Sample records for wave power absorption

  1. Variance of transionospheric VLF wave power absorption

    NASA Astrophysics Data System (ADS)

    Tao, X.; Bortnik, J.; Friedrich, M.

    2010-07-01

    To investigate the effects of D-region electron-density variance on wave power absorption, we calculate the power reduction of very low frequency (VLF) waves propagating through the ionosphere with a full wave method using the standard ionospheric model IRI and in situ observational data. We first verify the classic absorption curves of Helliwell's using our full wave code. Then we show that the IRI model gives overall smaller wave absorption compared with Helliwell's. Using D-region electron densities measured by rockets during the past 60 years, we demonstrate that the power absorption of VLF waves is subject to large variance, even though Helliwell's absorption curves are within ±1 standard deviation of absorption values calculated from data. Finally, we use a subset of the rocket data that are more representative of the D region of middle- and low-latitude VLF wave transmitters and show that the average quiet time wave absorption is smaller than that of Helliwell's by up to 100 dB at 20 kHz and 60 dB at 2 kHz, which would make the model-observation discrepancy shown by previous work even larger. This result suggests that additional processes may be needed to explain the discrepancy.

  2. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  3. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  4. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  5. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  6. On The Dynamics and Design of a Two-body Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  7. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion

    NASA Astrophysics Data System (ADS)

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  8. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion.

    PubMed

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  9. Studies on absorption of EC waves in assisted startup experiment on FTU

    NASA Astrophysics Data System (ADS)

    Granucci, G.; Ricci, D.; Farina, D.; Figini, L.; Iraji, D.; Tudisco, O.; Ramponi, G.; Bin, W.

    2012-09-01

    Assistance of EC wave for plasma breakdown and current ramp up is the proposed scenario for the ITER case, characterized by low toroidal electric field. The experimental results on many tokamaks clearly indicate the capabilities of the proposed scheme to have a robust breakdown in ITER. The key aspect of this technique is the EC power required, strongly related to the absorption of the wave in the initial stage of plasma formation. This aspect is generally neglected due to the diagnostics difficulties in the plasma formation phase. As a consequence a multi-pass absorption scheme is usually considered reasonable, leading to a strong absorption after many reflections on the walls. The present study exploits the high temporal and spatial resolution of the fast scanning interferometer of FTU together with the measure of residual power obtained by a sniffer probe. The absorbed EC power is calculated considering also the polarization rotation and the subsequent mode conversion after incidence on the internal wall and compared with that derived from experimental data. The resulting EC power distribution can explain differences observed between perpendicular and oblique injection results, indicating future investigations to define ITER power requirements.

  10. Parametric study of power absorption from electromagnetic waves by small ferrite spheres

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1989-01-01

    Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.

  11. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimalmore » control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.« less

  12. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  13. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  14. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  15. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  16. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centeno, R.; Marchenko, D.; Mandon, J.

    We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.

  17. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  18. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    NASA Astrophysics Data System (ADS)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  19. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Orefice, A.

    1994-05-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.

  20. Helicon mode formation and radio frequency power deposition in a helicon-produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.; Kraemer, M.

    2008-07-15

    Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated bymore » showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.« less

  1. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  2. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  3. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  4. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  5. Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2017-09-01

    We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.

  6. Coupling of RF antennas to large volume helicon plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang

    2018-04-01

    Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  7. 140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Airoldi, A.; Bruschi, A.; Buratti, P.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Panaccione, L.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Tudisco, O.; Zerbini, M.

    1999-09-01

    Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.

  8. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    PubMed

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  9. Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Isliker, Heinz; Chatziantonaki, Ioanna; Tsironis, Christos; Vlahos, Loukas

    2012-09-01

    We analyze the propagation of electron-cyclotron waves, their absorption and current drive when neoclassical tearing modes (NTMs), in the form of magnetic islands, are present in a tokamak plasma. So far, the analysis of the wave propagation and power deposition in the presence of NTMs has been performed mainly in the frame of an axisymmetric magnetic field, ignoring any effects from the island topology. Our analysis starts from an axisymmetric magnetic equilibrium, which is perturbed such as to exhibit magnetic islands. In this geometry, we compute the wave evolution with a ray-tracing code, focusing on the effect of the island topology on the efficiency of the absorption and current drive. To increase the precision in the calculation of the power deposition, the standard analytical flux-surface labeling for the island region has been adjusted from the usual cylindrical to toroidal geometry. The propagation up to the O-point is found to be little affected by the island topology, whereas the power absorbed and the driven current are significantly enhanced, because the resonant particles are bound to the small volumes in between the flux surfaces of the island. The consequences of these effects on the NTM evolution are investigated in terms of the modified Rutherford equation.

  10. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  11. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  12. Research on a new wave energy absorption device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  13. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2017-10-01

    Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  14. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, A.; Wendt, F.; Yu, Y. -H.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less

  15. Continuous-wave optical parametric oscillators on their way to the terahertz range

    NASA Astrophysics Data System (ADS)

    Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten

    2010-02-01

    Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.

  16. Balancing Power Absorption Against Structural Loads With Viscous Drag and Power-Takeoff Efficiency Considerations

    DOE PAGES

    Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...

    2017-11-17

    The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less

  17. Critical power for self-focusing of optical beam in absorbing media

    NASA Astrophysics Data System (ADS)

    Qi, Pengfei; Zhang, Lin; Lin, Lie; Zhang, Nan; Wang, Yan; Liu, Weiwei

    2018-04-01

    Self-focusing effects are of central importance for most nonlinear optical effects. The critical power for self-focusing is commonly investigated theoretically without considering a material’s absorption. Although this is practicable for various materials, investigating the critical power for self-focusing in media with non-negligible absorption is also necessary, because this is the situation usually met in practice. In this paper, the simple analytical expressions describing the relationships among incident power, absorption coefficient and focal position are provided by a simple physical model based on the Fermat principle. Expressions for the absorption dependent critical power are also derived; these can play important roles in experimental and applied research on self-focusing-related nonlinear optical phenomena in absorbing media. Numerical results, based on the nonlinear wave equation—and which can predict experimental results perfectly—are also presented, and agree quantitatively with the analytical results proposed in this paper.

  18. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  19. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  20. The dissipation of electromagnetic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Basov, N. G.

    The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.

  1. Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.

    PubMed

    Kumar, Vijay; Vats, R P; Pathak, P P

    2008-08-01

    Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.

  2. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  3. Design of a novel high efficiency antenna for helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  4. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  5. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE PAGES

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2017-12-11

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  6. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.

    PubMed

    Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo

    2010-02-15

    Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.

  7. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  8. Laser Lightcraft Performance

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wei, Hong

    2000-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. The principle of the laser power propulsion is that when high-powered laser is focused at a small area near the surface of a thruster, the intense energy causes the electrical breakdown of the working fluid (e.g. air) and forming high speed plasma (known as the inverse Bremsstrahlung, IB, effect). The intense heat and high pressure created in the plasma consequently causes the surrounding to heat up and expand until the thrust producing shock waves are formed. This complex process of gas ionization, increase in radiation absorption and the forming of plasma and shock waves will be investigated in the development of the present numerical model. In the first phase of this study, laser light focusing, radiation absorption and shock wave propagation over the entire pulsed cycle are modeled. The model geometry and test conditions of known benchmark experiments such as those in Myrabo's experiment will be employed in the numerical model validation simulations. The calculated performance data will be compared to the test data.

  9. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  10. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  11. Bound and free waves in non-collinear second harmonic generation.

    PubMed

    Larciprete, M C; Bovino, F A; Belardini, A; Sibilia, C; Bertolotti, M

    2009-09-14

    We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference pattern.

  12. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  13. Ultralow frequency waves in the magnetotails of the earth and the outer planets

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Chen, Sheng H.; Hammond, C. M.; Kivelson, Margaret G.

    1992-01-01

    Ultralow frequency waves with periods greater than two minutes are characteristic features of planetary magnetotails. At Jupiter, changes in the wave characteristics across the boundary between the plasma sheet and the lobe have been used to identify this important plasma boundary. In the terrestrial lobes the wave amplitude can be relatively large, especially during intervals of intense geomagnetic activity. The wave power seen in the lobes of the magnetotails of the earth, Jupiter, Saturn and Uranus is evaluated to evaluate a proposal by Smith et al. that the propagating waves generated by the Kelvin-Helmholtz instability on the magnetopause can heat the plasma through a resonant absorption of these waves. The results indicate that the wave power in the lobes is generally small and can be easily understood in the framework of coupled MHD waves generated in the plasma sheet.

  14. Absorption and Modification of Lower Hybrid Waves in the Scrape Off Layer

    NASA Astrophysics Data System (ADS)

    Parker, R.; Wallace, G.; Shiraiwa, S.; Baek, S.-G.; Faust, I.

    2015-11-01

    Loss of current drive efficiency of lower hybrid waves at high density in Alcator C-Mod current drive experiments has been attributed, at least in part, to interactions in the SOL. While ray-tracing calculations indicate that collisional absorption and modification of n|| during reflections in the SOL can be significant, their validity can be called into question owing to steep SOL gradients. In order to further quantify these losses, full-wave calculations using a plane-stratified SOL model have been carried out. The results show that the loss resulting from reflections in the SOL can be substantial, with collisional losses accounting for a loss of up to 50% per bounce of the incident wave power. The loss is sensitive to the SOL parameters with the strongest collisional absorption occurring in the case of steep temperature and weak density gradients. Modification of n|| can also be significant when the density gradient and normal to the flux surfaces are not aligned. These effects are less severe for the fast wave since its penetration into the SOL is significantly less than that of the slow wave. Work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  15. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves

    PubMed Central

    Cheng, Yong Zhi; Huang, Mu Lin; Chen, Hao Ran; Guo, Zhen Zhong; Mao, Xue Song; Gong, Rong Zhou

    2017-01-01

    A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA), composed of a metal cross-cave patch resonator (CCPR) placed over a ground plane, was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies. Owing to the ultra-narrow band resonance absorption of the structure, the designed PMMA also exhibits a higher Q factor (>65). In addition, the absorption properties can be kept stable for both normal incident transverse magnetic (TM) and transverse electric (TE) waves. The physical mechanism behind the observed high-level absorption is illustrated by the electric and power loss density distributions. The perfect absorption originates mainly from the higher-order multipolar plasmon resonance of the structure, which differs sharply from most previous studies of PMMAs. Furthermore, the resonance absorption properties of the PMMA can be modified and adjusted easily by varying the geometric parameters of the unit cell. PMID:28772951

  16. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Thresher, Robert W

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  17. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  18. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  19. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  20. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  1. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  2. Ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Adam Lewis

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent NSTX shots has revealed that under some conditions when neutral beam and RF power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasilinear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan

    The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less

  4. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  5. Thermal dephasing in second-harmonic generation of an amplified copper-vapor laser beam in beta barium borate.

    PubMed

    Prakash, Om; Dixit, Sudhir Kumar; Bhatnagar, Rajiva

    2005-03-20

    The conversion efficiency in second-harmonic generation of an amplified beam in a master-oscillator power amplifier copper-vapor laser (CVL) is lower than that of the oscillator beam alone. This lower efficiency is often vaguely attributed to wave-front degradation in the amplifier. We investigate the role of wave-front degradation and thermal dephasing in the second-harmonic generation of a CVL from a beta-barium borate crystal. Choosing two beams with constant intrapulse divergence, one from a generalized diffraction filtered resonator master oscillator alone and other obtained by amplifying oscillator by use of a power amplifier, we show that at low flux levels the decrease in efficiency is due to wave-front degradation. At a fundamental power above the critical power for thermal dephasing, the decrease is due to increased UV absorption and consequent thermal dephasing. Thermal dephasing is higher for the beam with the lower coherence width.

  6. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  7. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE PAGES

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe; ...

    2017-09-17

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  8. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  9. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    PubMed

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  11. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to themore » very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.« less

  12. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  13. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    PubMed Central

    Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572

  14. Extended optical theorem in isotropic solids and its application to the elastic radiation force

    NASA Astrophysics Data System (ADS)

    Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.

    2017-04-01

    In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.

  15. Viscous, radiating hypersonic flow about a blunt body

    NASA Technical Reports Server (NTRS)

    Passamaneck, R. S.

    1974-01-01

    The viscous, radiating hypersonic flow past an axisymmetric blunt body is analyzed based on the Navier-Stokes equations, plus a radiative equation of transfer derived from the Milne-Eddington differential approximation. The fluid is assumed to be a perfect gas with constant specific heats, a constant Prandtl number of order unity, a viscosity coefficient varying as a power of the temperature, and an absorption coefficient varying as the first power of the density and as a power of the temperature. The gray gas assumption is invoked, thereby making the absorption coefficient independent of the spectral frequency. Limiting forms of the solutions are studied as the freestream Mach number freestream Reynolds number and the temperature ratio across the shock wave, go to infinity, and as the Bouguer number and the density ratio across the shock wave go to zero. The method of matched asymptotic expansions is used in the analysis, and it is shown that there is a far-field precursor, composed of two regions, in which the fluid mechanics can be neglected for all practical purposes but included for completeness.

  16. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power.

    PubMed

    Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena

    2009-12-07

    We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.

  17. Heaving buoys, point absorbers and arrays.

    PubMed

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  18. A parity-time symmetric coherent plasmonic absorber-amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Brian, E-mail: bbaum@stanford.edu; Dionne, Jennifer, E-mail: jdionne@stanford.edu; Alaeian, Hadiseh

    Non-Hermitian parity-time (PT)-symmetric optical potentials have led to a new class of unidirectional photonic components based on the spatially symmetric and balanced inclusion of loss and gain. While most proposed and implemented PT-symmetric optical devices have wavelength-scale dimensions, no physical constraints preclude development of subwavelength PT-symmetric components. We theoretically demonstrate a nanoscale PT-symmetric, all-optical plasmonic modulator capable of phase-controlled amplification and directional absorption. The modulator consists of two deeply subwavelength channels composed of either gain or loss dielectric material, embedded in a metallic cladding. When illuminating on-resonance by two counter-propagating plane waves, the aperture's total output can be modulated bymore » changing the phase offset between the two waves. Modulation depths are greater than 10 dB, with output power varying from less than one half of the incident power to more than six times amplification. Off-resonance, the aperture possesses strong phase-controlled directionality with the output from one side varying from perfect absorption to strong scattering and transmission. The device design provides a platform for nanoscale all-optical modulators with gain while potentially enabling coherent perfect absorption and lasing in a single, compact structure.« less

  19. Non-degenerate two-photon absorption in silicon waveguides. Analytical and experimental study

    DOE PAGES

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; ...

