Sample records for wave normal angles

  1. Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.

    2007-12-01

    Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for a range of initial wave normal angles. We conclude that whistler-mode waves with highly oblique wave normal angles may be more effective than previously believed at precipitating > 1 MeV electrons, despite the dependence of the scattering coefficients on wave normal direction.

  2. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.

  3. Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Tkalcevic, S.

    1982-01-01

    A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.

  4. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  5. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  6. Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance

    DOE PAGES

    Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...

    2017-09-05

    Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less

  7. System for determining the angle of impact of an object on a structure

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Gorman, Michael R. (Inventor)

    1993-01-01

    A method for determining the angle of impact of an object on a thin-walled structure which determines the angle of impact through analysis of the acoustic waves which result when an object impacts a structure is presented. Transducers are placed on and in the surface of the structure which sense the wave caused in the structure by impact. The waves are recorded and saved for analysis. For source motion normal to the surface, the antisymmetric mode has a large amplitude while that of the symmetric mode is very small. As the source angle increases with respect to the surface normal, the symmetric mode amplitude increases while the antisymmetric mode amplitude decreases. Thus, the angle of impact is determined by measuring the relative amplitudes of these two lowest order modes.

  8. Immersion angle dependence of the resonant-frequency shift of the quartz crystal microbalance in a liquid: effects of longitudinal wave.

    PubMed

    Yoshimoto, Minoru; Kobirata, Satoshi; Aizawa, Hideo; Kurosawa, Shigeru

    2007-06-19

    We investigated the effects of the longitudinal wave on the immersion angle dependence of the resonant-frequency shift, deltaF, of the quartz crystal microbalance, QCM. In order to study exactly the effects, we employed the three types of cells: normal cell, cell with the glass beads and cell with sponge. The longitudinal wave exists in the normal cell. On the other hand, both the cell with the glass beads and the cell with sponge eliminate the longitudinal wave. As results, we have found that the tendencies of deltaF are the same in the three types of cells. That is, we conclude that the longitudinal wave does not have effects on the immersion angle dependence of deltaF.

  9. Nonlinear VLF Wave Physics in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.

    2014-12-01

    Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function [Storey and Lefeuvre, 1979] to yield the power distribution as a function of wave-normal angle and local azimuthal angle. We have validated this technique in the NRL space chamber and applied this methodology to Van Allen probe data to demonstrate that traditional wave-normal analaysis can give misleading results when multiple waves are present.

  10. Investigating Whistler Mode Wave Diffusion Coefficients at Mars

    NASA Astrophysics Data System (ADS)

    Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.

    2017-12-01

    Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.

  11. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  12. Propagation and Linear Mode Conversion of Magnetosonic and Electromagnetic Ion Cyclotron Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Horne, R. B.; Yoshizumi, M.

    2017-12-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  13. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  14. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-12-09

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.

  15. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  16. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  17. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui

    2017-05-01

    In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.

  18. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  19. Kinematics of reflections in subsurface offset and angle-domain image gathers

    NASA Astrophysics Data System (ADS)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.

  20. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  1. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  2. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  3. Influence of incident angle on the decoding in laser polarization encoding guidance

    NASA Astrophysics Data System (ADS)

    Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan

    2009-07-01

    Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.

  4. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  5. A simulation study on the mode conversion process from slow Z-mode to LO mode by the tunneling effect and variations of beaming angle

    NASA Astrophysics Data System (ADS)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2014-12-01

    For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.

  6. The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters

    NASA Astrophysics Data System (ADS)

    Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen

    2017-12-01

    Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.

  7. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  8. WHEN SHOCK WAVES COLLIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartigan, P.; Liao, A. S.; Foster, J.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  9. When shock waves collide

    DOE PAGES

    Martinez, D.; Hartigan, P.; Frank, A.; ...

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  10. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  11. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  12. Generation of Rising-tone Chorus in a Two-dimensional Mirror Field by Using the General Curvilinear PIC Code

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.

    2017-12-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.

  13. Generation of rising-tone chorus in a two-dimensional mirror field by using the general curvilinear PIC code

    NASA Astrophysics Data System (ADS)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui

    2017-08-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.

  14. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  15. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  16. Qualitative numerical studies of the modification of the pitch angle distribution of test particles by alfvènic wave activity

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to pitch angle diffusion.The framework of our simulations is a first step toward understanding wave particle interactions at the most basic level and is readily expandable to e.g. the inclusion of multiple wave frequencies, intermittent wave activity, gradients in the background magnetic field or collisions with solar wind particles.

  17. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.

  18. Formation events of shoreline sand waves on a gravel beach

    NASA Astrophysics Data System (ADS)

    Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie

    2018-06-01

    Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.

  19. Formation events of shoreline sand waves on a gravel beach

    NASA Astrophysics Data System (ADS)

    Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie

    2018-05-01

    Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.

  20. The normalized magnetic helicity spectrum as a function of the angle between the local mean magnetic field and the flow direction of the solar wind: First results using high resolution magnetic field data from the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2011-12-01

    This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle from the data. The first results from this study are presented here.

  1. Effect of cross grain on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1980-01-01

    An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...

  2. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data.

    PubMed

    Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi

    2018-05-17

    This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σ VV 0 retrieved from new PR models as well as σ HH 0 is in good agreement with σ VV 0 extracted from SAR images directly.

  3. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data

    PubMed Central

    Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi

    2018-01-01

    This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σVV0 retrieved from new PR models as well as σHH0 is in good agreement with σVV0 extracted from SAR images directly. PMID:29772821

  4. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  5. Some Basic Concepts of Wave-Particle Interactions in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    1997-01-01

    The physical concepts of wave-particle interactions in a collisionless plasma are developed from first principles. Using the Lorentz force, starting with the concepts of gyromotion, particle mirroring and the loss-cone, normal and anomalous cyclotron resonant interactions, pitch-angle scattering, and cross-field diffusion are developed.

  6. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  7. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  8. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  9. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  10. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

    PubMed Central

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-01

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves. PMID:28106090

  11. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    PubMed

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  12. Nonnormality increases variance of gravity waves trapped in a tilted box

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Borcia, Ion Dan; Krebs, Andreas

    2017-04-01

    We study the prototype problem of internal gravity waves in a square domain tilted with respect to the gravity vector by an angle theta. Only when theta is zero regular normal modes exist, for all other angles wave attractors and singularities dominate the flow. We show that the linear operator of the governing PDE becomes non-normal for nonzero theta giving rise to non-modal transient growth. This growth depends on the underlying norm: for the variance norm significant growth rates can be found whereas for the energy norm, no growth is possible since there is no source for energy (in contrast to shear fows, for which the mean flow feeds the perturbations). We continue by showing that the nonnormality of the system matrix is increasing with theta and reaches a maximum when theta is 45 degree. Moreover, the growth rate is increasing as can be expected from the increasing nonnormality of the matrix. Our results imply that at least the most simple wave attractors can be seen as those initial flow fields that gain most of the variance during a given time period.

  13. ELF propagation in the plasmasphere based on satellite observations of discrete and continuous forms

    NASA Technical Reports Server (NTRS)

    Muzzio, J. L. R.

    1971-01-01

    The propagation of electromagnetic waves in a nonhomogeneous anisotropic medium is examined from the point of view of geometrical optics. In particular, the propagation of ELF waves in the magnetosphere is described in terms of the electron and ion densities and the intensity and inclination of the earth's magnetic field. The analysis of the variations of wave normal angle along the ray path is extended to include the effects of ions. A comparison of the relative importance of each of the above parameters in controlling the orientation of the wave normals is made in the region of the magnetosphere where most of the ion whistlers have been detected.

  14. Ray-tracing studies and path-integrated gains of ELF unducted whistler mode waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Goertz, C. K.

    1983-01-01

    Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.

  15. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  16. Three dimensional ray tracing Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1982-01-01

    Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.

  17. Formation and characterization of perpendicular mode Si ripples by glancing angle O{sub 2}{sup +} sputtering at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollick, S. A.; Ghose, D.

    Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less

  18. Quantifying Mitigation Characteristics of Shock Isolation Seats in a Wave Impact Environment

    DTIC Science & Technology

    2015-01-01

    thank Dr. Jack L. Price , Director of Research, Naval Surface Warfare Center, Carderock Division for overall management of wave slam phenomenology...of the Z and X acceleration vectors is used as an indicator of the change in impact angle for different types of wave impacts (i.e., skimming on a...acceleration vector is on the order of 87.7 degrees from the deck surface (or 2.3 degrees from normal to the deck, as in skimming a wave crest or

  19. An anisotropic lens for transitioning plane waves between media of different permittivities

    NASA Astrophysics Data System (ADS)

    Stone, Alexander P.; Baum, Carl E.

    1988-11-01

    A particularly simple geometry is considered in which an inhomogeneous and anisotropic lens is specified for the transition of plane waves between media of different permittivities. The permittivities of the regions outside of the lens can be constant, but the permittivity of the lens region depends on position. Results are presented for a plane wave in the second medium propagating normally to the assumed plane boundary of that medium. The results for the case of normal incidence are then generalized to the case of nonnormal incidence. The conditions of transit time conservation and impedance matching are related to the Brewster angle.

  20. Collisional damping rates for electron plasma waves reassessed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J. W.; Brunner, S.; Berger, R. L.

    Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less

  1. Collisional damping rates for electron plasma waves reassessed

    DOE PAGES

    Banks, J. W.; Brunner, S.; Berger, R. L.; ...

    2017-10-13

    Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less

  2. A statistical study of EMIC waves observed by Cluster: 1. Wave properties

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-01

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  3. ECRH launching scenario in FFHR-d1

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  4. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L~3.5-4. In the region between, 90°-minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2

  5. Octonacci photonic crystals with negative refraction index materials

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2016-12-01

    We investigate the optical transmission spectra for s-polarized (TE) and p-polarized (TM) waves in one-dimensional photonic quasicrystals on a quasiperiodic multilayer structure made up by alternate layers of SiO2 and metamaterials, organized by following the Octonacci sequence. Maxwell's equations and the transfer-matrix technique are used to derive the transmission spectra for the propagation of normally and obliquely incident optical fields. We assume Drude-Lorentz-type dispersive response for the dielectric permittivity and magnetic permeability of the metamaterials. For normally incident waves, we observe that the spectra does not have self-similar behavior or mirror symmetry and it also features the absence of optical band gap. Also for normally incident waves, we show regions of full transmittance when the incident angle θC = 0° in a particular frequency range.

  6. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  7. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2016-07-01

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.

  8. Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L˜3.5-4. In the region between, 90° minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90° minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, but this mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.

  9. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  10. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  11. Ripple formation on Si surfaces during plasma etching in Cl2

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  12. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  13. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Hines, D. E.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Jensen, J.; Lee, S.; Fandry, C.

    1999-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the 36 GHz (8.3 mm) NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 deg roll attitude, interrogating off-nadir incidence angles from -15 deg through nadir to +29 deg. The aircraft turned azimuthally through 810 deg in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 m to 65 m). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. A unique feature of this experiment was the use of a nadir-directed low-gain horn antenna (35 deg beamwidth) to acquire azimuthally integrated backscattered power data versus incidence angle before and after the turn data.

  14. Stress measurement in thick plates using nonlinear ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less

  15. Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Paulson, K. W.; Ahmadi, N.; Matsui, H.; Torbert, R. B.; Alm, L.; Le Contel, O.; Khotyaintsev, Y. V.; Wilder, F. D.; Turner, D. L.; Strangeway, R. J.; Schwartz, S. J.; Magnes, W.; Giles, B. L.; Lindqvist, P. A.; Ergun, R.; Mauk, B.; Leonard, T. W.

    2017-12-01

    Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.

  16. Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance

    NASA Technical Reports Server (NTRS)

    Hwang, Y. M.

    1974-01-01

    The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.

  17. Coronary Blood Flow Is Increased in RV Hypertrophy, but the Shape of Normalized Waves Is Preserved Throughout the Arterial Tree.

    PubMed

    Huo, Yunlong; Kassab, Ghassan S

    2018-01-01

    A pulsatile hemodynamic analysis was carried out in the right coronary arterial (RCA) tree of control and RV hypertrophy (RVH) hearts. The shape of flow and wall shear stress (WSS) waves was hypothesized to be maintained throughout the RCA tree in RVH (i.e., similar patterns of normalized flow and WSS waves in vessels of various sizes). Consequently, we reconstructed the entire RCA tree down to the first capillary bifurcation of control and RVH hearts based on measured morphometric data. A Womersley-type model was used to compute the flow and WSS waves in the tree. The hemodynamic parameters obtained from experimental measurements were incorporated into the numerical model. Given an increased number of arterioles, the mean and amplitude of flow waves at the inlet of RCA tree in RVH was found to be two times larger than that in control, but no significant differences ( p > 0.05) were found in precapillary arterioles. The increase of stiffness in RCA of RVH preserved the shape of normalized flow and WSS waves, but increased the PWV in coronary arteries and reduced the phase angle difference for the waves between the most proximal RCA and the most distal precapillary arteriole. The study is important for understanding pulsatile coronary blood flow in ventricular hypertrophy.

  18. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2016-07-01

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less

  19. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less

  20. Oil Slick Observation at Low Incidence Angles in Ku-Band

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  1. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  2. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  3. Generation and propagation of electromagnetic waves in the magnetosphere. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.

    1973-01-01

    Characteristics of broadband ELF, VLF, and LF emissions in the magnetosphere were calculated assuming incoherent Cerenkov radiation from magnetospheric electrons with energies from 50 eV to 50 keV. Calculations were included to determine the ray paths of the emitted waves. A diffusive equilibrium model of the magnetosphere with an ionosphere, plasmapause, and a centered dipole magnetic field was used. Ray path calculations were done in three dimensions. Using simultaneous energetic electron and VLF data, comparisons were made between calculated and observed VLF hiss. Assuming a wave normal angle six degrees from the resonance cone angle, the calculated spectral densities are both two orders of magnitude below the observed spectral densities. It seems unlikely that VLF hiss is produced by incoherent Cerenkov radiation. The observed spectral shape of V-shaped VLF hiss is similar to that calculated from incoherent Cerenkov radiation.

  4. Role of surface electromagnetic waves in metamaterial absorbers

    DOE PAGES

    Chen, Wen -Chen; Cardin, Andrew; Koirala, Machhindra; ...

    2016-03-18

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Furthermore, experimental results are supportedmore » by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.« less

  5. Right precordial-directed electrocardiographical markers identify arrhythmogenic right ventricular cardiomyopathy in the absence of conventional depolarization or repolarization abnormalities.

    PubMed

    Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G

    2017-10-13

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p < 0.004 to p < 0.001). The RPD angle and RtRMS-QRS best differentiated the groups. Combined, the 2 novel criteria gave 81.8% sensitivity, 90.9% specificity and odds ratio of 45.0 (95% confidence interval 15.8 to 128.2). ARVD/C disease process may lead to development of subtle ECG abnormalities that can be distinguishable using right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.

  6. Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.

    PubMed

    Sagers, Jason D; Haberman, Michael R; Wilson, Preston S

    2013-09-01

    Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.

  7. An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Meral Ozel, Nurcan

    2013-04-01

    An earthquake source parameter sensitivity analysis for tsunami propagation in the Eastern Mediterranean has been performed based on 8 August 1303 Crete and Dodecanese Islands earthquake resulting in destructive inundation in the Eastern Mediterranean. The analysis involves 23 cases describing different sets of strike, dip, rake and focal depth, while keeping the fault area and displacement, thus the magnitude, same. The main conclusions of the evaluation are drawn from the investigation of the wave height distributions at Tsunami Forecast Points (TFP). The earthquake vs. initial tsunami source parameters comparison indicated that the maximum initial wave height values correspond in general to the changes in rake angle. No clear depth dependency is observed within the depth range considered and no strike angle dependency is observed in terms of amplitude change. Directivity sensitivity analysis indicated that for the same strike and dip, 180° shift in rake may lead to 20% change in the calculated tsunami wave height. Moreover, an approximately 10 min difference in the arrival time of the initial wave has been observed. These differences are, however, greatly reduced in the far field. The dip sensitivity analysis, performed separately for thrust and normal faulting, has both indicated that an increase in the dip angle results in the decrease of the tsunami wave amplitude in the near field approximately 40%. While a positive phase shift is observed, the period and the shape of the initial wave stays nearly the same for all dip angles at respective TFPs. These affects are, however, not observed at the far field. The resolution of the bathymetry, on the other hand, is a limiting factor for further evaluation. Four different cases were considered for the depth sensitivity indicating that within the depth ranges considered (15-60 km), the increase of the depth has only a smoothing effect on the synthetic tsunami wave height measurements at the selected TFPs. The strike sensitivity analysis showed clear phase shift with respect to the variation of the strike angles, without leading to severe variation of the initial and maximum waves at locations considered. Travel time maps for two cases corresponding to difference in the strike value (60° vs 150°) presented a more complex wave propagation for the case with 60° strike angle due to the fact that the normal of the fault plane is orthogonal to the main bathymetric structure in the region, namely the Eastern section of the Hellenic Arc between Crete and Rhodes Islands. For a given set of strike, dip and focal depth parameters, the effect of the variation in the rake angle has been evaluated in the rake sensitivity analysis. A waveform envelope composed of symmetric synthetic recordings at one TFPs could be clearly observed as a result of rake angle variations in 0-180° range. This could also lead to the conclusion that for a given magnitude (fault size and displacement), the expected maximum and minimum tsunami wave amplitudes could be evaluated as a waveform envelope rather limited to a single point of time or amplitude. The Evaluation of the initial wave arrival times follows an expected pattern controlled by the distance, wheras maximum wave arrival time distribution presents no clear pattern. Nevertheless, the distribution is rather concentrated in time domain for some TFPs. Maximum positive and minimum negative wave amplitude distributions indicates a broader range for a subgroup of TFPs, wheras for the remaining TFPs the distributions are narrow. Any deviation from the expected trend of calculating narrower ranges of amplitude distributions could be interpreted as the result o the bathymetry and focusing effects. As similar studies conducted in the different parts of the globe indicated, the main characteristics of the tsunami propagation are unique for each basin. It should be noted, however, that the synthetic measurements obtained at the TFPs in the absence of high-resolution bathymetric data, should be considered only an overall guidance. The results indicate the importance of the accuracy of earthquake source parameters for reliable tsunami predictions and the need for high-resolution bathymetric data to be able to perform calculations with higher accuracy. On the other hand, this study did not address other parameters, such as heterogeneous slip distribution and rupture duration, which affect the tsunami initiation and propagation process.

  8. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  9. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chang; Su, Z.; Xiao, F.

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistlermode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently atmore » the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches ~ 35–95 pT in the case of distinct butterfly distributions with BI > 1:3. For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.« less

  10. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    DOE PAGES

    Yang, Chang; Su, Z.; Xiao, F.; ...

    2017-05-14

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistlermode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently atmore » the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches ~ 35–95 pT in the case of distinct butterfly distributions with BI > 1:3. For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.« less

  11. Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations

    NASA Technical Reports Server (NTRS)

    Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.

    1985-01-01

    Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.

  12. A summary of the results from the UCLA OGO-5 fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.; Russell, C. T.

    1973-01-01

    The OGO-5 fluxgate magnetometer experiment (E-14) was designed to measure the vector magnetic field over the full range of the OGO-5 orbit. Thus, it had a dynamic range of + or - 64,000 gamma yet it maintained a precision of + or - 1/16 gamma at all times. This enabled a broad spectrum of problems to be attached. Studies of the magnetospheric waves, currents, waves-particle interactions, pitch angle distributions and wave normal directions were made. The structure of the magnetopause, the magnetotail, and bow shock were probed, waves and discontinuities in the solar wind were examined and the various phases of substorms were examined in depth.

  13. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  14. First report of resonant interactions between whistler mode waves in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Wang, Shui

    2017-06-01

    Nonlinear physics related to whistler mode waves in the Earth's magnetosphere are now becoming a hot topic. In this letter, based on Time History of Events and Macroscale Interactions during Substorms waveform data, we report several interesting whistler mode wave events, where the upper band whistler mode waves are believed to be generated through the nonlinear wave-wave coupling between two lower band waves. This is the first report on resonant interactions between whistler mode waves in the Earth's magnetosphere. In these events, the two lower band whistler mode waves are observed to have oppositely propagating directions, while the generated upper band wave has the same propagating direction as the lower band wave with the relatively higher frequency. Moreover, the wave normal angle of the excited upper band wave is usually larger than those of two lower band whistler mode waves. Our results reveal the large diversity of the evolution of whistler mode waves in the Earth's magnetosphere.

  15. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies ≥1 keV, and for whistler mode chorus waves, structures appear for energies >2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.« less

  16. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  17. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    NASA Astrophysics Data System (ADS)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  18. Nonlinear damping of oblique whistler mode waves through Landau resonance

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.

  19. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  20. Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence

    NASA Astrophysics Data System (ADS)

    Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-05-01

    Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.

  1. A broadband high-transmission gradient phase discontinuity metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Yahong; Liu, Congcong; Song, Kun; Li, Meize; Zhao, Xiaopeng

    2018-03-01

    Metasurfaces have attracted significant attention due to the control of the electromagnetic waves that they enable. In this paper, we demonstrate a high-transmission gradient phase discontinuity metasurface composed of metallic rods and cylindrical dielectric resonators operating at a broadband microwave frequency from 8 GHz to 9.8 GHz, with a fractional bandwidth of 20.2%. The proposed gradient phase discontinuity metasurface can achieve complete 2π transmission phase coverage with π/4 phase intervals by varying the geometric parameters of the dielectric resonators and metallic rods. It is shown that the proposed metasurface can refract a normally incident plane wave to an angle of 30°. The broadband metasurface is flexible, and the refracted angle can be adjusted easily by varying the lattice constant. Besides the broadband anomalous refraction, we also demonstrate the metasurface can produce an interesting vortex and wave-focusing in the wide frequency range from 8 GHz to 9.8 GHz. Finally, we demonstrate that the present metasurface can tailor interference wavefronts to plane wavefronts.

  2. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  3. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  4. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Abdo-Sánchez, Elena; Epstein, Ariel; Eleftheriades, George V.

    2018-03-01

    Huygens' metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens' metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8° at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens' metasurface at microwave frequencies.

  5. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten themore » corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.« less

  6. An experimental/computational study of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5 - Experimental results

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.; Dolling, David S.

    1992-01-01

    A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.

  7. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    DOE PAGES

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; ...

    2016-08-16

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten themore » corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.« less

  8. Ogo 4 observations of extremely low frequency hiss.

    NASA Technical Reports Server (NTRS)

    Muzzio, J. L. R.; Angerami, J. J.

    1972-01-01

    Analysis of ELF and VLF data from the Stanford University experiment on Ogo 4 revealed an ELF hiss band with characteristics not previously identified. The band, referred to as band-limited ELF hiss, is seen from low to medium latitudes. On the basis of wave-propagation properties, it is proposed that the BLH is generated at large wave normal angles in the equatorial region near L = 4. This model can be used to explain the characteristics of the BLH. Two mechanisms for the generation of BLH based on radiation from energetic electrons are considered.

  9. Study of Proximity Effect at D-Wave Superconductors in Quasiclassical Methods

    NASA Astrophysics Data System (ADS)

    Tanuma, Y.; Tanaka, Y.; Kashiwaya, S.

    2005-08-01

    Tunneling spectra via Andreev bound states between a normal metal (N) / dx2-y2-wave superconductor (S) (in the presence of a subdominant s-wave pair potential) junction are investigated. In the present work, in order to study the role of proximity effect, we employ quasiclassical Green's function methods. This merit is that we can determine the spatial variation of the pair potentials self-consistently, where the leaking of pair potentials into the N side is involved. In the N/S junction with orientational angle θ = π/4, we can regard as the isolated d-wave superconductor, where attractive interaction in the N side is negligible. On the other hand, in the case of a high transparent contact to the d-wave superconductor (θ = 0), the pair potential penetrates into the inside of the N due to the proximity effect, where the is-wave is not indued at all. Then, the tunneling spectra has a very sharp zero-energy peak (ZEP). This ZEP originates from the fact that quasiparticles feel different sign of the pair potentials between normal metals and d-wave superconductors through Andreev reflections. We show that the spatial dependence of pair potentials is significantly sensitive to the transparency of the junction.

  10. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed qualitatively well with the experimental results for relatively blunt projectiles (cone half-angle larger than 35°) and low mixture pressures (lower than 100 kPa). The trend of the critical Damköhler number calculated along the projectile cone surface was similar to that of the experimental results for slender cones (cone half-angles lower 35°) and high mixture pressures (higher than 100 kPa). Steady 2D simulations of reacting flows over finite wedges using the method of characteristics with a one-step Arrhenius chemical reaction model reproduced the three regimes observed for direct initiation of a detonation: the subcritical, critical and supercritical regimes. It is shown that in order for a 2D wedge to be equivalent to the problem of blast initiation of a detonation (which is the essence of the Lee-Vasiljev model), the Mach number normal to the oblique shock needs to be greater than 50 and the wedge angle has to be smaller than 30°. Simulations of reacting flows over semi-infinite wedges and cones were validated with CFD results. Excellent agreement was reached between the angle of overdriven oblique detonations obtained from the simulations and those from a polar analysis. For wedge or cone angles equal or lower than the minimum angle for which an oblique detonation is attached (according to the polar analysis), a Chapman-Jouguet oblique detonation was initiated. In the conical configuration, the curvature around the cone axis allowed an oblique detonation to be self-sustained at an angle less than without the curvature effect. At larger activation energies, the initiation process of an oblique detonation wave at the tip of a semi-infinite wedge or cone was identified. Unsteady 2D computational simulations were also conducted and showed the cellular structure of an oblique detonation wave. Instabilities in the form of transverse shock waves along the oblique detonation front arise for large activation energies.

