into a quiescent or supersonic external stream for which a single-pass spatial marching solution can be obtained. The iterative coupling of SCIPVIS with a potential flow solver for the analysis of subsonic/transonic external streams is under development.
Effect of Loss on Multiplexed Single-Photon Sources (Open Access Publisher’s Version)
2015-04-28
lossy components on near- and long-term experimental goals, we simulate themultiplexed sources when used formany- photon state generation under various...efficient integer factorization and digital quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand photon ...SPDC) or spontaneous four-wave mixing: parametric processes which use a pump laser in a nonlinearmaterial to spontaneously generate photon pairs
Coherent Control of Scattering Processes in Semiconductors
NASA Astrophysics Data System (ADS)
Wehner, M. U.
1998-03-01
On a timescale which compares to the duration of single scattering events, the relaxation of optical excitations in semiconductors has to be described by the quantum kinetic theory. Instead of simple scattering rates this theory delivers a non-Markovian dephasing. Related memory effects have so far been observed for the case of electron-LO-phonon scattering in four-wave-mixing experiments on GaAs at T = 77 K using 15 fs pulses (L. Bányai, D.B. Tran Thoai, E. Reitsamer, H. Haug, D. Steinbach, M.U. Wehner, T. Marschner, M. Wegener and W. Stolz, Phys. Rev. Lett. 75), 2188 (1995). It is crucial for the quantum kinetic time regime that scattering processes must not be considered as completed and irreversibel. The reversibility of the scattering shortly after optical excitation is demonstrated in four-wave-mixing experiments using coherent control. By adjusting the relative phase of two phase-locked pulses, the non-Markovian phonon oscillations observed in Ref.1 can be either suppressed or amplified (M. U. Wehner, M. H. Ulm, D. S. Chemla and M. Wegener, Phys. Rev. Lett. submitted). The behavior of the coherently controlled scattering amplitude is discussed using a simple model Hamiltonian, which describes the variation of the phonon oscillations in amplitude and phase very well.
Realization of a twin beam source based on four-wave mixing in Cesium
NASA Astrophysics Data System (ADS)
Adenier, G.; Calonico, D.; Micalizio, S.; Samantaray, N.; Degiovanni, I. P.; Berchera, I. Ruo
2016-05-01
Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3) medium (here Cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1) even in the CW pump regime, which is not the case for PDC χ(2) phenomenon in nonlinear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum-protocols. Here, we present the first realization of a source of 4-wave mixing exploiting D2 line of Cesium atoms.
The influence of velocity-changing collisions on resonant degenerate four-wave mixing
NASA Technical Reports Server (NTRS)
Richardson, W. H.; Maleki, L.; Garmire, Elsa
1989-01-01
The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.
Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter
2012-08-27
We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn
2018-05-01
The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.
NASA Astrophysics Data System (ADS)
Finsterbusch, Jürgen
2011-01-01
Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.
Woszczyk, Michał; Poręba, Grzegorz; Malinowski, Łukasz
2017-04-01
In this study we combined radioisotopes ( 210 Pb, 137 Cs and 7 Be) and hydrodynamic modeling to investigate sedimentary processes in three coastal lakes on the Polish Baltic coast. The research aimed at establishing the depth of sediment mixing and its effects on sediment geochemistry as well as showing the relationship between lake water salinity and radionuclide distribution in the sediment cores. We established that the intensity of mixing displayed appreciable variability throughout the lakes and the thickness of sediment mixing layer was between <2 and 22 cm. The mixing was primarily due to wind-induced waves. The vertical mixing was shown to shift sulfidation of the sediments towards deeper layers. We found that the distributions of radioisotopes, 137 Cs in particular, in the sediment cores from coastal lakes were strongly affected by the early diagenetic processes, which caused diffusive migration of radionuclides. The inventories of 210 Pb ex and 137 Cs in the lakes were positively related to salinity. The high inventories of both isotopes (3.2-10.9 kBq ·m -2 for 210 Pb ex and 3.0-6.0 kBq·m -2 for 137 Cs) in coastal lakes were explained by enhanced sedimentation within estuarine mixing zone and delivery of "additional" 210 Pb and 137 Cs to the lakes during saltwater ingressions. The results of this study have implications for the paleolimnology, sedimentology and biogeochemistry of coastal lakes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Three-dimensional numerical simulation of gradual opening in a wave rotor passage
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.
1993-01-01
The evolution of the contact interface and the propagation of compression waves inside a single wave rotor passage gradually opening to and traversing an inlet port is studied numerically using an inviscid formulation of the governing equations. Insights into the response of the interface and kinematics of the flow field to various opening times are given. Since the opening time is inversely proportional to the rotational speed of the rotor, the effects of passage rotation such as centripetal and Coriolis accelerations are intrinsically coupled to the gradual opening process. Certain three-dimensional features associated with the gradual opening process as a result of centripetal and Coriolis accelerations are illustrated. For the range of opening times or rotational speeds considered, a portion of the interface behaves like a vortex sheet that can degenerate into a complex interfacial structure. The vortices produced along the interface can serve as a stirring mechanism to promote local mixing. Coriolis and centripetal accelerations can introduce three dimensional effects such as interfacial distortions in meridional planes and spanwise migration of fluid elements.
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream
NASA Astrophysics Data System (ADS)
Todd, Robert E.
2017-06-01
Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.
Thompson, Janet K.; Jones, Nicole L.; Stephen G. Monismith,
2008-01-01
A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations). The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level), and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1), and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
Copepod Behavior Response in an Internal Wave Apparatus
NASA Astrophysics Data System (ADS)
Webster, D. R.; Jung, S.; Haas, K. A.
2017-11-01
This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.
Dynamical Structure and Turbulence in Cirrus Clouds: Aircraft Observations during FIRE.
NASA Astrophysics Data System (ADS)
Gultepe, I.; Starr, D. O'c.
1995-12-01
Aircraft data collected during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE)I are used to examine dynamical processes operating in cirrus cloud systems observed on 19 and 28 October 1986. Measurements from Lagrangian spiral soundings and constant-altitude flight legs are analyzed. Comparisons are made with observations in clear air. Each cirrus case contained a statically stable layer, a conditionally unstable or neutrally stratified layer (ice pseudoadiabatic) in which convection was prevalent, and a neutral layer in which convection was intermittent. The analysis indicates that a mixture of phenomena occurred including small-scale convective cells, gravity waves (2-9 km), quasi-two-dimensional waves (10-20 km), and larger two-dimensional mesoscale waves (100 km). The intermediate-scale waves, observed both in clear air and in the cloud systems, likely played an important role in the development of the cloud systems given the magnitude of the associated vertical air velocity. The spectra of perturbations of wind components for layers where convection was prevalent were characterized by a 5/3 power law dependence, while a 2/4 dependence was found at other levels in the cloud systems. A steeper spectral slope (3) was found in the more stable cloud-base layer on 19 October. Samples in clear air also showed a (2.4) dependence. Flight-leg-averaged eddy potential heat fluxes (H=±8 W m2) were comparable to observations in marine stratocumulus clouds. Calculated turbulence dissipation rates agree with previously published studies, which indicate a general enhancement within cloud systems (106 to 103 m2 s
3 in cloud versus values less than 0.5×10
6 m2 s
3 in clear air).
NASA Astrophysics Data System (ADS)
Dengler, M.; Brandt, P.; McPhaden, M. J.; Thomsen, S.; Krahmann, G.; Fischer, T.; Freitag, P.; Hummels, R.