    2015-06-22

    We theoretically and experimentally investigate the nonlinear evolution of two optical pulses in a silicon waveguide. We provide an analytic solution for the weak probe wave undergoing non-degenerate two-photon absorption (TPA) from the strong pump. At larger pump intensities, we employ a numerical solution to study the interplay between TPA and photo-generated free carriers. We develop a simple and powerful approach to extract and separate out the distinct loss contributions of TPA and free-carrier absorption from readily available experimental data. Our analysis accounts accurately for experimental results in silicon photonic crystal waveguides.

  20. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  1. Acoustic propagation in curved ducts with extended reacting wall treatment

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation was employed to study the attenuation of acoustic waves propagating in two-dimensional S-curved ducts with absorbing walls without a mean flow. The reflection and transmission at the entrance and the exit of a curved duct were determined by coupling the finite-element solutions in the curved duct to the eigenfunctions of an infinite, uniform, hard wall duct. In the frequency range where the duct height and acoustic wave length are nearly equal, the effects of duct length, curvature (duct offset) and absorber thickness were examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. A means of reducing the number of elements in the absorber region was also presented. In addition, for a curved duct, power attenuation contours were examined to determine conditions for maximum acoustic power absorption. Again, wall curvature was found to significantly effect the optimization process.

  2. A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies

    NASA Astrophysics Data System (ADS)

    Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad

    2018-04-01

    Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.

  3. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  4. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of a nearshore oscillating surge wave energy converter with variable geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, N. M.; Lawson, M. J.; Yu, Y. H.

    This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less

  6. Thin film absorption characterization by focus error thermal lensing

    NASA Astrophysics Data System (ADS)

    Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.

    2017-12-01

    A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.

  7. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.

    PubMed

    Treeby, Bradley E; Jaros, Jiri; Rendell, Alistair P; Cox, B T

    2012-06-01

    The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.

  8. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  9. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Pinsker, R. I.

    2017-10-01

    High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.

  10. Measurement of the absorption cross sections of SiCl4, SiCl3, SiCl2 and Cl at H Lyman-α wavelength

    NASA Astrophysics Data System (ADS)

    Mével, R.; Catoire, L.; Fikri, M.; Roth, P.

    2013-03-01

    Atomic resonance absorption spectroscopy coupled with a shock tube is a powerful technique for studying high temperature dynamics of reactive systems. Presently, high temperature pyrolysis of SiCl4-Ar mixtures has been studied behind reflected shock waves. Using time-resolved absorption profiles at 121.6 nm and a detailed reaction model, the absorption cross sections of SiCl, SiCl, SiCl and Cl have been measured. Results agree well with available data for SiCl and constitute, to our knowledge, the first measurements for SiCl, SiCl and Cl at the Lyman-α wavelength. These data are relevant to silica particle production from SiCl-oxidant mixtures combustion synthesis.

  11. Compensation of strong thermal lensing in high-optical-power cavities.

    PubMed

    Zhao, C; Degallaix, J; Ju, L; Fan, Y; Blair, D G; Slagmolen, B J J; Gray, M B; Lowry, C M Mow; McClelland, D E; Hosken, D J; Mudge, D; Brooks, A; Munch, J; Veitch, P J; Barton, M A; Billingsley, G

    2006-06-16

    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

  12. Modeling of Synergy Between 4th and 6th Harmonic Absorptions of Fast Waves on Injected Beams in DIII-D Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, M.; Pinsker, R. I.; Chan, V. S.

    2011-12-23

    In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6{sup th} harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4{sup th} harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4{sup th} harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6{sup th} harmonic FW on beam ion tails to produce synergy.

  13. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  14. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  15. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  16. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  17. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun; Cao, Yibing; Teng, Yan

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmedmore » by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.« less

  18. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.

    2010-04-01

    The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.

  19. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less

  20. Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid.

    PubMed

    Lopes, J H; Leão-Neto, J P; Silva, G T

    2017-11-01

    Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.

  1. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  2. Radiation torque on an absorptive spherical drop centered on an acoustic helicoidal Bessel beam

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Marston, Philip L.

    2009-11-01

    Circularly polarized electromagnetic waves carry axial angular momentum and analysis shows that the axial radiation torque on an illuminated sphere is proportional to the power absorbed by the sphere [1]. Helicoidal acoustic beams also carry axial angular momentum and absorption of such a beam should also produce an axial radiation torque [2]. In the present work the acoustic radiation torque on solid spheres and spherical drops centered on acoustic helicoidal Bessel beams is examined. The torque is predicted to be proportional to the ratio of the absorbed power to the acoustic frequency. Depending on the beam helicity, the torque is parallel or anti-parallel to the beam axis. The analysis uses a relation between the scattering and the partial wave coefficients for a sphere in a helicoidal Bessel beam. Calculations suggest that beams with a low topological charge are more efficient for generating torques on solid spheres.[4pt] [1] P. L. Marston and J. H. Crichton, Phys. Rev. A. 30, 2508-2516 (1984).[0pt] [2] B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313-3316 (1999).

  3. Observational Signatures of Transverse Magnetohydrodynamic Waves and Associated Dynamic Instabilities in Coronal Flux Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Moortel, I. De; Doorsselaere, T. Van

    Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. Inmore » the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s{sup −1}, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.« less

  4. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate.

    PubMed

    Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio

    2008-07-21

    We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.

  5. The radio power reflected from rough and undulating ionospheric surfaces

    NASA Astrophysics Data System (ADS)

    Whitehead, J. D.; From, W. R.; Smith, L. G.

    1984-08-01

    It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.

  6. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  7. Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors

    NASA Astrophysics Data System (ADS)

    Meng, Chong; Zhang, Xiaonan; Tang, Suet To; Yang, Min; Yang, Zhiyu

    2017-03-01

    We report the experimental realization of acoustic coherent perfect absorption (CPA) of four symmetric scatterers of very different structures. The only conditions necessary for these scatterers to exhibit CPA are that both the reflection and transmission amplitudes of the scatterers are 0.5 under one incident wave, and there are two collinear and counter-propagating incident waves with appropriate relative amplitude and phase. Nearly 1000 times in the modulation of output power has been demonstrated by changing the relative phase of the incident waves over 180°. We further demonstrate that these scatterers could potentially be sensitive devices to detect the small differences between two nearly equal incident waves. A 27% change in the strength of the scattering wave has been demonstrated for every degree of phase deviation from the optimum condition between the incident waves.

  8. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.

  9. DualSPHysics: A numerical tool to simulate real breakwaters

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho

    2018-02-01

    The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

  10. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  11. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    PubMed

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  12. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less

  13. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  14. Fiber laser at 2 μm for soft tissue surgery

    NASA Astrophysics Data System (ADS)

    Ghosh, Aditi; Pal, Debasis; Sen, Ranjan; Pal, Atasi

    2014-11-01

    Strong water absorption at 2 μm generated recent interest in lasers at this wavelength for soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave, cladding pumped, thulium-doped fiber laser at 1.95 μm is configured. The thulium-doped active fiber with octagonal-shaped inner cladding is pumped at 808 nm (total power of 17 W) with six laser diodes through a combiner. The laser power of 3.3 W (after elimination of unabsorbed pump power through a passive fiber) with slope efficiency of 23% (against launched pump power) is achieved. The linear variation of laser power with pump offers scope of further power scaling.

  15. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  16. Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7

    NASA Astrophysics Data System (ADS)

    Gao, Shufang; Xu, Shan

    2018-05-01

    Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.

  17. Observation of ultrahigh-energy electrons by resonance absorption of high-power microwaves in a pulsed plasma.

    PubMed

    Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y

    2001-07-01

    The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms.

  18. Radially localized helicon modes in nonuniform plasma

    PubMed

    Breizman; Arefiev

    2000-04-24

    A radial density gradient in an axisymmetric cylindrical plasma column forms a potential well for nonaxisymmetric helicon modes ( m not equal0). This paper presents an analytic description of such modes in the limit of small longitudinal wave numbers. The corresponding mode equation indicates the possibility of efficient resonant absorption of rf power in helicon discharges at unusually low frequencies.

  19. On the possibility of using the dynamic Franz - Keldysh effect to detect the parameters of high-power IR laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor'ev, A M

    2011-05-31

    The increase in the absorption of light by a semiconductor (when the light photon energy is somewhat smaller than the semiconductor bandgap or equals it) in the presence of a strong light wave (for which the semiconductor is transparent) has been investigated. The possibility of designing novel light detectors for measuring the energy parameters and spatial and temporal characteristics of high-power IR laser radiation is demonstrated. (measurement of laser radiation parameters)

  20. Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.

    PubMed

    Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh

    2013-01-28

    Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.

  1. The damping of seismic waves and its determination from reflection seismograms

    NASA Technical Reports Server (NTRS)

    Engelhard, L.

    1979-01-01

    The damping in theoretical waveforms is described phenomenologically and a classification is proposed. A method for studying the Earth's crust was developed which includes this damping as derived from reflection seismograms. Seismic wave propagation by absorption, attenuation of seismic waves by scattering, and dispersion relations are considered. Absorption of seismic waves within the Earth as well as reflection and transmission of elastic waves seen through boundary layer absorption are also discussed.

  2. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  3. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  4. Experiments on Helicon Excitation and Off-Axis Current Drive on DIII-D: Status and Plans

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Prater, R.; Moeller, C. P.; Degrassie, J. S.; Tooker, J. F.; Anderson, J. P.; Torreblanca, H.; Hansink, M.; Nagy, A.; Porkolab, M.

    2015-11-01

    Fast waves in the LHRF, also called ``whistlers'' or ``helicons,'' will be studied in experiments on the DIII-D tokamak beginning in autumn 2015. In the first stage, a 12-element traveling wave antenna (``comb-line'') is installed in the DIII-D vessel for operation at very low power (~ 0.1 kW) at 476 MHz, with a well-defined launched n| | spectrum peaked at 3.0. The goals of the low-power experiment include: (1) determining the efficiency with which the desired fast waves can be excited under a variety of plasma conditions in discharges relevant to the subsequent high-power current drive experiments and (2) proving that the radial and poloidal location at which the antenna will be mounted does not cause deleterious effects in the DIII-D discharges with high neutral beam power, and that the antenna is not damaged by fast ion losses, etc. Plans for 1 MW-level experiments with a single klystron beginning in FY17 are discussed. In addition to demonstrating off-axis current drive at an efficiency of ~ 60 kA/MW in high-performance plasmas, these experiments will explore non-linear aspects of wave excitation, propagation and absorption such as ponderomotive effects and parametric decay instabilities. Supported by US DOE DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-FG02-94ER54084.

  5. Modelling of minority ion cyclotron current drive during the activated phase of ITER

    NASA Astrophysics Data System (ADS)

    Laxåback, M.; Hellsten, T.

    2005-12-01

    Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.

  6. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  7. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  8. Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals

    NASA Astrophysics Data System (ADS)

    Dzhafarova, S. Z.

    2018-04-01

    The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.

  9. Homogenous isotropic invisible cloak based on geometrical optics.

    PubMed

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  10. FDTD computation of temperature elevation in the elderly for far-field RF exposures.

    PubMed

    Nomura, Tomoki; Laakso, Ilkka; Hirata, Akimasa

    2014-03-01

    Core temperature elevation and perspiration in younger and older adults is investigated for plane-wave exposure at whole-body averaged specific absorption rate of 0.4 W kg(-1). Numeric Japanese male model is considered together with a thermoregulatory response formula proposed in the authors' previous study. The frequencies considered were at 65 MHz and 2 GHz where the total power absorption in humans becomes maximal for the allowable power density prescribed in the international guidelines. From the computational results used here, the core temperature elevation in the older adult model was larger than that in the younger one at both frequencies. The reason for this difference is attributable to the difference of sweating, which is originated from the difference in the threshold activating the sweating and the decline in sweating in the legs.

  11. Polymer Morphological Change Induced by Terahertz Irradiation

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-06-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.

  12. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs

    NASA Astrophysics Data System (ADS)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Knigge, S.; Crump, P.

    2018-03-01

    Broad area lasers with novel extreme double asymmetric structure (EDAS) vertical designs featuring increased optical confinement in the quantum well, Γ, are shown to have improved temperature stability without compromising series resistance, internal efficiency or losses. Specifically, we present here vertical design considerations for the improved continuous wave (CW) performance of devices operating at 940 nm, based on systematically increasing Γ from 0.26% to 1.1%, and discuss the impact on power saturation mechanisms. The results indicate that key power saturation mechanisms at high temperatures originate in high threshold carrier densities, which arise in the quantum well at low Γ. The characteristic temperatures, T 0 and T 1, are determined under short pulse conditions and are used to clarify the thermal contribution to power limiting mechanisms. Although increased Γ reduces thermal power saturation, it is accompanied by increased optical absorption losses in the active region, which has a significant impact on the differential external quantum efficiency, {η }{{diff}}. To quantify the impact of internal optical losses contributed by the quantum well, a resonator length-dependent simulation of {η }{{diff}} is performed and compared to the experiment, which also allows the estimation of experimental values for the light absorption cross sections of electrons and holes inside the quantum well. Overall, the analysis enables vertical designs to be developed, for devices with maximized power conversion efficiency at high CW optical power and high temperatures, in a trade-off between absorption in the well and power saturation. The best balance to date is achieved in devices using EDAS designs with {{Γ }}=0.54 % , which deliver efficiencies of 50% at 14 W optical output power at an elevated junction temperature of 105 °C.

  13. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  14. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  15. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  16. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  17. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  18. Wave energy absorption by a submerged air bag connected to a rigid float.

    PubMed

    Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  19. Wave energy absorption by a submerged air bag connected to a rigid float

    PubMed Central

    Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330

  20. Wave energy absorption by a submerged air bag connected to a rigid float

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  1. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  2. A simulation study of detection of weapon of mass destruction based on radar

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, E.; Choi, Y.; Latifi, S.

    2013-05-01

    Typical systems used for detection of Weapon of Mass Destruction (WMD) are based on sensing objects using gamma rays or neutrons. Nonetheless, depending on environmental conditions, current methods for detecting fissile materials have limited distance of effectiveness. Moreover, radiation related to gamma- rays can be easily shielded. Here, detecting concealed WMD from a distance is simulated and studied based on radar, especially WideBand (WB) technology. The WB-based method capitalizes on the fact that electromagnetic waves penetrate through different materials at different rates. While low-frequency waves can pass through objects more easily, high-frequency waves have a higher rate of absorption by objects, making the object recognition easier. Measuring the penetration depth allows one to identify the sensed material. During simulation, radar waves and propagation area including free space, and objects in the scene are modeled. In fact, each material is modeled as a layer with a certain thickness. At start of simulation, a modeled radar wave is radiated toward the layers. At the receiver side, based on the received signals from every layer, each layer can be identified. When an electromagnetic wave passes through an object, the wave's power will be subject to a certain level of attenuation depending of the object's characteristics. Simulation is performed using radar signals with different frequencies (ranges MHz-GHz) and powers to identify different layers.