  11. Gyrosynchrotron radiation formulae. [analysis of electron moving along a helical path in a magnetoactive medium

    NASA Technical Reports Server (NTRS)

    Ko, H. C.

    1973-01-01

    The wave-normal emissivity and the ray emissivity formulas for an electron moving along a helical path in a magnetoactive medium are presented. Simplified formulas for the case of an isotropic plasma are also given. Because of the helical motion of the electron, a difference exists between the radiated power per unit solid angle and the received power per unit solid angle. The relation between these two quantities in a magnetoactive medium is shown. Results are compared with those obtained by others, and the sources of discrepancies are pointed out.

  12. Recording polarization gratings with a standing spiral wave

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  13. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, Henry H. B.

    1980-01-01

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  14. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, H.H.B.; Forster, G.A.

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  15. Spin wave modes in out-of-plane magnetized nanorings

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Tartakovskaya, E. V.; Kakazei, G. N.; Adeyeye, A. O.

    2017-07-01

    We investigated the spin wave modes in flat circular permalloy rings with a canted external bias field using ferromagnetic resonance spectroscopy. The external magnetic field H was large enough to saturate the samples. For θ =0∘ (perpendicular geometry), three distinct resonance peaks were observed experimentally. In the case of the cylindrical symmetry violation due to H inclination from normal to the ring plane (the angle θ of H inclination was varied in the 0∘-6∘ range), the splitting of all initial peaks appeared. The distance between neighbor split peaks increased with the θ increment. Unexpectedly, the biggest splitting was observed for the mode with the smallest radial wave vector. This special feature of splitting behavior is determined by the topology of the ring shape. Developed analytical theory revealed that in perpendicular geometry, each observed peak is a combination of signals from the set of radially quantized spin wave excitation with almost the same radial wave vectors, radial profiles, and frequencies, but with different azimuthal dependencies. This degeneracy is a consequence of circular symmetry of the system and can be removed by H inclination from the normal. Our findings were further supported by micromagnetic simulations.

  16. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    NASA Astrophysics Data System (ADS)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  17. Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington

    USGS Publications Warehouse

    Miller, I.M.; Warrick, J.A.; Morgan, C.

    2011-01-01

    Mixed beaches, with poorly sorted grains of multiple sizes, are a common and globally distributed shoreline type. Despite this, rates and mechanisms of sediment transport on mixed beaches are poorly understood. A series of tracer deployments using native clasts implanted with Radio Frequency Identifier (RFID) tags was used to develop a better understanding of sediment transport directions and magnitudes on the mixed grain-size beach of the Elwha River delta. Using tracer samples selected to match the distribution of the coarse fraction on the beach we find that all grain sizes, up to large cobbles (128-256 mm), were mobile under most measured wave conditions and move in relationship to the direction of the alongshore component of wave energy as estimated by incident breaking wave angles. In locations where the breaking wave is normal to the shoreline we find that tracers move in both alongshore directions with approximately equal frequency. In locations where breaking waves are oblique to the shoreline we find that alongshore transport is more unidirectional and tracers can approach average velocities of 100. m/day under winter wave conditions. We use the tracer cloud to estimate the beach active width, the mobile layer depth and sediment velocity. Our results suggest that, while sediment velocity increases under increased incident wave angles, the active layer depth and width decrease, reducing sediment flux at the site with the more oblique breaking waves. This result is contrary to what is suggested by traditional wave energy transport models of alongshore sediment transport. ?? 2011 Elsevier B.V.

  18. Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids

    NASA Astrophysics Data System (ADS)

    Wenzlau, F.; Altmann, J. B.; Müller, T. M.

    2010-07-01

    Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.

  19. Bed forms created by simulated waves and currents in a large flume

    USGS Publications Warehouse

    Lacy, Jessica R.; Rubin, David M.; Ikeda, Hiroshi; Mokudai, Kuniyasu; Hanes, Daniel M.

    2007-01-01

    The morphology and evolution of bed forms created by combinations of waves and currents were investigated using an oscillating plate in a 4-m-wide flume. Current speed ranged from 0 to 30 cm/s, maximum oscillatory velocity ranged from 20 to 48 cm/s, oscillation period was 8 s (except for one run with 12 s period), and the median grain size was 0.27 mm. The angle between oscillations and current was 90°, 60°, or 45°. At the end of each run the sand bed was photographed and ripple dimensions were measured. Ripple wavelength was also determined from sonar images collected throughout the runs. Increasing the ratio of current to wave (i.e., oscillatory) velocity decreased ripple height and wavelength, in part because of the increased fluid excursion during the wave period. Increasing the ratio of current to waves, or decreasing the angle between current and waves, increased the three-dimensionality of bed forms. During the runs, ripple wavelength increased by a factor of about 2. The average number of wave periods for evolution of ripple wavelength to 90% of its final value was 184 for two-dimensional ripples starting from a flat bed. Bed form orientations at the end of each run were compared to four potential controlling factors: the directions of waves, current, maximum instantaneous bed shear stress, and maximum gross bed form normal transport (MGBNT). The directions of waves and of MGBNT were equally good predictors of bed form orientations, and were significantly better than the other two factors.

  20. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  1. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  2. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  3. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy due to the applied stress anisotropy.

  4. User Manual for Program SCOMOT Second Part of U.S.C.G. Ship Motion Program.

    DTIC Science & Technology

    1981-02-01

    wave angle, etc. - 52 - Entry 8 - Jl - First Index Number First index for motion calculation using coordinate points or moment and force calculations using...162.4 .6500 .5434 .2942 179.8 .6786 170.0 1.0258 161.8 1.4070 144.3 .7000 .4686 .1774 179.6 .5946 167.1 1.0292 154.8 1.2598 110.5 .7500 .4082 . 0786 ...SHIP MOTION PROGRAM 77.1 02/24/81 05.49.12 PAGE 52 SL-7 - NORMAL FULL LOAD DEPARTURE SPEED = 25.000 KNOTS REGULAR WAVE LATERAL BENDING MOMENT AT STATION

  5. Shear Wave Velocities in the Pampean Flat Slab Region from Rayleigh Wave Tomography: Implications for Crustal Composition and Upper Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; Gilbert, H. J.; Zandt, G.; Beck, S. L.; Warren, L. M.; Calkins, J. A.; Alvarado, P. M.; Anderson, M. L.

    2011-12-01

    The Pampean flat slab region, located in Chile and western Argentina between 29° and 34° S, is characterized by the subducting Nazca plate assuming a sub-horizontal geometry for ~300 km laterally before resuming a more "normal" angle of subduction. The onset of flat slab subduction is associated with the cessation of regional arc related volcanism and the migration of deformation inboard from the high Andes into the thin-skinned Precordillera and thick-skinned Sierras Pampeanas. Developing a better understanding of this region's geology is of particular importance, as it is an ideal area to study flat slab subduction and serves as a modern analogue to Laramide flat slab subduction in the western US. To study the crustal and mantle structure in the region, we combine ambient noise tomography and ballistic surface wave tomography to produce a regional 3D shear wave velocity model that encompasses flat slab subduction in the north and normal subduction geometry in the south, allowing for a comparison of the two. Results from this work show that shear velocities within the upper crust are largely determined by composition, with sedimentary basins and areas with active volcanism exhibiting slower velocities than basement cored uplifts and other bedrock exposures. Though surface waves are not particularly sensitive to the depth of sharp velocity contrasts, we observe an eastward increase in shear velocity at depth that correlates with an eastward decrease in crustal thickness. In both the slab and overlying mantle, we observe significant variations in shear wave velocity. North of 32° S, where flat slab subduction is occurring, the Nazca plate contains low-velocity zones (LVZs) beneath the high Andes and Precordillera that are not present in the east beneath the Sierras Pampeanas. An opposite transition is observed in the overlying mantle, which changes from fast in the west to slow in the east. Both of these observations are consistent with an initially hydrated slab dehydrating and releasing water into the overlying mantle. Within this region we also observe a LVZ immediately above the slab as the subduction angle steepens. This zone potentially represents asthenosphere or hydrated lithospheric mantle. South of 32° S, where subduction is occurring at a more normal angle, the slab is visible as a high-velocity body with a low-velocity mantle wedge present beneath the arc and back arc. The variations in slab and upper mantle shear velocities are consistent with a hydrated flat slab and the presence of a LVZ above the flat slab as it steepens suggests that water is being transported to a significant depth or that an asthenospheric wedge is present between the slab and cratonic lithosphere.

  6. Self-organized kilometer-scale shoreline sand wave generation: Sensitivity to model and physical parameters

    NASA Astrophysics Data System (ADS)

    Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime

    2017-09-01

    The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.

  7. Nanoscale topographic pattern formation on Kr{sup +}-bombarded germanium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkinson, Joy C.; Madi, Charbel S.; Aziz, Michael J.

    2013-03-15

    The nanoscale pattern formation of Ge surfaces uniformly irradiated by Kr{sup +} ions was studied in a low-contamination environment at ion energies of 250 and 500 eV and at angles of 0 Degree-Sign through 80 Degree-Sign . The authors present a phase diagram of domains of pattern formation occurring as these two control parameters are varied. The results are insensitive to ion energy over the range covered by the experiments. Flat surfaces are stable from normal incidence up to an incidence angle of {theta} = 55 Degree-Sign from normal. At higher angles, the surface is linearly unstable to the formationmore » of parallel-mode ripples, in which the wave vector is parallel to the projection of the ion beam on the surface. For {theta} {>=} 75 Degree-Sign the authors observe perpendicular-mode ripples, in which the wave vector is perpendicular to the ion beam. This behavior is qualitatively similar to those of Madi et al. for Ar{sup +}-irradiated Si but is inconsistent with those of Ziberi et al. for Kr{sup +}-irradiated Ge. The existence of a window of stability is qualitatively inconsistent with a theory based on sputter erosion [R. M. Bradley and J. M. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)] and qualitatively consistent with a model of ion impact-induced mass redistribution [G. Carter and V. Vishnyakov, Phys. Rev. B 54, 17647 (1996)] as well as a crater function theory incorporating both effects [S. A. Norris et al., Nat. Commun. 2, 276 (2011)]. The critical transition angle between stable and rippled surfaces occurs 10 Degree-Sign -15 Degree-Sign above the value of 45 Degree-Sign predicted by the mass redistribution model.« less

  8. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading

    PubMed Central

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-01-01

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183

  9. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  10. Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces

    PubMed Central

    Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun

    2015-01-01

    We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323

  11. Numerical simulation of large-scale field-aligned current generation from finite-amplitude magnetosonic waves

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.

    1994-01-01

    A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.

  12. The Inhomogeneous Waves in a Rotating Piezoelectric Body

    PubMed Central

    Chen, Si

    2013-01-01

    This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219

  13. The reflection of airborne UV laser pulses from the ocean

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Krabill, W. B.; Swift, R. N.

    1984-01-01

    It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.

  14. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.; hide

    2001-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.

  15. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  16. Hole-cyclotron instability in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.

    2018-01-01

    The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.

  17. Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the low-angle Alto Tiberina normal fault (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio

    2017-01-01

    We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.

  18. ULTRASONIC FLAW DETECTION METHOD AND MEANS

    DOEpatents

    Worlton, D.C.

    1961-08-15

    A method of detecting subsurface flaws in an object using ultrasonic waves is described. An ultnasonic wave of predetermined velocity and frequency is transmitted to engage the surface of the object at a predetermined angle of inci dence thereto. The incident angle of the wave to the surface is determined with respect to phase velocity, incident wave velocity, incident wave frequency, and the estimated depth of the flaw so that Lamb waves of a particular type and mode are induced only in the portion of the object between the flaw and the surface. These Lamb waves are then detected as they leave the object at an angle of exit equal to the angle of incidence. No waves wlll be generated in the object and hence received if no flaw exists beneath the surface. (AEC)

  19. Measuring Directional Wave Spectra and Wind Speed with a Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D.; Wright, C. W.; Swift, R. N.; Scott, J. F.; Hines, D. E.

    1999-01-01

    The geometry for the NASA Scanning Radar Altimeter (SRA) is shown. It transmits a 8-ns duration pulse at Ka-band (8.3 mm) and measures time of flight as it scans a 1 degree (two-way) beam from left to right across the aircraft ground track. The most recent configuration determines the surface elevation at 64 points spaced at uniform angular intervals of about 0.7 across a swath whose width is about 0.8 times the aircraft altitude. The system generates these raster lines of the surface topography beneath the aircraft at about a 10 Hz rate. In postflight processing the SRA wave topographic data are transformed with a two-dimensional Fast Fourier Transformation (FFT) and Doppler corrected to produce directional wave spectra. The SRA is not absolutely calibrated in power, but by measuring the relative fall-off of backscatter with increasing incidence angle, the SRA can also determine the mean square slope (mss) of the sea surface, a surrogate for wind speed. For the slope-dependent specular point model of radar sea surface scattering, an expression approximated by a geometric optics form, for the relative variation with incidence angle of the normalized backscatter radar cross section would be sigma (sup 0) (sub rel) = sec (exp 4) theta exp (-tan squared theta/mss) where theta is the off-nadir incidence angle.

  20. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    NASA Astrophysics Data System (ADS)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.

  1. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    PubMed

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  2. Measuring and modelling the reflectance spectra of male Swinhoe's pheasant feather barbules

    PubMed Central

    Lee, Cheng-Chung; Liao, Shih-Fang; Vukusic, Pete

    2015-01-01

    A range of iridescent colour appearances are presented by male Swinhoe's pheasants' (Lophura swinhoii) mantle feathers. Two distinct regions of the open pennaceous portion of its feathers display particularly conspicuous angle-dependent reflection. A bright blue band appears in one region at normal incidence that spatially shifts to another at higher illumination angles. The two-dimensional photonic crystal-like nanostructures inside the barbules of these two regions are similar. However, this study found that the spatial variation in their colour appearance results from a continuously changing orientation of barbules with respect to the alignment of their associated barb. A multi-layered rigorous coupled-wave analysis approach was used to model the reflections from the identified intra-barbule structures. Well-matched simulated and measured reflectance spectra, at both normal and oblique incidence, support our elucidation of the origin of the bird's distinctive feather colour appearance. PMID:25788537

  3. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter

    NASA Astrophysics Data System (ADS)

    Bouzidi, Youcef; Schmitt, Douglas R.

    2009-08-01

    Two compressional wave modes, a fast P1 and a slow P2, propagate through fluid-saturated porous and permeable media. This contribution focuses on new experimental tests of existing theories describing wave propagation in such media. Updated observations of this P2 mode are obtained through a water-loaded, porous sintered glass bead plate with a novel pair of ultrasonic transducers consisting of a large transmitter and a near-point receiver. The properties of the porous plate are measured in independent laboratory experiments. Waveforms are acquired as a function of the angle of incidence over the range from -50° to +50° with respect to the normal. The porous plate is fully characterized, and the physical properties are used to calculate the wave speeds and attenuations of the P1, the P2, and the shear S waves. Comparisons of theory and observation are further facilitated by numerically modeling the observed waveforms. This modeling method incorporates the frequency and angle of incidence-dependent reflectivity, transmissivity, and transducer edge effects; the modeled waveforms match well those observed. Taken together, this study provides further support for existing poroelastic bulk wave propagation and boundary condition theory. However, observed transmitted P1 and S mode amplitudes could not be adequately described unless the attenuation of the medium's frame was also included. The observed P2 amplitudes could be explained without any knowledge of the solid frame attenuation.

  4. Novel Tiltmeter for Monitoring Angle Shift In Incident Waves

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting 559   NOVEL TILTMETER FOR MONITORING ANGLE SHIFT IN INCIDENT WAVES S... Tiltmeter For Monitoring Angle Shift In Incident Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...up, any angle change of the incident beam ’θ results in a change of the intensity transmission of the resonator.     A NOVEL ANGLE TILTMETER

  5. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.

  6. Generation of Z mode radiation by diffuse auroral electron precipitation

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Lyons, L. R.

    1985-03-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  7. Generation of Z mode radiation by diffuse auroral electron precipitation

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  8. Multimode theory of plasmon excitation at a metal - photonic crystal interface

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. I.; Raspopov, N. A.

    2017-12-01

    Surface plasmon excitation at a photonic crystal - metal interface is studied taking into account multiple scattering of an initial light wave on a periodical crystal structure. The analysis is focused on calculating characteristics of the eigenwaves in a one-dimensional crystal, which comprise a set of harmonics with the wavevectors separated from each other by the value of the crystal lattice wavevector. Reflection from the crystal - metal interface binds the amplitudes of propagating and evanescent modes. Calculations show that for the dielectric characteristics of a synthetic opal and a substrate made of a real metal with a ruby laser radiation used as the initial wave, the fulfilment of plasmon resonance conditions leads to a local increase in the surface plasmon amplitude by a factor of 6.4 - 9 as compared to the average amplitude of the initial wave. As a rule, the effect can only be obtained for a single surface wave, all other waves being substantially weaker than the main plasmon. There is a specific case where the resonance condition holds for two modes simultaneously. In this case, two oppositely directed fluxes of equal intensity are generated at the interface. The resonance condition breaks at a small deviation of the incident angle of the initial wave θ from the normal direction (|θ| ⩾ 10-4 rad). In the latter case, the picture is asymmetric: at angles |θ| ⩾ 5 × 10-3 rad, only one plasmon remains intensive. The local density of electromagnetic energy at the photonic crystal - metal interface may exceed the corresponding value of the initial wave by a factor of 40 - 80.

  9. Broadband Metamaterial for Nonresonant Matching of Acoustic Waves

    DTIC Science & Technology

    2012-03-28

    35898, USA. Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle ...metamaterial possessing a Brewster -like angle that is completely transparent to sound waves over an ultra-broadband frequency range with .100% bandwidth...Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle , but it is

  10. Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru

    2016-06-15

    Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.

  11. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  12. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  13. Effect of d-wave pairing symmetry in transport properties of silicene-based superconductor junction

    NASA Astrophysics Data System (ADS)

    Vosoughi-nia, S.; Rashedi, G.; hajati, Y.

    2018-06-01

    We theoretically study the tunneling conductance of a normal/d-wave superconductor silicene junction using Blonder-Tinkham-Klapwijk (BTK) formalism. We discuss how the conductance spectra are affected by changing the chemical potential (μN) in the normal silicene region. It is obtained that the amplitude of the spin/valley-dependent Andreev reflection (AR) and charge conductance (G) of the junction can be strongly modulated by the orientation angle of superconductive gap (β) and perpendicular electric field (Ez). We demonstrate that the charge conductance exhibits an oscillatory behavior as a function of β by a period of π/2. Remarkably, variation of μN strongly modifies the amplitude of the oscillations and periodically there are transport gaps in the G - β oscillations for a range of μN. These findings suggest that one may experimentally tune the transport properties of the junction through changing β, Ez and μN.

  14. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  15. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  16. Amplification of a high-frequency electromagnetic wave by a relativistic plasma

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.

    1990-01-01

    The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.

  17. Determination of detonation wave boundary angles via hydrocode simulations using CREST

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.; Childs, M.

    2017-01-01

    A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.

  18. A computer program for calculating the perfect gas inviscid flow field about blunt axisymmetric bodies at an angle of attack of 0 deg

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Graves, R. A., Jr.

    1973-01-01

    A method for the rapid calculation of the inviscid shock layer about blunt axisymmetric bodies at an angle of attack of 0 deg has been developed. The procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The flow field solution procedure is programed at the Langley Research Center for the Control Data 6600 computer. The geometries specified in the program are sphores, ellipsoids, paraboloids, and hyperboloids which may conical afterbodies. The normal momentum equation is replaced with an approximate algebraic expression. This simplification significantly reduces machine computation time. Comparisons of the present results with shock shapes and surface pressure distributions obtained by the more exact methods indicate that the program provides reasonably accurate results for smooth bodies in axisymmetric flow. However, further research is required to establish the proper approximate form of the normal momentum equation for the two-dimensional case.

  19. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  20. The occurrence, spatial distribution, and wave properties of hydrogen-, helium-, and oxygen-band EMIC waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Saikin, A.; Zhang, J.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Jordanova, V.

    2014-12-01

    Electromagnetic ion cyclotron (EMIC) waves play an important role in the overall dynamics of the Earth's magnetosphere, including the energization and loss of particles. We perform a statistical study of EMIC waves detected by the Van Allen Probes mission to investigate their occurrence, spatial distribution, and properties (e.g., wave power, normal angle, and ellipticity). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard Van Allen Probes are used to identify EMIC wave events from the beginning of the mission (September, 2012) to the present. EMIC waves are examined in hydrogen, helium and oxygen bands. So far, about 280 EMIC wave events have been identified over the three different bands. Preliminary results show that hydrogen-band EMIC waves have been primarily observed in the dusk sector, while helium-band EMIC waves have been observed in all Magnetic Local Times (MLTs). Particularly, the Van Allen Probes provide a better resolution of lower frequencies (0.2-0.9 Hz), within which oxygen-band EMIC waves can occur in the inner magnetosphere. This allows us to obtain better insight into the characteristics of this previously largely unavailable band of EMIC waves, and allows for comparisons amongst EMIC waves in different bands.

  1. Effect of skew angle on second harmonic guided wave measurement in composite plates

    NASA Astrophysics Data System (ADS)

    Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.

    2017-02-01

    Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.

  2. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  3. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  4. Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.

  5. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    PubMed

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  6. Shock drift acceleration in the presence of waves

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  7. Analytical study of the reflection and transmission coefficient of the submarine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Guangli; Hao, Chongtao; Yao, Chen

    2018-05-01

    The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.

  8. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE PAGES

    Fishman, Randy S.

    2018-01-03

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  9. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  10. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  11. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations

    NASA Astrophysics Data System (ADS)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.

    2016-10-01

    This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.

  12. The saturation of monochromatic lights obliquely incident on the retina.

    PubMed Central

    Alpern, M; Tamaki, R

    1983-01-01

    Foveal dark-adaptation undertaken to test the hypothesis that the excitation of rods causes the desaturation of 'yellow' lights in a 1 degree field traversing the margin of the pupil, fails to exclude that possibility. The desaturation is largest for a 1 degree outside diameter annular test, is still measurable with a 0.5 degree circular disk, but disappears for a 0.29 degree disk. The supersaturation of obliquely incident 501.2 nm test light follows the opposite pattern; it disappears with an annulus and is largest for a 0.29 degree circular field. It is unlikely that rods replace short-wave sensitive cones in the trichromatic match of an obliquely incident test with normally incident primaries. If rods as well as all three cones species are involved, the matches might not be trichromatic in the strong sense. Grassmann's law of scalar multiplication was tested and shown not to hold for the match of an obliquely incident test with normally incident primaries, though it remains valid whenever, both primaries and test strike the retina at the same angle of incidence (independent of that angle). The result in section 3 (above) cannot be due to rod intrusion. It persists (and becomes more conspicuous) on backgrounds (4.0 log scotopic td) which saturate rods. Moreover obliquely incident 'yellow' lights remain desaturated in intervals in the dark after a full bleach, whilst the test field is below rod threshold. The amount of desaturation does not differ appreciably from that normally found. The assumption of the unified theory of Alpern, Kitahara & Tamaki (1983) that the outer segments of only a single set of three cone species (with acceptance angles wide enough to include the entire exit pupil) contain the visual pigments absorbing both the normally incident primaries and the obliquely incident test is disproved by these results. Failure of Grassmann's law is most conspicuous under the conditions for which the changes in saturation upon changing from normal to oblique incidence are greatest and least when the saturation changes are the smallest. Either all unified theories of the Stiles-Crawford effects are wrong or all the effects of oblique incidence operate at a stage in the visual process at which the effects of radiation of different wave-lengths are no longer compounded by the simple linear laws. PMID:6875976

  13. A method of directly extracting multiwave angle-domain common-image gathers

    NASA Astrophysics Data System (ADS)

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  14. Solution of the wave equation for open surfaces involving a line integral over the edge. [for supersonic propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    A simple mathematical model of a stationary source distribution for the supersonic-propeller noise-prediction formula of Farassat (1983) is developed to test the validity of the formula solutions. The conventional thickness source term is used in place of the Isom thickness formula; the relative importance of the line and surface integrals in the solutions is evaluated; and the numerical results are compared with those obtained with a conventional retarded-time solution in tables. Good agreement is obtained over elevation angles from 10 to 90 deg, and the line-integral contribution is found to be significant at all elevation angles and of the same order of magnitude as the surface-integral contribution at angles less than 30 deg. The amplitude-normalized directivity patterns for the four cases computed (x = 1.5 or 10; k = 5.0 or 50) are presented graphically.

  15. Direct evidence for EMIC wave scattering of relativistic electrons in space

    NASA Astrophysics Data System (ADS)

    Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Blake, J. B.; Fennell, J. F.

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth's outer radiation belt.

  16. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  17. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  18. Magnetospheric Whistler Mode Raytracing with the Inclusion of Finite Electron and ion Temperature

    NASA Astrophysics Data System (ADS)

    Maxworth, Ashanthi S.