2012-04-01
An extensive measurement program within the Atlantic Cold Tongue (ACT) region was carried out during the ACT onset in boreal summer 2011. During two consecutive cruises shipboard microstructure profiles, conductivity-temperature-depth-O2 (CTD-O2) profiles and shipboard velocity profiles were collected between mid-May and mid-July. The shipboard measurements were complemented by a Glider swarm experiment during which 5400 CTD-O2 profiles were collected along specified transects within the ACT region. One of those Gliders was equipped with a MicroRider turbulence package and collected a 5-week microstructure time series of about hourly-resolution in the center of the cold tongue on the equator at 10°W. The MicroRider/Glider package was circling a PIRATA mooring from which additionally high-resolution acoustic Doppler current profiles are available for this time period to allow analysis of the background conditions. In this contribution we use a subset from the above data to detail mixing processes in the upper stratified ocean and describe the background conditions favoring enhanced mixing. From end of May to mid-July, sea surface temperature decreased from 26°C to below 22°C at 10°W. During the whole period of autonomous microstructure observations, strong bursts of turbulence were observed extending from the mixed layer into the upper thermocline. These bursts lasted for 3-5 hours and were found to penetrate to about 30m below the base of the mixed layer. They were observed to occur predominately during night-time while during day-time they were less frequent. Dissipation rates of turbulent kinetic energy (ɛ) during these bursts were above 3x10-6Wkg-1 in the upper stratified water column and turbulent eddy diffusivities (Kρ) often reached 1x10-3m2s-1. The data set suggests that strength and frequency of occurrence of the turbulent bursts is modulated by the presents of Tropical Instability Waves which additionally enhance background shear at the equator. The presents of internal waves having frequencies close to the buoyancy frequency during enhanced mixing events will be discussed. From the first 6 days of microstructure data, a diapycnal heat flux divergence from the mixed layer into the upper stratified ocean of 80Wm-2 was inferred. Other contributions to the mixed layer heat balance will be examined to evaluate their relevance during ACT onset.
On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm
NASA Astrophysics Data System (ADS)
Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.
2017-04-01
Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.
A novel design for passive misscromixers based on topology optimization method.
Chen, Xueye; Li, Tiechuan
2016-08-01
In this paper, a series of novel passive micromixers, called topological micromixers with reversed flow (TMRFX), are proposed. The reversed flow in the microchannels can enhance chaotic advection and produce better mixing performance. Therefore the maximum of reversed flow is chosen as the objective function of the topology optimization problem. Because the square-wave unit is easier to fabricate and have better mixing performance than many other serpentine micromixers, square-wave structure becomes the original geometry structure. By simulating analysis, the series of TMRFX, namely TMRF, TMRF0.75, TMRF0.5, TMRF0.25, mix better than the square-wave micromixer at various Reynolds numbers (Re), but pressure drops of TMRFX are much higher. Lots of intensive numerical simulations are conducted to prove that TMRF and TMRF0.75 have remarkable advantages on mixing over other micromixers at various Re. The mixing performance of TMRF0.75 is similar to TMRF's. What's more, TMRF have a larger pressure drop than TMRF0.75, which means that TMRF have taken more energy than TMRF0.75. For a wide range of Re (Re ≤ 0.1 and Re ≥ 10), TMRF0.75 delivers a great performance and the mixing efficiency is greater than 95 %. Even in the range of 0.1-10 for the Re, the mixing efficiency of TMRF0.75 is higher than 85 %.
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
NASA Astrophysics Data System (ADS)
Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.
2016-01-01
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vissers, M. R.; Erickson, R. P.; Ku, H.-S.
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approachesmore » the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.« less
Carbon speciation at the air-sea interface during rain
NASA Astrophysics Data System (ADS)
McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher
2015-04-01
This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the air-sea exchange of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and air-sea gas exchange will be discussed.
NASA Astrophysics Data System (ADS)
Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.
2009-02-01
We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V
2014-02-10
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.
Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves
NASA Astrophysics Data System (ADS)
Mori, Toshio; Kai, Shoichi
2002-05-01
We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR.
Dynamics of charge-transfer excitons in type-II semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.
2018-03-01
The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Zanyar; Karami, Kayoomars; Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir
There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model andmore » the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.« less
Deterministic reshaping of single-photon spectra using cross-phase modulation.
Matsuda, Nobuyuki
2016-03-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.
Deterministic reshaping of single-photon spectra using cross-phase modulation
Matsuda, Nobuyuki
2016-01-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862
Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission.
Mamyshev, P V; Mollenauer, L F
1996-03-15
In a soliton transmission system using lumped amplifiers, pseudo phase matching allows four-wave mixing fields from soliton-soliton collisions to grow uncontrollably and inf lict severe penalties. Through numerical simulation, we show that this growth can be eliminated, or at least greatly reduced, through the use of fiber whose dispersion is tapered, either continuously or in steps, in conformity with the fiber loss curve.
Maxwell, Eric J; Tong, William G
2016-05-01
An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.
Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing
NASA Astrophysics Data System (ADS)
Yin, Yanchun
The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlangga, Mokhammad Puput
Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1999-01-01
Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.
What controls the mass transport by mode-2 internal solitary-like waves?
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek
2016-04-01
Horizontally propagating internal waves are a regular occurrence in the coastal ocean. Their most commonly observed vertical structure is mode-1 in which isopycnals rise and fall in concert at all depths. Second mode waves, where isopycnals expand from and contract toward the pycnocline centre, have been found in recent observations to occur more frequently than previously thought. For the more common convex configuration, these waves mix the pycnocline, and under certain conditions form recirculating cores which efficiently transport material. In the laboratory, mode-2 waves are easily formed by releasing a mixed region into an ambient stratification. Using high resolution, three dimensional, direct numerical simulations of a laboratory configuration we describe the mass transport efficiency of mode-2 waves under a variety of different parameter regimes and initializations. We identify pycnocline configurations for which transport is especially efficient, and explore the structure of recirculating cores during their formation, propagation and disintegration and its implications on mass transport.
NASA Astrophysics Data System (ADS)
Cai, Zun; Liu, Xiao; Gong, Cheng; Sun, Mingbo; Wang, Zhenguo; Bai, Xue-Song
2016-09-01
Large Eddy Simulation (LES) was employed to investigate the fuel/oxidizer mixing process in an ethylene fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for an experimental flow, the DLR strut-based scramjet combustor case. Shock wave structures and wall-pressure distribution from the numerical simulations were compared with experimental data and the numerical results were shown in good agreement with the available experimental data. Effects of the injection location on the flow and mixing process were then studied. It was found that with a long injection distance upstream the cavity, the fuel is transported much further into the main flow and a smaller subsonic zone is formed inside the cavity. Conversely, with a short injection distance, the fuel is entrained more into the cavity and a larger subsonic zone is formed inside the cavity, which is favorable for ignition in the cavity. For the rearwall-expansion cavity, it is suggested that the optimized ignition location with a long upstream injection distance should be in the bottom wall in the middle part of the cavity, while the optimized ignition location with a short upstream injection distance should be in the bottom wall in the front side of the cavity. By employing a cavity direct injection on the rear wall, the fuel mass fraction inside the cavity and the local turbulent intensity will both be increased due to this fueling, and it will also enhance the mixing process which will also lead to increased mixing efficiency. For the rearwall-expansion cavity, the combined injection scheme is expected to be an optimized injection scheme.
NASA Astrophysics Data System (ADS)
Lubis, S. W.; Nakamura, N.
2017-12-01
Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify the role of the stratospheric circulation in the PWB and mixing associated with the summer monsoon, we add an artificial local cooling in the stratosphere and thereby preserve the stratospheric westerlies in summer. The extent to which PWB and mixing are modified by the presence of stratospheric westerlies will be discussed.