  3. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.

    PubMed

    Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing

    2018-06-06

    Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.

  4. 1.083 μm laser operation in Nd,Mg:LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Hu, P. C.; Hang, Y.; Li, R.; Gong, J.; Yin, J. G.; Zhao, C. C.; He, X. M.; Yu, T.; Zhang, L. H.; Chen, W. B.; Zhu, Y. Y.

    2011-10-01

    Nd,Mg:LiTaO3 single crystal with high optical quality was grown by Czochralski technique. Absorption and fluorescence spectra were investigated. The peak absorption cross section at 806.5 nm and peak emission cross section at 1091 nm are 6.81×10-20 and 3.28×10-20 cm2, respectively. The fluorescence lifetime was measured to be 129 μs. With a laser-diode as the pump source, a maximum 375 mW continuous-wave laser output at 1083 nm has been obtained with a slope efficiency of 7.2% with respect to the pump power.

  5. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  6. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  7. Advances in Fabry-Perot and tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2017-05-01

    Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.

  8. Temperature Control in Radiatively Cooled Plasmas through Autoresonant Drive of TG-waves

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2013-10-01

    We demonstrate accurate temperature control of pure electron plasmas, using driven wave heating ``autoresonantly'' in balance with cyclotron cooling. The mθ = 0 Trivelpiece-Gould wave frequencies are temperature-dependent, asfTG (T) =fTG (0) * [ 1 + ɛT ] ; and they exhibit a narrow Lorentzian absorption response R (f) with width γ ~10-3fTG . A continuous drive amplitude Adr then produces plasma heating power Ph ~Adr2 R (fdr) , which can exactly balance the cyclotron cooling powerPc ~ T /τc . This balance point is autoresonantly stable when fdr ~fTG (T) - γ : if T increases, then fTG (T) also increases and fdr gets further from resonance, so the heating power decreases and T decreases back to the balance point. (The second power-balance point at fdr ~fTG (T) + γ is unstable.) In practice, we use a mz = 3 TG wave having frequency range 5 . 2

  9. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform

    PubMed Central

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-01-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594

  10. Growth, spectroscopy and continuous-wave laser performance of Nd3+:LiLu0.65Y0.35F4 crystal

    NASA Astrophysics Data System (ADS)

    Demesh, M. P.; Kurilchik, S. V.; Gusakova, N. V.; Yasukevich, A. S.; Kisel, V. E.; Nizamutdinov, A. S.; Marisov, M. M.; Aglyamov, R. D.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kuleshov, N. V.

    2018-04-01

    A mixed fluoride crystal of LiLu0.65Y0.35F4 doped with Nd3+ ions was grown by the Bridgman-Stockbarger method. Polarized absorption and luminescence spectra as well as luminescence lifetime were measured at room temperature. Emission probabilities, branching ratios and radiative lifetime were studied within the Judd-Ofelt theory and the emission cross section spectra were calculated. Efficient continuous wave laser operation was demonstrated with the crystal. A maximum output power of 7.7 W and slope efficiency of 60% were achieved at 1047 nm for the TEM00 mode.

  11. Quantum Electronics in the UK. A National-Survey Conference.

    DTIC Science & Technology

    1985-10-30

    flashlamp pumped chromium action, including transitions in dopants doped gadolinium /scandium/gallium garnet which have not previously shown laser lasers...frac- factors that limit performance. They ture. The Southampton scientists fabri - concluded that excited state absorption, cated the fibers by a...topics such as transverse power on the long wavelength side of a switching waves and cross-talk of bista- Fabry -Perot resonance peak at 844 nm, ble

  12. Millimeter Wave Radio Frequency Propagation Model Development

    DTIC Science & Technology

    2014-08-28

    two. According to the Beer - Lambert law , this term is defined as the absorption coefficient. When n’’ is positive, radiation is absorbed. If it is...4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply...size distribution has a power- law relationship to rainfall rate. From this knowledge, coefficients were developed based on Marshall and Palmer, Laws

  13. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  14. A CO trace gas detection system based on continuous wave DFB-QCL

    NASA Astrophysics Data System (ADS)

    Dang, Jingmin; Yu, Haiye; Sun, Yujing; Wang, Yiding

    2017-05-01

    A compact and mobile system was demonstrated for the detection of carbon monoxide (CO) at trace level. This system adopted a high-power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at ∼22 °C as excitation source. Wavelength modulation spectroscopy (WMS) as well as second harmonic detection was used to isolate complex, overlapping spectral absorption features typical of ambient pressures and to achieve excellent specificity and high detection sensitivity. For the selected P(11) absorption line of CO molecule, located at 2099.083 cm-1, a limit of detection (LoD) of 26 ppb by volume (ppbv) at atmospheric pressure was achieved with a 1 s acquisition time. Allan deviation analysis was performed to investigate the long term performance of the CO detection system, and a measurement precision of 3.4 ppbv was observed with an optimal integration time of approximate 114 s, which verified the reliable and robust operation of the developed system.

  15. Superconducting Ti/TiN Thin Films for mm-Wave Absorption

    NASA Astrophysics Data System (ADS)

    Aliane, A.; Solana, M.; Rabaud, W.; Saminadayar, L.; Agnese, P.; Goudon, V.; Dussopt, L.; Vialle, C.; Baghe, E.; Pocas, S.; Carle, L.; Lio Soon Shun, N.; Becker, S.; Reveret, V.; Rodriguez, L.; Hamelin, A.; Poglitsch, A.; Bounissou, S.; Adami, O.

    2018-04-01

    Polarization-sensitive detectors at 120-500 GHz are required for the observation of the cosmic microwave background radiation. In this paper, superconducting thin films based on Ti/TiN bilayers are developed to be integrated as electromagnetic wave absorbers in suspended cooled silicon bolometers. The critical temperature (T c) is tuned in the range of 600-800 mK through the superconductivity proximity effect between Ti and TiN to optimize the absorption of the incident power while minimizing the heat capacity of the system at low temperature. Ti/TiN bilayer samples are fabricated on silicon with two different thicknesses (100/5 and 300/5 nm). Electrical characterizations at low temperature have been performed and revealed the effect of thermal annealing (20-250 °C) on residual stress, T c, critical magnetic field (H c) and resistance above T c. A physical characterization by X-ray photoelectron spectroscopy provides evidences of oxidized states which may explain these effects.

  16. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  17. Wave propagation and noncollisional heating in neutral loop and helicon discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Y.; Crintea, D. L.; Luggenhoelscher, D.

    2011-02-15

    Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereasmore » in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.« less

  18. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  19. Multiband coherent perfect absorption in a water-based metasurface.

    PubMed

    Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Premaratne, Malin; Jin, Ronghong

    2017-07-10

    We design an ultrathin water-based metasurface capable of coherent perfect absorption (CPA) at radio frequencies. It is demonstrated that such a metasurface can almost completely absorb two symmetrically incident waves within four frequency bands, each having its own modulation depth of metasurface absorptivity. Specifically, the absorptivity at 557.2 MHz can be changed between 0.59% and 99.99% via the adjustment of the phase difference between the waves. The high angular tolerance of our metasurface is shown to enable strong CPA at oblique incidence, with the CPA frequency almost independent of the incident angle for TE waves and varying from 557.2 up to 584.2 MHz for TM waves. One can also reduce this frequency from 712.0 to 493.3 MHz while retaining strong coherent absorption by varying the water layer thickness. It is also show that the coherent absorption performance can be flexibly controlled by adjusting the temperature of water. The proposed metasurface is low-cost, biocompatible, and useful for electromagnetic modulation and switching.

  20. From core to coax: extending core RF modelling to include SOL, Antenna, and PFC

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.

  1. Sound absorption characteristics of tree bark and forest floor

    Treesearch

    G. Reethof; O. H. McDaniel; G. M. Heisler

    1977-01-01

    Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...

  2. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  3. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  4. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4

    NASA Technical Reports Server (NTRS)

    Chen, W.; Mouret, G.; Boucher, D.; Tittel, F. K.

    2001-01-01

    A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4-4.5 micrometers region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal. DFG power levels of 10 microW were generated at approximately 4 micrometers in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of 12 cm-1 and a temperature tuning rate of 1.02 cm-1/degree C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described.

  5. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  6. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  7. Polymer Morphological Change Induced by Terahertz Irradiation

    PubMed Central

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10−20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  8. Analytical study of laser supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.

  9. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    NASA Astrophysics Data System (ADS)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with <2.5 ns fronts and with maximum input power 1 W. The maximum modulation depth of the initial probe wave absorption via EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  10. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  11. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  12. Two density peaks in low magnetic field helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge ofmore » the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.« less

  13. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  14. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  15. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600

  16. A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2018-05-01

    The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.

  17. Sferic propagation perturbations caused by energetic particle events as seen in global lightning data

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Holzworth, R. H., II; Brundell, J. B.

    2017-12-01

    Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.

  18. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    PubMed

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  19. All-fiber laser at 1.94 µm: effect on soft tissue

    NASA Astrophysics Data System (ADS)

    Pal, Atasi; Pal, Debasis; Das Chowdhury, Sourav; Sen, Ranjan

    2017-02-01

    A focused laser beam at wavelength of strong water absorption at 1.94 μm can be a good scalpel for precision soft tissue surgery. A fiber Bragg grating-based, all-fiber, continuous-wave as well as modulated, cladding pumped, thulium-doped fiber laser at 1.94 μm has been configured to deliver up to 10 W of laser power under pumping at 793 nm having an efficiency of 32 %. The laser was exposed to freshly sacrificed chicken breast at different power level and exposure time. The formalin-fixed samples were examined by microscopy to identify the ablation region, carbonization and necrosis region for laser parameter optimization.

  20. Microwave-plasma in a simple magnetized torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rypdal, K.; Fredriksen, M.; Olsen, O.M.

    1997-05-01

    In a magnetized torus with no poloidal field component, a weakly ionized plasma is produced by microwaves at 2.45 GHz in the O-mode as well as the X-mode. The neutral gas pressure p{sub g} ranges from 5{times}10{sup {minus}5} to 1{times}10{sup {minus}3} mbar, n{sub e}{approximately}1{minus}5{times}10{sup 16}m{sup {minus}3}, and T{sub e}{approximately}2{minus}6 eV. The O-mode is only weakly absorbed at the electron cyclotron resonance (ECR), but is partly converted to the X-mode by wall reflections. The X-mode is absorbed via the upper hybrid resonance (UHR), presumably through conversion to and absorption of electron Bernstein waves (EBW). For p{sub g}{gt}1{times}10{sup {minus}3} mbar the EBWmore » absorption is collisional, but for lower p{sub g} a collisionless transit particle mechanism could be responsible. Typically the spatial plasma distribution depends mainly on the major radius R, and the measured n{sub e}(R) increases monotonically with R from the ECR to an UHR near the outer wall. T{sub e} is determined by the particle balance, and is proportional to the ionization energy. The average n{sub e} is determined by power balance, and increases with wave power. {copyright} {ital 1997 American Institute of Physics.}« less

  1. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka

    2009-06-01

    This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m-2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 °C in the whole frequency range.

  2. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  3. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  4. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent

    NASA Astrophysics Data System (ADS)

    Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang

    2018-02-01

    In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1-8 GHz and 8-18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1-8 GHz. However, in 8-18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than -5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.

  5. Active correction of thermal lensing through external radiative thermal actuation.

    PubMed

    Lawrence, Ryan; Ottaway, David; Zucker, Michael; Fritschel, Peter

    2004-11-15

    Absorption of laser beam power in optical elements induces thermal gradients that may cause unwanted phase aberrations. In precision measurement applications, such as laser interferometric gravitational-wave detection, corrective measures that require mechanical contact with or attachments to the optics are precluded by noise considerations. We describe a radiative thermal corrector that can counteract thermal lensing and (or) thermoelastic deformation induced by coating and substrate absorption of collimated Gaussian beams. This radiative system can correct anticipated distortions to a high accuracy, at the cost of an increase in the average temperature of the optic. A quantitative analysis and parameter optimization is supported by results from a simplified proof-of-principle experiment, demonstrating the method's feasibility for our intended application.

  6. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  7. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  8. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  9. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  10. JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Andrew, Y.; Biewer, T. M.; Casati, A.; Crombé, K.; de la Luna, E.; Ericsson, G.; Felton, R.; Giacomelli, L.; Giroud, C.; Hawkes, N.; Hellesen, C.; Hjalmarsson, A.; Joffrin, E.; Källne, J.; Kiptily, V.; Lomas, P.; Mantica, P.; Marinoni, A.; Mayoral, M.-L.; Ongena, J.; Puiatti, M.-E.; Santala, M.; Sharapov, S.; Valisa, M.; JET EFDA contributors

    2009-04-01

    Recent JET experiments have been devoted to the study of (3He)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[3He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfvén cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[3He] < 10%) favors minority heating while for X[3He] Gt 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[3He] (≈18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (3He)-D plasmas are fairly narrow—giving rise to localized heat sources—the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also briefly summarized.

  11. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.

    PubMed

    Mou, Nanli; Sun, Shulin; Dong, Hongxing; Dong, Shaohua; He, Qiong; Zhou, Lei; Zhang, Long

    2018-04-30

    Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO 2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.

  12. Wide-aperture total absorption of a terahertz wave in a nanoperiodic graphene-based plasmon structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk

    2016-11-15

    The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.

  13. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  14. Energy considerations for a superlens based on metal/dielectric multilayers.

    PubMed

    Bloemer, Mark J; D'Aguanno, Giuseppe; Scalora, Michael; Mattiucci, Nadia; de Ceglia, Domenico

    2008-11-10

    We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

  15. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  16. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Poli, F. M.

    2018-06-01

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.

  17. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Nicolas; Poli, Francesca M.

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  18. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE PAGES

    Lopez, Nicolas; Poli, Francesca M.

    2018-03-29

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  19. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  20. Electromagnetic Wave Absorption Coating Material with Self-Healing Properties.