    Whistler mode waves are a type of a low frequency (100 Hz - 30 kHz) wave, which exists only in a magnetized plasma. These waves play a major role in Earth's magnetosphere. Due to the impact of whistler mode waves in many fields such as space weather, satellite communications and lifetime of space electronics, it is important to accurately predict the propagation path of these waves. The method used to determine the propagation path of whistler waves is called numerical raytracing. Numerical raytracing determines the power flow path of the whistler mode waves by solving a set of equations known as the Haselgrove's equations. In the majority of the previous work, raytracing was implemented assuming a cold background plasma (0 K), but the actual magnetosphere is at a temperature of about 1 eV (11600 K). In this work we have modified the numerical raytracing algorithm to work at finite electron and ion temperatures. The finite temperature effects have also been introduced into the formulations for linear cyclotron resonance wave growth and Landau damping, which are the primary mechanisms for whistler mode growth and attenuation in the magnetosphere. Including temperature increases the complexity of numerical raytracing, but the overall effects are mostly limited to increasing the group velocity of the waves at highly oblique wave normal angles.

  19. Mitral valve coaptation and its relationship to late diastolic flow: A color Doppler and vector flow map echocardiographic study in normal subjects.

    PubMed

    Sherrid, Mark V; Kushner, Josef; Yang, Georgiana; Ro, Richard

    2017-04-01

    Three competing theories about the mechanism of mitral coaptation in normal subjects were evaluated by color Doppler and vector flow mapping (VFM): (1) beginning of ventricular (LV) ejection, (2) "breaking of the jet" of diastolic LV inflow, and (3) returning diastolic vortices impacting the leaflets on their LV surfaces. We analyzed 80 color Doppler frames and 320 VFM measurements. In all 20 normal subjects, coaptation occurred before LV ejection, 78±16 ms before onset. On color Doppler frames the larger anterior, and smaller posterior vortices circle back and, in all cases, strike the ventricular surfaces of the leaflets. On the first closing-begins frame, for the first time, vortex velocity normal to the ventricular surface of the anterior leaflet (AML) is greater than that in the mitral orifice, and the angle of attack of LV vortical flow onto the AML is twice as high as the angle of flow onto the valve in orifice. Thus, at the moment coaptation begins, vortical flow strikes the mitral leaflet with higher velocity, and higher angle of attack than orifice flow, and thus with greater force. According to the "breaking of the jet" theory, one would expect to see de novo LV flow perpendicular to the leaflets beginning after transmitral flow terminates. Instead, the returning continuous LV vortical flow that impacts the valve builds continuously after the P-wave. Late diastolic vortices strike the ventricular surfaces of the mitral leaflets and contribute to valve coaptation, permitted by concomitant decline in transmitral flow. © 2017, Wiley Periodicals, Inc.

  20. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates

    PubMed Central

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.

    2016-01-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  1. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.

    PubMed

    Ham, Suyun; Song, Homin; Oelze, Michael L; Popovics, John S

    2017-03-01

    We describe an approach that utilizes ultrasonic surface wave backscatter measurements to characterize the volume content of relatively small distributed defects (microcrack networks) in concrete. A simplified weak scattering model is used to demonstrate that the scattered wave field projected in the direction of the surface wave propagation is relatively insensitive to scatterers that are smaller than the propagating wavelength, while the scattered field projected in the opposite direction is more sensitive to sub-wavelength scatterers. Distributed microcracks in the concrete serve as the small scatterers that interact with a propagating surface wave. Data from a finite element simulation were used to demonstrate the viability of the proposed approach, and also to optimize a testing configuration to collect data. Simulations were validated through experimental measurements of ultrasonic backscattered surface waves from test samples of concrete constructed with different concentrations of fiber filler (0.0, 0.3 and 0.6%) to mimic increasing microcrack volume density and then samples with actual cracking induced by controlled thermal cycles. A surface wave was induced in the concrete samples by a 50kHz ultrasonic source operating 10mm above the surface at an angle of incidence of 9°. Silicon-based miniature MEMS acoustic sensors located a few millimeters above the concrete surface both behind and in front of the sender were used to detect leaky ultrasonic surface waves emanating from concrete. A normalized backscattered energy parameter was calculated from the signals. Statistically significant differences in the normalized backscattered energy were observed between concrete samples with varying levels of simulated and actual cracking damage volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. An observation related to directional attenuation of SKS waves propagating in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xue, Mei

    2015-04-01

    Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.

  3. Numerical study of alfvénic wave activity in the solar wind as a cause for pitch angle scattering with focus on kinetic processes

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Berger, L.; Drews, C.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Recent studies, that determined the inflow longitude of the local interstellar medium from the anisotropy of interstellar pickup ion (PUI) radial velocity, have once again raised the question, how transport effects and especially wave activity in the solar wind modifies the velocity distribution function of PUIs.This study investigates the modification of an oxygen PUI torus distribution by alfvénic waves qualitatively with a numerical approach. The focus of this study is to understand this modification kinetically, which means, that instead of describing the PUI transport through diffusion approaches, we trace the trajectories of test particles in pitch angle space with a time resolution of at least 100 time steps per gyro orbit in order to find first principles of wave particle interactions on the most basic scale.Therefore we have implemented a Leapfrog solver of the Lorentz-Newton equations of motion for a charged test particle in a electro-magnetic field. The alfvénic waves were represented through a continuous circularly polarized wave superimposed to a constant 5 nT background magnetic field. In addition an electric field arising from induction has been added to the simulation's boundary conditions. The simulation code computes the particles' trajectories in the solar wind bulk system.Upon interaction with mono frequent single-frequency waves, the particles are found to perform stationary trajectories in pitch angle space, so that the pitch angle distribution of a conglomerate of test particles does not experience a systematic broadening over time. Also the particles do not react most strongly with waves at resonant frequencies, since the pitch angle modification by the waves sweeps their parallel velocity out of resonance quickly. However, within frequencies close to first order resonance, strong interactions between waves and particles are observed.Altogether the framework of our simulation is readily expandable to simulate additional effects, which may modify the test particles' pitch angle distribution strongly (e.g. collisions with solar wind particles or gradient drifts). So far we have expanded the simulation to support intermittent waves, where we have observed, that the pitch angle distribution of the test particles broadens systematically over time.

  4. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  5. Global Characteristics of Electromagnetic Ion Cyclotron Waves Deduced From Swarm Satellites

    NASA Astrophysics Data System (ADS)

    Kim, Hyangpyo; Hwang, Junga; Park, Jaeheung; Bortnik, Jacob; Lee, Jaejin

    2018-02-01

    It is well known that electromagnetic ion cyclotron (EMIC) waves play an important role in controlling particle dynamics inside the Earth's magnetosphere, especially in the outer radiation belt. In order to understand the results of wave-particle interactions due to EMIC waves, it is important to know how the waves are distributed and what features they have. In this paper, we present some statistical analyses on the spatial distribution of EMIC waves in the low Earth orbit by using Swarm satellites from December 2013 to June 2017 ( 3.5 years) as a function of magnetic local time, magnetic latitude, and magnetic longitude. We also study the wave characteristics such as ellipticity, wave normal angle, peak frequency, and wave power using our automatic wave detection algorithm based on the method of Bortnik et al. (2007, https://doi.org/10.1029/2006JA011900). We also investigate the geomagnetic control of the EMIC waves by comparing with geomagnetic activity represented by Kp and Dst indices. We find that EMIC waves are detected with a peak occurrence rate at midlatitude including subauroral region, dawn sector (3-7 magnetic local time), and linear polarization dominated with an oblique propagating direction to the background magnetic field. In addition, our result shows that the waves have some relation with geomagnetic activity; that is, they occur preferably during the geomagnetic storm's late recovery phase at low Earth orbit.

  6. Surf Zone Currents. Volume I. State of Knowledge.

    DTIC Science & Technology

    1982-09-01

    elevation above an arbitrary datum a angle between wave crest and bottom contour a angle between wave crest and the shoreline . ab angle between breaking...b- Note that neglecting wave setup, refraction and for small ab , equation (74) reduces to that employed by Longuet-Higgins (eq. 48). These researchers...28. As ab o (Note that ab = o means theory reduces to original order (zero order) solution given by Longuet-Higgins, 1970, the triangular solution is

  7. Experimentally determining the locations of two astigmatic images for an underwater light source

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping

    2015-05-01

    Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.

  8. Unraveling the excitation mechanisms of highly oblique lower-band chorus waves

    DOE PAGES

    Li, Wen; Mourenas, D.; Artemyev, A. V.; ...

    2016-08-17

    Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution.more » The second mechanism corresponds to Landau resonance with a 100–500 eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. In conclusion, our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics.« less

  9. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Papas, C. H.; Engheta, N.

    1988-01-01

    The reflection from and transmission through a semiinfinite chiral medium are analyzed by obtaining the Fresnel equations in terms of parallel- and perpendicular-polarized modes, and a comparison is made with results reported previously. The chiral medium is described electromagnetically by the constitutive relations D = (epsilon)E+i(gamma)B and H = i(gamma)E+(1/mu)B. The constants epsilon, mu and gamma are real and have values that are fixed by the size, the shape, and the spatial distribution of the elements that collectively compose the medium. The conditions are obtained for the total internal reflection of the incident wave from the interface and for the existence of the Brewster angle. The effects of the chirality on the polarization and the intensity of the reflected wave from the chiral half-space are discussed and illustrated by using the Stokes parameters. The propagation of electromagnetic wave through an infinite slab of chiral medium is formulated for oblique incidence and solved analytically for the case of normal incidence.

  10. Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science Waveform Receiver Plasma Wave Analysis

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.; hide

    2016-01-01

    We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.

  11. Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Thorne, Richard M.

    2000-03-01

    It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+12) and (n+1)Ωe in regions where waves are also growing locally at <=1.5Ωe. The calculated diffusion rates suggest that ECH waves with amplitudes of the order of 1 mV m-1 can form pancake distributions from an initially isotropic distribution on a timescale of a few hours. This is consistent with recent CRRES observations of ECH wave amplitudes following substorm injections near geostationary orbit and the timescales for pancake formation. Persistent but much weaker ECH waves can further intensify and maintain pancake distributions during magnetically quiet periods.

  12. Direct evidence for EMIC wave scattering of relativistic electrons in space: EMIC-Driven Electron Losses in Space

    DOE PAGES

    Zhang, X. -J.; Li, W.; Ma, Q.; ...

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes.more » EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.« less

  13. Self-organized behavior of modeled shoreline shapes

    NASA Astrophysics Data System (ADS)

    Ashton, A.; Murray, A. B.

    2003-04-01

    Whenever waves approach a coast and break at oblique angles, they drive a current along the shore. This current, along with wave-induced sediment suspension, transports relatively large amounts of sediment, affecting the shape and evolution of a coastline. Traditionally, researchers have assumed that alongshore sediment transport will diffuse, or smooth, bumps along a shoreline. Recent research, however, shows that when the angle between wave crests in deep water and the shoreline is sufficiently high (greater than approximately 45 degrees), a shoreline is unstable. Linear stability analysis does not predict that this instability will cause a preferred wavelength of shoreline perturbation growth or that organized patterns will emerge. However, a simple numerical model of shoreline change shows those when there is a predominance of high angle waves approaching a shoreline, finite-amplitude features will develop that interact with each other and increase in wavelength over time, translating in the direction of net alongshore sediment transport. Some of these simulated features resemble naturally occurring shoreline features, such as 'alongshore sandwaves', 'ords', 'cuspate spits', and 'cuspate forelands'. By varying two wave climate parameters, one describing the relative dominance of waves approaching at high angles and the other controlling the signs of the approach angle of incoming waves (i.e., the asymmetry of waves approaching from the right vs. the left), we investigate how the attributes of the input wave climate determine the aspect ratio and characteristic form of the simulated features. Varying these two parameters also affects the wavelength of the initially fastest growing perturbation. By tracking the average wavelength of simulated features, which increases over time for all simulations, we show that more complicated phenomena, such as rapid period doubling, can dominate simulated shoreline evolution. These rich behaviors result from large-scale emergent interactions. Although the wave distribution determines the character of shoreline features, their specific configuration and evolution is sensitively dependant on both initial conditions and the stochastic sequencing of wave approach angles.

  14. [A new method to orthodontically correct dental occlusal plane canting: wave-shaped arch].

    PubMed

    Zheng, X; Hu, X X; Ma, N; Chen, X H

    2017-02-18

    To introduce a technique of second order wave-shaped arch wire to orthodontically treat dental occlusal plane canting (DOPC) with left-right interactive anchorage, and to test its clinical efficacy. Among the permanent dentition malocclusion patients who showed no obvious facial asymmetry, we screened for patients who showed anterior occlusal plane canting (AOPC) after routine orthodontic examination, treatment planning, MBT fixed appliance installation and serial arch wires alignment. Each patient had been clinically appraised in frontal view by 2 orthodontists and the patient him/herself; if all 3 agreed that the AOPC was obvious, the patient was included. By this means, we included 37 patients, including 10 males and 27 females; the average age was (21.9±5.2) years. To correct AOPC, opposite direction equal curvature second order rocking-chair curve was bent on each side of 0.46 mm×0.56 mm stainless steel edgewise wire. With reference to normal occlusal plane, a curve toward the occlusal surface was made to extrude under-erupted teeth on one side while a curve toward the gingiva was made to intrude over-erupted teeth on the other side, so that the arch wire was made into a wave shape in vertical dimension. Before and after application of wave-shaped arch wire, frontal facial photographs were taken when the patient's mouth was open slightly with lips retracted to show anterior occlusal plane (AOP) clearly. An AOP was constructed by connecting the center of the slot in the medial edge of canine bracket on each side in the photograph. The angles between the bipupillary plane(BPP) and the constructed AOP were measured in ImageJ1-48v software and the angle differences before and after treatment were compared with paired Wilcoxon test in SPSS 10.0 software. The wave-shaped arch could correct AOPC effectively in 3 to 10 months time with an average of 5.5±1.7 months; the angles between AOP and BBP before treatment ranged from 2.90° to 6.12° with a median of 4.01°; after treatment the angles were from -0.17° to 2.57° with a median of 1.87°, the decrease of the angles between AOP and BBP after treatment ranged from 1.08° to 4.15° with a median of 2.21°. Paired Wilcoxon test P was 0.000. The wave-shaped arch can be used independently or in combination with other treatment methods, which can take advantage of left and right interactive anchorage to correct AOPC effectively, so it has certain application value in clinical practice.

  15. Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

    NASA Astrophysics Data System (ADS)

    Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng

    2018-02-01

    Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within ±3° of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5°-9.2° both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of—(15.7°-17.5°) outside the plasmasphere with a smaller amplitude about 81 pT. Detailed test particle simulations quantify the electron resonant scattering rates by the off-equatorial MS waves to find that they can cause the pitch angle scattering and momentum diffusion of radiation belt electrons with equatorial pitch angles < 75° or < 58° (depending on the wave latitudinal coverage) on timescales of a day. Subsequent two-dimensional Fokker-Planck diffusion simulations indicate that the strong off-equatorial MS waves are capable of efficiently transporting high pitch angle electrons to lower pitch angles to facilitate the formation of radiation belt electron butterfly distributions for a broad energy range from 100 keV to >1 MeV within an hour. Our study clearly demonstrates that the presence of off-equatorial MS waves, in addition to equatorial MS waves, can contribute importantly to the dynamical variations of radiation belt electron fluxes and their pitch angle distribution.

  16. FIBER OPTICS. ACOUSTOOPTICS: Amplitude and phase nonreciprocities of acoustooptic modulators for counterpropagating light waves under the Bragg diffraction conditions

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.

    1990-07-01

    Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.

  17. Runaway electrons in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang

    The generation of runaway electrons is a complex and important phenomenon that impacts many areas of plasma physics. Due to the decrease of electron collision frequency with increasing velocity, electrons under strong electric field can experience unlimited “runaway” acceleration. In tokamaks, runaway electrons can be produced in disruptions, due to the strong inductive electric field formed as the thermal energy of plasma gets rapidly lost. This population of runaway electrons can undergo an exponential growth, denoted the runaway electron avalanche, due to hard collisions between relativistic runaway electrons and low energy electrons. It is predicted that in a large tokamakmore » device like the International Thermonuclear Experimental Reactor (ITER), a runway electron beam generated in a disruption event can potentially cause severe damage to the device, which poses a significant challenge for ITER to achieve its mission. It is therefore extremely important to seek an effective mitigation mechanism for runaway electrons. Experimental efforts have been made to study the properties of runaway electrons in tokamaks, including their generation, diffusion, and radiation. In order to understand these experimental results, extensive theoretical and simulation studies of runaway electron physics are required. The main topic of this thesis is to study the wave particle interaction associated with runaway electron beams in tokamaks. The runaway electrons can emit and absorb electromagnetic waves through resonances, and can be diffused in momentum space by the waves. Initially, we address the Cherenkov radiation of runaway electrons, which originates from the polarization of the plasma medium. The energy and momentum loss of the Cherenkov radiation can be modeled by adding a correction to the Coulomb logarithm in the collisional drag force. Subsequently, we address pitch angle scattering caused by normal modes in the plasma, which are driven unstable by the anisotropicity of the runaway electron beam. The fluctuating electromagnetic fields are found to act as a seed for the unstable normal modes. Numerical simulations show that the pitch angle scattering effect from the normal modes, mainly whistler waves, can be significantly larger than that from collisional pitch angle scattering. Finally, we present a synthetic diagnostic tool we developed to calculate the electron cyclotron emission (ECE) from the runaway electrons, and successfully reproduce the prompt growth of the ECE signal observed in DIII-D quiescent runaway electron (QRE) experiments. Within the thesis, we also present the application of the adjoint method to runaway electron research, and show the calculations of the runaway probability function (RPF) and the expected loss time (ELT). These calculations not only help depict the dynamics of runaway electrons in momentum space, but also can be used to efficiently calculate experimentally relevant quantities such as the critical electric field for runaway electron avalanche and the avalanche growth rate.« less

  18. Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.; Liu Kaijun; Winske, Dan

    2009-11-15

    This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less

  19. First observation of lion roar-like emissions in Saturn's magnetosheath

    NASA Astrophysics Data System (ADS)

    Pisa, David; Sulaiman, Ali H.; Santolik, Ondrej; Hospodarsky, George B.; Kurth, William S.; Gurnett, Donald A.

    2017-04-01

    Electromagnetic whistler mode waves known as "lion roars" have been reported by many missions inside the terrestrial magnetosheath. We show the observation of similar intense emissions in Saturn's magnetosheath as detected by the Cassini spacecraft. The emissions were observed inside the dawn sector (MLT˜0730) of the magnetosheath over a time period of nine hours before the satellite crossed the bow shock and entered the solar wind. The emissions were narrow-banded with a typical frequency of about 15 Hz well below the local electron cyclotron frequency (fce ˜100 Hz). Using the minimum variance analysis method, we show that the waves are right hand circularly polarized and propagate at small wave normal angles with respect to the ambient magnetic field. Here, for the first time, we report the evidence of lion roar-like emissions in Saturn's magnetosheath which represents a new and unique parameter regime.

  20. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  1. Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Lefeuvre, F.; Parrot, M.; Cairo, L.; Anderson, R. R.

    1991-01-01

    The generation mechanism of hiss observed by ISEE 1 satellite in the earth magnetosphere is investigated by analyzing the ELF/VLF wave data obtained from four passes of ISEE 1, all of which occurring during magnetically quiet periods. The results of these measurements, together with those published earlier, indicate that the generation mechanisms proposed by Kennel alnd Petschek (1966), by Thorne et al. (1979), and by Solomon et al. (1988, 1989) are all physically possible and can come into action whenever the necessary conditions exist. However, plasmaspheric hiss was observed by ISEE even when the conditions for any of these mechanisms existed; under these conditions, hiss appears to be generated near the equatorial plane over a wide range of L values, with the wave normals at large angles to the field. The generation mechanism that applies in such cases is still unknown.

  2. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.

  3. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less

  4. From Fractal Trees to Deltaic Networks

    NASA Astrophysics Data System (ADS)

    Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.

    2013-12-01

    Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated. Network Example

  5. Monte Carlo simulation of wave sensing with a short pulse radar

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Davisson, L. D.; Kutz, R. L.

    1977-01-01

    A Monte Carlo simulation is used to study the ocean wave sensing potential of a radar which scatters short pulses at small off-nadir angles. In the simulation, realizations of a random surface are created commensurate with an assigned probability density and power spectrum. Then the signal scattered back to the radar is computed for each realization using a physical optics analysis which takes wavefront curvature and finite radar-to-surface distance into account. In the case of a Pierson-Moskowitz spectrum and a normally distributed surface, reasonable assumptions for a fully developed sea, it has been found that the cumulative distribution of time intervals between peaks in the scattered power provides a measure of surface roughness. This observation is supported by experiments.

  6. Sensitivity of a Wave Structure to Initial Conditions

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)

    2000-01-01

    Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.

  7. Three-dimensional wave evolution on electrified falling films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg

    2016-11-01

    We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).

  8. A physical model study of scattering of waves by aligned cracks: Comparison between experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.

    1993-04-01

    An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less

  9. Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2007-01-01

    This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.

  10. The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Huang, S. Y.; Allen, R. C.; Fu, H. S.; Deng, X. H.; Zhou, M.; Burch, J. L.; Torbert, R. B.

    2017-08-01

    Electromagnetic ion cyclotron (EMIC) waves can precipitate the ring current ions and relativistic electrons and heat the cold electrons in the magnetosphere. This requires comprehensive knowledge of the occurrence and wave properties of EMIC waves. In the present study, we used the data from one new mission, the Magnetospheric Multiscale (MMS) mission launched in March 2015, to investigate the occurrence and wave properties of H+-band and He+-band EMIC waves in the magnetosphere. Our statistical results show the following: (1) H+-band EMIC waves mostly occur in the higher L-shells (L > 5) while He+-band EMIC waves are mostly observed in the lower L-shells (L < 6). (2) The occurrence rate of H+-band EMIC waves in the dayside is higher than that in the nightside. The highest peak of occurrence rate of H+-band EMIC waves is in the postnoon sector (5-8 L-shells), and the secondary peak lies in the small area of the dawn sector. (3) The wave power spectral density peaks in the postnoon and predusk sectors, while the wave normal angles are largest in the dawn sector. (4) Linear and right-hand polarized H+-band EMIC waves are mainly in the regions of peak occurrence, while linear polarized waves are seen to also dominate outside of the regions of peak occurrence. The highest occurrence rate of linear polarized He+-band EMIC waves is observed in the dawn sector. We discussed the results and compared with previous findings.

  11. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  12. Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Eddington, P. K.

    1985-01-01

    Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.

  13. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  14. Fundamentals of angled-beam ultrasonic NDE for potential characterization of hidden regions of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Wertz, John N.; Welter, John T.; Wallentine, Sarah; Lindgren, Eric A.; Kramb, Victoria; Zainey, David

    2018-04-01

    In this study, the use of angled-beam ultrasonic NDE was explored for the potential characterization of the hidden regions of impact damage in composites. Simulated studies using CIVA FIDEL 2D were used to explore this inspection problem. Quasi-shear (qS) modes can be generated over a wide range of angles and used to reflect off the backwall and interrogate under the top delaminations of impact damage. Secondary probe signals that do propagate normal to the surface were found to be significant under certain probe conditions, and can potentially interfere with weakly scattered signals from within the composite panel. Simulations were used to evaluate the source of the multiple paths of reflections from the edge of a delamination; time-of-flight and amplitude will depend on the depth of the delamination and location of neighboring delaminations. For angled-beam inspections, noise from both the top surface roughness and internal features was found to potentially mask the detection of signals from the edge of delaminations. Lastly, the study explored the potential of generating "guided" waves along the backwall using an angled-beam source and subsequently measuring scattered signals from a far surface crack hidden under a delamination.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected thatmore » the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.« less

  16. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasmamore » temperature and the Langmuir wave-length.« less

  17. Influence of off-great-circle propagation of Rayleigh waves on event-based surface wave tomography in Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Haopeng; Ni, Sidao; Chu, Risheng; Chong, Jiajun; Liu, Zhikun; Zhu, Liangbao

    2018-05-01

    Surface waves are generally assumed to propagate along great-circle paths in most surface-wave tomography. However, when lateral heterogeneity is strong, off-great-circle propagation may occur and deteriorate surface wave tomography results based on the great-circle assumption. In this study, we used teleseismic waveforms recorded by the NECESSArray in Northeast China to study off-great-circle propagation of Rayleigh waves using the beamforming method and evaluated the influence of off-great-circle propagation on event-based surface wave tomography. The results show that arrival angle anomalies generally increase with decreasing period. The arrival angle anomalies at 60 and 50 s periods are smaller than that at 40 and 30 s periods, which indicates that the off-great-circle propagation is relatively weak for longer periods. At 30 s period, the arrival angle anomalies are relatively larger and some of the measurements can exceed 20°, which represents a strong off-great-circle propagation effect. In some areas, the arrival angle anomalies of adjacent events differ significantly, which may be attributed to multipathing propagation of surface waves. To evaluate the influence of off-great-circle propagation on event-based surface wave tomography, we used measured arrival angle anomalies to correct two-station phase velocity measurements, and performed azimuthal anisotropy tomography using dispersion datasets with and without the arrival angle correction. At longer periods, such as 60 s, the influence of off-great-circle propagation on surface wave tomography is weak even though the corrected model has better data fit than the uncorrected model. However, the influence of off-great-circle propagation is non-negligible at short periods. The tomography results at 30 s period show that the differences in phase velocity, the strength of anisotropy and the fast direction can be as large as 1.5 per cent, 1.0 per cent and 30°, respectively. Furthermore, the corrected phase velocity is systematically lower than that without correction. This study illustrates the necessity of studying the off-great-circle propagation of surface waves to improve the accuracy of event-based surface wave tomography, especially for shorter periods.