Multipartite entangled states in particle mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasone, M.; INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi; Dell'Anno, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify inmore » detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.« less
Confined combustion of TNT explosion products in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, J; Ferguson, R E; Forbes, J
1998-08-31
Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m 3 chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C 7H 5N 3O 6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolvesmore » into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.« less
NASA Astrophysics Data System (ADS)
Morlok, A.; Sutton, Y. C.; Braithwaite, N. St. J.; Grady, Monica M.
2012-12-01
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
NASA Astrophysics Data System (ADS)
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω <ωp, there are infinitely many degenerate waves, all having the same value of k⊥/kz. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect
NASA Astrophysics Data System (ADS)
Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.
2018-05-01
Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.
Mixed sediment beach processes: Kachemak Bay, Alaska
Ruggiero, P.; Adams, P.N.; Warrick, J.A.
2007-01-01
Mixed sediment beaches are morphologically distinct from and more complex than either sand or gravel only beaches. Three digital imaging techniques are employed to quantify surficial grain size and bedload sediment transport rates along the mixed sediment beaches of Kachemak Bay, Alaska. Applying digital imaging procedures originally developed for quickly and efficiently quantifying grain sizes of sand to coarse sediment classes gives promising results. Hundreds of grain size estimates lead to a quantitative characterization of the region's sediment at a significant reduction in cost and time as compared to traditional techniques. Both the sand and coarse fractions on this megatidal beach mobilize into self-organized bedforms that migrate alongshore with a seasonally reflecting the temporal pattern of the alongshore component of wave power. In contrast, the gravel bedforms also migrate in the cross-shore without significant seasonally suggesting that swash asymmetry is sufficient to mobilize the gravel even during low energy summer conditions. ?? 2007 ASCE.
Four-wave mixing in CdMnTeSe: In crystals
NASA Astrophysics Data System (ADS)
Koziarska-Glinka, B.; Wojtowicz, T.; Miotkowski, I.; Furdyna, J. K.; Suchocki, A.
1998-02-01
It is shown that the four-wave mixing technique can be used as a spectroscopic tool for studying the properties of bistable centers in semiconductors. Two metastable centers with different lattice relaxation energy have been identified in the Cd 1- xMn xTe 1- ySe x: In crystal. The power dependence of the FWM signal provides additional support for the "negative-U" model of metastable centers in this material.
Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P
2014-09-01
Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.
Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate
Sappey, Andrew D.
1998-04-14
Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, K., E-mail: k.kawakami@al.t.u-tokyo.ac.jp; Komurasaki, K.; Okamura, H.
2015-02-28
A self-starting phase conjugator was designed for optical energy transfer to a remote target. Saturable-gain four-wave mixing in a laser resonator was achieved using a flash-lamp pumped Nd:YAG crystal and phase-conjugate light (PCL) generation were verified. Wavefront correction experimentation revealed that beam wander caused by air turbulence is compensated. Tracking capability was demonstrated in the range of 9 mrad with tracking accuracy of ±0.04 mrad. The maximum field of view was measured to be 4.7°. Dependence of phase-conjugate light energy on reference light energy was investigated. The maximum output of 320 mJ was obtained. The temporal behavior of PCL ismore » discussed based on the four-wave mixing mechanism. Unlike a conventional loop resonator type phase conjugator, this system is applicable for wireless energy transfer to a remote target.« less
Classical-to-Quantum Transition with Broadband Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Vered, Rafi Z.; Shaked, Yaakov; Ben-Or, Yelena; Rosenbluh, Michael; Pe'er, Avi
2015-02-01
A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ˜80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-06-10
We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4) W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9) W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.
Transport of microplastics in coastal seas
NASA Astrophysics Data System (ADS)
Zhang, Hua
2017-12-01
Microplastic pollution of the marine environment has received increasing attention from scientists, the public, and policy makers over the last few years. Marine microplastics predominantly originate near the coast and can remain in the nearshore zone for some time. However, at present, there is little understanding of the fate and transport of microplastics in coastal regions. This paper provides a comprehensive overview of the physical processes involved in the movement of microplastics from estuaries to the continental shelf. The trajectory and speed of microplastics are controlled by their physical characteristics (density, size, and shape) and ocean dynamic conditions (wind, waves, tides, thermohaline gradients, and the influence of benthic sediments). Microplastic particles can be subjected to beaching, surface drifting, vertical mixing, and biofouling, as well as bed-load and suspended load transport processes, until reaching terminal deposition on beaches, in coastal marshes, in benthic sediments or until they are carried by ocean currents to subtropical convergence zones. The dynamic interaction of released microplastics with the shoreline is regulated by onshore/offshore transport, which is impacted by the source location as well as the geometry, vegetation, tidal regime, and wave direction. Wind and wave conditions dominate surface drifting of buoyant particles through Ekman drift, windage, and Stokes drift mechanisms. Neustic microplastic particles travel in the subsurface because of vertical mixing through wind-driven Langmuir circulation and heat cycling. Increasing accumulation of microplastics in benthic sediments needs to be quantitatively explored in terms of biofouling, deposition, entrainment, and transport dynamics. Further studies are required to understand the following: 1) the primary parameters (e.g., windage, terminal velocity, diffusivity, critical shear stress) that determine microplastic transport in different pathways; 2) dynamic distribution of microplastics in various coastal landscapes (e.g., wetlands, beaches, estuaries, lagoons, barrier islands, depocenters) regulated by hydrodynamic conditions; and 3) interactions between the physical transport processes and biochemical reactions (degradation, flocculation, biofouling, ingestions).
Numerical simulations of the process of multiple shock-flame interactions
NASA Astrophysics Data System (ADS)
Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao
2016-08-01
Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.
Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis
NASA Astrophysics Data System (ADS)
Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick
2016-04-01
The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.
Damping of surface waves due to oil emulsions in application to ocean remote sensing
NASA Astrophysics Data System (ADS)
Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.
2017-10-01
Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.
Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun
2016-05-01
Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.
Signal Processing with Degenerate Four-Wave Mixing.
1987-12-07
MONITORING ORGANIZATION Optical Sciences Center j (i applicable) 6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Cod...apOliable) AFOSR I j AFOSR-84-0277 I, ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Bulig40PROGRAM IPROJECT TASK I WORK UNIT Buling...5 Accesson Fo I - __ 0 4.Z- NTIS GRA. D__t _______r_!_ ________I,,* k AccessiondFor Dist.~~ .ipe i 45 rix’ _ _____ _____ __ j
Coherent beam combiner for a high power laser
Dane, C. Brent; Hackel, Lloyd A.
2002-01-01
A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.
2013-09-30
Figure 1 – Measurement systems installed on R/V Roger Revelle for DYNAMO /LASP. Inset map shows locations of land-based sounding stations...oceanographic moorings and the research vessels Mirai and Revelle during the intensive observation period of DYNAMO . The black line outlines the flight...under which each dominates. Transmission profile plus near-surface mixing measurements from LASP/ DYNAMO are being used to assess bounds on the
NASA Astrophysics Data System (ADS)
Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte
2018-05-01
We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
Experimental investigation of turbulent mixing in post-explosion environment
NASA Astrophysics Data System (ADS)
Smith, Josh; Hargather, Michael
2015-11-01
Experiments are performed to investigate the turbulent mixing of product gases and the ambient environment in a post-explosion environment. The experiments are performed in a specially constructed shock tunnel where thermite-enhanced explosions are set off. The explosives are detonated at one end of the tunnel, producing a one-dimensional shock wave and product gas expansion which moves toward the open end of the tunnel. Optical diagnostics are applied to study the shock wave motion and the turbulent mixing of the gases after the detonation. Results are presented for schlieren, shadowgraph, and interferometry imaging of the expanding gases with simultaneous pressure measurements. An imaging spectrometer is used to identify the motion of product gas species. Results show varying shock speed with thermite mass and the identification of turbulent mixing regions.