    PubMed

    Wang, Ya-Min; Pan, Min; Liang, Xiang-Yong; Li, Bang-Jing; Zhang, Sheng

    2017-12-01

    Electromagnetic wave absorption coatings can effectively minimize electromagnetic radiation and are widely used in the military and civil field. However, even small scratches on the coating can lead to a large decline of absorption ability and bring serious consequences. To enhance the lifetime of electromagnetic wave absorbing coating, a kind of self-healing electromagnetic wave absorbing coating is developed by introducing host-guest interactions between the absorbing fillers and polymer matrix. After being damaged, the cracks on this coating can be healed completely with the aid of small amounts of water. Simultaneously, the electromagnetic absorbing ability of the coating is restored along with the self-healing process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    NASA Astrophysics Data System (ADS)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  2. Development of CIP/graphite composite additives for electromagnetic wave absorption applications

    NASA Astrophysics Data System (ADS)

    Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo

    2017-09-01

    In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.

  3. Effect of plasma absorption on dust lattice waves in hexagonal dust crystals

    NASA Astrophysics Data System (ADS)

    Kerong, HE; Hui, CHEN; Sanqiu, LIU

    2018-04-01

    In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.

  4. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  5. Effects of the morphology of CIPs on microwave absorption behaviors

    NASA Astrophysics Data System (ADS)

    Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo

    2017-11-01

    Electromagnetic (EM) wave absorption properties are affected by the thickness and surface area of absorbing materials. In this study, a facile ball-milling process was introduced to effectively reduce the diameter and increase the aspect ratio of carbonyl iron powder (CIP), which is one of the most commercially available EM-absorbing materials. The size, aspect ratio, and consequent surface area of CIP were manipulated by controlling the milling parameters to investigate their effects on EM absorption properties. The results indicated that ball-milled CIPs exhibited better EM wave absorption ability when compared with that of pristine CIPs. However, significant differences in minimum reflection loss values were not observed between CIPs with different morphologies and similar specific surface areas. Hence, both fine and flaky CIPs were considered as beneficial for EM wave absorption.[Figure not available: see fulltext.

  6. Population gratings in saturable optical fibers with randomly oriented rare-earth ions

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.

    2015-07-01

    Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.

  7. High power cascade diode lasers emitting near 2 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumpingmore » scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.« less

  8. The invisible extension cord

    NASA Astrophysics Data System (ADS)

    Gunn, Stanley V.

    1998-01-01

    The term, ``power beaming'', creates an image of a beam of focused electromagnetic radiation, possessing good transmission characteristics and sufficient intensity to effect the delivery of meaningful amounts of power to a designated receiver. High power, free-electron lasers are well suited for long range transmission of their laser beam to designated space receivers because their selective near infrared wave length can be adjusted to match the absorption characteristics of the receiver's photo voltaic cells. The typical system envisioned is comprised of a 200 kw free electron laser, possessing an over-all efficiency of 10%, and an optical beam director system equipped with appropriate tracking and atmospheric compensation capabilities. Such an installation located at four to five appropriate locations around the earth could provide remarkable benefits to the projected power demands for transfer and maneuvering into orbit and for operating future fleets of satellites.

  9. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  10. Test-Wave Measurements of Microwave Absorption Efficiency in a Planar Surface-Wave Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Ghanashev, Ivan; Morita, Shin; \\scToyoda, Naoki; Nagatsu, Masaaki; Sugai, Hideo

    1999-07-01

    A major obstacle for experimental surface-wave (SW) excitationand propagation studies in SW plasma is the self-consistentbehaviour of the latter, which does not permit continuousvariation of the electron density ne. In the presentstudy, we demonstrate how this obstacle can be overcome by anindependent plasma source, in our case, an inductively coupledplasma (ICP) created by a high-power RF (13.56 MHz) generator.Through a rectangular waveguide short-circuited at its end by amovable plunger, we introduced into the ICP a weak (powerless than 20 W) nonionising 2.4 GHz microwave.This permitted us to highlight important SW excitation andpropagation phenomena. In particular, we confirmed the existenceof the predicted [Jpn. J. Appl. Phys. 36 (1997) 4704]resonance minima in the ne dependence of the powerreflection coefficient. The influence of the plunger positionon the chamber matching was studied systematically and fourdifferent coupling aperture geometries were compared.

  11. Intensification of the impact of high-intensity focused ultrasound (HIFU) with special spatiotemporal modulation

    NASA Astrophysics Data System (ADS)

    Gusev, V. A.; Rudenko, O. V.

    2013-01-01

    The principle of forming a special form of powerful acoustic signals is proposed, which makes it possible to ensure precise spatiotemporal beam focusing. The introduction of a transverse-coordinate-dependent local wave frequency is suggested, due to which the equality of the formation lengths of a discontinuity for all rays is achieved. This thereby ensures an increase in nonlinear absorption; as a result, the temperature and radiation action of focused ultrasound on the medium increase.

  12. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    DOEpatents

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  13. Nanopillar Optical Antenna Avalanche Detectors

    DTIC Science & Technology

    2014-08-30

    tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support

  14. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE PAGES

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    2017-10-16

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  15. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  16. Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals.

    PubMed

    Dong, Jun; Ueda, Ken-ichi; Kaminskii, Alexander A

    2008-04-14

    Optical properties of Yb:Y(3)Sc(2)Al(3)O(12) crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y(3)Sc(2)Al(3)O(12) show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y(3)Sc(2)Al(3)O(12) lasers with Cr(4+):YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 microJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr(4+):YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y(3)Sc(2)Al(2)O(12) microchip lasers.

  17. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  18. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  19. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-11-28

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

  20. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffractionmore » to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.« less

  1. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu

    2017-10-01

    An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  2. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  3. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  4. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  5. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.

    2014-03-01

    The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.

  6. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  7. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  8. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.

    PubMed

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-07

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  9. Ultrabroadband Microwave Metamaterial Absorber Based on Electric SRR Loaded with Lumped Resistors

    NASA Astrophysics Data System (ADS)

    Zhao, Jingcheng; Cheng, Yongzhi

    2016-10-01

    An ultrabroadband microwave metamaterial absorber (MMA) based on an electric split-ring resonator (ESRR) loaded with lumped resistors is presented. Compared with an ESRR MMA, the composite MMA (CMMA) loaded with lumped resistors offers stronger absorption over an extremely extended bandwidth. The reflectance simulated under different substrate loss conditions indicates that incident electromagnetic (EM) wave energy is mainly consumed by the lumped resistors. The simulated surface current and power loss density distributions further illustrate the mechanism underlying the observed absorption. Further simulation results indicate that the performance of the CMMA can be tuned by adjusting structural parameters of the ESRR and lumped resistor parameters. We fabricated and measured MMA and CMMA samples. The CMMA yielded below -10 dB reflectance from 4.4 GHz to 18 GHz experimentally, with absorption bandwidth and relative bandwidth of 13.6 GHz and 121.4%, respectively. This ultrabroadband microwave absorber has potential applications in the electromagnetic energy harvesting and stealth fields.

  10. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  11. Pelamis: experience from concept to connection.

    PubMed

    Yemm, Richard; Pizer, David; Retzler, Chris; Henderson, Ross

    2012-01-28

    The development of the Pelamis wave energy converter from its conceptual origins to its commercial deployment is reviewed. The early emphasis on designing for survivability and favourable power absorption characteristics focused attention towards a self-referenced articulated line-absorber in an attenuator orientation. A novel joint and control system allow the machine to be actively tuned to provide a resonant response power amplification in small and moderate seas. In severe seas, the machine is left in its default or natural condition, which is benign and non-resonant. Hydraulic rams at the joints provide the primary power take-off with medium-term storage in high-pressure accumulators yielding smooth electricity generation. Land-based modular construction requiring minimal weather windows for rapid offshore installation is an essential engineering feature necessary for viable commercialization. The second-generation Pelamis designs built for E.ON and ScottishPower Renewables are presented, and the scope for further cost reduction and performance enhancements are explained.

  12. Multi-hump potentials for efficient wave absorption in the numerical solution of the time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.

    2018-03-01

    In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.

  13. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  14. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the plasmaspheric electrons are considered; (i) the heat fluxes caused by the EMIC wave energy absorption due to Landau resonance, and (ii) the heat fluxes due to Coulomb energy degradation of the RC o(+) ions. The heat fluxes caused by the EMIC wave energy absorption due to Landau resonance are observed in the postnoon-premidnight MLT sector, and maximize at the magnitude of 10l1 (eV/(cm(sup 2)(raised dot) s) at L=3.25, MLT=22 at 3400 UT after 1 May, 0000 UT. The greatest Coulomb energy deposition rates are about 2 (raised dot) 10(sup 10)(eV/(cm(sup 2)(raised dot) s) and observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the RC with plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, the RC, and the topside ionosphere [Gurgiolo et al., 20051.

  15. Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    NASA Astrophysics Data System (ADS)

    Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut

    2017-10-01

    The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.

  16. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.

    PubMed

    Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S

    2002-11-01

    Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  18. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    NASA Astrophysics Data System (ADS)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  19. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  20. Resonant absorption of electromagnetic waves in transition anisotropic media.

    PubMed

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  1. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption

    NASA Astrophysics Data System (ADS)

    Tong, Yuan; He, Man; Zhou, Yuming; Zhong, Xi; Fan, Lidan; Huang, Tingyuan; Liao, Qiang; Wang, Yongjuan

    2018-03-01

    In this study, multilayer sandwich heterostructural Ti3C2Tx MXenes decorated with polypyrrole chains have been synthesized successfully via HF etching treatment and in-situ chemical oxidative polymerization approach. The hybrids were investigated as EM wave absorbers for the first time. It is found that the composites consisting of 25 wt% Ti3C2Tx/PPy hybrids in a paraffin matrix exhibit a minimum reflection loss of -49.2 dB (∼99.99% absorption) at the thickness of 3.2 mm and a maximum effective absorption bandwidth of 4.9 GHz (12.4-17.3 GHz) corresponding to an absorber thickness of 2.0 mm. Additionally, a broad effective absorption bandwidth of 13.7 GHz (4.3-18.0 GHz) can be reached up by adjusting the thickness from 1.5 to 5.0 mm. Furthermore, the highest effective absorption bandwidth of 5.7 GHz can be reached when the mass fraction is 15 wt%. The enhanced comprehensive electromagnetic wave absorption has close correlation with the well-designed heterogeneous multilayered microstructure, generated heterogeneous interfaces, conductive paths, surface functional groups, localized defects and synergistic effect between laminated Ti3C2Tx and conductive polypyrrole network, which significantly improve impedance matching and attenuation abilities. The superior absorbing performance together with strong absorption and broad bandwidth endows the Ti3C2Tx/PPy hybrids with the potential prospect to be advanced EM wave absorbers.

  2. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  3. A comparison of control strategies for wave energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.

    In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less

  4. A comparison of control strategies for wave energy converters

    DOE PAGES

    Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.; ...

    2017-11-15

    In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less

  5. Inverse Edelstein effect induced by magnon-phonon coupling

    NASA Astrophysics Data System (ADS)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  6. Alfven wave cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.B.; Yosikawa, S.; Oberman, C.

    1981-02-01

    The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.

  7. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    NASA Astrophysics Data System (ADS)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  8. Coherent perfect absorbers: linear control of light with light

    NASA Astrophysics Data System (ADS)

    Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong

    2017-12-01

    The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.« less

  10. Transition metal doping of GaSe implemented with low temperature liquid phase growth

    NASA Astrophysics Data System (ADS)

    Lei, Nuo; Sato, Youhei; Tanabe, Tadao; Maeda, Kensaku; Oyama, Yutaka

    2017-02-01

    Our group works on improving the conversion efficiencies of terahertz (THz) wave generation using GaSe crystals. The operating principle is based on difference frequency generation (DFG) which has the advantages such as high output power, a single tunable frequency, and room temperature operation. In this study, GaSe crystals were grown by the temperature difference method under controlled vapor pressure (TDM-CVP). It is a liquid phase growth method with temperature 300 °C lower than that of the Bridgman method. Using this method, the point defects concentration is decreased and the polytype can be controlled. The transition metal Ti was used to dope the GaSe in order to suppress free carrier absorption in the low frequency THz region. As a result, a deep acceptor level of 38 meV was confirmed as being formed in GaSe with 1.4 at% Ti doping. Compared with undoped GaSe, a decrease in carrier concentration ( 1014 cm-3) at room temperature was also confirmed. THz wave transmittance measurements reveal the tendency for the absorption coefficient to increase as the amount of dopant is increased. It is expected that there is an optimum amount of dopant.

  11. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  12. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  13. RF heating of nanoclusters for cancer therapy

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Letfullin, Alla R.; George, Thomas F.

    2015-03-01

    Nanodrugs selectively delivered to a tumor site can be activated by radiation for drug release, or nanoparticles (NPs) can be used as a drug themselves by producing biological damage in cancer cells through thermal, mechanical ablations or charged particle emission. Radio-frequency (RF) waves have an excellent ability to penetrate into the human body without causing healthy tissue damage, which provides a great opportunity to activate/heat NPs delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of NPs in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of NPs in the RF range. To resolve these weaknesses in the RF activation of NPs and dramatically increase absorption of contrast agents in tumor, we suggest aggregating the nanoclusters inside or on the surface of the cancer cells. We simulate space distribution of temperature changes inside and outside metal and dielectric nanopraticles/nanoclusters, determine the number of nanoparticles needed to form a cluster, and estimate the thermal damage area produced in surrounding medium by nanopraticles/nanoclusters heated in the RF field.

  14. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  15. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  16. An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo

    2009-01-01

    In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams.

  17. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  18. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra for high density-of-states chiral molecules. Next, we explore the impact of allowing nuclear motion on electronic absorption spectra within the context of mixed quantum-classical dynamics. We show that nuclear motion modulates the electronic response, and this gives rise to infrared absorption as well as Raman scattering phenomena in the computed dynamic polarizability. Finally, we explore the accuracy of several perturbative approximations to the equation-of-motion coupled-cluster methods for the efficient and accurate prediction of electronic absorption spectra.

  19. AORSA full wave calculations of helicon waves in DIII-D and ITER

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2018-06-01

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.

  20. AORSA full wave calculations of helicon waves in DIII-D and ITER

    DOE PAGES

    Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...

    2018-04-11

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less

  1. AORSA full wave calculations of helicon waves in DIII-D and ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less

  2. The effect of dissipative inhomogeneous medium on the statistics of the wave intensity

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1993-01-01

    One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.

  3. Control of acoustic absorption in one-dimensional scattering by resonant scatterers

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.

    2015-12-01

    We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.

  4. Sound absorption coefficient of coal bottom ash concrete for railway application

    NASA Astrophysics Data System (ADS)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  5. X-ray-induced acoustic computed tomography of concrete infrastructure

    NASA Astrophysics Data System (ADS)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  6. Modeling thermoelastic distortion of optics using elastodynamic reciprocity

    NASA Astrophysics Data System (ADS)

    King, Eleanor; Levin, Yuri; Ottaway, David; Veitch, Peter

    2015-07-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so predictive feed-forward control systems could be required, but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate, using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  7. Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven

    2018-01-01

    An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.