  18. The Effect of Background Plasma Temperature on Growth and Damping of Whistler Mode Wave Power in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.

    2017-12-01

    Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.

  19. Strong Pitch-Angle Diffusion of Ring Current Ions in Geomagnetic Storm-Associated Conditions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Spann, J. F.

    2005-01-01

    Do electromagnetic ion cyclotron (EMIC) waves cause strong pitch-angle diffusion of RC ions? This question is the primary motivation of this paper and has been affirmatively answered from the theoretical point of view. The materials that are presented in the Results section show clear evidence that strong pitch-angle diffusion takes place in the inner magnetosphere indicating an important role for the wave-particle interaction mechanism in the formation of RC ions and EMIC waves.

  20. Direct Evidence of EMIC-Driven Electron Loss in Space: Evaluation of an Electron Dropout Event

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed as a mechanism to cause efficient losses of highly relativistic (>MeV) electrons via gyroresonant interactions. However, simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited. In the present study, we evaluate the effect of EMIC waves on the pitch angle scattering of relativistic and ultrarelativistic (0.5-5 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both the Van Allen Probes and one of the THEMIS probes. EMIC waves captured on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) and enhanced precipitation of >~0.7 MeV electrons captured by POES are used to infer the MLT coverage of EMIC waves. Based on the observed EMIC wave spectra, local fpe and fce, we estimate the wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing the modeled results with local observations of pitch angle distributions, for the first time, we are able to show direct, quantitative evidence of EMIC wave-driven relativistic electron loss in the Earth's outer radiation belt.

  1. 3D superwide-angle one-way propagator and its application in seismic modeling and imaging

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofeng; Jiang, Yunong; Wu, Ru-Shan

    2018-07-01

    Traditional one-way wave-equation based propagators have been widely used in past decades. Comparing to two-way propagators, one-way methods have higher efficiency and lower memory demands. These two features are especially important in solving large-scale 3D problems. However, regular one-way propagators cannot simulate waves that propagate in large angles within 90° because of their inherent wide angle limitation. Traditional one-way can only propagate along the determined direction (e.g., z-direction), so simulation of turning waves is beyond the ability of one-way methods. We develop 3D superwide-angle one-way propagator to overcome angle limitation and to simulate turning waves with superwide-angle propagation angle (>90°) for modeling and imaging complex geological structures. Wavefields propagating along vertical and horizontal directions are combined using typical stacking scheme. A weight function related to the propagation angle is used for combining and updating wavefields in each propagating step. In the implementation, we use graphics processing units (GPU) to accelerate the process. Typical workflow is designed to exploit the advantages of GPU architecture. Numerical examples show that the method achieves higher accuracy in modeling and imaging steep structures than regular one-way propagators. Actually, superwide-angle one-way propagator can be applied based on any one-way method to improve the effects of seismic modeling and imaging.

  2. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  3. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  4. Simple analytical relations for ship bow waves

    NASA Astrophysics Data System (ADS)

    Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi

    Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.

  5. Controlling the angle range in acoustic low-frequency forbidden transmission in solid-fluid superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Sai; Xu, Bai-qiang; Cao, Wenwu

    2018-03-01

    We have investigated low-frequency forbidden transmission (LFT) of acoustic waves with frequency lower than the first Bragg bandgap in a solid-fluid superlattice (SFSL). LFT is formed when the acoustic planar wave impinges on the interface of a SFSL within a certain angle range. However, for the SFSL comprised of metallic material and water, the angle range of LFT is extremely narrow, which restricts its practical applications. The variation characteristics of the angle range have been comprehensively studied here by the control variable method. The results suggest that the filling ratio, layer number, wave velocity, and mass density of the constituent materials have a significant impact on the angle range. Based on our results, an effective strategy for obtaining LFT with a broad angle range is provided, which will be useful for potential applications of LFT in various devices, such as low frequency filters and subwavelength one-way diodes.

  6. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei

    2018-05-12

    Angle beam wedge transducers are widely used in nonlinear Rayleigh wave experiments as they can generate Rayleigh wave easily and produce high intensity nonlinear waves for detection. When such a transducer is used, the spurious harmonics (source nonlinearity) and wave diffraction may occur and will affect the measurement results, so it is essential to fully understand its acoustic nature. This paper experimentally investigates the nonlinear Rayleigh wave beam fields generated and received by angle beam wedge transducers, in which the theoretical predictions are based on the acoustic model developed previously for angle beam wedge transducers [S. Zhang, et al., Wave Motion, 67, 141-159, (2016)]. The source of the spurious harmonics is fully characterized by scrutinizing the nonlinear Rayleigh wave behavior in various materials with different driving voltages. Furthermore, it is shown that the attenuation coefficients for both fundamental and second harmonic Rayleigh waves can be extracted by comparing the measurements with the predictions when the experiments are conducted at many locations along the propagation path. A technique is developed to evaluate the material nonlinearity by making appropriate corrections for source nonlinearity, diffraction and attenuation. The nonlinear parameters of three aluminum alloy specimens - Al 2024, Al 6061 and Al 7075 - are measured, and the results indicate that the measurement results can be significantly improved using the proposed method. Copyright © 2018. Published by Elsevier B.V.

  7. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching

    PubMed Central

    Fu, Yan; Winter, Peter W.; Rojas, Raul; Wang, Victor; McAuliffe, Matthew; Patterson, George H.

    2016-01-01

    We report superresolution optical sectioning using a multiangle total internal reflection fluorescence (TIRF) microscope. TIRF images were constructed from several layers within a normal TIRF excitation zone by sequentially imaging and photobleaching the fluorescent molecules. The depth of the evanescent wave at different layers was altered by tuning the excitation light incident angle. The angle was tuned from the highest (the smallest TIRF depth) toward the critical angle (the largest TIRF depth) to preferentially photobleach fluorescence from the lower layers and allow straightforward observation of deeper structures without masking by the brighter signals closer to the coverglass. Reconstruction of the TIRF images enabled 3D imaging of biological samples with 20-nm axial resolution. Two-color imaging of epidermal growth factor (EGF) ligand and clathrin revealed the dynamics of EGF-activated clathrin-mediated endocytosis during internalization. Furthermore, Bayesian analysis of images collected during the photobleaching step of each plane enabled lateral superresolution (<100 nm) within each of the sections. PMID:27044072

  8. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the plasmaspheric electrons are considered; (i) the heat fluxes caused by the EMIC wave energy absorption due to Landau resonance, and (ii) the heat fluxes due to Coulomb energy degradation of the RC o(+) ions. The heat fluxes caused by the EMIC wave energy absorption due to Landau resonance are observed in the postnoon-premidnight MLT sector, and maximize at the magnitude of 10l1 (eV/(cm(sup 2)(raised dot) s) at L=3.25, MLT=22 at 3400 UT after 1 May, 0000 UT. The greatest Coulomb energy deposition rates are about 2 (raised dot) 10(sup 10)(eV/(cm(sup 2)(raised dot) s) and observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the RC with plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, the RC, and the topside ionosphere [Gurgiolo et al., 20051.

  9. Acquisition and analysis of angle-beam wavefield data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Alexander J.; Michaels, Jennifer E.; Levine, Ross M.

    2014-02-18

    Angle-beam ultrasonic testing is a common practical technique used for nondestructive evaluation to detect, locate, and characterize a variety of material defects and damage. Greater understanding of the both the incident wavefield produced by an angle-beam transducer and the subsequent scattering from a variety of defects and geometrical features is anticipated to increase the reliability of data interpretation. The focus of this paper is on acquiring and analyzing propagating waves from angle-beam transducers in simple, defect-free plates as a first step in the development of methods for flaw characterization. Unlike guided waves, which excite the plate throughout its thickness, angle-beammore » bulk waves bounce back and forth between the plate surfaces, resulting in the well-known multiple “skips” or “V-paths.” The experimental setup consists of a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. Although laser vibrometry is now routinely used to record guided waves for which the frequency content is below 1 MHz, it is more challenging to acquire higher frequency bulk waves in the 1–10 MHz range. Signals are recorded on the surface of an aluminum plate that were generated from a 5 MHz, 65° refracted angle, shear wave transducer-wedge combination. Data are analyzed directly in the x-t domain, via a slant stack Radon transform in the τ-p (offset time-slowness) domain, and via a 2-D Fourier transform in the ω-k domain, thereby enabling identification of specific arrivals and modes. Results compare well to those expected from a simple ray tracing analysis except for the unexpected presence of a strong Rayleigh wave.« less

  10. Metal/dielectric/metal sandwich film for broadband reflection reduction

    PubMed Central

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng

    2013-01-01

    A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704

  11. Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1995-01-01

    Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.

  12. The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Saikin, A. A.; Zhang, J.-C.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.; Jordanova, V. K.

    2015-09-01

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H+, He+, and O+ bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events are observed between L = 2-8, with over 140 EMIC wave events observed below L = 4. Results show that H+-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: prenoon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He+-band EMIC waves feature an overall stronger dayside occurrence. O+-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He+-band EMIC waves average the highest wave power overall (>0.1 nT2/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.

  13. Broadband metamaterial for nonresonant matching of acoustic waves

    PubMed Central

    D’Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific. PMID:22468227

  14. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir; Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma wavesmore » (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.« less

  15. Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Peng, Suping

    2016-01-01

    This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.

  16. Measurement of Non-Linear Internal Waves and Their Interaction with Surface Waves using Coherent Real Aperture Radars

    DTIC Science & Technology

    2010-03-08

    frequencies on wind speed and direction is viable at VV polarization at much larger incidence angles than we had thought. At this polarization it works...out to 89 degree incidence angles. By contrast at HH polarization the model underpredicts the NRCS of the sea for incidence angles above about 45...degrees. ● At high grazing angles, HH polarized cross sections maximize upwind and minimize downwind; upwind they are slightly smaller than VV

  17. Visualizing Perturbation Decay in Shocked Granular Materials

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Vogler, Tracy

    2017-06-01

    A new experiment continuously visualizing shock wave perturbation decay through an increasing thickness of granular material has been tested with a gas gun. The experiment confines powders of either tungsten carbide or cerium oxide into a wedge geometry formed by tilting the downstream observation window, plated with a reflective aluminum film, at a shallow angle from the driver plate. The driver is machined with a sinusoidal wavy pattern for incident shock wave perturbation. After projectile impact, the perturbed shock wave passes through the granular material, first emerging at the wedge toe. Image sequences collected at 5 MHz of reflectivity loss at the plated window-granular material interface capture the spatial variation in wave propagation with increasing sample thickness. Extracting the evolving wavy pattern from the images determines the temporal perturbation amplitude. The data are compared to continuum and mesoscale simulations in normalized terms of perturbation amplitude and wavelength. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Cyclic fatigue resistance of new reciprocating files (Reciproc Blue, WaveOne Gold, and SmartTrack) in two different curved canals.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Düzgün, Salih; Topçuoğlu, Gamze

    2018-06-04

    In the present study, we compared the cyclic fatigue resistance (CFR) of Reciproc Blue, WaveOne Gold, and SmartTrack files in curved artificial canals. Ninety new Reciproc Blue R25, WaveOne Gold Primary, and SmartTrack X1 files were tested in artificial canals with 45° and 60° angles of curvature. CFR was determined by recording the time to fracture in the artificial canals. Two-way analysis of variance was used to analyze the data. In the canal with a 45° angle of curvature, no significant differences were observed amongst Reciproc Blue, WaveOne Gold, and SmartTrack (P > .05). In the canal with a 60° angle of curvature, Reciproc Blue and SmartTrack had a greater CFR than WaveOne Gold (P < .05); there was no significant difference between the Reciproc Blue and SmartTrack files (P > .05). The results of the present study showed that Reciproc Blue and SmartTrack files exhibited greater CFR than WaveOne Gold only in canals with a 60° angle of curvature. © 2018 John Wiley & Sons Australia, Ltd.

  19. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  20. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    NASA Astrophysics Data System (ADS)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  1. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    PubMed

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  2. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  3. W-waves Explain Gravitropism, Phototropism, Sap Flow, Plant Structure, and other Plant Processes

    NASA Astrophysics Data System (ADS)

    Wagner, Raymond E.; Wagner, Orvin E.

    1996-11-01

    Eight years of research here confirm that plants act as wave guides for W-waves: The wavelengths of these longitudinal plant waves depend on the angle with which they are traveling with respect to the gravitational field. A structure grows tuned to a particular angle under the influence of genetics. If a structure is displaced from this angle plant action produces a correction. (2) Light waves produce certain W-wave modes in the W-wave medium and a plant's response to light results. (3) Wave action produces forces in the plant (that cancel gravity in the vertical case), combined with other affects, and sap flow results. (4) Plant structures are determined by genetics and environment from a set of quantized wavelengths available to all plants. The quantized values available to plants and all life provide templates for life to develop. Compare with quantum mechanics as a template for the structure of matter. Life processes suggest that templates also influence the development and stability of all structures in the universe (see www.chatlink.com/ oedphd/ for references).

  4. External control of photonic bands in a magnetized cold plasma

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Singh, P. P.; Suthar, B.; Kumar, A.; Thapa, K. B.

    2018-05-01

    In this analysis, the effect of external rectangle-wave-like periodic magnetic field, on photonic bandgaps (PBGs) exhibited by bulk cold plasma, has been illustrated. It is found that the forbidden gap for normal incidence decreases with a decrease in the thickness ratio for a constant magnetic field. A new gap appears for TM polarization at oblique incidence that is attributed to the Bragg's interference of plasma layers and this new gap width depends on the incident angle as well as the magnitude of the magnetic field. There is also a shifting in gap locations depending on the magnitude of the magnetic field. It is demonstrated that external parameters like magnetic field strength and the ratio of two parts of spatial period along with incident angle can tune the PBGs in a magnetized cold plasma.

  5. Angular-dependent polarization-insensitive filter fashioned with zero-contrast grating.

    PubMed

    Gao, Xumin; Wu, Tong; Xu, Yin; Li, Xin; Bai, Dan; Zhu, Gangyi; Zhu, Hongbo; Wang, Yongjin

    2015-06-15

    We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO(2)/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.

  6. Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces

    DTIC Science & Technology

    2013-06-14

    Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering.” Waves...device applications. Thus, the negative refraction of a surface plasmon polariton was studied in two papers. In the first [1], all- angle negative... angle of incidence, measured counterclockwise from the negative x1 axis, is . The surface plasmon polariton of frequency transmitted through the

  7. Cyclic fatigue resistance of new reciprocating glide path files in 45- and 60-degree curved canals.

    PubMed

    Topçuoğlu, H S; Topçuoğlu, G; Kafdağ, Ö; Arslan, H

    2018-02-26

    To compare the cyclic fatigue resistance of R-PILOT and WaveOne Gold Glider files in curved artificial canals. A total of 60 new R-PILOT and WaveOne Gold Glider files were tested in artificial canals with 45° and 60° angles of curvature. Fifteen new files of each brand were tested in both canals. Cyclic fatigue resistance was determined by recording the time to file fracture in the artificial canals. The length of each fractured fragment was also recorded. An independent sample t-test was used to analyse the data. In the canal with a 45° angle of curvature, no significant differences were observed between the R-PILOT and WaveOne Gold Glider files (P > 0.05). In the canal with a 60° angle of curvature, WaveOne Gold Glider files had greater cyclic fatigue resistance than R-PILOT files (P < 0.05). There was no difference between the files in terms of the lengths of fractured fragments in canals with 45° and 60° angles of curvature (P > 0.05). WaveOne Gold Glider files exhibited greater cyclic fatigue resistance than R-PILOT files in artificial canals with a 60° angle of curvature. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  9. Vortex-induced vibrations of a flexible cylinder at large inclination angle

    PubMed Central

    Bourguet, Rémi; Triantafyllou, Michael S.

    2015-01-01

    The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586

  10. Invariance of Hypersonic Normal Force Coefficients with Reynolds Number and Determination of Inviscid Wave Drag from Laminar Experimental Results

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard; Penland, Jim A.

    1997-01-01

    Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.

  11. Amplitude reconstruction from complete photoproduction experiments and truncated partial-wave expansions

    NASA Astrophysics Data System (ADS)

    Workman, R. L.; Tiator, L.; Wunderlich, Y.; Döring, M.; Haberzettl, H.

    2017-01-01

    We compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).

  12. Amplitude reconstruction from complete photoproduction experiments and truncated partial-wave expansions

    DOE PAGES

    Workman, R. L.; Tiator, L.; Wunderlich, Y.; ...

    2017-01-19

    Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).

  13. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?

    PubMed

    Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P

    2017-08-01

    What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed positions (25 and 50 versus 80 and 106 deg; P ≤ 0.016), whereas antagonist coactivation was greatest in the most flexed compared with the extended positions (106 versus 25 and 50 deg; P ≤ 0.02). In conclusion, both agonist and antagonist activation differed with knee joint angle during knee extension iMVCs, and thus both are likely to contribute to the knee extensor angle-torque relationship. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  14. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    NASA Astrophysics Data System (ADS)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y. Omura, D. Summers, and C. A. Kletzing (2016), Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss, Geophys. Res. Lett., 43, 10,040-10,049. [4] Omura, Y., Katoh, Y., and Summers, D., Theory and simulation of the generation of whistler-mode chorus (2008), J. Geophys. Res., 113, A04223.

  15. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method

  16. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  17. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  18. An Investigation of the Effects of Internal Waves on Sound Propagation in a Stratified Medium with a Sloping Bed

    NASA Astrophysics Data System (ADS)

    Deldar, H.; Bidokhti, A. A.; Chegini, V.

    2018-01-01

    Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.

  19. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  20. Test-retest reliability of the multifocal photopic negative response.

    PubMed

    Van Alstine, Anthony W; Viswanathan, Suresh

    2017-02-01

    To assess the test-retest reliability of the multifocal photopic negative response (mfPhNR) of normal human subjects. Multifocal electroretinograms were recorded from one eye of 61 healthy adult subjects on two separate days using a Visual Evoked Response Imaging System software version 4.3 (EDI, San Mateo, California). The visual stimulus delivered on a 75-Hz monitor consisted of seven equal-sized hexagons each subtending 12° of visual angle. The m-step exponent was 9, and the m-sequence was slowed to include at least 30 blank frames after each flash. Only the first slice of the first-order kernel was analyzed. The mfPhNR amplitude was measured at a fixed time in the trough from baseline (BT) as well as at the same fixed time in the trough from the preceding b-wave peak (PT). Additionally, we also analyzed BT normalized either to PT (BT/PT) or to the b-wave amplitude (BT/b-wave). The relative reliability of test-retest differences for each test location was estimated by the Wilcoxon matched-pair signed-rank test and intraclass correlation coefficients (ICC). Absolute test-retest reliability was estimated by Bland-Altman analysis. The test-retest amplitude differences for neither of the two measurement techniques were statistically significant as determined by Wilcoxon matched-pair signed-rank test. PT measurements showed greater ICC values than BT amplitude measurements for all test locations. For each measurement technique, the ICC value of the macular response was greater than that of the surrounding locations. The mean test-retest difference was close to zero for both techniques at each of the test locations, and while the coefficient of reliability (COR-1.96 times the standard deviation of the test-retest difference) was comparable for the two techniques at each test location when expressed in nanovolts, the %COR (COR normalized to the mean test and retest amplitudes) was superior for PT than BT measurements. The ICC and COR were comparable for the BT/PT and BT/b-wave ratios and were better than the ICC and COR for BT but worse than PT. mfPhNR amplitude measured at a fixed time in the trough from the preceding b-wave peak (PT) shows greater test-retest reliability when compared to amplitude measurement from baseline (BT) or BT amplitude normalized to either the PT or b-wave amplitudes.

  1. Method and Apparatus for Determining Changes in Intracranial Pressure Utilizing Measurement of the Circumferential Expansion or Contraction of a Patient's Skull

    NASA Technical Reports Server (NTRS)

    Yos, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring changes in intracranial pressure (ICP) utilizing the variation of the surface wave propagation parameters of the patient's skull to determine the change in ICP. In one embodiment, the method comprises the steps of transmitting an ultrasonic bulk compressional wave onto the surface of the skull at a predetermined angle with respect to the skull so as to produce a surface wave, receiving the surface wave at an angle with respect tn the skull which is substantially the same as the predetermined angle and at a location that is a predetermined distance from where the ultrasonic bulk compressional wave was transmitted upon the skull, determining the retardation or advancement in phase of the received surface wave with respect to a reference phase, and processing the determined retardation or advancement in phase to determine circumferential expansion or contraction of the skull and utilizing the determined circumferential change to determine the change in intracranial pressure.

  2. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).

    PubMed

    Mehta, S; Antich, P

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  3. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  4. Trapped electron losses by interactions with coherent VLF waves

    NASA Astrophysics Data System (ADS)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  5. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    PubMed

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  6. The occurrence and wave properties of H⁺-, He⁺-, and O⁺-band EMIC waves observed by the Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikin, A. A.; Zhang, J. -C.; Allen, R. C.

    2015-09-26

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H⁺-,more » He⁺-, and O⁺-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H⁺-band events, 438 He⁺-band events, and 68 O⁺-band events). EMIC wave events are observed between L = 2 – 8, with over 140 EMIC wave events observed below L = 4. The results show that H⁺-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: pre-noon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He⁺-band EMIC waves feature an overall stronger dayside occurrence. O⁺-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He⁺-band EMIC waves average the highest wave power overall (>0.1 nT²/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.« less

  7. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  8. Pressure-wave energy relationship during IABP counterpulsation in a mock circulation: changes with angle and assisting frequency.

    PubMed

    Biglino, Giovanni; Kolyva, Christina; Khir, Ashraf W

    2012-01-01

    Despite decades of successful clinical use of the intra aortic balloon pump (IABP), certain aspects of its operation are not yet fully understood. This work aims to investigate in vitro the mechanism underlying balloon inflation and deflation with varying assisting frequency and operating angle with respect to the horizontal, by studying the corresponding pressure and wave energy changes. A mock circulatory system (MCS), with physiological distribution of peripheral resistance and compliance, presented a controllable test bed. We used Wave Intensity Analysis (WIA) to identify balloon-generated waves and quantify their energy. Conventional hemodynamic parameters were also calculated. Tests were repeated at varying operating angles (0°-45°), resembling the semi-recumbent position in the ICU, and at different assisting frequencies (1:1, 1:2, 1:3). Two balloons (25 cc and 40 cc in volume) were tested. The main waves associated with counterpulsation were identified as a backward compression wave associated with balloon inflation and a backward expansion wave associated with balloon deflation. Results showed that the IABP inflation and deflation benefits are reduced with increasing angle, in terms of the size of the inflation and deflation waves as well as in terms of diastolic pressure augmentation and end-diastolic pressure reduction. Both WIA findings and pressure parameters indicated 1:1 as the most effective mode of pumping. This study shows that, in vitro, a greater benefit of counterpulsation can be achieved in the horizontal position at 1:1 assisting frequency, with a good correlation between wave and pressure results.

  9. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  10. The Quasi-monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong S.; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2018-01-01

    The location of ultralow-frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary at Venus is sensitive to the interplanetary magnetic field (IMF) direction like the terrestrial one and appears well defined for a cone angle larger than 30°. In the Venusian foreshock, the inclination angle of the wave boundary with respect to the Sun-Venus direction increases with the IMF cone angle. We also found that for the IMF nominal direction (θBX = 36°) at Venus' orbit, the value of this inclination angle is 70°. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For an IMF nominal direction at Venus, the inferred bulk speed of ions traveling along this boundary is 1.07 VSW, sufficiently enough to overcome the solar wind convection. This strongly suggests that the backstreaming ions upstream of the Venusian bow shock provide the main energy source for the ULF waves.

  11. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles.

    PubMed

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-07-23

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.

  12. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles

    PubMed Central

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-01-01

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495

  13. Tunable Snell's law for spin waves in heterochiral magnetic films

    NASA Astrophysics Data System (ADS)

    Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.

    2018-03-01

    Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.

  14. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.

  15. Noise-free recovery of optodigital encrypted and multiplexed images.

    PubMed

    Henao, Rodrigo; Rueda, Edgar; Barrera, John F; Torroba, Roberto

    2010-02-01

    We present a method that allows storing multiple encrypted data using digital holography and a joint transform correlator architecture with a controllable angle reference wave. In this method, the information is multiplexed by using a key and a different reference wave angle for each object. In the recovering process, the use of different reference wave angles prevents noise produced by the nonrecovered objects from being superimposed on the recovered object; moreover, the position of the recovered object in the exit plane can be fully controlled. We present the theoretical analysis and the experimental results that show the potential and applicability of the method.

  16. Wave scattering from a periodic dielectric surface for a general angle of incidence

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Kong, J. A.

    1982-01-01

    Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.

  17. A practical implementation of wave front construction for 3-D isotropic media

    NASA Astrophysics Data System (ADS)

    Chambers, K.; Kendall, J.-M.