Millimeter-Wave Generation Via Plasma Three-Wave Mixing
1988-06-01
are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave
Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.
McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh
2011-08-01
A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.
Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY
NASA Astrophysics Data System (ADS)
Soares, S. M.; Natarov, A.; Richards, K. J.
2016-05-01
A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.
Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.
2008-01-01
Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668
Mechanical Chevrons and Fluidics for Advanced Military Aircraft Noise Reduction
2011-03-01
at or near the nozzle lip. Therefore, for the problem at hand, the simulations will need to accurately capture shock waves , unsteady large-scale...simulations could accurately capture the flow field and near-field noise from representative jet engine nozzles and indeed this was a go/no-go...mixing noise. The first two types of noise are related to the shock waves that are present in the high-speed jet flow. While the mixing noise
Effect of signal frequency on four-wave mixing through stimulated Brillouin scattering.
Watkins, D E; Scott, A M; Ridley, K D
1990-11-15
We present measurements of the dependence of the phase-conjugate reflectivity on signal frequency for Brillouinenhanced four-wave mixing at pump intensities above the threshold instability. The measurements were made in TiC1(4) at lambda = 1 microm and are consistent with a computer model of the reflectivity. We have observed that the frequency of the conjugate beam is independent of the frequency of the input signal beam in the unstable regime.
Shapes, spectra and new methods in nonlinear spatial optics
NASA Astrophysics Data System (ADS)
Sun, Can
For a myriad of optical applications, the quality of the light source is poor and the beam is inherently spatially partially-coherent. For this broad class of systems, wave dynamics depends not only on the wave intensity, but also on its distribution of spatial frequencies. Unfortunately, this entire spectrum of problems has often been overlooked - for reasons of theoretical ease or experimental difficulties. Here, we remedy this by demonstrating a novel experimental setup which, for the first time, allows arbitrarily modulation of the spatial spectra of light to obtain any distribution of interest. Using modulation instability as an example, we isolate the effect of different spectral shapes and observe distinct beam dynamics. Next, we turn to a thermodynamic description of the long-term evolution of statistical fields. For quantum systems, a major consequence is Bose-Einstein Condensation. However, recent theoretical studies have suggested that quantum mechanics is not necessary for the condensation process: classical waves with random phases can also self-organize into a coherent state. Starting from a random ensemble, nonlinear interactions can lead to a turbulent energy cascade towards longer spatial scales. In complete analogy with the kinetics of a gas system, there is a statistical dynamics of waves in which particle velocities map to wavepacket k-vectors while collisions are mimicked by four-wave mixing. As with collisions, each wave interaction is formally reversible, yet entropy principles mandate that the ensemble evolves towards an equilibrium state of maximum disorder. The result is an equipartition of energy, in the form of a Rayleigh-Jeans spectrum, with information about the condensation process recorded in small-scale fluctuations. Here, we give the first experimental observation of the condensation of classical waves in any media. Using classical light in a self-defocusing photorefractive, we observe all aspects of the condensation process, including the population of a coherent state, spectral redistribution towards the Rayleigh-Jeans spectrum, and formal reversibility of the interactions. The latter is proved experimentally by introducing a digital "Maxwell's Demon" to reverse (phase-conjugate) the momentum of each wavepacket and recover the original "thermal cloud". The results integrate digital and physical methods of nonlinear processing, confirm fundamental ideas in wave turbulence, and greatly extend the range of Bose-Einstein theory.
A 547 GHz SIS Receiver Employing a Submicron Nb Junction with an Integrated Matching Circuit
NASA Technical Reports Server (NTRS)
Febvre, P.; McGrath, W.; Leduc, H.; Batelaan, P.; Frerking, M.; Hernichel, J.; Bumble, B.
1993-01-01
The most sensitive heterodyne receivers used for millimeter wave and submillimeter wave radioastronomy employ superconductor-insulator-superconductor (SIS) tunnel junctions as the nonlinear mixing element.
Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy
NASA Astrophysics Data System (ADS)
McCormack, E. F.; Stampanoni, A.; Hemmerling, B.
2000-06-01
Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.
Quantum oscillations in the mixed state of d -wave superconductors
NASA Astrophysics Data System (ADS)
Melikyan, Ashot; Vafek, Oskar
2008-07-01
We show that the low-energy density of quasiparticle states in the mixed state of ultraclean dx2-y2 -wave superconductors exhibits quantum oscillations even in the regime where the cyclotron frequency ℏωc≪Δ0 , the d -wave pairing gap. Such oscillations as a function of magnetic field B are argued to be due to the internodal scattering of the nodal quasiparticles near wave vectors (±kD,±kD) by the vortex lattice as well as their Zeeman coupling. While the nominal periodicity of the oscillations is set by the condition kD[hc/(eB)]1/2≡kD'[hc/(eB')]1/2(mod2π) , we find that there is additional structure within each period that grows in complexity as the Dirac node anisotropy increases.
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
Interactive calculation procedures for mixed compression inlets
NASA Technical Reports Server (NTRS)
Reshotko, Eli
1983-01-01
The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.
NASA Astrophysics Data System (ADS)
da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.
2016-08-01
Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented, including: the Mascarene Ridge of the Indian Ocean; South China Sea; Andaman Sea; tropical Atlantic off the Amazon shelf break, Bay of Biscay of the western European margin; etc. The survey included the following SAR missions: ERS-1/2; Envisat and TerraSAR-X.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta
2017-01-01
D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1991-01-01
Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Montes-Solís, María; Arregui, Iñigo
2017-09-01
We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.
Kiskowski, Maria; Chowell, Gerardo
2016-01-01
The mechanisms behind the sub-exponential growth dynamics of the West Africa Ebola virus disease epidemic could be related to improved control of the epidemic and the result of reduced disease transmission in spatially constrained contact structures. An individual-based, stochastic network model is used to model immediate and delayed epidemic control in the context of social contact networks and investigate the extent to which the relative role of these factors may be determined during an outbreak. We find that in general, epidemics quickly establish a dynamic equilibrium of infections in the form of a wave of fixed size and speed traveling through the contact network. Both greater epidemic control and limited community mixing decrease the size of an infectious wave. However, for a fixed wave size, epidemic control (in contrast with limited community mixing) results in lower community saturation and a wave that moves more quickly through the contact network. We also found that the level of epidemic control has a disproportionately greater reductive effect on larger waves, so that a small wave requires nearly as much epidemic control as a larger wave to end an epidemic. PMID:26399855
Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es
We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternativemore » mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.« less
Kiskowski, Maria; Chowell, Gerardo
2016-01-01
The mechanisms behind the sub-exponential growth dynamics of the West Africa Ebola virus disease epidemic could be related to improved control of the epidemic and the result of reduced disease transmission in spatially constrained contact structures. An individual-based, stochastic network model is used to model immediate and delayed epidemic control in the context of social contact networks and investigate the extent to which the relative role of these factors may be determined during an outbreak. We find that in general, epidemics quickly establish a dynamic equilibrium of infections in the form of a wave of fixed size and speed traveling through the contact network. Both greater epidemic control and limited community mixing decrease the size of an infectious wave. However, for a fixed wave size, epidemic control (in contrast with limited community mixing) results in lower community saturation and a wave that moves more quickly through the contact network. We also found that the level of epidemic control has a disproportionately greater reductive effect on larger waves, so that a small wave requires nearly as much epidemic control as a larger wave to end an epidemic.