  8. The detection and characterization of high frequency and high wavenumber solar oscillations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fernandes, David Neil

    1992-01-01

    Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.

  9. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  10. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  11. Characteristics of absorption and frequency filtration of ULF electromagnetic waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    A statistical method for interpreting data from experimental investigations of vertically-propagating electromagnetic ULF waves in the inhomogeneous magnetoactive ionosphere is considered theoretically. Values are obtained for the transmission, reflection and absorption characteristics of ULF waves in a limited ionospheric layer, in order to describe the relation between the frequency of a wave generated at the earth surface and that of a total wave propagating above the ionospheric layer. This relation is used to express the frequency-selective amplitude filtration of ULF waves in the layer. The method is applied to a model of the night ionosphere of mid-geomagnetic latitudes in the form of a plate 1000 km thick. It is found that the relative characteristics of transmission and amplitude loss in the wave adequately describe the frequency selectiveness and wave filtration capacity of the ionosphere. The method is recommended for studies of the structural changes of wave parameters in ionospheric models.

  12. High power THz sources for nonlinear imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source deliversmore » 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.« less

  13. High power THz sources for nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-01

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  14. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    NASA Astrophysics Data System (ADS)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  15. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    PubMed

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  16. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  18. Piezoelectric films for acoustoelectronic devices - Production, properties, and applications

    NASA Astrophysics Data System (ADS)

    Anisimkin, V. I.; Kotelianskii, I. M.

    1990-06-01

    Various aspects of the production of ZnO, AlN, and Ta2O5 piezoelectric films are briefly reviewed. The mininum possible absorption coefficient of surface acoustic waves in textured films is estimated theoretically with allowance for different absorption mechanisms. The results obtained are compared with those for single crystals of the same materials. Methods for calculating the absorption coefficient and temperature delay coefficient for Rayleigh and Sezawa surface acoustic waves in layered structures are proposed and verified experimentally.

  19. Quantum quench of Kondo correlations in optical absorption

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Andreas

    2013-03-01

    Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.

  20. Surface waves in an incompressible fluid - Resonant instability due to velocity shear

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.; Yang, G.; Cadez, V. M.; Gakovic, B.

    1990-01-01

    The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere.

  1. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  2. Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser

    NASA Astrophysics Data System (ADS)

    Fukuoka, D.; Muro, K.; Noda, K.

    2016-02-01

    A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.

  3. Terahertz imaging system based on a backward-wave oscillator.

    PubMed

    Dobroiu, Adrian; Yamashita, Masatsugu; Ohshima, Yuichi N; Morita, Yasuyuki; Otani, Chiko; Kawase, Kodo

    2004-10-20

    We present an imaging system designed for use in the terahertz range. As the radiation source a backward-wave oscillator was chosen for its special features such as high output power, good wave-front quality, good stability, and wavelength tunability from 520 to 710 GHz. Detection is achieved with a pyroelectric sensor operated at room temperature. The alignment procedure for the optical elements is described, and several methods to reduce the etalon effect that are inherent in monochromatic sources are discussed. The terahertz spot size in the sample plane is 550 microm (nearly the diffraction limit), and the signal-to-noise ratio is 10,000:1; other characteristics were also measured and are presented in detail. A number of preliminary applications are also shown that cover various areas: nondestructive real-time testing for plastic tubes and packaging seals; biological terahertz imaging of fresh, frozen, or freeze-dried samples; paraffin-embedded specimens of cancer tissue; and measurement of the absorption coefficient of water by use of a wedge-shaped cell.

  4. A Part-Time Solar Chromosphere?

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.

    1999-05-01

    The dynamical model of the nonmagnetic chromosphere of Carlsson & Stein (1994) has a time-dependent temperature structure from shock dissipation of upward-propagating acoustic waves. For the high-temperature phase of waves due to an observed photospheric velocity spectrum, the model reproduces to great fidelity the intricate velocity and intensity variations of the corresponding H line from an hour-long observing run. But for the low-temperature phase, in which the temperature drops monotonically in the outward direction up to a height of at least 1.8 Mm above tau =1, the model predicts UV spectra for lines and continua that should be observable in absorption everywhere and almost all the time. However, observations with SUMER show only emission lines, everywhere and all the time. The dynamical model fails as a temperature model because it uses less than 5% of the wave energy entering the chromosphere. The extra energy is hidden in the observed power spectrum at acoustic frequencies above 10 mHz; it accounts for a permanent temperature inversion and thus a full-time chromosphere.

  5. Three-wave mixing in conjugated polymer solutions: Two-photon absorption in polydiacetylenes

    NASA Astrophysics Data System (ADS)

    Chance, R. R.; Shand, M. L.; Hogg, C.; Silbey, R.

    1980-10-01

    Three-wave-mixing spectroscopy is used to determine the dispersive and absorptive parts of a strongly allowed two-photon transition in a series of polydiacetylene solutions. The data analysis yields the energy, width, symmetry assignment, and oscillator strength for the two-photon transition. The data conclusively demonstrate that strong two-photon absorption is a fundamental property of the polydiacetylene backbone. The remarkably large two-photon absorption coefficients are explained by large oscillator strengths for both transitions involved in the two-photon absorption combined with strong one-photon resonance effects. The experimental results are shown to be consistent with a simple theoretical model for the energies and oscillator strengths of the one- and two-photon-allowed transitions.

  6. Coherence in the presence of absorption and heating in a molecule interferometer

    PubMed Central

    Cotter, J. P.; Eibenberger, S.; Mairhofer, L.; Cheng, X.; Asenbaum, P.; Arndt, M.; Walter, K.; Nimmrichter, S.; Hornberger, K.

    2015-01-01

    Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053

  7. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  8. Conical refraction of elastic waves in absorbing crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Lyubimov, V. N.

    2011-10-15

    The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after 'switching on' absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincare index n = {+-}1/2, transforms to a planar distribution of ellipses with two singularities n = {+-}1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied.more » The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by {pi}/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.« less

  9. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  10. Parametric Investigation of Holographic Gratings and Optical Phase Conjugation Through Degenerate Four Wave Mixing in Saturable Absorptive/Resonant/Nonresonant Systems

    DTIC Science & Technology

    1991-11-26

    WAVE MIXING IN SATURABLE ABSORPTIVEIRESONANTINONRESONANT SYSTEMS I Final Report Putcha Venkateswarlu November 26, 1991 U.S. ARMY RESEARCH OFFICE GRANT...and Optical Phase Conjugation Through Degenerate Four Wave Mixin2 in Saturable Absorptive/Resonant/Nonresonant System DAAL03-87-G-0078 6. AUTHOR(S) P...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other

  11. Application of Temperature-Dependent Fluorescent Dyes to the Measurement of Millimeter Wave Absorption in Water Applied to Biomedical Experiments

    PubMed Central

    Popenko, Oleksandr

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859

  12. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments.

    PubMed

    Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  13. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

    PubMed

    Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon

    2018-04-01

    Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D.; Lerche, E.

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063],more » the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.« less

  15. Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation

    DTIC Science & Technology

    2017-10-17

    Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF

  16. RT-CW: widely tunable semiconductor THz QCL sources

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Lu, Q. Y.

    2016-09-01

    Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.

  17. Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D

    NASA Astrophysics Data System (ADS)

    Yang, C.; Bonoli, P. T.; Wright, J. C.; Ding, B. J.; Parker, R.; Shiraiwa, S.; Li, M. H.

    2014-12-01

    The coupled GENRAY-CQL3D code has been used to do systematic ray-tracing and Fokker-Planck analysis for EAST Lower Hybrid wave Current Drive (LHCD) experiments. Despite being in the weak absorption regime, the experimental level of LH current drive is successfully simulated, by taking into account the variations in the parallel wavenumber due to the toroidal effect. The effect of radial transport of the fast LH electrons in EAST has also been studied, which shows that a modest amount of radial transport diffusion can redistribute the fast LH current significantly. Taking advantage of the new capability in GENRAY, the actual Scrape Off Layer (SOL) model with magnetic field, density, temperature, and geometry is included in the simulation for both the lower and the higher density cases, so that the collisional losses of Lower Hybrid Wave (LHW) power in the SOL has been accounted for, which together with fast electron losses can reproduce the LHCD experimental observations in different discharges of EAST. We have also analyzed EAST discharges where there is a significant ohmic contribution to the total current, and good agreement with experiment in terms of total current has been obtained. Also, the full-wave code TORLH has been used for the simulation of the LH physics in the EAST, including full-wave effects such as diffraction and focusing which may also play an important role in bridging the spectral gap. The comparisons between the GENRAY and the TORLH codes are done for both the Maxwellian and the quasi-linear electron Landau damping cases. These simulations represent an important addition to the validation studies of the GENRAY-CQL3D and TORLH models being used in weak absorption scenarios of tokamaks with large aspect ratio.

  18. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  19. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    PubMed

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  20. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    PubMed Central

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin

    2018-01-01

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310

  1. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.

    PubMed

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-04-05

    Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.

  2. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE PAGES

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...

    2016-01-05

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  3. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  4. Foam metal metamaterial panel for mechanical waves isolation

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Sun, Hongwei; Gu, Jinliang

    2016-04-01

    This paper presents modeling, analysis techniques and experiment of foam metal metamaterial panel for Broadband Vibration Absorption. For a unit cell of an infinite foam metal metamaterial panel, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial panel is based on the concept of conventional mechanical vibration absorbers. It uses the incoming elastic wave in the panel to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic foam metal metamaterial panel consisting of lumped mass and elastic membrane is proposed in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic foam metal metamaterial panel do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic foam metal metamaterial panel can be used for absorption of low-frequency waves and hence expensive micro-manufacturing techniques are not needed for design and manufacturing of such foam metal metamaterial panel for low-frequency waves absorption/isolation.

  5. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  6. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  7. Theoretical analysis of a novel ultrasound generator on an optical fiber tip

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Guthy, Charles; Wang, Xingwei

    2010-04-01

    A novel ultrasound generator consisting of a single mode optical fiber with a layer of gold nanoparticles on its tip has been designed. The generator utilizes the optical and photo-acoustic properties of gold nanoparticles. When heated by laser pulses, a thin absorption layer made up of these nanoparticles at the cleaved surface of a single mode fiber generates a mechanical shock wave caused by thermal expansion. Mie's theory was applied in a MATLAB simulation to determine the relationship between the absorption efficiency and the optical resonance wavelengths of a layer of gold nanospheres. Results showed that the absorption efficiency and related resonance wavelengths of gold nanospheres varied based on the size of the gold nanosphere particles. In order to obtain the bandwidths associated with ultrasound, another MATLAB simulation was run to study the relationship between the power of the laser being used, the size of the gold nanosphere, and the energy decay time. The results of this and the previous simulation showed that the energy decay time is picoseconds in length.

  8. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  9. Characteristic analysis of surface waves in a sensitive plasma absorption probe

    NASA Astrophysics Data System (ADS)

    You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong

    2018-01-01

    With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.

  10. Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes.

    PubMed

    Wu, Shaolong; Zhang, Cheng; Li, Xiaofeng; Zhan, Yaohui

    2015-03-01

    We focus on the light-trapping characteristics of a thin film with locally clustered nanoholes (NHs), considering that the clustering effect is usually encountered in preparing the nanostructures. Our full-wave finite-element simulation indicates that an intentionally introduced clustering effect could be employed for improving the light-trapping performance of the nanostructured thin film. For a 100 nm thick amorphous silicon film, an optimal clustering design with NH diameter of 100 nm is able to double the integrated optical absorption over the solar spectrum, compared to the planar counterpart, as well as show much improved optical performance over that of the nonclustered setup. A further insight into the underlying physics explains the outstanding light-trapping capability in terms of the increased available modes, a stronger power coupling efficiency, a higher fraction of electric field concentrated in absorbable material, and a higher density of photon states.

  11. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  12. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  13. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  14. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.

  15. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    NASA Technical Reports Server (NTRS)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  16. Scattering and absorption of massless scalar waves by Born-Infeld black holes

    NASA Astrophysics Data System (ADS)

    Sanchez, Pablo Alejandro; Bretón, Nora; Bergliaffa, Santiago Esteban Perez

    2018-06-01

    We present the results of a study of the scattering of massless planar scalar waves by a Born-Infeld black hole. The scattering and absorption cross sections are calculated using partial-wave methods. The numerical results are checked by reproducing those of the Reissner-Nordstrom black hole, and also using several approximations, with which our results are in very good agreement. The dependence of these phenomena on the effective potential, the charge of the black hole, and the value of the Born-Infeld parameter is discussed.

  17. Photoacoustic phasoscopy super-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  18. Incident angle insensitive tunable multichannel perfect absorber consisting of nonlinear plasma and matching metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiang-kun; Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Shao-Bin, E-mail: plrg@nuaa.edu.cn

    2014-12-15

    A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incidentmore » angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.« less

  19. Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin Charles

    The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three different distributed terahertz amplifier circuits were considered in this work. These were based on a) coupled dielectric resonators, b) dielectric waveguides with periodic slots, and c) metallic meandering waveguides. The result of the hot test of the last circuit on interaction with an electron beam energy source yielded an amplification of 12 dB of a -55 dBm, 0.9 terahertz signal over 1 gigahertz bandwidth. The electron beam acceleration voltage was 4.8 kV and its current was approximately 20 microamps. The terahertz biosensing system developed in this work was used to study the unique interaction of terahertz waves with the chemical and physical components of biological tissues, and the products of biochemical reactions. A terahertz near-field imaging system was also developed to image mouse brain slices, plants, and bug wings. In addition, this work also demonstrated the capabilities and limitations of terahertz waves for the real-time noninvasive monitoring of bioethanol production by yeast cells.

  20. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  1. The Soviet contributions towards MAP/WINE

    NASA Technical Reports Server (NTRS)

    Rapoport, Z. TA.; Kazimirovsky, E. S.

    1989-01-01

    In the winter of 1983 to 1984, the research institutes of the Soviet Union took an active part in the accomplishment of the project Winter in Northern Europe (MAP/WINE) of the Middle Atmosphere Program. Different methods were used to measure temperature, direction and velocity of wind, turbulence, electron concentration in the lower ionosphere, and radio wave absorption. The study of the stratopheric warmings and the related changes in the mesosphere and lower ionosphere was considered of special importance. The analysis of the obtained data has shown, in particular, that during the stratospheric warmings the western wind in winter time becomes weaker and even reverses. At the same time period the electron concentration and the radio wave absorption in the lower ionosphere are often reduced. It is also observed that the high absorption zones move from west to east. These results confirm the concept about the role of the cyclonic circumpolar vortex in the transport of the auroral air to temperate latitudes and about the appearance of conditions for the winter anomalous radio wave absorption.