    2008-06-01

    Wave front construction (WFC) methods are a useful tool for tracking wave fronts and are a natural extension to standard ray shooting methods. Here we describe and implement a simple WFC method that is used to interpolate wavefield properties throughout a 3-D heterogeneous medium. Our approach differs from previous 3-D WFC procedures primarily in the use of a ray interpolation scheme, based on approximating the wave front as a `locally spherical' surface and a `first arrival mode', which reduces computation times, where only first arrivals are required. Both of these features have previously been included in 2-D WFC algorithms; however, until now they have not been extended to 3-D systems. The wave front interpolation scheme allows for rays to be traced from a nearly arbitrary distribution of take-off angles, and the calculation of derivatives with respect to take-off angles is not required for wave front interpolation. However, in regions of steep velocity gradient, the locally spherical approximation is not valid, and it is necessary to backpropagate rays to a sufficiently homogenous region before interpolation of the new ray. Our WFC technique is illustrated using a realistic velocity model, based on a North Sea oil reservoir. We examine wavefield quantities such as traveltimes, ray angles, source take-off angles and geometrical spreading factors, all of which are interpolated on to a regular grid. We compare geometrical spreading factors calculated using two methods: using the ray Jacobian and by taking the ratio of a triangular area of wave front to the corresponding solid angle at the source. The results show that care must be taken when using ray Jacobians to calculate geometrical spreading factors, as the poles of the source coordinate system produce unreliable values, which can be spread over a large area, as only a few initial rays are traced in WFC. We also show that the use of the first arrival mode can reduce computation time by ~65 per cent, with the accuracy of the interpolated traveltimes, ray angles and source take-off angles largely unchanged. However, the first arrival mode does lead to inaccuracies in interpolated angles near caustic surfaces, as well as small variations in geometrical spreading factors for ray tubes that have passed through caustic surfaces.

  18. Modeling electromagnetic ion cyclotron waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, Konstantin; Engebretson, Mark; Zhang, Ming; Rassoul, Hamid

    The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. [2009], however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the “bi-ion latitudes” (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth’s magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultra low frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at “bi-ion latitudes”, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for theta > 82deg, where a growth rate gamma > 0.01 rad/s is frequently observed. The instability is driven by the loss-cone feature in the RC O+ distribution function. (4) The oblique and intense He+-mode EMIC waves generated by RC O+ in the region L ˜ 2-3 may have an implication to the energetic particle loss in the inner radiation belt. Acknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.

  19. Simultaneous equatorial observations of 1- to 30-Hz waves and pitch angle distributions of ring current ions

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Lyons, L. R.

    1976-01-01

    Eighteen events of large-amplitude (0.4-6 gammas) waves which may be propagating in the ion cyclotron mode have een observed by Explorer 45. Comparison with simultaneously measured proton distributions has allowed the events to be divided into two categories. The first category consists of waves accompanied by enhanced ion fluxes apparently injected into the plasmasphere with anisotropic pitch-angle distributions. This simultaneity suggests that these waves may be generated by the observed ring-current ions. Waves in the second category were found near or outside the plasmapause and were not correlated with any identifiable changes in the observed proton distribution. The generation mechanism for these waves remains unknown.

  20. STRONG EVIDENCE FOR THE DENSITY-WAVE THEORY OF SPIRAL STRUCTURE IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia

    2016-08-10

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range ofmore » wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image ( B -band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μ m) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B -band and 3.6 μ m images have smaller pitch angles than the infrared 8.0 μ m image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer , whose pitch angles agreed with the measurements made at 8 μ m.« less

  1. An invisible medium for circularly polarized electromagnetic waves.

    PubMed

    Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M

    2008-12-08

    We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America

  2. Resonant absorption of electromagnetic waves in transition anisotropic media.

    PubMed

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  3. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the hydrodynamic modulation, in agreement with experimental results reported in recent papers.

  4. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  5. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  6. Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Zhengping; Shi, Jinhui

    2014-10-01

    A high-Q Fano resonance and giant extrinsic chirality have been demonstrated in an ultrathin Babinet-inverted metasurface composed of asymmetrical split ring apertures (ASRAs) perforated through a metal plate based on the full-wave simulations. The performance of the Fano resonance at normal incidence strongly depends on the asymmetry of the ASRA. The quality factor is larger than 1000 and the local field enhancement is an order of 104. For oblique incidence, giant extrinsic chirality can be achieved in the Babinet-inverted metasurface. It reveals a cross-polarization transmission band with a ripple-free peak and also a spectrum split for large angles of incidence. The electromagnetic response of the metasurface can be easily tuned via angles of incidence and asymmetry. The proposed ASRA metasurface is of importance to develop many metamaterial-based devices, such as filters and circular polarizers.

  7. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  8. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  9. 3-D phononic crystals with ultra-wide band gaps.

    PubMed

    Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit

    2017-02-24

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  10. Wide Angle Converted Shear Wave Analysis of North Atlantic Volcanic Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A.

    2007-12-01

    High-quality, wide-angle, ocean bottom seismometer (OBS) data have been acquired with a low frequency (9 Hz) seismic source across the Faroes and Hatton Bank volcanic rifted continental margins in the North Atlantic. In these regions thick Tertiary flood basalt sequences provide a challenge to deep seismic imaging. S-wave arrivals, which are dominantly converted from P- to S-waves at the sediment-top basalt interface, were recorded at 170 4-component OBS locations. Variation in the conversion efficiency was observed along the profiles. Tomographic inversion of over 70,000 converted S-wave crustal diving waves and Moho reflections was performed to produce S-wave velocity models and hence, when combined with pre-existing P-wave velocity models, a measure of the Vp/Vs ratio structure of the crust. Resolution testing shows the structure of the oceanic crust and continent-ocean transition is generally well resolved on both profiles. Lateral and vertical changes in Vp/Vs resolves changing crustal composition within, and between, oceanic and continental crust, including regions in the lower crust at the continent-ocean transition with high P-wave velocities of up to 7.5 km/s and low Vp/Vs ratios of ~ 1.75 associated with intense high-temperature intrusion at the time of break-up. Vp/Vs ratios of 1.75-1.80 at the base of the thickened oceanic crust are also lower than generally reported in normal oceanic crust. The P-wave travel-time tomography revealed a low velocity zone (LVZ) beneath the basalt on the Faroes margin and additional constraint on the Vp/Vs of the LVZ beneath the Fugloy Ridge has been gained by analysing the relative travel-time delays between basalt and basement refractions for P- and S-waves. This approach is less subject to the velocity-depth ambiguity associated with velocity inversions than is the determination of P- or S- wave velocity alone. Comparison of the calculated Vp/Vs ratio and P-wave velocity with measurements from relevant lithologies reveals that the LVZ is likely to contain sill-intruded Paleocene sedimentary rock rather than igneous hyaloclastites similar to those found beneath the basalt in a nearby well. Immediately beneath the LVZ, a unit with Vp/Vs ratios of 1.80-1.85 and P-wave velocities of 5.5-6.0 km/s is interpreted as sill-intruded sedimentary rock of a pre-breakup Mesozoic basin. We thank C.J. Parkin, A.W. Roberts and L.K. Smith for their contributions.

  11. Ion flux oscillations and ULF waves observed by ARASE satellite and their origin

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Masahito, N.; Kasahara, S.; Yokota, S.; Keika, K.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.; Yoshizumi, M.

    2017-12-01

    The ARASE satellite, which was launched on December 20, 2016, is now observing thenightside inner magnetosphere. The inclination of the orbit is larger than those of otherrecent spacecraft flying in the inner magnetosphere such as THMEIS and Van Allen Probes.This unique orbit provides us new information on ULF waves since ULF waves havelatitudinal structure and the antinode of magnetic fluctuations of fundamental mode is athigh magnetic latitudes.Although Pc pulsations are predominantly observed on the dayside, ARASE satellitesometimes observes Pc4-5 pulsations on the nightside. Some of these waves are accompaniedwith energetic particle flux modulations. We found 6 events of the particle flux modulationsaccompanying Pc pulsations on the dawnside and nightside. Theoretical studies suggest thatULF waves detected at afternoon are generated by plasma instabilities like drift-mirror instability [Hasegawa, 1969] and drift-bounce resonance [Southwood et al, 1969].These instabilities cause plasma pressure disturbances or flux modulation of ions. Nonresonant ion clouds injected on the duskside are also considered to be one of the candidates ofULF wave driver [Zolotukhina, 1974]. We therefore discuss whether the ULF waves observedby ARASE satellite are generated internally or externally, and the flux modulations arecreated by plasma instabilities or the other non-resonant effects.On March 31, 2017, Medium-Energy Particle Experiments - Ion Mass Analyzer (MEPi)onboard ARASE detected ion flux oscillations at 12-70 keV with a period of 120 seconds inthe normal (NML) mode observation. NML mode observation provides details of the directionof particle movements. The pitch angle distribution of proton flux showed isotropic fluxoscillations. At the same time, Pc4 pulsations with the same oscillation period were observed.These flux and field perturbations were seen on the dawnside (4.3-5.9 MLT).ARASE found oscillations of ion count with a period of 130 seconds in the time-of-flight(TOF) mode observation at midnight on May 29, 2017. Therefore, we used the list data, that is createdfor onboard calibrations, to make a pitch angle distribution of ion counts. The pitch angledistribution did not have clear fluctuations, so that the oscillations may beattributed to angyrotropic particle distributions.

  12. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  13. 40 MHz high-frequency ultrafast ultrasound imaging.

    PubMed

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  14. Ultrasonic bulk wave measurements on composite using fiber from recycled CFRP

    NASA Astrophysics Data System (ADS)

    Paterson, David; Ijomah, Winifred L.; Windmill, James F. C.; Kao, Chih-Chuan; Smillie, Grant

    2018-04-01

    This study investigates the velocity profile for both a virgin carbon fiber reinforced plastic (v-CFRP) and a reused fiber CFRP (rf-CFRP) which exhibit quasi-isotropy; all samples have 3 iterations of symmetry type [0, -45, +45, 90]s. An isotropic virgin CFRP (v-CFRP), produced by using a hand layup process, is presented along with a pyrolysis recycling process (at 600°C) designed to extract the carbon fibers. A virgin carbon fiber mat with a similar architecture was also thermally conditioned under the same pyrolysis conditions. Both resultant carbon fiber mats were used to produce the rf-CFRPs. Ultrasonic wave velocities at different angles of incidence for both v-CFRP and rf-CFRP were recorded. In the case of v-CFRP, two samples were studied, and it was recorded that the velocity for both a longitudinal wave and transverse wave remained relatively constant up until these waves completely attenuated at observed angles, indicating what would be expected from an isotropic sample. A close relationship in terms of waves speed was also recorded for the two v-CFRP samples. In the case of rf-CFRP, the longitudinal wave velocities were generally less closely related when compared to the v-CFRP, with a maximum of approximately 32% difference being recorded. The transverse wave velocity was also found to decrease incident angle indicating sample anisotropy. The authors suggest that the more severe decreasing velocity with increasing incident angle, when compared to v-CFRP, may be caused by resin impregnation issues and not by changes that occur during the recycling process. Therefore, a hypothesis that both the rf-CFRP and the V-CFRP will return a similar wave profile given an identical resin fiber content is put forward.

  15. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Balogh, A.; Lucek, E. A.; Mazelle, C.; Dandouras, I.

    2005-11-01

    This paper presents the results of a statistical investigation into the nature of oblique wave propagation in the foreshock. Observations have shown that foreshock ULF waves tend to propagate obliquely to the background magnetic field. This is in contrast to theoretical work, which predicts that the growth rate of the mechanism responsible for the waves is maximized for parallel propagation, at least in the linear regime in homogenous plasma. Here we use data from the Cluster mission to study in detail the oblique propagation of a particular class of foreshock ULF wave, the 30 s quasi-monochromatic wave. We find that these waves persistently propagate at oblique angles to the magnetic field. Over the whole data set, the average value of θkB was found to be 21 ± 14°. Oblique propagation is observed even when the interplanetary magnetic field (IMF) cone angle is small, such that the convective component of the solar wind velocity, vE×B, is comparable to the wave speed. In this subset of the data, the mean value of θkB was 12.9 ± 7.1°. In the subset of data for which the IMF cone angle exceeded 45°, the mean value of θkB was 19.5 ± 10.7°. When the angle between the IMF and the x geocentric solar ecliptic (GSE) direction (i.e., the solar wind vector) is large, the wave k vectors tend to be confined in the plane defined by the x GSE direction and the magnetic field and a systematic deflection is observed. The dependence of θkB on vE×B is also studied.

  16. Characteristics of VLF wave propagation in the Earth's magnetosphere in the presence of an artificial density duct

    NASA Astrophysics Data System (ADS)

    Pasmanik, Dmitry; Demekhov, Andrei

    We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.

  17. A Statistical Examination of the Effect of EMIC Waves on Relativistic Electron Pitch-Angle Distributions

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Zhang, X. J.; Sibeck, D. G.; Halford, A. J.

    2017-12-01

    While many advances have been made in the understanding of particle acceleration processes in the radiation belts, many questions regarding the loss processes remain. One such loss process is the resonant interaction between relativistic electrons and Electromagnetic Ion Cyclotron (EMIC) waves. This study examines statistically the association of equatorial pitch-angle distributions of > 1 MeV particles measured on Van Allen Probes and in-situ EMIC wave observations measured on Van Allen Probes and THEMIS during a unique three-month period of line-of-apsides conjunctions between the two missions. We find a large sample of EMIC wave events associated with widening of the particle loss cone. The availability of multiple spacecraft enables the review of the spatial and temporal extent of EMIC waves that result in changes in particle pitch-angle distributions, as well as a quantitative look at background plasma and magnetic field conditions. We compare our results with expectations from diffusion theory. We are thus able to assess more directly than previous studies the role of EMIC waves in particle scattering.

  18. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Lee, J. H.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Leonard, T.; Wilder, F. D.; Ergun, R. E.; Baker, D. N.; Cohen, I. J.; Mauk, B. H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu. V.; Torbert, R. B.; Allen, R. C.; Burch, J. L.; Santolik, O.

    2017-11-01

    Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLAT < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT -31°). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

  19. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    NASA Astrophysics Data System (ADS)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  20. Helical comb magnetostrictive patch transducers for inspecting spiral welded pipes using flexural guided waves.

    PubMed

    Zhang, Xiaowei; Tang, Zhifeng; Lv, Fuzai; Pan, Xiaohong

    2017-02-01

    A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a helical comb magnetostrictive patch transducer (HCMPT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A HCMPT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and a novel compound comb coil that is wrapped around the helical magnetostrictive patch. The proposed wideband HCMPT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a HCMPT with 13-degree helix angle. Flexural torsional modes T(N,1) with circumferential order N equals 1-5 are selected to inspect a seamless steel pipe, artificial defects are effectively detected by the proposed HCMPT. A 20-degree HCMPT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An experimental investigation of shock wave-turbulent boundary layer interactions with and without boundary layer suction: A data summary report

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1977-01-01

    Tabulated data from a series of experimental studies of the interaction of a shock wave with a turbulent boundary layer in axisymmetric flow configurations is presented. The studies were conducted at the walls of circular wind tunnels and on the cylindrical centerbody of an annular flow channel. Detailed pitot pressure profiles and wall static pressure profiles upstream of, within and downstream of the interaction region are given. Results are presented for flows at nominal freestream Mach Numbers of 2, 3 and 4. For studies at the tunnel sidewalls, the shock waves were produced by conical shock generators mounted on the centerline of the wind tunnel at zero angle of attack. The annular ring generator was used to produce the shock wave at the centerbody of the annular flow channel. The effects of boundary layer bleed were examined in the investigation. Both bleed rate and bleed location were studied. Most of the bleed studies were conducted with bleed holes drilled normal to the wall surface but the effects of slot suction were also examined. A summary of the principal results and conclusions is given.

  2. Reflection and transmission coefficients of a single layer in poroelastic media.

    PubMed

    Corredor, Robiel Martinez; Santos, Juan E; Gauzellino, Patricia M; Carcione, José M

    2014-06-01

    Wave propagation in poroelastic media is a subject that finds applications in many fields of research, from geophysics of the solid Earth to material science. In geophysics, seismic methods are based on the reflection and transmission of waves at interfaces or layers. It is a relevant canonical problem, which has not been solved in explicit form, i.e., the wave response of a single layer, involving three dissimilar media, where the properties of the media are described by Biot's theory. The displacement fields are recast in terms of potentials and the boundary conditions at the two interfaces impose continuity of the solid and fluid displacements, normal and shear stresses, and fluid pressure. The existence of critical angles is discussed. The results are verified by taking proper limits-zero and 100% porosity-by comparison to the canonical solutions corresponding to single-phase solid (elastic) media and fluid media, respectively, and the case where the layer thickness is zero, representing an interface separating two poroelastic half-spaces. As examples, it was calculated the reflection and transmission coefficients for plane wave incident at a highly permeable and compliant fluid-saturated porous layer, and the case where the media are saturated with the same fluid.

  3. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less

  4. Statistical Study in the mid-altitude cusp region: wave and particle data comparison using a normalized cusp crossing duration

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Pitout, F.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-04-01

    In the mid altitude cusp region the DC magnetic field presents a diamagnetic cavity due to intense ion earthward flux coming from the magnetosheath. A strong ultra low frequency (ULF) magnetic activity is also commonly observed in this region. Most of the mid altitude cusp statistical studies have focused on the location of the cusp and its dependence and response to solar wind, interplanetary magnetic field, dipole tilt angle parameters. In our study we use the database build by Pitout et al. (2006) in order to study the link of wave power in the ULF range (0.35-10Hz) measured by STAFF SC instrument with the ion plasma properties as measured by CIS (and CODIF) instrument as well as the diamagnetic cavity in the mid-altitude cusp region with FGM data. To compare the different crossings we don`t use the cusp position and dynamics but we use a normalized cusp crossing duration that permits to easily average the properties over a large number of crossings. As usual in the cusp, it is particularly relevant to sort the crossings by the corresponding interplanetary magnetic field (IMF) orientation in order to analyse the results. In particular we try to find out what is the most relevant parameter to link the strong wave activity with. The global statistic confirms previous single case observations that have noticed a simultaneity between ion injections and wave activity enhancements. We will also present results concerning other ion parameters and the diamagnetic cavity observed in the mid altitude cusp region.

  5. Modes of embayed beach dynamics: analysis reveals emergent timescales

    NASA Astrophysics Data System (ADS)

    Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.

    2013-12-01

    Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (<30 years; Short and Trembanis, 2004). By using the RCEM, we can more broadly characterize beach dynamics over longer timescales. The first two PCA modes, which explain a majority of the beach width time series variation (typically >70%), are a 'breathing' mode and a 'rotational' mode. The newly identified breathing mode captures the sand movement from the middle of the beach towards the edges (thickening the beach along the headlands), and the rotational mode describes the movement of sand towards one headland or another, both in response to stochastic fluctuations about the mean wave climate. The two main modes operate independently and on different timescales. In a weakly low-angle dominated wave climate, the breathing mode tends to be the first mode (capturing the most variance), but with greater low-angle dominance (greater morphological diffusivity), the rotational mode tends to be first. The aspect ratio of the bay also affects the order of the modes, because wave shadowing affects sediment transport behind the headlands. Previous work has attributed beach rotation to changes in various climate indices such as the North Atlantic Oscillation (Thomas et al., 2011); however, PCA analysis of the RCEM results suggests that embayed beaches can have characteristic timescales of sand movement that result from internal system dynamics, emerging even within a statistically constant wave climate. These results suggest that morphologic changes in embayed beaches can occur independently of readily identifiable shifts in forcing.

  6. Mapping wave breaking and residual foam using infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Jessup, A. T.; Chickadel, C.

    2012-12-01

    Quantifying wave breaking in the surfzone is important for the advancement of models that seek to accurately predict energy dissipation, near-shore circulation, wave-current interactions, and air-sea gas transfer. Electro-optical remote sensing has been used to try to identify breaking waves. However, the residual foam, left over after the wave has broken, is indistinguishable from active foam in the visible band, which makes identification of active breaking difficult. Here, we explore infrared remote sensing of breaking waves at near-grazing incidence angles to differentiate between active and residual foam in the surfzone. Measurements were made at two field sites: Duck, NC, in September 2010 (Surf Zone Optics) and New River Inlet, NC, in May 2012 (RIVET). At both sites, multiple IR cameras were mounted to a tower onshore, viewing the surfzone at near-grazing incidence angles. For near-grazing incidence angles, small changes in viewing angle, such as those produced by the slope of a wave face, cause large modulations of the infrared signal. Therefore, the passage of waves can be seen in IR imagery. Wave breaking, however, is identified by the resulting foam. Foam has a higher emissivity than undisturbed water and thus appears warmer in an IR image. Residual foam cools quickly [Marmorino and Smith, 2005], thereby making its signal distinct from that of foam produced during active wave breaking. We will use these properties to develop a technique to produce spatial and temporal maps of active breaking and residual foam. These products can then be used to validate current models of surfzone bubbles and foam coverage. From the maps, we can also estimate energy dissipation due to wave breaking in the surfzone and compare this to estimates made with in situ data.; Infrared image of the surfzone at Duck, NC. Examples of actively breaking foam and cool residual foam are labeled.

  7. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).

  8. Suppression of stimulated Brillouin instability of a beat-wave of two lasers in multiple-ion-species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.

    2016-01-15

    Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.

  9. Magnetic droplet soliton nucleation in oblique fields

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  10. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  11. Improved computational treatment of transonic flow about swept wings

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Bailey, F. R.; Frick, J.

    1976-01-01

    Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.

  12. [Studies on renal damages after extracorporeal shock wave lithotripsy using Gd-DTPA-enhanced dynamic MRI].

    PubMed

    Umekawa, T; Kohri, K; Iguchi, M; Kurita, T

    1991-11-01

    Renal damages after ESWL treatment were examined by Gd-DTPA enhanced dynamic MRI. Gd-DTPA was used as the contrast medium and fast magnetic resonance imaging with suspended respiration using the flip angle of 20 degrees and gradient echo technique at 0.5 Tesla was used for photographing. In normal kidneys, a low intensity band was observed with the passage of Gd-DTPA through the kidney from 1 to 2 minutes after the injection. In patients who underwent ESWL treatment, however, the low intensity band which was observed before ESWL treatment became partly obscure after ESWL treatment. Furthermore, these find changes in the renal parenchyma could not be fully detected by usual MRI which does not use Gd-DTPA. Gd-DTPA enhanced dynamic MRI was considered to be effective for finding the limited dose of shock waves for ESWL treatment.

  13. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-09-21

    The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.

  14. Dependence of the Normalized Radar Cross Section of Water Waves on Bragg Wavelength-Wind Speed Sensitivity

    NASA Technical Reports Server (NTRS)

    Long, David G.; Collyer, R. Scott; Reed, Ryan; Arnold, David V.

    1996-01-01

    Measurements of the normalized radar cross section (sigma(sup o)) made by the YSCAT ultrawideband scatterometer during an extended deployment on the Canada Centre for Inland Waters(CCIW) Research Tower located at Lake Ontario are analyzed and compared with anemometer wind measurements to study the sensitivity of (sigma(sup o)) to the wind speed as a function of the Bragg wavelength. This paper concentrates on upwind and downwind azimuth angles in the wind speed range of 4.5-12 m/s. While YSCAT collected measurements of sigma(sup o) at a variety of frequencies and incidence angles, this paper focuses on frequencies of 2.0, 3.05, 5.30, 10.02, and 14.0 GHz and incidence angles within the Bragg regime, 30-50 deg. Adopting a power law model to describe the relationship between sigma(sup o) and wind speed, both wind speed exponents and upwind/downwind (u/d) ratios of sigma(sup o) are found using least squares linear regression. The analysis of the wind speed exponents and u/d ratios show that shorter Bragg wavelengths (Lambda less than 4 cm) are the most sensitive to wind speed and direction. Additionally, vertical polarization (V-pol) sigma(sup o) is shown to be more sensitive to wind speed than horizontal polarization (H-pol) sigma(sup o), while the H-pol u/d ratio is larger than the V-pol u/d ratio.

  15. Dynamic stresses, coulomb failure, and remote triggering: corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1  MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  16. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  17. Troitskaya-Bolshakova effect as a manifestation of the solar wind wave turbulence

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Guglielmi, A. V.

    2018-02-01

    The impact of changes in the direction of the interplanetary magnetic field (IMF) on the amplitude of geomagnetic Pc3 pulsations (the Troitskaya-Bolshakova effect) is demonstrated using observations of several pulsation events. We show that the source of changes in the IMF cone angle is sometimes Alfvén waves propagating in the solar wind. For the analysis, measurements of geomagnetic pulsations at the mid-latitude Uzur magneto-telluric observatory and on three spacecraft outside the bow shock wave were used. The results show that the influence is exerted only by waves with a period of more than 40-60 min in a coordinate system fixed relative to the Earth. The Alfvén turbulence of a higher frequency is incoherent; the oscillations are of a chaotic nature, not coordinated in amplitude and phase either between satellites or with variations in the amplitude of Pc3. In some cases, the modulation of the pulsation amplitude is associated with the passage of the IMF sector boundary. An evaluation of the direction of propagation of Alfvén waves showed that they predominantly propagate from the Sun, but the normal of the wave fronts can deviate from the Sun-Earth line. This is quite consistent with earlier published results. The statistics of the basic properties of the oscillatory structures in the interplanetary medium, which we observed during the observation period, are given.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Yunpeng; Sawin, Herbert H.

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less

  19. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.

  20. Whistler mode plasma waves observed on Electron Echo 2

    NASA Technical Reports Server (NTRS)

    Monson, S. J.; Kellogg, P. J.; Cartwright, D. G.