Kuyken, B; Verheyen, P; Tannouri, P; Liu, X; Van Campenhout, J; Baets, R; Green, W M J; Roelkens, G
2014-03-15
Mid-infrared light generation through four-wave mixing-based frequency down-conversion in a normal group velocity dispersion silicon waveguide is demonstrated. A telecom-wavelength signal is down-converted across more than 1.2 octaves using a pump at 2190 nm in a 1 cm-long waveguide. At the same time, a 13 dB on-chip parametric gain of the telecom signal is obtained.
Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro
2013-02-11
In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).
Parametric amplification in quasi-PT symmetric coupled waveguide structures
NASA Astrophysics Data System (ADS)
Zhong, Q.; Ahmed, A.; Dadap, J. I.; Osgood, R. M., Jr.; El-Ganainy, R.
2016-12-01
The concept of non-Hermitian parametric amplification was recently proposed as a means to achieve an efficient energy conversion throughout the process of nonlinear three wave mixing in the absence of phase matching. Here we investigate this effect in a waveguide coupler arrangement whose characteristics are tailored to introduce passive PT symmetry only for the idler component. By means of analytical solutions and numerical analysis, we demonstrate the utility of these novel schemes and obtain the optimal design conditions for these devices.
1988-05-01
started in September 1983 and completed in December 1986. The use of trade names or manufacturers’ names in this report does not constitute an official...aqqloneration effects certainly resi’lt in larger-sized clusters. The carbon black powdIer was mixed wAth tNujol oil, a refined !L.quid paraffin...the zero order of the two beams resulting from the first dividing process underg3 interference in the directions of ths detector and source as in the
Quantum Image Processing and Storage with Four Wave Mixing
2016-08-10
have studied squeezed light in interferometric applications. During the grant period one graduate student, Jeremy Clark, finished with a PhD [1] in...just one phase-quadrature of the signal, it would seem disturbing if we had the same dispersion as in the PIA case , but no noise, and if we were thus...to achieve the maximum gain condition. Thus, with the same geometry as the twin-beam, phase-insensitive case , if one pumps on what would have been
Fine-Scale Volume Heterogeneity in a Mixed Sand/Mud Sediment Off Fort Walton Beach, FL
2010-07-01
by Vaughan et al. [4]. Subsequent to the mud drape, wind-wave activity mobilized sediment and some of the mud layer was resuspended, and sand from...hardening effects, which is a common issue with polychromatic energy sources, such as the HD-500 and medical CT systems. Beam hardening is a process...provides a convenient characterization of levels of heterogeneity. The CV is defined as the standard devi - ation divided by the mean and multiplied by
Schwalenberg, Simon
2005-06-01
The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.
Using Bio-Optics to Reveal Phytoplankton Physiology from a Wirewalker Autonomous Platform
NASA Technical Reports Server (NTRS)
Omand, M. M.; Cetinic, I.; Lucas, A. J.
2017-01-01
Rapid, wave-powered profiling of bio-optical properties from an autonomous Wirewalker platform provides useful insights into phytoplankton physiology, including the patterns of diel growth, phytoplankton mortality, nonphotochemical quenching of chlorophyll a fluorescence, and natural (sun-induced) fluorescence of mixed communities. Methods are proposed to quantify each of these processes. Such autonomous measurements of phytoplankton physiological rates and responses open up new possibilities for studying phytoplankton in situ, over longer periods, and under a broader range of environmental conditions.
Enhanced harmonic emission from a polar molecule medium driven by few-cycle laser pulses.
Zhang, Chaojin; Yao, Jinping; Ni, Jielei; Umran, Fadhil A
2012-11-19
We investigate theoretically the enhancement of the low-order harmonic emission from a polar molecular medium. The results show that, by using a control laser field, the intensity of the spectral signals near fourth-order harmonics will increase over 25 times as a result of the four-wave mixing process. Moreover, the enhancement effects depend strongly on the carrier-envelope phase of the initial laser fields, which cannot be found in a symmetric system.
Expansion Under Climate Change: The Genetic Consequences.
Garnier, Jimmy; Lewis, Mark A
2016-11-01
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
Unifying models of dialect spread and extinction using surface tension dynamics
2018-01-01
We provide a unified mathematical explanation of two classical forms of spatial linguistic spread. The wave model describes the radiation of linguistic change outwards from a central focus. Changes can also jump between population centres in a process known as hierarchical diffusion. It has recently been proposed that the spatial evolution of dialects can be understood using surface tension at linguistic boundaries. Here we show that the inclusion of long-range interactions in the surface tension model generates both wave-like spread, and hierarchical diffusion, and that it is surface tension that is the dominant effect in deciding the stable distribution of dialect patterns. We generalize the model to allow population mixing which can induce shrinkage of linguistic domains, or destroy dialect regions from within. PMID:29410847
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Observations of turbulent mixing in a shallow coral reef
NASA Astrophysics Data System (ADS)
Huang, Z. C.
2016-02-01
In situ measurements of waves, currents, and turbulence are presented to study turbulence properties within a depression that is surrounded by multiple coral-reef colonies in a fringing reef in Hobihu, Nan-Wan Bay, southern Taiwan. Turbulence was measured using a dual velocimetry technique, and wave bias contamination in the turbulence is controlled using ogive curve testing of the turbulent shear stress. The observed turbulent dissipation rate is approximately five times greater than simultaneous observations over the nearby sandy bottom site, which indicates stronger mixing within the coral reef than on sandy bottoms. Energetic downward momentum flux exists due to sweeping process; the turbulent kinetic energy is transported downward into the depression through the mechanisms of vertical turbulent transport and advection. The observed turbulent dissipation rate exceeds the shear production rate, which suggests that transport terms or other source terms might be important. The wake flow caused by the resistance force of coral colonies is examined. The form drag coefficient was estimated from the time-averaged alongshore linear momentum between two sites upstream and within the coral reef. The work done due to the form drag, which is termed the wake production, is found to strongly correlate and approximate well to the observed turbulent dissipation rate. The effects of waves and currents on the wake production are discussed. The observed TSS can be described well by classic turbulence closure model when the empirical stability function is adjusted. This study suggests that the complex canopy structure of multiple colonies and the coexistence of the wave-induced and current flows are significant factors for energetic turbulence in the coral reef, which could have positive effects to the health of the coral reefs.
Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior
NASA Astrophysics Data System (ADS)
Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.
2016-02-01
Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Typology of nonlinear activity waves in a layered neural continuum.
Koch, Paul; Leisman, Gerry
2006-04-01
Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).
A Quadriparametric Model to Describe the Diversity of Waves Applied to Hormonal Data.
Abdullah, Saman; Bouchard, Thomas; Klich, Amna; Leiva, Rene; Pyper, Cecilia; Genolini, Christophe; Subtil, Fabien; Iwaz, Jean; Ecochard, René
2018-05-01
Even in normally cycling women, hormone level shapes may widely vary between cycles and between women. Over decades, finding ways to characterize and compare cycle hormone waves was difficult and most solutions, in particular polynomials or splines, do not correspond to physiologically meaningful parameters. We present an original concept to characterize most hormone waves with only two parameters. The modelling attempt considered pregnanediol-3-alpha-glucuronide (PDG) and luteinising hormone (LH) levels in 266 cycles (with ultrasound-identified ovulation day) in 99 normally fertile women aged 18 to 45. The study searched for a convenient wave description process and carried out an extended search for the best fitting density distribution. The highly flexible beta-binomial distribution offered the best fit of most hormone waves and required only two readily available and understandable wave parameters: location and scale. In bell-shaped waves (e.g., PDG curves), early peaks may be fitted with a low location parameter and a low scale parameter; plateau shapes are obtained with higher scale parameters. I-shaped, J-shaped, and U-shaped waves (sometimes the shapes of LH curves) may be fitted with high scale parameter and, respectively, low, high, and medium location parameter. These location and scale parameters will be later correlated with feminine physiological events. Our results demonstrate that, with unimodal waves, complex methods (e.g., functional mixed effects models using smoothing splines, second-order growth mixture models, or functional principal-component- based methods) may be avoided. The use, application, and, especially, result interpretation of four-parameter analyses might be advantageous within the context of feminine physiological events. Schattauer GmbH.