  2. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less

  3. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  4. Simulation of Self-consistent Radio Wave Artificial Ionospheric Turbulence Pumping and Damping

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    The numerical simulations of the action of self-consistent incident powerful electromagnetic wave absorption arising in the regions of artificial plasma turbulence excitation at formation, saturation and relaxation stages of turbulent structures (Kochetov, A.V., Mironov, V.A., Te-rina, G.I., Bubukina V. N, Physica D, Nonlinear phenomena, 2001, 152-153, 723) to reflection index dynamics are carried out. The nonlinear Schrüdinger equation in inhomogeneous plasma layer with incident electromagnetic wave pumping and backscattered radiation damping (Ko-chetov, et al, Adv. Space Res., 2002, 29, 1369 and 2006, 38, 2490) is extended with the imagi-nary part of plasma dielectric constant (volume damping), which is should be taken into account in strong electromagnetic field plasma regions and results the energy transformation from elec-tromagnetic waves to plasma ones at resonance interaction (D.V. Shapiro, V.I. Shevchenko, in Handbook of Plasma Physics 2, eds. A.A Galeev, R.N. Sudan. Elsevier, Amsterdam, 1984). The volume damping reproduces the basic energy transformation peculiarities: hard excitation, nonlinearity, hysteresis (A.V. Kochetov, E. Mjoelhus, Proc. of IV Intern. Workshop "SMP", Ed. A.G. Litvak, Vol.2, N. Novgorod, 2000, 491). Computer modeling demonstrates that the amplitude and period of reflection index oscillations at the formation stage slowly depend on damping parameters of turbulent plasma regions. The transformation from complicated: quasi-periodic and chaotic dynamics, to quasi-stationary regimes is shown at the saturation stage. Transient processes time becomes longer if the incident wave amplitude and nonlinear plasma response increase, but damping decreases. It is obtained that the calculated reflection and absorption index dynamics at the beginning of the saturation stage agrees qualitatively to the experimental results for ionosphere plasma modification study (Thide B., E.N. Sergeev, S.M. Grach, et. al., Phys. Rev. Lett., 2005, 95, 255002). The work was supported in part by RFBR grant 09-02-01150-a.

  5. A review of acoustic power transfer for bio-medical implants

    NASA Astrophysics Data System (ADS)

    Basaeri, Hamid; Christensen, David B.; Roundy, Shad

    2016-12-01

    Bio-implantable devices have been used to perform therapeutic functions such as drug delivery or diagnostic monitoring of physiological parameters. Proper operation of these devices depends on the continuous reliable supply of power. A battery, which is the conventional method to supply energy, is problematic in many of these devices as it limits the lifetime of the implant or dominates the size. In order to power implantable devices, power transfer techniques have been implemented as an attractive alternative to batteries and have received significant research interest in recent years. Acoustic waves are increasingly being investigated as a method for delivering power through human skin and the human body. Acoustic power transfer (APT) has some advantages over other powering techniques such as inductive power transfer and mid range RF power transmission. These advantages include lower absorption in tissue, shorter wavelength enabling smaller transducers, and higher power intensity threshold for safe operation. This paper will cover the basic physics and modeling of APT and will review the current state of acoustic (or ultrasonic) power transfer for biomedical implants. As the sensing and computational elements for biomedical implants are becoming very small, we devote particular attention to the scaling of acoustic and alternative power transfer techniques. Finally, we present current issues and challenges related to the implementation of this technique for powering implantable devices.

  6. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    NASA Astrophysics Data System (ADS)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  7. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.

    PubMed

    Rahmanzadeh, Mahdi; Rajabalipanah, Hamid; Abdolali, Ali

    2018-02-01

    In this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model. Good agreement is observed between the full-wave simulations and the equivalent-circuit predictions. The optimum MGBM absorber exhibits >90% absorbance in an extremely broad frequency band of 0.55-3.12 THz (BW=140%). The results indicate a significant BW enhancement compared with both the previous metal- and graphene-based THz absorbers, highlighting the capability of the designed MGBM absorber. To clarify the physical mechanism of absorption, the surface current and the electric-field distributions, as well as the power loss density of each graphene metasurface, are monitored and discussed. The MGBM functionality is evaluated under a wide range of incident wave angles to prove that the proposed absorber is omnidirectional and polarization-insensitive. These superior performances guarantee the applicability of the MGBM structure as an ultra-broadband absorber for various THz applications.

  8. Lower Hybrid Wave Induced SOL Emissivity Variation at High Density on the Alcator C-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faust, I.; Terry, J. L.; Reinke, M. L.

    Lower Hybrid Current Drive (LHCD) in the Alcator C-Mod tokamak provides current profile control for the generation of Advanced Tokamak (AT) plasmas. Non-thermal electron bremsstrahlung emission decreases dramatically at n-bar{sub e}>1{center_dot}10{sup 20}[m{sup -3}] for diverted discharges, indicating low current drive efficiency. It is suggested that Scrape-Off-Layer (SOL) collisional absorption of LH waves is the cause for the absence of non-thermal electrons at high density. VUV and visible spectroscopy in the SOL provide direct information on collision excitation processes. Deuterium Balmer-, Lyman- and He-I transition emission measurements were used for initial characterization of SOL electron-neutral collisional absorption. Data from Helium andmore » Deuterium LHCD discharges were characterized by an overall increase in the emissivity as well as an outward radial shift in the emissivity profile with increasing plasma density and applied LHCD power. High-temperature, high-field (T{sub e} = 5keV,B{sub t} = 8T) helium discharges at high density display increased non-thermal signatures as well as reduced SOL emissivity. Variations in emissivity due to LHCD were seen in SOL regions not magnetically connected to the LH Launcher, indicating global SOL effects due to LHCD.« less

  9. Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun

    2005-07-01

    Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.

  10. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Celona, L.

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which themore » selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.« less

  11. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  12. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.

  13. Theoretical Analysis of Microwave Propagation.

    DTIC Science & Technology

    1984-04-01

    effects of the turbulent atmosphere on wave propagation, US Department of Commerce, NTIS, Springfield, VA. * VanVleck, J.H. (1947), "The absorption of... turbulent atmosphere on wave propagation, US Department of Commerce, NTIS, Sprinifield, VA. -. A. Vigants (1975), "Space diversity engineering," BSTJ, Vol... Turbulence ., ...... 2-26 2.5 ATMOSPHERIC ABSORPTION. 2-26 2 .6 RAIN ATTENUATION ....... 2-29 3 TROPOSCATTER PROPAGATION .................... 3-1 3.1

  14. Wave Absorber with Fine Weatherability for Improving ETC Environment

    NASA Astrophysics Data System (ADS)

    Miura, Yu; Matsumoto, Kouta; Okada, Osamu; Hashimoto, Osamu

    Wave absorber of rubber sheet containing natural rubber and EPDM is designed, fabricated and measured for improving ETC environment. As a result, proposed absorption material has fine weatherability and wave absorption satisfied with ETC standard can be realized theoretically before and after the weatherability test if the thickness of absorber is fabricated at the ranging from 2.26mm to 2.52mm. Moreover, absorber sheet sample based on theoretical values is fabricated and are measured. As a result, 20dB or more is also confirmed at the incident angle ranging from 5 to 55 degrees experimentally. Therefore, the wave absorber with fine weatherability being satisfied with ETC standard can be realized.

  15. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  16. Ultraviolet absorption cross-sections of hot carbon dioxide

    NASA Astrophysics Data System (ADS)

    Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.

    2004-12-01

    The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.

  17. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    NASA Astrophysics Data System (ADS)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  18. An angle-by-angle approach to predicting broadband high-frequency sound fields in rectangular enclosures with experimental comparison.

    PubMed

    Franzoni, Linda P; Elliott, Christopher M

    2003-10-01

    Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.

  19. Compressional Wave Speed and Absorption Measurements in a Saturated Kaolinite-Water Artificial Sediment.

    DTIC Science & Technology

    OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION

  20. An experimental study of stratospheric gravity waves - Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Talagrand, O.; Ovarlez, H.

    1984-02-01

    The design of balloon-borne experimental apparatus for long-term gravitational-wave measurements in the stratosphere is reported, and preliminary results of a first test flight are presented. Two gondolas (each containing a pressure sensor; a temperature sensor; horizontal and vertical sonic anemometers; a fin equipped with crossed magnetometers; and data-processing, data-transmission, and control electronics) are suspended 100 and 300 m below a solar/terrestrial-IR-absorption-heated hot-air balloon drifting between altitudes 22 km (night) and 28 km (day); power is supplied by NiCd batteries recharged by solar cells. The path of the first flight, a circumnavigation beginning in Pretoria, South Africa and crossing South America and northern Australia, from December 11, 1982, to February 2, 1983 (when transmission ceased over southern Africa) is shown on a map, and sample data for a 36-h period are summarized in a graph.

  1. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    PubMed

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  2. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  3. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  4. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    NASA Astrophysics Data System (ADS)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  5. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  6. Digital data-acquisition system for measuring the free decay of acoustical standing waves in a resonant tube

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Zuckerwar, A. J.

    1984-01-01

    A low-cost digital system based on an 8-bit Apple II microcomputer has been designed to provide on-line control, data acquisition, and evaluation of sound absorption measurements in gases. The measurements are conducted in a resonant tube, in which an acoustical standing wave is excited, the excitation removed, and the sound absorption evaluated from the free decay envelope. The free decay is initiated from the computer keyboard after the standing wave is established, and the microphone response signal is the source of the analog signal for the A/D converter. The acquisition software is written in ASSEMBLY language and the evaluation software in BASIC. This paper describes the acoustical measurement, hardware, software, and system performance and presents measurements of sound absorption in air as an example.

  7. High-performance terahertz wave absorbers made of silicon-based metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Sheng; Zhu, Jianfei; Jiang, Wei

    2015-08-17

    Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patternsmore » and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.« less

  8. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    NASA Astrophysics Data System (ADS)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  9. Gas spectroscopy system with 245 GHz transmitter and receiver in SiGe BiCMOS

    NASA Astrophysics Data System (ADS)

    Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm

    2017-02-01

    The implementation of an integrated mm-wave transmitter (TX) and receiver (RX) in SiGe BiCMOS or CMOS technology offers a path towards a compact and low-cost system for gas spectroscopy. Previously, we have demonstrated TXs and RXs for spectroscopy at 238 -252 GHz and 495 - 497 GHz using external phase-locked loops (PLLs) with signal generators for the reference frequency ramps. Here, we present a more compact system by using two external fractional-N PLLs allowing frequency ramps for the TX and RX, and for TX with superimposed frequency shift keying (FSK) or reference frequency modulation realized by a direct digital synthesizer (DDS) or an arbitrary waveform generator. The 1.9 m folded gas absorption cell, the vacuum pumps, as well as the TX and RX are placed on a portable breadboard with dimensions of 75 cm x 45 cm. The system performance is evaluated by high-resolution absorption spectra of gaseous methanol at 13 Pa for 241 - 242 GHz. The 2f (second harmonic) content of the absorption spectrum of the methanol was obtained by detecting the IF power of RX using a diode power sensor connected to a lock-in amplifier. The reference frequency modulation reveals a higher SNR (signal-noise-ratio) of 98 within 32 s acquisition compared to 66 for FSK. The setup allows for jumping to preselected frequency regions according to the spectral signature thus reducing the acquisition time by up to one order of magnitude.

  10. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  11. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.

    PubMed

    Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe

    2012-12-21

    According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.

  12. RF absorption and ion heating in helicon sources.

    PubMed

    Kline, J L; Scime, E E; Boivin, R F; Keesee, A M; Sun, X; Mikhailenko, V S

    2002-05-13

    Experimental data are presented that are consistent with the hypothesis that anomalous rf absorption in helicon sources is due to electron scattering arising from parametrically driven ion-acoustic waves downstream from the antenna. Also presented are ion temperature measurements demonstrating anisotropic heating (T( perpendicular)>T(parallel)) at the edge of the discharge. The most likely explanation is ion-Landau damping of electrostatic slow waves at a local lower-hybrid-frequency resonance.

  13. High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.

    2004-11-01

    Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).

  14. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  15. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  16. Wave Power Demonstration Project at Reedsport, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less

  17. Absorptive coding metasurface for further radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Mingde; Xu, Zhuo; Qu, Shaobo

    2018-02-01

    Lossless coding metasurfaces and metamaterial absorbers have been widely used for radar cross section (RCS) reduction and stealth applications, which merely depend on redirecting electromagnetic wave energy into various oblique angles or absorbing electromagnetic energy, respectively. Here, an absorptive coding metasurface capable of both the flexible manipulation of backward scattering and further wideband bistatic RCS reduction is proposed. The original idea is carried out by utilizing absorptive elements, such as metamaterial absorbers, to establish a coding metasurface. We establish an analytical connection between an arbitrary absorptive coding metasurface arrangement of both the amplitude and phase and its far-field pattern. Then, as an example, an absorptive coding metasurface is demonstrated as a nonperiodic metamaterial absorber, which indicates an expected better performance of RCS reduction than the traditional lossless coding metasurface and periodic metamaterial-absorber. Both theoretical analysis and full-wave simulation results show good accordance with the experiment.

  18. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  19. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    PubMed

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  20. Midinfrared radiation energy harvesting device

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  1. Reduced dimer production in solar-simulator-pumped continuous wave iodine lasers based on model simulations and scaling and pumping studies

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Heinbockel, John H.; Miner, Gilda A.; Meador, Willard E., Jr.; Tabibi, Bagher M.; Lee, Ja H.; Williams, Michael D.

    1995-01-01

    A numerical rate equation model for a continuous wave iodine laser with longitudinally flowing gaseous lasant is validated by approximating two experiments that compare the perfluoroalkyl iodine lasants n-C3F7I and t-C4F9I. The salient feature of the simulations is that the production rate of the dimer (C4F9)2 is reduced by one order of magnitude relative to the dimer (C3F7)2. The model is then used to investigate the kinetic effects of this reduced dimer production, especially how it improves output power. Related parametric and scaling studies are also presented. When dimer production is reduced, more monomer radicals (t-C4F9) are available to combine with iodine ions, thus enhancing depletion of the laser lower level and reducing buildup of the principal quencher, molecular iodine. Fewer iodine molecules result in fewer downward transitions from quenching and more transitions from stimulated emission of lasing photons. Enhanced depletion of the lower level reduces the absorption of lasing photons. The combined result is more lasing photons and proportionally increased output power.