    1976-01-01

    Observations of whistler-mode waves associated with beams of electrons injected into the ionosphere are reported. The measurements are from the plasma-wave experiments carried on the Electron Echo 2 sounding rocket launched on September 24, 1972. Over 2000 electron injections were made with durations of 8 ms and 64 ms and pitch angles from 0 to 180 deg. The electric field receivers carried on the ejected nose cone observed strong whistler waves in the range from less than 100 kHz up to the electron cyclotron frequency of 1400 kHz. The whistler characteristics fall into four distinct types depending on pitch angle and gun energy. Both frequency and amplitude showed strong dependence on time from the start of the pulse and pitch angle. Cases of enhancement at the leading edge of a gun pulse, growth during a pulse, and echoes after the end of a pulse were all observed.

  1. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  2. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2012-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

  3. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  4. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

    PubMed

    Melki, Lea; Costet, Alexandre; Konofagou, Elisa E

    2017-10-01

    Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less

  6. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.

    2018-06-01

    We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.

  7. Steering of SH wave propagation in electrorheological elastomer with a structured meta-slab by tunable phase discontinuities

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Li, Yi; Cao, Liyun; Yang, Zhichun; Zhou, Xiaoling

    2017-09-01

    The generalized Snell's law (GSL) with phase discontinuity proposed based on the concept of a metasurface, which can be used to control arbitrarily the reflection and refraction of waves, attracts a growing attention in these years. The concept of abnormally deflecting the incident wave has been applied to the elastic field very recently. However, most of the studies on metasurfaces are based on passive materials, which restricts the frequency or the deflected angles always working in a single state. Here, we steer elastic SH wave propagation in an electrorheological (ER) elastomer with a structured meta-slab composed of geometrically periodic wave guides by exposing the slab to the programmed electric fields. The dependence of phase velocities of SH waves on the applied electric fields can make the phase shift under the form of a special function along the slab, which will control the refraction angles of the transmitted SH waves by the GSL. Accordingly we design the meta-slab theoretically and conduct corresponding numerical simulations. The results demonstrate that the structured meta-slab under the programmed external electric fields can deflect SH wave flexibly with tunable refraction angles and working frequencies, and can focus SH wave with tunable focal lengths. The present study will broaden the scope of applying adaptive materials to design metasurfaces with tunability.

  8. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  9. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection.

    PubMed

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-12-05

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.

  10. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G.; Tacchi, S.; Montoncello, F.

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained bymore » dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.« less

  11. Wind-tunnel investigation of aerodynamic loading on a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.; Brooks, C. W., Jr.

    1983-01-01

    Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).

  12. Field Experiments on SAR Detection of Film Slicks

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  13. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    PubMed

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  14. Surface-Wave Pulse Routing around Sharp Right Angles

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.

    2018-04-01

    Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.

  15. Single-Input and Multiple-Output Surface Acoustic Wave Sensing for Damage Quantification in Piezoelectric Sensors.

    PubMed

    Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit

    2018-06-22

    The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.

  16. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  17. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.

    2012-01-15

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less

  18. Evaluation of the Normal Cochlear Second Interscalar Ridge Angle and Depth on 3D T2-Weighted Images: A Tool for the Diagnosis of Scala Communis and Incomplete Partition Type II.

    PubMed

    Booth, T N; Wick, C; Clarke, R; Kutz, J W; Medina, M; Gorsage, D; Xi, Y; Isaacson, B

    2018-05-01

    Cochlear malformations may be be subtle on imaging studies. The purpose of this study was to evaluate the angle and depth of the lateral second interscalar ridge or notch in ears without sensorineural hearing loss (normal ears) and compare them with ears that have a documented incomplete type II partition malformation. The second interscalar ridge notch angle and depth were measured on MR imaging in normal ears by a single experienced neuroradiologist. The images of normal and incomplete partition II malformation ears were then randomly mixed for 2 novice evaluators to measure both the second interscalar ridge notch angle and depth in a blinded manner. For the mixed group, interobserver agreement was calculated, normal and abnormal ear measurements were compared, and receiver operating characteristic curves were generated. The 94 normal ears had a mean second interscalar ridge angle of 80.86° ± 11.4° and depth of 0.54 ± 0.14 mm with the 98th percentile for an angle of 101° and a depth of 0.3 mm. In the mixed group, agreement between the 2 readers was excellent, with significant differences for angle and depth found between normal and incomplete partition type II ears for angle and depth on average ( P < .001). Receiver operating characteristic cutoffs for delineating normal from abnormal ears were similar for both readers (depth, 0.31/0.34 mm; angle, 114°/104°). A measured angle of >114° and a depth of the second interscalar ridge notch of ≤0.31 mm suggest the diagnosis of incomplete partition type II malformation and scala communis. These measurements can be accurately made by novice readers. © 2018 by American Journal of Neuroradiology.

  19. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  20. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-08-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  1. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE PAGES

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...

    2017-07-10

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  2. CMR assessment of the left ventricle apical morphology in subjects with unexplainable giant T-wave inversion and without apical wall thickness ≥15 mm.

    PubMed

    Wu, Bailin; Lu, Minjie; Zhang, Yan; Song, Bo; Ling, Jian; Huang, Jinghan; Yin, Gang; Lan, Tian; Dai, Linlin; Song, Lei; Jiang, Yong; Wang, Hao; He, Zuoxiang; Lee, Jongmin; Yong, Hwan Seok; Patel, Mehul B; Zhao, Shihua

    2017-02-01

    Patients with unexplainable giant T-wave inversion in the precordial leads and apical wall thickness <15 mm have been reported. These patients cannot be diagnosed as apical hypertrophic cardiomyopathy (AHCM) according to the current criteria. The objective of this study was to evaluate the apical morphological features of this type of patients using cardiac magnetic resonance. Institutional ethics approval and written informed consent were obtained. A total of 60 subjects with unexplainable giant T-wave inversion and 76 healthy volunteers were prospectively enrolled in the study. The segmented left ventricular (LV) wall thickness was measured according to the American Heart Association 17-segmented model. The apical angle (apA) as well as the regional variations in LV wall thickness was analysed. Considerable variation in LV wall thickness in normals was observed with progressive thinning from the base to apex (male and female, P < 0.01). The apical thickness of subjects with giant T-wave inversion was 8.10 ± 1.67 mm in male, which is thicker than that of controls (4.14 ± 1.17 mm, P < 0.01). In female, the apical thickness was also significantly different from controls (5.85 ± 2.16 vs. 2.99 ± 0.65 mm, P < 0.01). Compared with normals, the apA decreased significantly in male (87.44 ± 13.86 vs.115.03 ± 9.90°, P < 0.01) and female (90.69 ± 8.84 vs. 110.07 ± 13.58°, P < 0.01) subjects, respectively. Although the absolute thickness of apical wall was below the current diagnostic criteria of AHCM, the apical morphological features of subjects with unexplainable giant T-wave inversion were significantly different from normals. Whether these subjects should be included into a preclinical scope of AHCM needs further investigations. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  3. Does the optimal position of the acetabular fragment should be within the radiological normal range for all developmental dysplasia of the hip? A patient-specific finite element analysis.

    PubMed

    Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong

    2016-10-04

    The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.

  4. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  5. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  6. Instantaneous polarization statistic property of EM waves incident on time-varying reentry plasma

    NASA Astrophysics Data System (ADS)

    Bai, Bowen; Liu, Yanming; Li, Xiaoping; Yao, Bo; Shi, Lei

    2018-06-01

    An analytical method is proposed in this paper to study the effect of time-varying reentry plasma sheath on the instantaneous polarization statistic property of electromagnetic (EM) waves. Based on the disturbance property of the hypersonic fluid, the spatial-temporal model of the time-varying reentry plasma sheath is established. An analytical technique referred to as transmission line analogy is developed to calculate the instantaneous transmission coefficient of EM wave propagation in time-varying plasma. Then, the instantaneous polarization statistic theory of EM wave propagation in the time-varying plasma sheath is developed. Taking the S-band telemetry right hand circularly polarized wave as an example, effects of incident angle and plasma parameters, including the electron density and the collision frequency on the EM wave's polarization statistic property are studied systematically. Statistical results indicate that the lower the collision frequency and the larger the electron density and incident angle is, the worse the deterioration of the polarization property is. Meanwhile, in conditions of critical parameters of certain electron density, collision frequency, and incident angle, the transmitted waves have both the right and left hand polarization mode, and the polarization mode will reverse. The calculation results could provide useful information for adaptive polarization receiving of the spacecraft's reentry communication.

  7. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Bell, T. F.

    1984-01-01

    A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.

  8. Discontinuity-free edge-diffraction model for characterization of focused wave fields.

    PubMed

    Sedukhin, Andrey G

    2010-03-01

    A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.

  9. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  10. FIBER AND INTEGRATED OPTICS: Noncollinear geometry for highly efficient excitation of a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.

    1992-02-01

    An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.

  11. Experimental study on the pressure wave propagation in the artificial arterial tree in brain

    NASA Astrophysics Data System (ADS)

    Shimada, Shinya; Tsurusaki, Ryo; Iwase, Fumiaki; Matsukawa, Mami; Lagrée, Pierre-Yves

    2018-07-01

    A pulse wave measurement is effective for the early detection of arteriosclerosis. The pulse wave consists of incident and reflected waves. The reflected wave of the pulse wave measured at the left common carotid artery seems to originate from the vascular beds in the brain. The aim of this study is to know if the reflected waves from the occlusions in cerebral arteries can affect the pulse waveform. The artificial arterial tree in the brain was therefore fabricated using polyurethane tubes. After investigating the effects of the bifurcation angle on the pulse waveform, we attempted to confirm whether the reflected waves from occlusions in the artificial arterial tree in the brain can be experimentally measured at the left common carotid artery. Results indicate that the bifurcation angle did not affect the pulse waveform, and that the reflected wave from an occlusion with a diameter of more than 1 mm in the brain could be observed.

  12. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  13. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  14. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  15. Parity-time-symmetric teleportation

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.

    2016-06-01

    We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.

  16. Crossing seas and occurrence of rogue waves

    NASA Astrophysics Data System (ADS)

    Bitner-Gregersen, Elzbieta; Toffoli, Alessandro

    2017-04-01

    The study is addressing crossing wave systems which may lead to formation of rogue waves. Onorato et al. (2006, 2010) have shown using the Nonlinear Schr?dringer (NLS) equations that the modulational instability and rogue waves can be triggered by a peculiar form of directional sea state, where two identical, crossing, narrow-banded random wave systems interact with each other. Such results have been underpinned by numerical simulations of the Euler equations solved with a Higher Order Spectral Method (HOSM) and experimental observations (Toffoli et al., 2011). They substantiate a dependence of the angle between the mean directions of propagation of the two crossing wave systems, with a maximum rogue wave probability for angles of approximately 40 degrees. Such an unusual sea state of two almost identical wave systems (approximately the same significant wave height and mean frequency) with high steepness and different directions was observed during the accident to the cruise ship Louis Majesty (Cavaleri et al. 2012). Occurrence of wind sea and swell having almost the same spectral period and significant wave height and crossing at the angle 40o < β < 60o has been investigated recently by Bitner-Gregersen and Toffoli (2014). The numerical simulations carried out by HOSM have shown that although directionality has an effect on the occurrence of extreme waves in crossing seas, rogue waves can occur not only for narrow-banded wave directional spreading but also broader spectral conditions. It seems that the most critical condition for occurrence of rogue waves in crossing seas is associated with energy and frequency of two wave systems while the angle between the wave systems and directional spreading will decide how large extreme waves will grow. The 40 degree angle and narrow-banded directional spreading seem to be generating the largest waves. The study shows that occurrence of rogue-prone crossing sea states is location specific, depending strongly on local characteristics of wave climate in a particular ocean region. These sea states have been observed in the North Atlantic as well as in the North and Norwegian Seas but only in low and intermediate wave conditions. They have not been found in a location off coast of Australia and Nigeria. There are some indications that in the future climate we may expect an increase number of occurrence of rogue-prone crossing sea states in some ocean regions An adopted partitioning procedure of a wave spectrum will impact the results. References Bitner-Gregersen, E.M. and Toffoli, A., 2014. Probability of occurrence of rogue sea states and consequences for design of marine structures. Special Issue of Ocean Dynamics, ISSN 1616-7341, 64(10), DOI 10.1007/s10236-014-0753-2. Cavaleri, L., Bertotti, L., Torrisi, L. Bitner-Gregersen, E., Serio, M. and Onorato, M., 2012. Rogue Waves in Crossing Seas: The Louis Majesty accident. J. Geophysical Research, 117, C00J10, doi:10.1029/2012JC007923 Onorato, M., A. Osborne, A. and M. Serio, 2006. Modulation instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys. Rev. Lett., 96, 014503 Onorato M., Proment, D., Toffoli, A., 2010. Freak waves in crossing seas, European Physical Journal, 185, 45-55. Toffoli A., Bitner-Gregersen, E.M., Osborne, A. Serio, M., Monbaliu, J. , Onorato, M., 2011. Extreme waves in random crossing seas: Laboratory experiments and numerical simulations." Geophys. Res. Lett., 38(2011), L06605, doi: 10.1029/201.

  17. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  18. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.

  19. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.

  20. Dynamic tailoring of surface plasmon polaritons through incident angle modulation.

    PubMed

    Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin

    2018-04-16

    Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

  1. Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)

    NASA Astrophysics Data System (ADS)

    Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.

  2. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection

    PubMed Central

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-01-01

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909

  3. Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Finstad, Daniel; De, Soumi; Brown, Duncan A.; Berger, Edo; Biwer, Christopher M.

    2018-06-01

    The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW–EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW–EM observations to measure the viewing angle of GW170817, the angle between the binary’s angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is {32}-13+10 +/- 1.7 degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of ≥13°, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

  4. Impact response of graphite-epoxy flat laminates using projectiles that simulate aircraft engine encounters

    NASA Technical Reports Server (NTRS)

    Preston, J. L., Jr.; Cook, T. S.

    1975-01-01

    An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.

  5. Transverse low frequency wave in a two fluid solar wind. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Solodyna, G. V.

    1973-01-01

    Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.

  6. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  7. Normal mode Rossby waves observed in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Hirooka, T.; Hirota, I.

    1985-01-01

    In recent years, observational evidence has been obtained for westward traveling planetary waves in the middle atmosphere with the aid of global data from satellites. There is no doubt that the fair portion of the observed traveling waves can be understood as the manifestation of the normal mode Rossby waves which are theoretically derived from the tidal theory. Some observational aspects of the structure and behavior of the normal model Rossby waves in the upper stratosphere are reported. The data used are the global stratospheric geopotential thickness and height analyses which are derived mainly from the Stratospheric Sounding Units (SSUs) on board TIROS-N and NOAA satellites. A clear example of the influence of the normal mode Rossby wave on the mean flow is reported. The mechanism considered is interference between the normal mode Rossby wave and the quasi-stationary wave.

  8. Generation of Optical Vortices by Nonlinear Inverse Thomson Scattering at Arbitrary Angle Interactions

    NASA Astrophysics Data System (ADS)

    Taira, Yoshitaka; Katoh, Masahiro

    2018-06-01

    We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.

  9. Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, Fuk K.; Lou, Shu-Hsiang; Neumann, Gregory; McIntosh, Robert E.; Carson, Steven C.; Carswell, James R.; Walsh, Edward J.; Donelan, Mark A.; Drennan, William M.

    1995-01-01

    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented.

  10. Bound on the Slope of Steady Water Waves with Favorable Vorticity

    NASA Astrophysics Data System (ADS)

    Strauss, Walter A.; Wheeler, Miles H.

    2016-12-01

    We consider the angle {θ} of inclination (with respect to the horizontal) of the profile of a steady two dimensional inviscid symmetric periodic or solitary water wave subject to gravity. Although {θ} may surpass 30° for some irrotational waves close to the extreme wave, Amick (Arch Ration Mech Anal 99(2):91-114, 1987) proved that for any irrotational wave the angle must be less than 31.15°. Is the situation similar for periodic or solitary waves that are not irrotational? The extreme Gerstner wave has infinite depth, adverse vorticity and vertical cusps ( θ = 90°). Moreover, numerical calculations show that even waves of finite depth can overturn if the vorticity is adverse. In this paper, on the other hand, we prove an upper bound of 45° on {θ} for a large class of waves with favorable vorticity and finite depth. In particular, the vorticity can be any constant with the favorable sign. We also prove a series of general inequalities on the pressure within the fluid, including the fact that any overturning wave must have a pressure sink.

  11. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  12. Deformation fabrics of amphibole in amphibolites from Jenner Headland and Ring Mt. in California and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jung, H.

    2016-12-01

    Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation(LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Labratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. For amphibole, P-wave velocity anisotropy was in the range of 15.9 - 20.9% and maximum S-wave anisotropy was in the range of 13.1 - 19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy(AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2-D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications. 6:6586.

  13. Lattice preferred orientation of amphibole in amphibolites from Jenner Headland and Ring Mt. in California and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Kim, Junha; Jung, Haemyeong

    2017-04-01

    Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation (LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Laboratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. P-wave velocity anisotropy of amphibole was in the range of 15.9‒20.9% and maximum S-wave anisotropy was in the range of 13.1‒19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy (AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear, Nature Communications, 6:6586.

  14. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.

    PubMed

    Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S

    2017-11-01

    To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  16. Intensity Distribution of the Three-Wave Diffraction from Dislocation Epitaxial Layers in the Reciprocal Space

    NASA Astrophysics Data System (ADS)

    Kyutt, R. N.

    2018-04-01

    The three-wave X-ray diffraction in strongly disordered epitaxial layers of GaN and ZnO is experimentally investigated. The charts of the intensity distribution in the reciprocal space are plotted in coordinates q θ and q ϕ for the most intensive three-wave combination (1010)/(1011) by means of subsequent θ- and ϕ-scanning. A nontrivial shape of the θ-sections of these contours at a distance from the ϕ center of reflection is revealed; it is different for different samples. For the θ-curves at the center of reflection, we observed a common peak that may be approximated by the Voigt function with a power-low decrease in the intensity at the wings; the decrease law (from-4.5 to-5.0) is found to be considerably greater than that for the similar curves of two-wave diffraction and not depending on the dislocation density and distribution in layers. In some films we observed a coarse-block structure; in addition, it follows from the distribution in the reciprocal space that these blocks are turned with respect to each other around a normal to the surface, which allows us to suggest the existence of low-angle boundaries between them, consisting exclusively of edge dislocations.

  17. Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations

    NASA Astrophysics Data System (ADS)

    Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.

    2017-12-01

    We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.

  18. First Observation of Lion Roar Emission in Saturn's Magnetosheath

    NASA Astrophysics Data System (ADS)

    Píša, D.; Sulaiman, A. H.; Santolík, O.; Hospodarsky, G. B.; Kurth, W. S.; Gurnett, D. A.

    2018-01-01

    We present an observation of intense emissions in Saturn's magnetosheath as detected by the Cassini spacecraft. The emissions are observed in the dawn sector (magnetic local time ˜06:45) of the magnetosheath over a time period of 11 h before the spacecraft crossed the bow shock and entered the unshocked solar wind. They are found to be narrow-banded with a peak frequency of about 0.16 fce, where fce is the local electron gyrofrequency. Using plane wave propagation analysis, we show that the waves are right hand circularly polarized in the spacecraft frame and propagate at small wave normal angles (<10∘) with respect to the ambient magnetic field. Electromagnetic waves with the same properties known as "lion roars" have been reported by numerous missions in the terrestrial magnetosheath. Here we show the first evidence such emission outside the terrestrial environment. Our observations suggest that lion roars are a solar-system-wide phenomenon and capable of existing in a broad range of parameter space. This also includes 1 order of magnitude difference in frequencies. We anticipate our result to provide new insight into such emissions in a new parameter regime characterized by a higher plasma beta (owing to the substantially higher Mach number bow shock) compared to Earth.

  19. Compensation for Phase Anisotropy of a Metal Reflector

    NASA Technical Reports Server (NTRS)

    Hong, John

    2007-01-01

    A method of compensation for the polarization- dependent phase anisotropy of a metal reflector has been proposed. The essence of the method is to coat the reflector with multiple thin alternating layers of two dielectrics that have different indices of refraction, so as to introduce an opposing polarization-dependent phase anisotropy. The anisotropy in question is a phenomenon that occurs in reflection of light at other than normal incidence: For a given plane wave having components polarized parallel (p) and perpendicular (s) to the plane of incidence, the phase of s-polarized reflected light differs from the phase p-polarized light by an amount that depends on the angle of incidence and the complex index of refraction of the metal. The magnitude of the phase difference is zero at zero angle of incidence (normal incidence) and increases with the angle of incidence. This anisotropy is analogous to a phase anisotropy that occurs in propagation of light through a uniaxial dielectric crystal. In such a case, another uniaxial crystal that has the same orientation but opposite birefringence can be used to cancel the phase anisotropy. Although it would be difficult to prepare a birefringent material in a form suitable for application to the curved surface of a typical metal reflector in an optical instrument, it should be possible to effect the desired cancellation of phase anisotropy by exploiting the form birefringence of multiple thin dielectric layers. (The term "form birefringence" can be defined loosely as birefringence arising, in part, from a regular array of alternating subwavelength regions having different indices of refraction.)

  20. Elastic dependence of defect modes in one-dimensional photonic crystals with a cholesteric elastomer slab

    NASA Astrophysics Data System (ADS)

    Avendanño, Carlos G.; Martínez, Daniel

    2018-07-01

    We studied the transmission spectra in a one-dimensional dielectric multilayer photonic structure containing a cholesteric liquid crystal elastomer layer as a defect. For circularly polarized incident electromagnetic waves, we analyzed the optical defect modes induced in the band gap spectrum as a function of the incident angle and the axial strain applied along the same axis as the periodic medium. The physical parameters of the structure were chosen in such a way the photonic band gap of the cholesteric elastomer lies inside that of the multilayer. We found that, in addition to the defect modes associated with the thickness of the defect layer and the anisotropy of the elastic polymer, two new defect modes appear at both band edges of the cholesteric structure, whose amplitudes and spectral positions can be elastically tuned. Particularly, we showed that, at normal incidence, the defect modes shift toward the long-wavelength region with the strain; whereas, for constant elongation, such defects move toward larger frequencies with the incidence angle.

  1. Wave Turning and Flow Angle in the E-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Young, M.; Oppenheim, M. M.; Dimant, Y. S.

    2016-12-01

    This work presents results of particle-in-cell (PIC) simulations of Farley-Buneman (FB) turbulence at various altitudes in the high-latitude E-region ionosphere. In that region, the FB instability regularly produces meter-scale plasma irregularities. VHF radars observe coherent echoes via Bragg scatter from wave fronts parallel or anti-parallel to the radar line of sight (LoS) but do not necessarily measure the mean direction of wave propagation. Haldoupis (1984) conducted a study of diffuse radar aurora and found that the spectral width of back-scattered power depends critically on the angle between the radar LoS and the true flow direction, called the flow angle. Knowledge of the flow angle will allow researchers to better interpret observations of coherent back-scatter. Experiments designed to observe meter-scale irregularities in the E-region ionosphere created by the FB instability typically assume that the predominant flow direction is the E×B direction. However, linear theory of Dimant and Oppenheim (2004) showed that FB waves should turn away from E×B and particle-in-cell simulations by Oppenheim and Dimant (2013) support the theory. The present study comprises a quantitative analysis of the dependence of back-scattered power, flow velocity, and spectral width as functions of the flow angle. It also demonstrates that the mean direction of meter-scale wave propagation may differ from the E×B direction by tens of degrees. The analysis includes 2-D and 3-D simulations at a range of altitudes in the auroral ionosphere. Comparison between 2-D and 3-D simulations illustrates the relative importance to the irregularity spectrum of a small but finite component in the direction parallel to B. Previous work has shown this small parallel component to be important to turbulent electron heating and nonlinear transport.

  2. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  3. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of Japan, AIST. This work was supported by JSPS KAKENHI Grant Number 24540463.

  4. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  5. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner

    NASA Astrophysics Data System (ADS)

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  6. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner.

    PubMed

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  7. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy

    PubMed Central

    Balakrishna, Nagalla

    2017-01-01

    Aim To evaluate the configuration of the anterior chamber angle quantitatively and study the morphological changes in the eye with ultrasound biomicroscopy (UBM) in primary angle closure glaucoma (PACG) patients after laser peripheral iridotomy (LPI). Materials and methods A total of 185 eyes of 185 PACG patients post-LPI and 126 eyes of 126 normal subjects were included in this prospective study. All subjects underwent complete ophthalmic evaluation, A-scan biometry, and UBM. The anterior segment and angle parameters were measured quantitatively and compared in both groups using Student’s t-test. Results The PACG patients had shorter axial length, shallower central anterior chamber depth anterior chamber depth (ACD), and anteriorly located lens when compared with normal subjects. Trabecular iris angle (TIA) was significantly narrow (5.73 ± 7.76°) in patients with PACG when compared with normal subjects (23.75 ± 9.38°). The angle opening distance at 500 pm from scleral spur (AOD 500), trabecular-ciliary process distance (TCPD), iris-ciliary process distance (ICPD), and iris-zonule distance (IZD) were significantly shorter in patients with PACG than in normal subjects (p < 0.0001). The iris lens angle (ILA), scleral-iris angle (SIA), and scleral-ciliary process angle (SCPA) were significantly narrower in patients with PACG than in normal subjects (p < 0.0001). The iris-lens contact distance (ILCD) was greater in PACG group than in normal (p = 0.001). Plateau iris was seen in 57/185 (30.8%) of the eyes. Anterior positioned ciliary processes were seen in 130/185 eyes (70.3%) of eyes. Conclusion In PACG patients, persistent apposition angle closure is common even after LPI, which could be due to anterior rotation of ciliary body and plateau iris and overcrowding of anterior segment due to shorter axial length and relative anterior lens position. How to cite this article: Mansoori T, Balakrishna N. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy. J Curr Glaucoma Pract 2017;11(3):86-91. PMID:29151682

  8. Hypersonic boundary-layer transition measurements at Mach 10 on a large seven-degree cone at angle of attack

    NASA Astrophysics Data System (ADS)

    Moraru, Ciprian G.