Understanding the dimensional and mechanical properties of coastal Langmuir Circulations
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Kuehl, Joseph; Anderson, William
2017-11-01
Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.
Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.
Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing
NASA Astrophysics Data System (ADS)
Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe
2016-09-01
The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.
NASA Astrophysics Data System (ADS)
Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian
2015-05-01
The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2015-09-30
ababanin.com/ LONG-TERM GOALS The long-term goals of the present project are two: wind/wave climatology for the Arctic Seas, and their current...OBJECTIVES The wind/wave climatology for the Arctic Seas will be developed based on altimeter observations. It will have a major scientific and...applied significance as presently there is no reference climatology for this region of the ocean available. The new versions of wave models for the
2012-09-30
Lagrangian methods for free - surface turbulence and wave simulation . In the far field, coupled wind and wave simulations are used to obtain wind...to conserve the mass precisely. When the wave breaks, the flow at the free surface may become very violent, air and water may be highly mixed...fluids free - surface flows that can be used to study the fundamental physics of wave breaking. The research will improve the understanding of air-sea
Hingsamer, Peter; Peeters, Frank; Hofmann, Hilmar
2014-01-01
Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion and the daily course of incident light intensity. Vertical displacements caused by internal waves could be distinguished from other factors influencing the distribution of P. rubescens (e.g. active buoyancy control, production, vertical mixing) by a temperature-based data transformation. This technique may be of general use for separating wave-induced transport from other processes (e.g. sedimentation, vertical mixing) that affect the distributions of dissolved substances and suspended particles. PMID:25102279
Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic
2016-11-15
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.
NASA Astrophysics Data System (ADS)
van Haren, Hans; Duineveld, Gerard; de Stigter, Henko
2017-09-01
Rainbow Ridge, a 1950 m deep upthrusted ultramafic block along the axis of the Mid-Atlantic Ridge, has an active hydrothermal vent system at 2400 m on its western slope. However, within 1 km from the vent excessive temperatures are barely measurable, probably due to strong turbulent mixing. This mixing is studied here using a 400 m long high-resolution temperature sensor array moored with a 600 m ranging 75 kHz acoustic Doppler current profiler. Rich internal wave turbulence was recorded, characterized by 100-200 m upshoots and >200 m large overturning in particular near the end of the warming phase of the up and down moving tide. These highly nonlinear internal waves of tides interacting with buoyancy frequency waves extend up to 400 m above the sloping bottom of the ridge. While a turbulent "bottom boundary layer" could barely be defined, the more intense turbulence higher up in the water column is suggested to lead to the strong dispersion of the hydrothermal plume.
Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser
NASA Astrophysics Data System (ADS)
Fukuoka, D.; Muro, K.; Noda, K.
2016-02-01
A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.
Triple tailored nonlinear dispersion of dressed four- and six-wave mixing
NASA Astrophysics Data System (ADS)
Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng
2018-06-01
We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.
NASA Technical Reports Server (NTRS)
Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.
2004-01-01
Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun
2018-07-01
By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.
Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.
Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc
2015-04-01
A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3 dB at an ultra-low on-chip pump power of 0.7 mW.
Active micromixer using surface acoustic wave streaming
Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY
2011-05-17
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
Exotic topological density waves in cold atomic Rydberg-dressed fermions
Li, Xiaopeng; Sarma, S Das
2015-01-01
Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
Gender differences in the causal direction between workplace harassment and drinking.
Freels, Sally A; Richman, Judith A; Rospenda, Kathleen M
2005-08-01
Data from a longitudinal study of university employees across four waves is used to determine the extent to which workplace harassment predicts drinking or conversely the extent to which drinking predicts workplace harassment, and to address gender differences in these relationships. Mixed effects regression models are used to test the effects of 1) harassment at the previous wave on drinking at the current wave, adjusting for drinking at the previous wave, and 2) drinking at the previous wave on harassment at the current wave, adjusting for harassment at the previous wave. For males, drinking at the previous wave predicts sexual harassment at the current wave, whereas for females, sexual harassment at the previous wave predicts drinking at the current wave.
Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes
NASA Astrophysics Data System (ADS)
Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon
2014-04-01
Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.
Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset
NASA Astrophysics Data System (ADS)
Rae, I. J.; Murphy, K. R.; Watt, Clare E. J.; Mann, Ian R.; Yao, Zhonghua; Kalmoni, Nadine M. E.; Forsyth, Colin; Milling, David K.
2017-12-01
Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.
Do we access meaning when we name Arabic digits? Electrophysiological evidence.
Macizo, Pedro; Álvarez, Alejandro
2018-06-12
In this study, we evaluated whether the naming of Arabic digits required access to semantic information. Participants named pictures and Arabic digits blocked by category or intermixed with exemplars of other categories while behavioural and electrophysiological measures were gathered. Pictures were named slower and Arabic digits faster in the blocked context relative to the mixed context. Around 350-450 ms after the presentation of pictures and Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when the blocked context was compared with the mixed context. The pattern of electrophysiological results suggests that pictures and Arabic digits are both processed semantically and they are subject to repetition effects during the naming task. © 2018 The British Psychological Society.
EUV phase-shifting masks and aberration monitors
NASA Astrophysics Data System (ADS)
Deng, Yunfei; Neureuther, Andrew R.
2002-07-01
Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.
Kinetic Alfvén Wave Generation by Large-scale Phase Mixing
NASA Astrophysics Data System (ADS)
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.
2015-12-01
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
Coherent control of ultrafast optical four-wave mixing with two-color {omega}-3{omega} laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrat, Carles
2005-08-15
A theoretical investigation on the coherent control of optical transient four-wave mixing interactions in two-level systems with two intense few-cycle propagating laser pulses of central angular frequencies {omega} and 3{omega} is reported. By numerically solving the full Maxwell-Bloch equations beyond the slowly varying envelope and rotating-wave approximations in the time domain, the nonlinear coupling to the optical field at frequency 5{omega} is found to depend critically on the initial relative phase {phi} of the propagating pulses: the coupling is enhanced when the pulses interfere constructively in the center ({phi}=0), while it is nearly suppressed when they are out of phasemore » ({phi}={pi})« less
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joe; Wagner, William J. (Technical Monitor)
2003-01-01
The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.
A novel micromixer based on the alternating current-flow field effect transistor.
Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Hu, Qingming; Jiang, Hongyuan
2016-12-20
Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.
Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren
2011-06-20
We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.
Nonlinear optical memory for manipulation of orbital angular momentum of light.
de Oliveira, R A; Borba, G C; Martins, W S; Barreiro, S; Felinto, D; Tabosa, J W R
2015-11-01
We report on the demonstration of a nonlinear optical memory (NOM) for storage and on-demand manipulation of orbital angular momentum (OAM) of light via higher-order nonlinear processes in cold cesium atoms. A spatially resolved phase-matching technique is used to select each order of the nonlinear susceptibility associated, respectively, with time-delayed four-, six-, and eight-wave mixing processes. For a specific configuration of the stored OAM of the incident beams, we demonstrated that the OAM of the retrieved beam can be manipulated according to the order of the nonlinear process chosen by the operator for reading out the NOM. This demonstration indicates new pathways for applications in classical and quantum information processing where OAM of light is used to encode optical information.