  2. Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.

    2018-02-01

    Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.

  3. Spin-Wave Chirality and Its Manifestations in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Proskurin, Igor; Stamps, Robert L.; Ovchinnikov, Alexander S.; Kishine, Jun-ichiro

    2017-10-01

    As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a nonequilibrium spin-wave chirality density.

  4. Short time propagation of a singular wave function: Some surprising results

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vdovin V.L.

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magneticmore » flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each other due to magnetic field inhomogeneity of stellarators in toroidal direction. This is drastically different from axial symmetric plasma of the tokamaks. The inclusion in the problem major radius variation of magnetic field can strongly modify earlier results obtained for the straight helical, especially for high beta plasma, due to location modification of the two ion hybrid resonance layers. For the NCSX, LHD, W7-AS and W7-X like magnetic field topology inclusion in our theory of a major radius inhomogeneity of the magnetic field is a key element for correct description of RF power deposition profiles at all. The theory is developed in a manner that includes tokamaks and magnetic mirrors as the particular cases through general metric tensor (provided by an equilibrium solver) treatment of the wave equations. We describe that newly developed stellarator ICRF 3D full wave code PSTELION, based on theory described in this report. Applications to tokamaks, ITER, stellarators and benchmarking with 2D TORIC and 3D AORSA codes are given in included subreports« less

  6. Accurate Human Tissue Characterization for Energy-Efficient Wireless On-Body Communications

    PubMed Central

    Vallejo, Mónica; Recas, Joaquín; del Valle, Pablo García; Ayala, José L.

    2013-01-01

    The demand for Wireless Body Sensor Networks (WBSNs) is rapidly increasing due to the revolution in wearable systems demonstrated by the penetration of on-the-body sensors in hospitals, sports medicine and general health-care practices. In WBSN, the body acts as a communication channel for the propagation of electromagnetic (EM) waves, where losses are mainly due to absorption of power in the tissue. This paper shows the effects of the dielectric properties of biological tissues in the signal strength and, for the first time, relates these effects with the human body composition. After a careful analysis of results, this work proposes a reactive algorithm for power transmission to alleviate the effect of body movement and body type. This policy achieves up to 40.8% energy savings in a realistic scenario with no performance overhead. PMID:23752565

  7. Calculations of a wideband metamaterial absorber using equivalent medium theory

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  8. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  9. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  10. Efficient atom localization via probe absorption in an inverted-Y atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  11. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  12. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  13. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication

    NASA Astrophysics Data System (ADS)

    Karmakar, S.; Biswas, S.; Kumbhakar, P.

    2017-11-01

    Here, we have unveiled low power continuous-wave nonlinear optical properties of a few layer (4-12L) Molybdenum disulfide (MoS2) dispersion in N, N-dimethylformamide (DMF) by using spatial self-phase modulation technique. The effective third-order nonlinear susceptibility of the monolayer has been estimated to be as high as ∼10-8 esu. Also a low power technique of syntheses of stable and a few-layer (4-12L) MoS2 dispersion in DMF has been demonstrated here by utilizing ultrasonication bath treatment combined with the natural gravitation sedimentation effect starting from the bulk MoS2 powder. The synthesized samples are exhibiting interesting linear optical absorption and photoluminescence (PL) after exfoliation to a few layer nanosheets (NSs) and the exciton binding energies have been determined from PL emission data in association with 2D hydrogenic Bohr-exciton model. The specific capacitances (Csp) of the electrode prepared with MoS2 NSs have been measured by electrochemical measurement and the highest value of Csp is 382 Fg-1 for 4L sample. The reported intensity driven change of Csp in the presence of light emitted from light emitting diodes of various colours is unprecedented. The demonstrated technique can be scaled up for large scale and easy synthesis of other 2D materials having applications in optoelectronics and energy devices.

  14. Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian

    2015-05-01

    A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.

  15. [The Lambert-Beer's law characterization of formal analysis in Terahertz spectrum quantitative testing].

    PubMed

    Su, Hai-Xia; Zhang, Zhao-Hui; Zhao, Xiao-Yan; Li, Zhi; Yan, Fang; Zhang, Han

    2013-12-01

    The present paper discusses the Lambert-Beer' s law application in the terahertz spectrum, studies the single amino acid tablet sample (glutamine) and two kinds of amino acids mixture tablet (threonine and cystine) under the condition of different concentrations. Absorbance and absorption coefficient was analyzed in the description of the terahertz optical properties of matter. By comparing absorption coefficient and absorbance value of the single component in the vicinity of 1. 72 THz, we verified the material under two kinds of absorption characterization of quantity of THz wave absorption along with the change in the concentration. Using the index of goodness of fit R , it studied the stand or fall of linear relationship between the terahertz absorption quantity of material and concentration under two kinds of representation. This paper analyzes the two components mixture under two kinds of absorption characterization of quantity of terahertz absorption in 0. 3-2. 6 THz. Using the similarity co- efficient and the estimate concentration error as evaluation index, it has been clear that the absorbance of additivity instead of the absorption coefficient should be used during the terahertz spectrum quantitative test, and the Lambert-Beer's law application in the terahertz wave band was further clarified.

  16. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  17. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  18. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  19. Electron precipitation response to geomagnetic pulsations: Riometer revelation

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Kavanagh, Andrew

    Electron precipitation modulations by geomagnetic pulsation have been observed in cosmic noise absorption (CNA) as early as 1965 by widebeam riometers (Barcus and Rosenberg, 1965). The first observation of pulsation with high m-number was reported by Kikuchi et al.(1988) em-ploying a scanning narrow-beam riometer to investigate the spatial structure in one dimension with a high resolution. However, the advances in high spatial resolution imaging riometers has provided the ability to observe pulsating cosmic noise absorption with azimuthal wave numbers as high as 380 as well as providing the capability of mapping their structures. These waves are commonly observed during the morning and early afternoon and exhibit eastward propagation. In this presentation a complete generating mechanism for these high m-number waves is dis-cussed as a five step process, beginning with the solar wind as a source for the excitation of dayside magnetospheric cavity modes, mode conversion, energisation of drift-bounce protons by Landau damping, followed by inverse Landau damping as a driving mechanism for the high m number secondary waves that ultimately modulate the electron precipitation. This modulation is observed as pulsations in cosmic noise absorption.

  20. Molecular dynamics simulations of acoustic absorption by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Zander, A. C.; Huang, D. M.; Howard, C. Q.; Cazzolato, B. S.

    2018-06-01

    Acoustic absorption by a carbon nanotube (CNT) was studied using molecular dynamics (MD) simulations in a molecular domain containing a monatomic gas driven by a time-varying periodic force to simulate acoustic wave propagation. Attenuation of the sound wave and the characteristics of the sound field due to interactions with the CNT were studied by evaluating the behavior of various acoustic parameters and comparing the behavior with that of the domain without the CNT present. A standing wave model was developed for the CNT-containing system to predict sound attenuation by the CNT and the results were verified against estimates of attenuation using the thermodynamic concept of exergy. This study demonstrates acoustic absorption effects of a CNT in a thermostatted MD simulation, quantifies the acoustic losses induced by the CNT, and illustrates their effects on the CNT. Overall, a platform was developed for MD simulations that can model acoustic damping induced by nanostructured materials such as CNTs, which can be used for further understanding of nanoscale acoustic loss mechanisms associated with molecular interactions between acoustic waves and nanomaterials.

  1. Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions.

    PubMed

    Chatterjee, I; Hagmann, M J; Gandhi, O P

    1980-01-01

    The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.

  2. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    PubMed

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  3. Improvement of depth resolution on photoacoustic imaging using multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Fujiwara, Katsuji; Takamatsu, Tetsuro

    2007-07-01

    Commercial imaging systems, such as computed tomography and magnetic resonance imaging, are frequently used powerful tools for observing structures deep within the human body. However, they cannot precisely visualized several-tens micrometer-sized structures for lack of spatial resolution. In this presentation, we propose photoacoustic imaging using multiphoton absorption technique to generate ultrasonic waves as a means of improving depth resolution. Since the multiphoton absorption occurs at only the focus point and the employed infrared pulses deeply penetrate living tissues, it enables us to extract characteristic features of structures embedded in the living tissue. When nanosecond pulses from a 1064-nm Nd:YAG laser were focused on Rhodamine B/chloroform solution (absorption peak: 540 nm), the peak intensity of the generated photoacoustic signal was proportional to the square of the input pulse energy. This result shows that the photoacoustic signals can be induced by the two-photon absorption of infrared nanosecond pulse laser and also can be detected by a commercial low-frequency MHz transducer. Furthermore, in order to evaluate the depth resolution of multiphoton-photoacoustic imaging, we investigated the dependence of photoacoustic signal on depth position using a 1-mm-thick phantom in a water bath. We found that the depth resolution of two-photon photoacoustic imaging (1064 nm) is greater than that of one-photon photoacoustic imaging (532 nm). We conclude that evolving multiphoton-photoacoustic imaging technology renders feasible the investigation of biomedical phenomena at the deep layer in living tissue.

  4. Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A=Pb, Sn)

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Mahmood, Q.; Rashid, Muhammad; Ul Haq, Bakhtiar; Laref, A.; Ahmad, S. A.

    2018-07-01

    The physical behavior of perovskites ATiO3 (A=Pb, Sn) has been explored by using density functional theory based full-potential linearized-augmented-plane-wave plus local-orbital (FP-LAPW+lo) method. The lattice parameters calculated from the optimized structures by using Murnaghan equation of state and Chapin's method have been found in good agreement with the available literature that ensures the reliability of the adopted methodology. Moreover, the optoelectronic and thermoelectric properties have been elaborated by using modified Becke-Johnson exchange potential. The optical behavior has been explored in terms the dielectric constants, refractive indices, absorption spectra and optical loss factors. The absorption spectra of these materials reveal a large absorption in the visible and low ultraviolet part of incident light. The thermoelectric properties of ATiO3 are explained in terms of electrical conductivities, thermal conductivities, power factors, and the specific heat capacities. The ATiO3family of pervoskites has been found to exhibit the bandgaps falling in the visible region of solar spectrum and show high values of thermal efficiency that make them potential multifunctional candidates for optoelectronic and energy harvesting applications.

  5. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  6. Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Hannemann, Klaus; Kuhn, Markus

    2014-06-01

    Preceding studies in the high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR) revealed that carbon fibre reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities leading to a delay of boundary layer transition onset. To assess the ultrasonic absorption properties of the material, a test rig was set up to measure the reflection coefficient at ambient pressures ranging from 0.1 × 105 to 1 × 105 Pa. For the first time, broadband ultrasonic sound transducers with resonance frequencies of up to 370 kHz were applied to directly cover the frequency range of interest with respect to the second-mode instabilities observed in previous experiments. The reflection of ultrasonic waves from three flat plate test samples with a porous layer thickness between 5 and 30 mm was investigated and compared to an ideally reflecting surface. C/C was found to absorb up to 19 % of the acoustic power transmitted towards the material. The absorption characteristics were investigated theoretically by means of the quasi-homogeneous absorber theory. The experimental results were found to be in good agreement with the theory.

  7. Millimeter-wave spectroscopy of the SiCl+ ion

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuki; Masuda, Satoshi; Harada, Kensuke; Tanaka, Keiichi

    2016-05-01

    The millimeter-wave spectrum of the SiCl+ ion in the ground and first excited vibrational states was observed for the two isotopic (35Cl and 37Cl) species. The ion was generated in a free-space absorption cell by a hollow cathode discharge of SiCl4 diluted with He and discriminated from neutral species by the magnetic field effect on the absorption lines. The observed millimeter-wave spectrum was combined with a previously reported diode laser spectrum in an analysis to determine mass-independent Dunham coefficients as well as the mass scaling parameters. The equilibrium bond length of SiCl+ determined is re = 1.943 978(2) Å.

  8. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  9. CW and Q-switched GGG/Er:Pr:GGG/GGG composite crystal laser at 2.7 µm

    NASA Astrophysics Data System (ADS)

    You, Z. Y.; Wang, Y.; Sun, Y. J.; Xu, J. L.; Zhu, Z. J.; Li, J. F.; Wang, H. Y.; Tu, C. Y.

    2017-04-01

    We report the continuous-wave (CW) and passively Q-switched laser operations of a GGG/Er:Pr:GGG/GGG composite crystal at about 2.7 µm. Owing to the alleviation of the thermal lensing effect, the CW laser with a maximum output power of 463 mW was obtained with a slope efficiency of 15.5%. Based on the broadband saturable absorption property, a graphene saturable absorber (SA) mirror was fabricated and employed for realizing the Q-switched mid-infrared laser. Under an absorbed pump power of 2.47 W, an average output power of 186 mW was generated with a slope efficiency of 12.3%. The pulse width and the repetition rate of the laser were 360 ns and 120.5 kHz, respectively. These results indicate that the Er:Pr:GGG crystal, with the relatively lower upper-level lifetime, shows great promise for generating a short pulsed 2.7 µm mid-infrared laser using the graphene SA.

  10. Compact CH{sub 4} sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lei, E-mail: donglei@sxu.edu.cn; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006; Li, Chunguang

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH{sub 4} sensor with a small footprint (32 × 20 × 17 cm{sup 3}) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH{sub 4} concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for amore » 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH{sub 4} sensor system.« less

  11. Application of fluorescent dyes for some problems of bioelectromagnetics

    NASA Astrophysics Data System (ADS)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  12. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGES

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; ...

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  13. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates

    DTIC Science & Technology

    2015-01-01

    analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()

  14. Radiative amplification of sound waves in the winds of O and B stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  15. Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited].

    PubMed

    Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan

    2017-11-01

    The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.

  16. The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER

    NASA Astrophysics Data System (ADS)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.

    2018-01-01

    We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2-4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.

  17. Analysis of the atmospheric upward radiation in low latitude area

    NASA Astrophysics Data System (ADS)

    Li, Haiying; Wu, Zhensen; Lin, Leke; Lu, Changsheng

    2016-10-01

    Remote sensing using THz wave has irreplaceable advantage comparing to the microwave and the infrared waves, and study on the THz remote sensing become more and more popular in recent years. The major applications of the remote sensing in THz wavelengths are the retrieval of the atmospheric parameters and the microphysical information of the ice cloud. The remote sensing of the atmosphere is based on the radiation of THz wave along the earth-space path of which the most significant part is the upward radiation of the atmosphere. The upward radiation of the atmosphere in sunny day in the low latitude area is computed and analyzed in this paper. The absorption of THz wave by the atmosphere is calculated using the formulations illustrated in the Recommendation ITU-R P.676 to save machine hour, the frequency range is then restricted below 1THz. The frequencies used for the retrieval of atmospheric parameters such as temperature and water content are usually a few hundred GHz, at the lower end of THz wavelengths, so this frequency range is sufficient. The radiation contribution of every atmospheric layer for typical frequencies such as absorption window frequencies and peak frequencies are analyzed. Results show that at frequencies which absorption is severe, information about lower atmosphere cannot reach the receiver onboard a satellite or other high platforms due to the strong absorption along the path.