    The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.

  9. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2018-03-01

    In this manuscript, we envision deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict profound changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase significantly. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, significant increase in bandwidth of the odd-numbered bandgaps occurs even at small fold angles- the bandwidth for the first and third bandgaps effectively double in size (increase by 100%) at Ψ = 20 deg relative to those at Ψ = 0. This has important ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is an important parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have important ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide important clues about the mechanical parameters of the structure.

  10. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. A.

    2018-06-01

    In this manuscript, we investigate deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict notable changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, non-trivial increases in bandwidth of the odd-numbered bandgaps occurs even at small fold angles-the bandwidth for the first and third bandgaps effectively double in size (increase by 100 %) at Ψ = 20 deg relative to those at Ψ = 0. This could have ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is a pertinent parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide clues about the mechanical parameters of the structure.

  11. Scattering of In-Plane Waves by Elastic Wedges

    NASA Astrophysics Data System (ADS)

    Mohammadi, K.; Asimaki, D.; Fradkin, L.

    2014-12-01

    The scattering of seismic waves by elastic wedges has been a topic of interest in seismology and geophysics for many decades. Analytical, semi-analytical, experimental and numerical studies on idealized wedges have provided insight into the seismic behavior of continental margins, mountain roots and crustal discontinuities. Published results, however, have almost exclusively focused on incident Rayleigh waves and out-of-plane body (SH) waves. Complementing the existing body of work, we here present results from our study on the res­ponse of elastic wedges to incident P or SV waves, an idealized pro­blem that can provide valuable insight to the understanding and parameterization of topographic ampli­fication of seismic ground mo­tion. We first show our earlier work on explicit finite difference simulations of SV-wave scattering by elastic wedges over a wide range of internal angles. We next present a semi-analytical solution that we developed using the approach proposed by Gautesen, to describe the scattered wavefield in the immediate vicinity of the wedge's tip (near-field). We use the semi-analytical solution to validate the numerical analyses, and improve resolution of the amplification factor at the wedge vertex that spikes when the internal wedge angle approaches the critical angle of incidence.

  12. Ultrasound shear wave imaging

    NASA Astrophysics Data System (ADS)

    Ye, Shigong; Wu, Junru

    2000-05-01

    Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.

  13. Secondary electron emission from electrically charged fluorinated-ethylene-propylene Teflon for normal and non-normal electron incidence. M.S. Thesis; [spacecraft thermal coatings

    NASA Technical Reports Server (NTRS)

    Budd, P. A.

    1981-01-01

    The secondary electron emission coefficient was measured for a charged polymer (FEP-Teflon) with normally and obliquely incident primary electrons. Theories of secondary emission are reviewed and the experimental data is compared to these theories. Results were obtained for angles of incidence up to 60 deg in normal electric fields of 1500 V/mm. Additional measurements in the range from 50 to 70 deg were made in regions where the normal and tangential fields were approximately equal. The initial input angles and measured output point of the electron beam could be analyzed with computer simulations in order to determine the field within the chamber. When the field is known, the trajectories can be calculated for impacting electrons having various energies and angles of incidence. There was close agreement between the experimental results and the commonly assumed theoretical model in the presence of normal electric fields for angles of incidence up to 60 deg. High angle results obtained in the presence of tangential electric fields did not agree with the theoretical models.

  14. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  15. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. Direct Measurements of Energy Transfer between Hot Protons and He+ via EMIC Waves Observed by MMS in the Outer Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.

    2017-12-01

    Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.

  17. Comparing wave shoaling methods used in large-scale coastal evolution modeling

    NASA Astrophysics Data System (ADS)

    Limber, P. W.; Adams, P. N.; Murray, A.

    2013-12-01

    A variety of methods are available to simulate wave propagation from the deep ocean to the surf zone. They range from simple and computationally fast (e.g. linear wave theory applied to shore-parallel bathymetric contours) to complicated and computationally intense (e.g., Delft's ';Simulating WAves Nearshore', or SWAN, model applied to complex bathymetry). Despite their differences, the goal of each method is the same with respect to coastline evolution modeling: to link offshore waves with rates of (and gradients in) alongshore sediment transport. Choosing a shoaling technique for modeling coastline evolution should be partly informed by the spatial and temporal scales of the model, as well as the model's intent (is it simulating a specific coastline, or exploring generic coastline dynamics?). However, the particular advantages and disadvantages of each technique, and how the advantages/disadvantages vary over different model spatial and temporal scales, are not always clear. We present a wave shoaling model that simultaneously computes breaking wave heights and angles using three increasingly complex wave shoaling routines: the most basic approach assuming shore-parallel bathymetric contours, a wave ray tracing method that includes wave energy convergence and divergence and non-shore-parallel contours, and a spectral wave model (SWAN). Initial results show reasonable agreement between wave models along a flat shoreline for small (1 m) wave heights, low wave angles (0 to 10 degrees), and simple bathymetry. But, as wave heights and angles increase, bathymetry becomes more variable, and the shoreline shape becomes sinuous, the model results begin to diverge. This causes different gradients in alongshore sediment transport between model runs employing different shoaling techniques and, therefore, different coastline behavior. Because SWAN does not approximate wave breaking (which drives alongshore sediment transport) we use a routine to extract grid cells from SWAN output where wave height is approximately one-half of the water depth (a standard wave breaking threshold). The goal of this modeling exercise is to understand under what conditions a simple wave model is sufficient for simulating coastline evolution, and when using a more complex shoaling routine can optimize a coastline model. The Coastline Evolution Model (CEM; Ashton and Murray, 2006) is used to show how different shoaling routines affect modeled coastline behavior. The CEM currently includes the most basic wave shoaling approach to simulate cape and spit formation. We will instead couple it to SWAN, using the insight from the comprehensive wave model (above) to guide its application. This will allow waves transformed over complex bathymetry, such as cape-associated shoals and ridges, to be input for the CEM so that large-scale coastline behavior can be addressed in less idealized environments. Ashton, A., and Murray, A.B., 2006, High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes: Journal of Geophysical Research, v. 111, p. F04011, doi:10.1029/2005JF000422.

  18. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  19. Comparison between the angle of Eustachian tube in patients with chronic suppurative otitis media and normal ears based on computed tomography scan of temporal bones in Haji Adam Malik general hospital Medan

    NASA Astrophysics Data System (ADS)

    Masita, S.; Zahara, D.; Aboet, A.

    2018-03-01

    The function of the Eustachian tube plays a significant role in increased risk chronic suppurative otitis media (CSOM). The angle of the Eustachian tube is a predisposing factor for Eustachian tube dysfunction and clearance disorder of the middle ear. The aim of this study was to compare the mean angle of a Eustachian tube of CSOM ears and normal ears. This research was a cross-sectional study consisting of 19 patients of CSOM without cholesteatoma, 19 patients of CSOM with cholesteatoma and 19 patients with normal ears. All patients were examined using CT Temporal, and the angle of the eustachian tube was measured using multiplanar reconstruction technique. The mean angle of Eustachian tube in CSOM patients without cholesteatoma was 32.82° (SD=3.82), in CSOM with cholesteatoma was 27.74° (SD=4.44) and in normal ears was 33.61° (SD=3.83). Based on Kruskal-Wallis test, there was a significant difference in the angle of a Eustachian tube of these three groups (p<0.001). There was a significant difference between the mean angle of the Eustachian tube in CSOM ears and normal ears.

  20. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    NASA Astrophysics Data System (ADS)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  1. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study

    PubMed Central

    Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135

  2. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.

    PubMed

    Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.

  3. Numerical simulation of the supersonic boundary layer interaction with arbitrary oriented acoustic waves

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Gaponov, S. A.

    2017-10-01

    Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Re<600. It is established that the velocity perturbation amplitude within the boundary layer is greater than the amplitude of the external acoustic wave in several times, the maximum amplitude growth is reached 10. At the small sliding and incidence angles the velocity perturbations amplitude increased monotonously with Reynold's numbers. At rather great values of these angles there are maxima in dependences of the velocity perturbations amplitude on the Reynold's number. The oscillations exaltation in the boundary layer by the sound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.

  4. Design of a simple non-destructive detection system using P-wave lasers for determining the soluble solids content of apples.

    PubMed

    Hua, Shih-Hao; Chen, Chao-Pin; Han, Pin

    2017-08-01

    The simple and nondestructive detection system studied in this work uses a near-infrared (NIR) detector and parallel-polarized (P-wave) NIR lasers to determine the soluble solids content (SSC) of apples. The P-wave NIR laser in this system is incident into the apple's pulp at the Brewster angle to minimize the interference caused by interfacial reflections. After the apple has been illuminated by four P-wave NIR lasers that correspond to the specified wavelengths of the SSC chemical bonds (880, 940, 980, and 1064 nm), the prediction of correlation (rp2) and the root-mean-square error for prediction (RMSEP) of the SSC are determined via partial least square regression analysis of the reflectance. Our results indicate that the use of P-wave lasers at the Brewster angle (as the angle of incidence) and the above specified wavelengths for the prediction set measurement of the SSC of apples obtained an rp2 of 0.88 and an RMSEP of 0.47°Brix. These rp2 are 6% higher, and the RMSEPs are 9% lower, than those obtained using non-polarized lasers.

  5. Monte Carlo calculation of large and small-angle electron scattering in air

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.

    2017-11-01

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  6. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  7. Detecting seismic anisotropy across the 410 km discontinuity through polarity and amplitude variations of the underside reflections

    NASA Astrophysics Data System (ADS)

    Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James

    2017-04-01

    We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.

  8. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  9. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  10. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    NASA Astrophysics Data System (ADS)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  11. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  12. Is the gravity effect of radiographic anatomic features enough to justify stone clearance or fragments retention following extracorporeal shock wave lithotripsy (SWL).

    PubMed

    Mustafa, Mahmoud

    2012-08-01

    We determined whether the gravity effect of radiographic anatomic features on the preoperative urography (IVP) are enough to predict fragments clearance after shock wave lithotripsy (SWL). A Total of 282 patients with mean age 45.8 ± 13.2 years (189 male, 93 female), who underwent SWL due to renal calculi between October 2005 and August 2009 were enrolled. The mean calculi load was 155.72 ± 127.66 mm². The patients were stratified into three groups: patients with pelvis calculi (group 1); patients with upper or middle pole calculi (group 2) and patients with lower pole calculi (group 3). Three angles on the pretreatment IVP were measured: the inner angle between the axis of the lower pole infundibular and ureteropelvic axis (angle I); the inner angle between the lower pole infundibular axis and main axis of pelvis-ureteropelvic (UP) junction point (angle II) and the inner angle between the lower pole infundibular axis and perpendicular line (angle III). Multivariate analysis was used to define the significant predictors of stone clearance. The overall success rate was 85.81%. All angles, sessions number, shock waves number and stone burden were significant predictors of success in patients in group 1. However, in group 2 only angle II and in group 3 angles I and II had significant effect on stone clearance. Radiographic anatomic features have significant role in determining the stone-free rate following satisfactory fragmentation of renal stones with SWL. The measurement of infundibulopelvic angle in different manner helps to predict the stone-free status in patients with renal calculi located not only in lower pole, but also in renal pelvis and upper or middle pole. Gravity effect is not enough to justify the significant influence of the radiographic anatomic features on the stone clearance and fragments retention after SWL.

  13. Jet oscillations caused by vorticity interactions with shock waves

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Harstad, K.; Massier, P. F.

    1981-01-01

    A linear theory is developed for the amplification of disturbances along a jet containing shock waves. The theory indicates that near grazing angles (i.e., wave angles near 90 deg) horizontal vorticity is greatly amplified after passing through the two shock waves that exist in a shock cell. The cumulative amplification and the mode that is amplified most can be obtained if the changes in shock parameters from cell to cell are known. Rapid rates of growth of disturbances are exhibited by shadowgraphs and rates of angular displacement of about 10 are observed. The linear two-dimensional theory also indicates that such rates of amplification occur, and that the behavior of a two-dimensional jet is qualitatively similar to that of a round jet.

  14. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  15. 2D and 3D graphical representation of the propagation of electromagnetic waves at the interface with a material with general effective complex permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Diaz, A.; Ramos, J. G.; Friedman, J. S.

    2017-09-01

    We developed a web-based instructional and research tool that demonstrates the behavior of electromagnetic waves as they propagate through a homogenous medium and through an interface where the second medium can be characterized by an effective complex permittivity and permeability. Either p- or s-polarization wave components can be chosen and the graphical interface includes 2D wave and 3D component representations. The program enables the study of continuity of electromagnetic components, critical angle, Brewster angle, absorption and amplification, behavior of light in sub-unity and negative-index materials, Poynting vector and phase velocity behavior, and positive and negative Goos- Hänchen shifts.

  16. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  17. Theoretical analysis on lower band cascade as a mechanism for multiband chorus in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Wang, Shaojie; Wang, Shui

    2018-05-01

    Whistler-mode waves play a crucial role in controlling electron dynamics in the Earth's Van Allen radiation belt, which is increasingly important for spacecraft safety. Using THEMIS waveform data, Gao et al. [X. L. Gao, Q. Lu, J. Bortnik, W. Li, L. Chen, and S. Wang, Geophys. Res. Lett., 43, 2343-2350, 2016] have reported two multiband chorus events, wherein upper-band chorus appears at harmonics of lower-band chorus. They proposed that upper-band harmonic waves are excited through the nonlinear coupling between the electromagnetic and electrostatic components of lower-band chorus, a second-order effect called "lower band cascade". However, the theoretical explanation of lower band cascade was not thoroughly explained in the earlier work. In this paper, based on a cold plasma assumption, we have obtained the explicit nonlinear driven force of lower band cascade through a full nonlinear theoretical analysis, which includes both the ponderomotive force and coupling between electrostatic and electromagnetic components of the pump whistler wave. Moreover, we discover the existence of an efficient energy-transfer (E-t) channel from lower-band to upper-band whistler-mode waves during lower band cascade for the first time, which is also confirmed by PIC simulations. For lower-band whistler-mode waves with a small wave normal angle (WNA), the E-t channel is detected when the driven upper-band wave nearly satisfies the linear dispersion relation of whistler mode. While, for lower-band waves with a large WNA, the E-t channel is found when the lower-band wave is close to its resonant frequency, and the driven upper-band wave becomes quasi-electrostatic. Through this efficient channel, the harmonic upper band of whistler waves is generated through energy cascade from the lower band, and the two-band spectral structure of whistler waves is then formed. Both two types of banded whistler-mode spectrum have also been successfully reproduced by PIC simulations.

  18. Properties, propagation, and excitation of EMIC waves observed by MMS: A case study

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Boardsen, S. A.; Coffey, V. N.; Chandler, M. O.; Saikin, A.; Mello, E. M.; Russell, C. T.; Torbert, R. B.; Fuselier, S. A.; Giles, B. L.; Gershman, D. J.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He+-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8º - -30.3º). Energetic (> 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km-1, 372.9 km/s, and 1242.9 km, respectively. We will discuss the characteristics of the wave and particle measurements and their significance in this locale.

  19. Properties, Propagation, and Excitation of EMIC Waves Properties, Propagation, and Excitation of EMIC Waves

    NASA Technical Reports Server (NTRS)

    Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.; hide

    2017-01-01

    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.

  20. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    USGS Publications Warehouse

    Kumar, N.; Voulgaris, G.; Warner, John C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5?? to 10?? in comparison to normally incident waves. ?? 2011 Elsevier B.V.

  1. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  2. Influences of misalignment of control mirror of axisymmetric-structural CO2 laser on phase locking.

    PubMed

    Xu, Yonggen; Li, Yude; Qiu, Yi; Feng, Ting; Fu, Fuxing; Guo, Wei

    2008-11-20

    Based on the principle of phase locking of an axisymmetric-fold combination CO2 laser under the normal state condition, the mechanisms of phase locking are analyzed when the control mirror is misaligned. Then the overlapping rate (OR) of the mode volume is introduced: the main influences on phase locking are the OR, the average life of the light wave, the root mean square phase error, and the mode coupling coefficient; these influences on phase locking are studied. The distribution of the light intensity reflects the effect of phase locking. It is shown that the misaligned angle has little influence on the phase locking if it is within tolerance.

  3. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure

    PubMed Central

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  4. Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Roussos, L. A.

    1986-01-01

    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions.

  5. Beach Cusps: Spatial distribution and time evolution at Massaguaçú beach (SP), Brazil

    NASA Astrophysics Data System (ADS)

    dos Santos, H. H.; Siegle, E.; Sousa, P. H.

    2013-05-01

    Beach cusps are crescentic morphological structures observed on the foreshore of beaches characterized by steep seaward protruding extensions, called cusp horns, and gently sloped landward extensions, called cusp embayments. Their formation depends on the grain size, beach slope, tidal range and incoming waves. Cusps are best developed on gravel or shingle beaches, small tidal range with a large slope for incoming waves generate a well-developed swash excursion. These structures are quickly responding to wave climate and tidal range, changing the position of the rhythmic features on the beach face. Beach cusps are favored by normal incoming waves, while oblique waves tend to wash these features out. This study aims to analyze the spatial distribution and temporal evolution of rhythmic features such as beach cusps in Massaguaçú embayment (Caraguatatuba, northern coast of São Paulo, Brazil). This embayment has an extension of 7.5 km with reflective beaches cusped mainly in its more exposed central portion. The data set for this study consists of a series of video images (Argus system), covering a stretch of the beach. Visible beach cusps were digitalized from these rectified images. Results obtained from the images were related to the wave climate, water level and the storm surges. Results show that the cusps on the upper portion of the foreshore were more regular and present than the cusps on the lower portion of the foreshore due to the tidal modulation of wave action. The cusp spacing on the upper portion of the foreshore is of about 38 m and the lower portion of the foreshore is of about 28 m and their presence was correlated with the wave direction and water elevation. As expected, waves approaching with shore-normal angles (southeast direction) were favorable to the formation of beach cusps while the waves from the southwest, south, east and northeast generated a longshore current that reduced or destroyed any rhythmic feature. Other important forcing was the influence of the water level. Waves acting at higher water levels are able to produce the less dynamic upper layer of cusps. During 31 consecutive days from 8 July 2011 to 8 August of the same year these features show four periods with the presence of cusps on the upper and lower portion of the foreshore with three periods with cups only on the upper portion of the foreshore. The analyzed dataset shows the highly dynamic behavior of cusps, with rapid generation and destruction, related directly to its forcing hydrodynamic conditions.

  6. Fourier optics of constant-thickness three-dimensional objects on the basis of diffraction models

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2017-09-01

    Results of investigations of diffraction phenomena on constant-thickness three-dimensional objects with flat inner surfaces (thick plates) are summarized on the basis of our constructive theory of their calculation as applied to dimensional inspection. It is based on diffraction models of 3D objects with the use of equivalent diaphragms (distributions), which allow the Kirchhoff-Fresnel approximation to be effectively used. In contrast to available rigorous and approximate methods, the present approach does not require cumbersome calculations; it is a clearly arranged method, which ensures sufficient accuracy for engineering applications. It is found that the fundamental diffraction parameter for 3D objects of constant thickness d is the critical diffraction angle {θ _{cr}} = √ {λ /d} at which the effect of three-dimensionality on the spectrum of the 3D object becomes appreciable. Calculated Fraunhofer diffraction patterns (spectra) and images of constant-thickness 3D objects with absolutely absorbing, absolutely reflecting, and gray internal faces are presented. It is demonstrated that selection of 3D object fragments can be performed by choosing an appropriate configuration of the wave illuminating the object (plane normal or inclined waves, spherical waves).

  7. Characteristics of pitch angle distributions of relativistic electrons under the interaction with Pc5 waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Seki, K.; Saito, S.; Amano, T.; Yoshizumi, M.

    2017-12-01

    Radial transport of relativistic electrons in the inner magnetosphere has been considered as one of acceleration mechanisms of the outer radiation belt electrons and can be driven by the drift resonance with ULF waves in the Pc5 frequency range. The maximum changes of the electron in the radial distance (L) due to the drift resonance depend on the electron energy, pitch angle, and Pc5 wave structure. Those dependences are expected to form the characteristic pitch angle distributions (PADs) as a function of L and electron energy. In this study, we investigate PADs of relativistic electrons due to the drift resonance with a monochromatic Pc5 wave by using two simulation models of the inner magnetosphere: GEMSIS-Ring Current (RC) and GEMSIS-Radiation Belt (RB) models. The GEMSIS-RB simulations calculate guiding center trajectories of relativistic electrons in electric and magnetic fields obtained from the GEMSIS-RC model, which simulates a monochromatic Pc5 wave propagation in the inner magnetosphere. The results show the characteristic PADs depending on the energy and L, which is explicable with the pitch angle dependence of resonance conditions. At a fixed location, those PADs can change from pancake (90°peaked) to butterfly (two peaks in oblique PAs) distributions as the transport by the monochromatic Pc5 wave progresses. These butterfly distributions are seen in the L range where electrons with lower PAs satisfy the resonance condition. It is also found that the lower PA electron with a fixed magnetic moment can be transported deeper inside because of the PA changes to larger values through the adiabatic transport, which enables them to satisfy the efficient resonance condition in wider L range compared to the 90 degrees PA electrons.

  8. Non-linear interaction of a detonation/vorticity wave

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multi-domain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of exothermicity are more pronounced than predicted by linear theory. Finally, it is found that linear theory correctly determines the critical angle.

  9. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  10. Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell

    NASA Astrophysics Data System (ADS)

    Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert

    2005-07-01

    We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .

  11. The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.

    PubMed

    Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George

    2013-06-01

    The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.

  12. Towards a better understanding of high-energy electron pitch-angle scattering by electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Vincena, S.; Gekelman, W.; Pribyl, P.; Tang, S., W.,; Papadopoulos, K.

    2017-10-01

    Shear Alfven waves are a fundamental mode in magnetized plasmas. Propagating near the ion cyclotron frequency, these waves are often termed electromagnetic ion cyclotron (EMIC) waves and can involve multiple ion species. Near the earth, for example, the wave may interact resonantly with oxygen ions at altitudes ranging from 1000 to 2000 km. The waves may either propagate from space towards the earth (possibly involving mode conversion), or be generated by RF transmitters on the ground. These preliminary experiments are motivated by theoretical predictions that such waves can pitch-angle scatter relativistic electrons trapped in the earth's dipole field. EMIC waves are launched in the Large Plasma Device at UCLA's Basic Plasma Science Facility in plasmas with single and multiple ion species into magnetic field gradients where ion cyclotron resonance is satisfied. We report here on the frequency and k-spectra in the critical layer and how they compare with theoretical predictions in computing an effective diffusion coefficient for high-energy electrons. Funding is provided by the NSF, DoE, and AFSOR.

  13. A review of tropospheric refraction effects on Earth-to-satellite systems

    NASA Technical Reports Server (NTRS)

    Althsuler, E. E.

    1983-01-01

    Abnormal refractivity gradients may cause radio waves to be trapped within tropospheric layers, thus producing regions through which the waves do not pass called radio holes. For some locations and for many applications, refractive corrections based on the surface refractivity are adequate for elevation angles above a few degrees. However, new systems which operate at elevation angles near the horizon often require improved accuracies. Techniques for obtaining these improved corrections are reviewed.

  14. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    PubMed

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  15. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  16. A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers

    NASA Astrophysics Data System (ADS)

    Belafhal, A.; Ez-zariy, L.; Hricha, Z.

    2016-11-01

    By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.

  17. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  18. Monte Carlo calculation of large and small-angle electron scattering in air

    DOE PAGES

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...

    2017-08-12

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  19. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  20. Characterization of the reference wave in a compact digital holographic camera.

    PubMed

    Park, I S; Middleton, R J C; Coggrave, C R; Ruiz, P D; Coupland, J M

    2018-01-01

    A hologram is a recording of the interference between an unknown object wave and a coherent reference wave. Providing the object and reference waves are sufficiently separated in some region of space and the reference beam is known, a high-fidelity reconstruction of the object wave is possible. In traditional optical holography, high-quality reconstruction is achieved by careful reillumination of the holographic plate with the exact same reference wave that was used at the recording stage. To reconstruct high-quality digital holograms the exact parameters of the reference wave must be known mathematically. This paper discusses a technique that obtains the mathematical parameters that characterize a strongly divergent reference wave that originates from a fiber source in a new compact digital holographic camera. This is a lensless design that is similar in principle to a Fourier hologram, but because of the large numerical aperture, the usual paraxial approximations cannot be applied and the Fourier relationship is inexact. To characterize the reference wave, recordings of quasi-planar object waves are made at various angles of incidence using a Dammann grating. An optimization process is then used to find the reference wave that reconstructs a stigmatic image of the object wave regardless of the angle of incidence.