The covariance of temperature and ozone due to planetary-wave forcing
NASA Technical Reports Server (NTRS)
Fraser, G. J.
1976-01-01
The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.
NASA Astrophysics Data System (ADS)
Saleh, Mohammad Abu
2007-05-01
When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.
Transatmospheric vehicle research
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Research was conducted into the alternatives to the supersonic combustion ramjet (scramjet) engine for hypersonic flight. A new engine concept, the Oblique Detonation Wave Engine (ODWE) was proposed and explored analytically and experimentally. Codes were developed which can couple the fluid dynamics of supersonic flow with strong shock waves, with the finite rate chemistry necessary to model the detonation process. An additional study was conducted which compared the performance of a hypersonic vehicle powered by a scramjet or an ODWE. Engineering models of the overall performances of the two engines are included. This information was fed into a trajectory program which optimized the flight path to orbit. A third code calculated the vehicle size, weight, and aerodynamic characteristics. The experimental work was carried out in the Ames 20MW arc-jet wind tunnel, focusing on mixing and combustion of fuel injected into a supersonic airstream. Several injector designs were evaluated by sampling the stream behind the injectors and analyzing the mixture with an on-line mass spectrometer. In addition, an attempt was made to create a standing oblique detonation wave in the wind tunnel using hydrogen fuel. It appeared that the conditions in the test chamber were marginal for the generation of oblique detonation waves.
Near-field refrigeration and tunable heat exchange through four-wave mixing
NASA Astrophysics Data System (ADS)
Khandekar, Chinmay; Messina, Riccardo; Rodriguez, Alejandro W.
2018-05-01
We modify and extend a recently proposed four-wave mixing scheme [C. Khandekar and A. Rodriguez, Opt. Express 25(19), 23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ˜ 109W/m2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures.
NASA Astrophysics Data System (ADS)
Kharibegashvili, S. S.; Jokhadze, O. M.
2014-04-01
A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions. Bibliography: 14 titles.
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
NASA Astrophysics Data System (ADS)
Curcic, M.; Chen, S. S.
2016-02-01
The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.
NASA Astrophysics Data System (ADS)
Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.
2015-04-01
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Describes computer measurement of capacitor charge decay, change of fringe width with color, computer simulation of color mixing, Doppler effect/carrier waves, gravitational waves, microwave apparatus, computer simulation of Brownian motion, search coils and problems with the teaching of the relationships of velocity, frequency, and wavelength in…
Proportioning and performance evaluation of self-consolidating concrete
NASA Astrophysics Data System (ADS)
Wang, Xuhao
A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages. Statistical analyses, response surface models and Tukey Honestly Significant Difference (HSD) tests, were conducted to relate the mix design parameters to the concrete performance. The work discussed in Paper 3 was to apply a digital image processing (DIP) method associated with a MATLAB algorithm to evaluate cross sectional images of self-consolidating concrete (SCC). Parameters, such as inter-particle spacing between coarse aggregate particles and average mortar to aggregate ratio defined as average mortar thickness index (MTI), were derived from DIP method and applied to evaluate the static stability and develop statistical models to predict flowability of SCC mixtures. The last paper investigated technologies available to monitor changing properties of a fresh mixture, particularly for use with self-consolidating concrete (SCC). A number of techniques were used to monitor setting time, stiffening and formwork pressure of SCC mixtures. These included longitudinal (P-wave) ultrasonic wave propagation, penetrometer based setting time, semi-adiabatic calorimetry, and formwork pressure. The first study demonstrated that the concrete mixes designed using the modified Brouwers mix design algorithm and particle packing concept had a potential to reduce up to 20% SCMs content compared to existing SCC mix proportioning methods and still maintain good performance. The second paper concluded that slump flow of the SCC mixtures increased with Vpaste/Vvoids at a given viscosity of mortar. Compressive trength increases with increasing Vpaste/Vvoids up to a point (~150%), after which the strength becomes independent of Vpaste/Vvoids, even slightly decreases. Vpaste/Vvoids has little effect on the shrinkage mixtures, while SCC mixtures tend to have a higher shrinkage than CC for a given Vpaste/Vvoids. Vpaste/Vvoids has little effects on surface resistivity of SCC mixtures. The paste quality tends to have a dominant effect. Statistical analysis is an efficient tool to identify the significance of influence factors on concrete performance. In third paper, proposed DIP method and MATLAB algorithm can be successfully used to derive inter-particle spacing and MTI, and quantitatively evaluate the static stability in hardened SCC samples. These parameters can be applied to overcome the limitations and challenges of existing theoretical frames and construct statistical models associated with rheological parameters to predict flowability of SCC mixtures. The outcome of this study can be of practical value for providing an efficient and useful tool in designing mixture proportions of SCC. Last paper compared several concrete performance measurement techniques, the P-wave test and calorimetric measurements can be efficiently used to monitor the stiffening and setting of SCC mixtures.
NASA Astrophysics Data System (ADS)
Murray, A. B.; Ratliff, K. M.; Hutton, E.
2017-12-01
We use a newly developed delta model to explore the combined effects of sea-level rise (SLR) and variable wave influence on delta morphology, avulsion behavior, and autogenic sediment flux variability. Using the Community Surface Dynamics Modeling System framework and tools, we couple the River Avulsion and Floodplain Evolution Model (RAFEM) to the Coastline Evolution Model (CEM). RAFEM models the fluvial processes, including river profile evolution, floodplain deposition, and avulsions. CEM uses gradients in alongshore sediment transport to distribute the fluvial sediment along the coastline. A suite of recent experiments using the coupled model and the Dakota software toolkit lead to several new insights: 1) A preferential avulsion location (which scales with the backwater length) can arise for geometric reasons that are independent of the recently suggested importance of alternation between flood and inter-flood periods. 2) The angular distribution of waves, as well as the wave height, affect the avulsion timescale. Previous work suggested that the time between avulsions will increase with greater wave influence, and we find that this is true for an angular mix of waves that tends to smooth a fairly straight coastline (coastline diffusion), where river mouth progradation is slowed and avulsions are delayed. However, if the angular distribution of waves leads to locally smooth shorelines but large amplitude coastline features (anti-diffusive coastline evolution), then avulsion timescales are barely affected, even when wave influence is high. 3) Increasing SLR rates are expected to cause more frequent avulsions, and it does in laboratory deltas. Unexpectedly, we find that this is not the case for the river-dominated deltas in our coupled model, in which SLR-related transgression effectively decreases progradation, offsetting base-level-rise effects. This finding raises potentially important questions about the geometric differences between prototypical and laboratory deltas that have not previously been addressed. 4) The magnitude and timescale of autogenic variability in the sediment flux at the river mouth depends on the SLR rate (for some wave climates), wave characteristics, and the how high the river channel must be super-elevated relative to the floodplain in order to trigger an avulsion.
Impact of Equatorial Waves on the Variability of Upwelling Process Along West Coast of India
NASA Astrophysics Data System (ADS)
Prakash, K. R.; Nigam, T.; Pant, V.
2017-12-01
Coastal upwelling is a seasonal phenomenon along the south eastern Arabian Sea (SEAS) due to favourable wind setup during Indian Summer Monsoon Season (June-September). This upwelling brings subsurface cold and nutrient rich water to the surface layers. The cold water transported northward by the altered along shore current of west coast of India in the post-monsoon season. The different climatological forcing of positive Indian Ocean Dipole (IOD) and normal years were utilised to simulate the upwelling off the west coast of India using a three dimensional Regional Ocean Modelling System (ROMS). Strength of upwelling and the northward transport were found to be weaken for positive IOD simulations as compared to normal years. Analysis suggests that the meridional wind stress weakening resulted into a decrease in strength of West India Coastal Current (WICC) and, therefore, reduced magnitude of offshore Ekman transport. The mixed layer heat budget calculation also supports the findings by showing dominated vertical process in comparison to net heat flux effect. The post-monsoon northward transport of cold water was found to be correlated with the coastally trapped downwelling Kelvin waves. These waves are the only remote forcing from the Bay of Bengal that reaches to the south-eastern Arabian Sea during the months of October-December. The composite of sea surface height anomalies for the positive IOD and normal years shows that the downwelling Kelwin wave was absent during October-December.
Stability analysis for acoustic wave propagation in tilted TI media by finite differences
NASA Astrophysics Data System (ADS)
Bakker, Peter M.; Duveneck, Eric
2011-05-01
Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.
Comparing Two Web/Mail Mixed-Mode Contact Protocols to a Unimode Mail Survey
ERIC Educational Resources Information Center
Newberry, Milton G., III; Israel, Glenn D.
2017-01-01
Recent research has shown mixed-mode surveys are advantageous for organizations to use in collecting data. Previous research explored web/mail mode effects for four-contact waves. This study explores the effect of web/mail mixed-mode systems over a series of contacts on the customer satisfaction data from the Florida Cooperative Extension Service…
Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations
NASA Astrophysics Data System (ADS)
Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.
2018-02-01
We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, Carl Atherton
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, C.A.
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing
NASA Astrophysics Data System (ADS)
van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe
2016-09-01
Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Ahmed, B.; Sajid, M.
2018-04-01
The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.
2016-11-01
Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.
Turbulent mixing noise from supersonic jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Chen, Ping
1994-01-01
There is now a substantial body of theoretical and experimental evidence that the dominant part of the turbulent noise of supersonic jets is generated directly by the large turbulence structures/instability waves of the jet flow. Earlier, Tam and Burton provided a description of the physical mechanism by which supersonically traveling instability waves can generate sound efficiently. They used the method of matched asymptotic expansions to construct an instability wave solution which is valid in the far field. The present work is an extension of the theory of Tam and Burton. It is argued that the instability wave spectrum of the jet may be regarded as generated by stochastic white noise excitation at the nozzle lip region. The reason why the excitation has white noise characteristics is that near the nozzle lip region the flow in the jet mixing layer has no intrinsic length and time scales. The present stochastic wave model theory of supersonic jet noise contains a single unknown multiplicative constant. Comparisons between the calculated noise directivities at selected Strouhal numbers and experimental measurements of a Mach 2 jet at different jet temperatures have been carried out. Favorable agreements are found.
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
NASA Technical Reports Server (NTRS)
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
NASA Astrophysics Data System (ADS)
Bi, L.
2016-12-01
Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Turbulent Control Of The Ocean Surface Boundary Layer During The Onset Of Seasonal Stratification
NASA Astrophysics Data System (ADS)
Palmer, M.; Hopkins, J.; Wihsgott, J. U.
2016-02-01
To provide accurate predictions of global carbon cycles we must first understand the mechanistic control of ocean surface boundary layer (OSBL) temperature and the timing and depth of ocean thermal stratification, which are critical controls on oceanic carbon sequestration via the solubility and biological pumps. Here we present an exciting new series of measurements of the fine-scale physical structure and dynamics of the OSBL that provide fresh insight into the turbulent control of upper ocean structure. This study was made in the centre of the Celtic Sea, a broad section of the NW European continental shelf, and represents one of only a handful of measurements of near-surface turbulence in our shelf seas. Data are provided by an ocean microstructure glider (OMG) that delivers estimates of turbulent dissipation rates and mixing from 100m depth to within 2-3m of the sea surface, approximately every 10 minutes and continually for 21 days during April 2015. The OMG successfully captures the onset of spring stratification as solar radiation finally overcomes the destabilising effects of turbulent surface processes. Using coincident meteorological and wave observations from a nearby mooring, and full water column current velocity data we are able to close the near surface energy budget and provide a valuable test for proposed parameterisations of OSBL turbulence based on wind, wave and buoyancy inputs. We verify recent hypotheses that even very subtle thermal stratification, below often assumed limits of 0.1°C, are sufficient to establish sustained stratification even during active surface forcing. We also find that while buoyant production (convection) is not an efficient mechanism for mixing beyond the base of the mixed layer it does play an important role in modification of surface structure, acting to precondition the OSBL for enhanced (deeper) impacts from wind and wave driven turbulence.
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
Lagrangian mixed layer modeling of the western equatorial Pacific
NASA Technical Reports Server (NTRS)
Shinoda, Toshiaki; Lukas, Roger
1995-01-01
Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Rainville, Luc; Perry, Mary Jane
2016-04-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Perry, M. J.
2016-02-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong
2018-05-01
In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Lagrangian particle statistics of numerically simulated shear waves
NASA Astrophysics Data System (ADS)
Kirby, J.; Briganti, R.; Brocchini, M.; Chen, Q. J.
2006-12-01
The properties of numerical solutions of various circulation models (Boussinesq-type and wave-averaged NLSWE) have been investigated on the basis of the induced horizontal flow mixing, for the case of shear waves. The mixing properties of the flow have been investigated using particle statistics, following the approach of LaCasce (2001) and Piattella et al. (2006). Both an idealized barred beach bathymetry and a test case taken from SANDYDUCK '97 have been considered. Random seeding patterns of passive tracer particles are used. The flow exhibits features similar to those discussed in literature. Differences are also evident due both to the physics (intense longshore shear shoreward of the bar) and the procedure used to obtain the statistics (lateral conditions limit the time/space window for the longshore flow). Within the Boussinesq framework, different formulations of Boussinesq type equations have been used and the results compared (Wei et al. 1995, Chen et al. (2003), Chen et al. (2006)). Analysis based on the Eulerian velocity fields suggests a close similarity between Wei et al. (1995) and Chen et. al (2006), while examination of particle displacements and implied mixing suggests a closer behaviour between Chen et al. (2003) and Chen et al. (2006). Two distinct stages of mixing are evident in all simulations: i) the first stage ends at t
Statistical anisotropy in free turbulence for mixing layers at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1996-08-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after propagating through free turbulent mixing layers. Shearing interferometers provide a two-dimensional flow visualization that is nonintrusive. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Experiments were performed on an unbounded, plane shear mixing layer of helium and nitrogen gas at fixed velocities and high Reynolds numbers for six locations in the flow development. Statistical autocorrelation functions and structure functions were computed on the reconstructed phase maps. The autocorrelation function results indicated that the turbulence-induced phase fluctuations were not wide-sense stationary. The structure functions exhibited statistical homogeneity, indicating that the phase fluctuations were stationary in first increments. However, the turbulence-corrupted phase was not isotropic. A five-thirds power law is shown to fit orthogonal slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence. Strehl ratios were computed from the phase structure functions and compared with classical estimates that assume isotropy. The isotropic models are shown to overestimate the optical degradation by nearly 3 orders of magnitude compared with the structure function calculations.
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1997-04-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vásconez, C. L.; Pucci, F.; Valentini, F.
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the rolemore » of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.« less
Enhanced submarine ground water discharge form mixing of pore water and estuarine water
Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.
2004-01-01
Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.
2015-02-01
research cell14. The RC-19 facility is a continuous flow wind tunnel designed to study the mechanisms that govern the mixing and combustion process... angle of 39° from the tunnel bottom wall. The shock generator can translate 170 mm in the flow direction to allow for the shock wave to impinge from...approximate absolute pressure of 20.5 kPa. A series of “ wind -off” images for PSP were collected at that time. The tunnel was then started by setting the
The family of anisotropically scaled equatorial waves
NASA Astrophysics Data System (ADS)
RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo
2011-04-01
In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.