  1. Experimental and Numerical Investigation of Internal Gravity Waves Excited by Turbulent Penetrative Convection in Water Around Its Density Maximum

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Le Bars, Michaël; Le Gal, Patrice

    This study is devoted to the experimental and numerical analysis of the excitation of gravity waves by turbulent convection. This situation is representative of many geophysical or astrophysical systems such as the convective bottom layer of the atmosphere that radiates internal waves in the stratosphere, or the interaction between the convective and the radiative zones in stars. In our experiments, we use water as a working fluid as it possesses the remarkable property of having a maximum density at 4 °C. Therefore, when establishing on a water layer a temperature gradient between 0 °C at the bottom and room temperature at the top, a turbulent convective region appears spontaneously under a stably stratified zone. In these conditions, gravity waves are excited by the convective fluid motions penetrating the stratified layer. Although this type of flow, called penetrative convection, has already been described, we present here the first velocity field measurement of wave emission and propagation. We show in particular that an intermediate layer that we call the buffer layer emerges between the convective and the stratified zones. In this buffer layer, the angle of propagation of the waves varies with the altitude since it is slaved to the Brunt-Väisälä frequency which evolves rapidly between the convective and the stratified layer. A minimum angle is reached at the end of the buffer layer. Then we observe that an angle of propagation is selected when the waves travel through the stratified layer. We expect this process of wave selection to take place in natural situations.

  2. Transmittance of semitransparent windows with absorbing cap-shaped droplets condensed on their backside

    NASA Astrophysics Data System (ADS)

    Zhu, Keyong; Pilon, Laurent

    2017-11-01

    This study aims to investigate systematically light transfer through semitransparent windows with absorbing cap-shaped droplets condensed on their backside as encountered in greenhouses, solar desalination plants, photobioreactors and covered raceway ponds. The Monte Carlo ray-tracing method was used to predict the normal-hemispherical transmittance, reflectance, and normal absorptance accounting for reflection and refraction at the air/droplet, droplet/window, and window/air interfaces and absorption in both the droplets and the window. The droplets were monodisperse or polydisperse and arranged either in an ordered hexagonal pattern or randomly distributed on the backside with droplet contact angle θc ranging between 0 and 180° The normal-hemispherical transmittance was found to be independent of the spatial distribution of droplets. However, it decreased with increasing droplet diameter and polydispersity. The normal-hemispherical transmittance featured four distinct optical regimes for semitransparent window supporting nonabsorbing droplets. These optical regimes were defined based on contact angle and critical angle for internal reflection at the droplet/air interface. However, for strongly absorbing droplets, the normal-hemispherical transmittance (i) decreased monotonously with increasing contact angle for θc <90° and (ii) remained constant and independent of droplet absorption index kd, droplet mean diameter dm, and contact angle θc for θc ≥ 90° Analytical expressions for the normal-hemispherical transmittance were provided in the asymptotic cases when (1) the window was absorbing but the droplets were nonabsorbing with any contact angles θc, and (2) the droplets were strongly absorbing with contact angle θc >90° Finally, the spectral normal-hemispherical transmittance of a 3 mm-thick glass window supporting condensed water droplets for wavelength between 0.4 and 5 μm was predicted and discussed in light of the earlier parametric study and asymptotic behavior.

  3. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is critically discussed against other explanations.

  4. Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2015-05-01

    This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.

  5. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  6. Rough-water Impact-load Investigation of a Chine-immersed V-bottom Model Having a Dead-rise Angle of 10 Degrees

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F; Carpini, Thomas D

    1957-01-01

    A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.

  7. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  8. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.

    PubMed

    McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel

    2015-10-19

    We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.

  9. Sixth-order wave aberration theory of ultrawide-angle optical systems.

    PubMed

    Lu, Lijun; Cao, Yiqing

    2017-10-20

    In this paper, we develop sixth-order wave aberration theory of ultrawide-angle optical systems like fisheye lenses. Based on the concept and approach to develop wave aberration theory of plane-symmetric optical systems, we first derive the sixth-order intrinsic wave aberrations and the fifth-order ray aberrations; second, we present a method to calculate the pupil aberration of such kind of optical systems to develop the extrinsic aberrations; third, the relation of aperture-ray coordinates between adjacent optical surfaces is fitted with the second-order polynomial to improve the calculation accuracy of the wave aberrations of a fisheye lens with a large acceptance aperture. Finally, the resultant aberration expressions are applied to calculate the aberrations of two design examples of fisheye lenses; the calculation results are compared with the ray-tracing ones with Zemax software to validate the aberration expressions.

  10. Spin-wave dynamics in the helimagnet FeGe studied by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Siegfried, S.-A.; Sukhanov, A. S.; Altynbaev, E. V.; Honecker, D.; Heinemann, A.; Tsvyashchenko, A. V.; Grigoriev, S. V.

    2017-04-01

    We have studied the spin-wave stiffness of the Dzyaloshinskii-Moriya helimagnet FeGe in a temperature range from 225 K up to TC≈278.7 K by small-angle neutron scattering. The method we have used is based on [Grigoriev et al., Phys. Rev. B 92, 220415(R) (2015), 10.1103/PhysRevB.92.220415] and was extended here for the application in polycrystalline samples. We confirm the validity of the anisotropic spin-wave dispersion for FeGe caused by the Dzyaloshinskii-Moriya interaction. We have shown that the spin-wave stiffness A for the FeGe helimagnet decreases with a temperature as A (T ) =194 [1 -0.7 (T/TC) 4.2] meVÅ 2 . The finite value of the spin-wave stiffness A =58 meVÅ 2 at TC classifies the order-disorder phase transition in FeGe as being the first-order one.

  11. A note on the resonant interaction between a surface wave and two interfacial waves

    NASA Astrophysics Data System (ADS)

    Jamali, Mirmosadegh; Lawrence, Gregory A.; Seymour, Brian

    2003-09-01

    Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings there is one seemingly major difference. Hill & Foda's (1998) analysis indicated that there are only narrow bands of frequency, density ratio and direction angle within which growth is possible. On the other hand, Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that Hill & Foda's (1998) second-order representation of the dynamic interfacial boundary condition is missing a term proportional to the time derivative of the square of the velocity shear across the interface. When this missing term is included in the analysis, the resulting predictions are consistent with the laboratory experiments.

  12. A Note on the Resonant Interaction of a Surface Wave With two Interfacial Waves

    NASA Astrophysics Data System (ADS)

    Jamali, M.; Lawrence, G. A.; Seymour, B. R.

    2002-12-01

    Recently Hill and Foda (1998) and Jamali (1998) have performed theoretical and experimental studies of the resonant interaction between a surface wave and two oblique interfacial waves. Despite many similarities between the findings of the two studies there is one seemingly major difference. The analysis of Hill and Foda (1998) indicated that there are only narrow bands of frequency, density ratio, and direction angle within which growth is possible. On the other hand Jamali (1998) predicted and observed wave growth over wide ranges of frequency and direction angle, and for all the density ratios that he investigated. We show that second order representation of the dynamic interfacial boundary condition of Hill and Foda (1998) is missing a term proportional to the velocity shear across the interface. When this missing term is included in the analysis the resulting predictions are consistent with the laboratory experiments.

  13. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  14. The Density-wave Theory and Spiral Structures by Looking at Spiral Arms through a Multi-wavelength StudyHamed Pour-Imani1,2, Daniel Kennefick1,2, Julia Kennefick1,2, Mohamed Shameer Abdeen1,2, Eric Monson1,2, Douglas W. Shields1,2, B. L. Davis31Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA2Arkansas Center for Space & Planetary Sciences, Univ. of Arkans

    NASA Astrophysics Data System (ADS)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Shameer Abdeen, Mohammad; Monson, Erick; Shields, Douglas William; Davis, Benjamin L.

    2018-01-01

    The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C. Lin and F. Shu, continues to be challenged by rival theories, such as the manifold theory. One test between these theories which has been proposed is that the pitch angle of spiral arms for galaxies should vary with the wavelength of the image in the density-wave theory, but not in the manifold theory. The reason is that stars are born in the density wave but move out of it as they age. In this study, we combined large sample size with a wide range of wavelengths to investigate this issue. For each galaxy, we used wavelength FUV151nm, U-band, H-alpha, optical wavelength B-band and infrared 3.6 and 8.0μm. We measured the pitch angle with the 2DFFT and Spirality codes (Davis et al. 2012; Shields et al. 2015). We find that the B-band and 3.6μm images have smaller pitch angles than the infrared 8.0μm image in all cases, in agreement with the prediction of the density-wave theory. We also find that the pitch angle at FUV and H-alpha are close to the measurements made at 8.0μm. The Far-ultraviolet wavelength at 151nm shows very young, very bright UV stars still in the star-forming region (they are so bright as to be visible there and so short-lived that they never move out of it). We find that for both sets of measurements (2dFFT and Spirality) the 8.0μm, H-alpha and ultraviolet images agree in their pitch angle measurements, suggesting that they are, in fact, sensitive to the same region. By contrast, the 3.6μm and B-band images are uniformly tighter in pitch angle measurements than these wavelengths, suggesting that the density-wave picture is correct.

  15. A Comparison of Angular Values of the Pelvic Limb with Normal and Medial Patellar Luxation Stifles in Chihuahua Dogs Using Radiography and Computed Tomography.

    PubMed

    Phetkaew, Thitaporn; Kalpravidh, Marissak; Penchome, Rampaipat; Wangdee, Chalika

    2018-02-01

     This article aimed to determine and compare the angular values of the pelvic limb in normal and medial patellar luxation (MPL) stifles in Chihuahuas using radiography and computed tomographic (CT) scan, to identify the relationship between pelvic limb angles and severity of MPL. In addition, radiographic and CT images were compared to determine the more suitable method of limb deformity assessment.  Sixty hindlimbs of Chihuahuas were divided into normal and grade 1, 2, 3 and 4 MPL groups. The pelvic limb angles in frontal and sagittal planes were evaluated on radiography and CT scan. Femoral and tibial torsion angles (FTA and TTA) were evaluated only by CT scan. All angles were compared among normal and MPL stifles and between radiography and CT scan.  Based on the CT scan, the mechanical lateral distal femoral angle (mLDFA), anatomical caudal proximal femoral angle (aCdPFA), and TTA were related to the severity of MPL. The mLDFA and TTA were significantly increased ( p  < 0.05) in grade 4 MPL, while the aCdPFA was significantly decreased in grade 2, 3 and 4 MPL groups. There were significant differences of many angles between radiography and CT scan.  The angles related to MPL in Chihuahuas are aLDFA, mLDFA, aCdPFA and TTA. Radiography had some limitations for evaluating pelvic limb angles. The caudocranial radiograph is recommended for the assessment of the distal femoral angles, while the craniocaudal radiograph is for the tibial angles. Schattauer GmbH Stuttgart.

  16. The effect of angle and moment of the hip and knee joint on iliotibial band hardness.

    PubMed

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2015-02-01

    Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The power flow angle of acoustic waves in thin piezoelectric plates.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  18. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  19. Survey of Coherent Approximately 1 Hz Waves in Mercury's Inner Magnetosphere from MESSENGER Observations

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Schriver, David; Solomon, Sean C.

    2012-01-01

    We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances.

  20. Determining the coordinate dependence of some components of the cubic susceptibility tensor {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubkov, A A; Makarov, Vladimir A

    The possibility of unique reconstruction of the spatial profile of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous plate whose medium has a symmetry plane m{sub y} perpendicular to its surface is proved for the first time and the unique reconstruction algorithm is proposed. The amplitude complex coefficients of reflection and transmission (measured in some range of angles of incidence) as well as of conversion of an s-polarised plane signal monochromatic wave into two waves propagating on both sides of the plate make it possible to reconstruct the profile. These twomore » waves result from nonlinear interaction of a signal wave with an intense plane wave incident normally on the plate. All the waves under consideration have the same frequency {omega}, and so its variation helps study the frequency dispersion of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}). For media with additional symmetry axes 2{sub z}, 4{sub z}, 6{sub z}, or {infinity}{sub z} that are perpendicular to the plate surface, the proposed method can be used to reconstruct the profile and to examine the frequency dispersion of about one third of all independent complex components of the tensor {chi}-hat{sup (3)}. (nonlinear-optics phenomena)« less

  1. Rotary seal with enhanced lubrication and contaminant flushing

    DOEpatents

    Dietle, Lannie L.

    2000-01-01

    A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

  2. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  3. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  4. Nonlinear Scattering of VLF Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  5. Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.

    2005-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  6. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    NASA Astrophysics Data System (ADS)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  7. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  8. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  9. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less

  10. Bow and Oblique Shock Formation in Soap Film

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  11. Ultrasonic investigation of granular materials subjected to compression and crushing.

    PubMed

    Gheibi, Amin; Hedayat, Ahmadreza

    2018-07-01

    Ultrasonic wave propagation measurement has been used as a suitable technique for studying the granular materials and investigating the soil fabric structure, the grain contact stiffness, frictional strength, and inter-particle contact area. Previous studies have focused on the variations of shear and compressional wave velocities with effective stress and void ratio, and lesser effort has been made in understanding the variation of amplitude and dominant frequency of transmitted compressional waves with deformation of soil packing. In this study, continuous compressional wave transmission measurements during compaction of unconsolidated quartz sand are used to investigate the impact of soil layer deformation on ultrasonic wave properties. The test setup consisted of a loading machine to apply constant loading rate to a sand layer (granular quartz) of 6 mm thickness compressed between two forcing blocks, and an ultrasonic wave measurement system to continuously monitor the soil layer during compression up to 48 MPa normal stress. The variations in compressional wave attributes such as wave velocity, transmitted amplitude, and dominant frequency were studied as a function of the applied normal stress and the measured normal strain as well as void ratio and particle size. An increasing trend was observed for P-wave velocity, transmitted amplitude and dominant frequency with normal stress. In specimen with the largest particle size (D 50  = 0.32 mm), the wave velocity, amplitude and dominant frequency were found to increase about 230%, 4700% and 320% as the normal stress reached the value of 48 MPa. The absolute values of transmitted wave amplitude and dominant frequency were greater for specimens with smaller particle sizes while the normalized values indicate an opposite trend. The changes in the transmitted amplitude were linked to the changes in the true contact area between the particles with a transitional point in the slope of normalized amplitude, coinciding with the yield stress of the granular soil layer. The amount of grain crushing as a result of increase in the normal stress was experimentally measured and a linear correlation was found between the degree of grain crushing and the changes in the normalized dominant frequency of compressional waves. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Foreshock ULF wave boundary at Venus

    NASA Astrophysics Data System (ADS)

    Shan, L.; Mazelle, C. X.; Meziane, K.; Romanelli, N. J.; Ge, Y.; Du, A.; Zhang, T.

    2017-12-01

    Foreshock ULF waves are a significant physical phenomenon on the plasma environment for terrestrial planets. The occurrence of ULF waves, associated with backstreaming ions and accelerated at shocks, implies the conditions and properties of the shock and its foreshock. The location of ultra-low frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone angle larger than 30o. In the Venusian foreshock, the slope of the wave boundary with respect to the Sun-Venus direction increase with IMF cone angle. We also found that for the IMF nominal direction at Venus' orbit, the boundary makes an inclination of 70o. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock.

  13. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  14. Analytical study of body waves in orthorhombic media and comparison with SKS-phase observations from selected stations

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Bokelmann, Götz

    2016-04-01

    Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).

  15. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    PubMed

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  16. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  17. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.

    PubMed

    Shen, Dazhong; Kang, Qi; Li, Xiaoyu; Cai, Hongmei; Wang, Yuandong

    2007-06-19

    This paper presents different experimental results of the influence of an immersion angle (theta, the angle between the surface of a quartz crystal resonator and the horizon) on the resonant frequency of a quartz crystal microbalance (QCM) sensor exposed one side of its sensing surfaces to liquid. The experimental results show that the immersion angle is an added factor that may influence the frequency of the QCM sensor. This type of influence is caused by variation of the reflection conditions of the longitudinal wave between the QCM sensor and the walls of the detection cell. The frequency shifts, measured by varying theta, are related to the QCM sensor used. When a QCM sensor with a weak longitudinal wave is used, its resonant frequency is nearly independent of theta. But, if a QCM sensor with a strong longitudinal wave is employed, the immersion angle is a potential error source for the measurements performed on the QCM sensor. When the reflection conditions of the longitudinal wave are reduced, the influence of theta on the resonant frequency of the QCM sensor is negligible. The slope of the plot of frequency shifts (deltaF) versus (rho eta)(1/2), the square root of the product of solution density (rho) and viscosity (eta), may be influenced by theta in a single experiment for the QCM sensor with a strong longitudinal wave in low viscous liquids, which can however, be effectively weakened by using the averaged values of reduplicated experiments. In solutions with a large (rho eta)(1/2) region (0-55 wt% sucrose solution as an example, with rho value from 1.00 to 1.26 g cm(-3) and eta value from 0.01 to 0.22 g cm(-1) s(-1), respectively), the slope of the plot of deltaF versus (rho eta)(1/2) is independent of theta even for the QCM sensor with a strong longitudinal wave in a single experiment. The influence of theta on the resonant frequency of the QCM sensor should be taken into consideration in its applications in liquid phase.

  18. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    PubMed

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  19. Modeling of field-aligned guided echoes in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Fung, Shing F.; Green, James L.

    2005-01-01

    Ray tracing modeling is used to investigate the plasma conditions under which high-frequency (f ≫ fuh) extraordinary mode waves can be guided along geomagnetic field lines. These guided signals have often been observed as long-range discrete echoes in the plasmasphere by the Radio Plasma Imager (RPI) onboard the Imager for Magnetopause-to-Aurora Global Exploration satellite. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere, although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and <10 wavelengths wide can guide nearly field-aligned propagating high-frequency X mode waves. Effective guidance of a wave at a given frequency and wave normal angle (Ψ) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  20. Handbook of Supersonic Aerodynamics Volume 1

    DTIC Science & Technology

    1950-04-01

    Appears in Z10 Publication Remarks •Mlc) *(lc) •Pile) Angle Potential function Helical angle of advance (propellers) Dimensionless Dependent on...heat of- combustion re(lc) N (cap) Nu. o(lc) Net Nozzle Normal (perpendicu- lar to longitudinal axis) ; normal (force) Nusselt ...Concepts ^ Concept Absolute Acceleration, angular Acceleration due to gravity Added; additional Adiabatic Adiabatic wall Advance, helical angle

  1. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n → 0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  2. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less

  3. A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Polarisation splitting of laser beams by large angles with minimal reflection losses

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.

    2006-05-01

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.

  5. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.

  6. Effect of Loss of Heart Rate Variability on T-Wave Heterogeneity and QT Variability in Heart Failure Patients: Implications in Ventricular Arrhythmogenesis.

    PubMed

    Nayyar, Sachin; Hasan, Muhammad A; Roberts-Thomson, Kurt C; Sullivan, Thomas; Baumert, Mathias

    2017-06-01

    Heart rate variability (HRV) modulates dynamics of ventricular repolarization. A diminishing value of HRV is associated with increased vulnerability to life-threatening ventricular arrhythmias, however the causal relationship is not well-defined. We evaluated if fixed-rate atrial pacing that abolishes the effect of physiological HRV, will alter ventricular repolarization wavefronts and is relevant to ventricular arrhythmogenesis. The study was performed in 16 subjects: 8 heart failure patients with spontaneous ventricular tachycardia [HFVT], and 8 subjects with structurally normal hearts (H Norm ). The T-wave heterogeneity descriptors [total cosine angle between QRS and T-wave loop vectors (TCRT, negative value corresponds to large difference in the 2 loops), T-wave morphology dispersion, T-wave loop dispersion] and QT intervals were analyzed in a beat-to-beat manner on 3-min records of 12-lead surface ECG at baseline and during atrial pacing at 80 and 100 bpm. The global T-wave heterogeneity was expressed as mean values of each of the T-wave morphology descriptors and variability in QT intervals (QTV) as standard deviation of QT intervals. Baseline T-wave morphology dispersion and QTV were higher in HFVT compared to H Norm subjects (p ≤ 0.02). While group differences in T-wave morphology dispersion and T-wave loop dispersion remained unaltered with atrial pacing, TCRT tended to fall more in HFVT patients compared to H Norm subjects (interaction p value = 0.086). Atrial pacing failed to reduce QTV in both groups, however group differences were augmented (p < 0.0001). Atrial pacing and consequent loss of HRV appears to introduce unfavorable changes in ventricular repolarization in HFVT subjects. It widens the spatial relationship between wavefronts of ventricular depolarization and repolarization. This may partly explain the concerning relation between poorer HRV and the risk of ventricular arrhythmias.

  7. Mass-energy and momentum extraction by gravitational wave emission in the merger of two colliding black holes: The non-head-on case

    NASA Astrophysics Data System (ADS)

    Aranha, R. F.; Soares, I. Damião; Tonini, E. V.

    2012-01-01

    We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.

  8. All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification.

    PubMed

    Liu, Bingyi; Zhao, Jiajun; Xu, Xiaodong; Zhao, Wenyu; Jiang, Yongyuan

    2017-10-23

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell's law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for all-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the all-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates inside the metasurface slab. The coiling-up space structures are utilized to build desired acoustic gradient metasurface, and the all-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface, and the all-angle negative reflection characteristic possessed by acoustic gradient metasurface could enable a new degree of the acoustic wave manipulating and be applied in the functional diffractive acoustic elements, such as the all-angle acoustic back reflector.

  9. Investigation of Performance of Axial-Flow Compressor of XT-46 Turbine-Propeller Engine. I - Preliminary Investigation at 50-,70-, and 100-Percent Design Equivalent Speed

    NASA Technical Reports Server (NTRS)

    Creagh, John W.R.; Sandercrock, Donald M.

    1950-01-01

    An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.

  10. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  11. Radiation from long pulse train electron beams in space plasmas

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Banks, P. M.

    1985-01-01

    A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.

  12. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.

    1990-04-01

    Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less

  13. Study of the surface wave off-great-circle propagation based on dense seismic array: a case study in Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chong, J.

    2016-12-01

    The traditional surface wave tomography is based on the ray theory, which assumes that surface wave propagates along the great-circle. The great-circle assumption is valid only when the size of the anomaly is larger than the width of the Fresnel zone and the lateral variation is relatively smooth. However, off-great-circle propagation may occur when the surface wave travels across tectonic boundaries with strong heterogeneity and sharp velocity change, e.g., continental margin, mid-ridge and sea trench, resulting in arrival angle anomaly and multi-pathing effect. The off-great-circle propagation may deviate the result of surface wave tomography based on great-circle approximation, so it is of great importance to study the off-great-circle propagation. In this study, we used the teleseismic waveforms from September 2009 to August 2011, recorded by the NECESSArray in Northeast China, to study the off-great-circle propagation of Rayleigh wave by the Beamforming method. Our results show that the off-great-circle effect increases with decreasing period. At the period of 60 s, the off-great-circle effect is relatively weak and the Rayleigh wave propagates approximately along the great-circle. While at the period of 20 s, the off-great-circle effect becomes strong, the arrival angle anomaly measured from some events can be as large as 20º, and obvious multi-pathing effect is also observed. Lateral variations of the arrival angle anomaly and phase velocity have also been found in the study region, which may be correlated with the lithosphere heterogeneity in Northeast China. Our results demonstrate the necessity to study the surface wave off-great-circle propagation. Acknowledgement: This study is financially supported by National Natural Science Foundation of China under Grant No. 41590854.

  14. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.

  15. Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Qiu, J.; Liu, L. H.

    2015-07-01

    Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.

  16. Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor.

    PubMed

    Bawden, L; Cooil, S P; Mazzola, F; Riley, J M; Collins-McIntyre, L J; Sunko, V; Hunvik, K W B; Leandersson, M; Polley, C M; Balasubramanian, T; Kim, T K; Hoesch, M; Wells, J W; Balakrishnan, G; Bahramy, M S; King, P D C

    2016-05-23

    Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.

  17. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  18. Combined Wave and Current Bottom Boundary Layers: A Review

    DTIC Science & Technology

    2016-03-01

    18 3.2 Wave and currents at arbitrary angles ....................................................................... 19 3.3 Eddy viscosity ...closure ................................................................................................. 22 3.3.1 Eddy viscosity for stratified fluids...23 3.3.2 Time-dependent eddy viscosities

  19. Connection between angle-dependent phase ambiguities and the uniqueness of the partial-wave decomposition

    NASA Astrophysics Data System (ADS)

    Švarc, A.; Wunderlich, Y.; Osmanović, H.; Hadžimehmedović, M.; Omerović, R.; Stahov, J.; Kashevarov, V.; Nikonov, K.; Ostrick, M.; Tiator, L.; Workman, R.

    2018-05-01

    Unconstrained partial -wave amplitudes, obtained at discrete energies from fits to complete sets of eight independent observables, may be used to reconstruct reaction amplitudes. These partial-wave amplitudes do not vary smoothly with energy and are in principle nonunique. We demonstrate how this behavior can be ascribed to the continuum ambiguity. Starting from the spinless scattering case, we show how an unknown overall phase, depending on energy and angle, mixes the structures seen in the associated partial-wave amplitudes. This process is illustrated using a simple toy model. We then apply these principles to pseudoscalar meson photoproduction, showing how the above effect can be removed through a phase rotation, allowing a consistent comparison with model amplitudes. The effect of this phase ambiguity is also considered for Legendre expansions of experimental observables.

  20. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less

Top