  18. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  19. Numerical analysis for infant's unintentional exposure to 3.5 GHz plane wave radiofrequency electromagnetic fields by field test of fifth generation wireless technologies

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning

    2017-09-01

    In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ E field strength into consideration, realistic WBASAR was far below the basic restriction. Age-dependent dielectric properties could significantly change the tissue specified specific absorption rate (TSSAR) of internal organs. However, the variation was not significant because the absolute values were marginal. Among the factors that influenced TSSAR variation, change in dielectric properties demonstrated a close correlation. In general, at 3.5 GHz, the infant did not absorb more power than the case of EMF exposure to third generation (3G) and fourth generation (4G) signals. The work was helpful for network operators and device manufactures to estimate the potential exposure risk during the field test, especially for the infant.

  20. SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soler, R.; Oliver, R.; Ballester, J. L., E-mail: roberto.soler@wis.kuleuven.be

    Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations.more » For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.« less

  1. Plasma interface of the EC waves to the LHD peripheral region

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Igami, H.; Tsujimura, T. I.; Shimozuma, T.; Takahashi, H.; Yoshimura, Y.; Nishiura, M.; Makino, R.; Mutoh, T.

    2015-12-01

    In order to realize an efficient ECRH and also to reduce stray radiation due to non-absorbed power during ECRH, it is necessary to excite a wave that is absorbed well near the electron cyclotron resonance. In the normal fusion magnetic field confinement machine and in the electron cyclotron frequency range, WKB approximation is valid almost all the way from antenna to the absorption region due to the large scale-length of the plasma density λn and the magnetic shear τs as compared with the local wavelength λ0. In these situation, it is well known that the O/X mode propagates as O/X mode if τs ≫ λ0. Even in these situation, if τs and λn are comparable and |1/λO-1/λX|τs ≪ 1, there still remains the question from where "X" - or "O" - mode become "X" - or "O" mode at the peripheral region. In order to simulate this situation, one dimensional full wave calculation code which solve electromagnetic wave equation under arbitrary magnetic field configuration and arbitrary density profile for a given polarization state are developed and incorporated in the upgraded ray tracing code LHDGauss. It is tried to find the density and shear scale lengths region where the mode mixing effect is not negligible.

  2. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    PubMed

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  3. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  4. An optically transparent metasurface for broadband microwave antireflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhang, Cheng; Cheng, Qiang; Yang, Jin; Cui, Tie Jun

    2018-02-01

    Metamaterial absorbers and diffusers provide powerful routes to decrease the backward reflection significantly with advantages of ultrathin profile and customized bandwidth. Simultaneous control of the absorption and scattering behaviors of the metamaterials which helps to improve the suppression capabilities of backward reflection, however, still remains a challenge. Aiming at this goal, we propose a metasurface constituted by two kinds of elements in a pseudorandom arrangement. By the use of indium tin oxide with moderate sheet resistance in the meta-atoms, enhanced absorption of energy can be achieved in a broad spectrum when interacted with illuminated waves. In the meanwhile, electromagnetic diffusion will be invoked from the destructive interference among the elements, giving rise to significant reduction of specular reflection as a result. Excellent agreements are observed between simulation and experiment with pronounced reflection suppression from 6.8 GHz to 19.4 GHz. In addition, the optical transparence of the patterns and substrates makes the proposed metasurface a promising candidate for future applications like photovoltaic solar cells and electromagnetic shielding glasses.

  5. Ultralow-threshold laser and blue shift cooperative luminescence in a Yb{sup 3+} doped silica microsphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yantang, E-mail: g@fzu.edu.cn; Huang, Yu; Zhang, Peijin

    2014-02-15

    An experimental investigation on ultralow threshold laser and blue shift cooperative luminescence (CL) in a Yb{sup 3+} doped silica microsphere (YDSM) with continuous-wave 976 nm laser diode pumping is reported. The experimental results show that the YDSM emits laser oscillation with ultralow threshold of 2.62 μW, and the laser spectrum is modulated by the microsphere morphology characteristics. In addition, blue emission of YDSM is also observed with the increase of pump power, which is supposed to be generated by CL of excited Yb ion-pairs with the absorption of 976 nm photons and Si-O vibration phonons, and the process is explainedmore » with an energy level diagram. This property of the blue shift CL with phonons absorption in the Yb{sup 3+}doped microcavity makes it attractive for the application of laser cooling based on anti-Stokes fluorescence emission, if the Yb{sup 3+}doped microcavity made from with low phonon energy host materials.« less

  6. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    PubMed

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  7. Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection

    NASA Astrophysics Data System (ADS)

    Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.

    2003-07-01

    The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.

  8. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.

    PubMed

    Wu, Kaimin; Huang, Yongjun; Wanghuang, Tenglong; Chen, Weijian; Wen, Guangjun

    2015-01-10

    In this paper, we numerically and theoretically discuss the novel absorption properties of a conventional metasurface-based terahertz (THz) electromagnetic (EM) absorber with different dielectric thicknesses. Two absorption modes are presented in the considered frequency band due to the increased dielectric thickness, and both modes can achieve near-unity absorptions when the dielectric layers reach additional nλ(d)/2 (n=1, 2) thicknesses, where λ(d) is the operating wavelength at the peak absorption in the dielectric slabs. The surface currents between the metasurface resonators and ground plane are not associated any longer, different from the conventional thin absorbers. Moreover, the EM wave energies are completely absorbed by the metasurface resonators and dielectric layer, and the main function of ground plane is to reflect the incident EM waves back to the resonators. The discussed novel absorption properties are analyzed and explained by classical EM theory and interference theory after numerical demonstrations. These findings can broaden the potential applications of the metasurface-based absorbers in the THz frequency range for different requirements.

  9. Sound decay in a rectangular room with impedance walls

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2012-09-01

    The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.

  10. Absorption dynamics and delay time in complex potentials

    NASA Astrophysics Data System (ADS)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  11. Spatial and temporal variations of wave energy in the nearshore waters of the central west coast of India

    NASA Astrophysics Data System (ADS)

    Amrutha, M. M.; Sanil Kumar, V.

    2016-12-01

    Assessment of wave power potential at different water depths and time is required for identifying a wave power plant location. This study examines the variation in wave power off the central west coast of India at water depths of 30, 9 and 5 m based on waverider buoy measured wave data. The study shows a significant reduction ( ˜ 10 to 27 %) in wave power at 9 m water depth compared to 30 m and the wave power available at 5 m water depth is 20 to 23 % less than that at 9 m. At 9 m depth, the seasonal mean value of the wave power varied from 1.6 kW m-1 in the post-monsoon period (ONDJ) to 15.2 kW m-1 in the Indian summer monsoon (JJAS) period. During the Indian summer monsoon period, the variation of wave power in a day is up to 32 kW m-1. At 9 m water depth, the mean annual wave power is 6 kW m-1 and interannual variations up to 19.3 % are observed during 2009-2014. High wave energy ( > 20 kW m-1) at the study area is essentially from the directional sector 245-270° and also 75 % of the total annual wave energy is from this narrow directional sector, which is advantageous while aligning the wave energy converter.

  12. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    PubMed

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  13. On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Lopatik, D.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J.

    2012-11-01

    Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm-1 (4.42-7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011-1014 molecules cm-3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10-5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10-19 and 10-22 cm molecule-1.

  14. N-body scattering. I. The algebraic structure of transition amplitude and integral equations (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pao, C.K.

    1975-05-01

    An assessment of wave energy as a source of electrical power in the United Kingdom is reported. British Hovercraft Corporation has conducted some tank tests for Wavepower Limited, studying various simple float systems. It aims to develop a wave-power device that is simple, cheap, made up of small mass- produced units, can be installed in sections, and can be easily maintained. A chain of floats, hinged together, with waves traveling down the chain, was investigated. Pumps on the hinges absorb power from the relative rotation of adjacent floats. A wave-power device could also serve as an effective breakwater. Direct generationmore » of electricity is a feasible application of wave power. The system is compared with a rocking boom concept. Wave energy could be used in conjunction with thermal stations to provide sufficient capacity when wave power is low. Wave power has a high availability when compared with wind power. (MCW)« less

  15. Using seismic coda waves to resolve intrinsic and scattering attenuation

    NASA Astrophysics Data System (ADS)

    Wang, W.; Shearer, P. M.

    2016-12-01

    Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Characterizing scattering and absorbing properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing problem in seismology. The wavetrain following the direct body wave phases is called the coda, which is caused by scattered energy. Many studies have analyzed the coda of local events to constrain crustal and upper-mantle scattering strength and intrinsic attenuation. Here we examine two popular attenuation inversion methods, the Multiple Lapse Time Window Method (MLTWM) and the Coda Qc Method. First, based on our previous work on California attenuation structure, we apply an efficient and accurate method, the Monte Carlo Approach, to synthesize seismic envelope functions. We use this code to generate a series of synthetic data based on several complex and realistic forward models. Although the MLTWM assumes a uniform whole space, we use the MLTWM to invert for both scattering and intrinsic attenuation from the synthetic data to test how accurately it can recover the attenuation models. Results for the coda Qc method depend on choices for the length and starting time of the coda-wave time window. Here we explore the relation between the inversion results for Qc, the windowing parameters, and the intrinsic and scattering Q structure of our synthetic model. These results should help assess the practicality and accuracy of the Multiple Lapse Time Window Method and Coda Qc Method when applied to realistic crustal velocity and attenuation models.

  16. On pulsating cosmic /radio/ noise absorption

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.

  17. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  18. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  19. Continuous opacity from Ne^-

    NASA Astrophysics Data System (ADS)

    John, T. L.

    1996-04-01

    Free-free absorption coefficients of the negative neon ion are calculated by the phase-shift approximation based on multiconfiguration Hartree-Fock continuum wave functions. These wave functions accurately account for electron-neon correlation and polarization, and yield scattering cross-sections in excellent agreement with the latest experimental values. The coefficients are expected to give the best current estimates of Ne^- continuous absorption. We find that Ne^- makes only a small contribution (less than 0.3 per cent) to stellar opacities, including hydrogen-deficient stars with enhanced Ne abundances.

  20. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    PubMed

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  1. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  2. Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep Babu; Dadrasnia, Ehsan; Sánchez, Miguel; Rodríguez, Sergio; González, Marta; Carpintero, Guillermo; Osiński, Marek; Lamela, Horacio

    2016-03-01

    During the last two decades, optoacoustic imaging has been developed as a novel biomedical imaging technique based on the generation of ultrasound waves by means of laser light. In this work, we investigate the optoacoustic response from graphene-based solutions by using a compact and cost-effective system based on an assembly of several 905-nm pulsed high-power diode lasers coupled to a bundle of 200-μm diameter- core optical fibers. The coupled light is conveyed into a lens system and focused on an absorber consisting of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and reduced graphene-oxide/gold-nanoparticle hybrid, respectively) diluted in ethanol and hosted in slightly scattering optical phantoms. The high absorption of these graphene-based solutions suggests their potential future use in optoacoustic applications as contrast agents.

  3. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  4. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  5. Pc-5 wave power in the plasmasphere and trough: CRRES observations

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Angelopoulos, V.; Takahashi, K.; Singer, H. J.; Anderson, R. R.

    2009-12-01

    The CRRES (Combined Release and Radiation Effects Satellite) mission provides an opportunity to study the distribution of MHD wave power in the inner magnetosphere both inside the high-density plasmasphere and in the low-density trough. We present a statistical survey of Pc-5 wave power using CRRES magnetometer and plasma wave data separated into plasmasphere and trough intervals. Using a database of plasmapause crossings, we examined differences in power spectral density between the plasmasphere and trough regions. We found significant differences between the plasmasphere and trough in the radial profiles of Pc-5 wave power. On average, wave power was higher in the trough, but the difference in power depended on magnetic local time. Our study shows that determining the plasmapause location is important for understanding and modeling the MHD wave environment in the Pc-5 frequency band.

  6. Sound absorption by subwavelength membrane structures: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Yong; Meng, Chong; Fu, Caixing; Mei, Jun; Yang, Zhiyu; Sheng, Ping

    2015-12-01

    Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

  7. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  8. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  9. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  10. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  11. Millimeter-wave spectra of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  12. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.

    PubMed

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-04

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  13. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties

    NASA Astrophysics Data System (ADS)

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-01

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  14. International Symposium on Wave and Tidal Energy, 2nd, St. John's College, Cambridge, England, September 23-25, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    Stephens, H. S.; Stapleton, C. A.

    Topics discussed include wave power device interactions, the mathematical modeling of tidal power, and wave power with air turbines. Particular attention is given to the hydrodynamic characteristics of the Bristol Cylinder, the Strangford Lough tidal energy project, and the Foilpropeller for wave power propulsion. Consideration is also given to a submerged oscillating water column device, models of wave energy transformation near a coast, and the environmental implications of tidal power.

  15. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  16. A method for analyzing absorbed power distribution in the hand and arm substructures when operating vibrating tools

    NASA Astrophysics Data System (ADS)

    Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2008-04-01

    In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.

  17. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running.

    PubMed

    Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian

    2012-10-01

    Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.

  18. CHANGES IN LOWER EXTREMITY MOVEMENT AND POWER ABSORPTION DURING FOREFOOT STRIKING AND BAREFOOT RUNNING

    PubMed Central

    Green, Douglas H.; Wurzinger, Brian

    2012-01-01

    Purpose/Background: Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. Methods: The study included 10 male and 10 female RFS runners who completed 3‐dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Results: Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. Conclusions: BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Clinical Relevance: Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee. PMID:23091785

  19. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  20. Singularities of Floquet scattering and tunneling

    NASA Astrophysics Data System (ADS)

    Landa, H.

    2018-04-01

    We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.

  1. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.

  2. Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack

    Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.

  3. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slopemore » of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.« less

  4. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    NASA Astrophysics Data System (ADS)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  5. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    PubMed

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  6. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten

    2015-11-01

    The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.

  7. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  8. The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1979-01-01

    The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.

  9. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  10. Neutron-powered precursors of kilonovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Bauswein, Andreas; Goriely, Stephane; Kasen, Daniel

    2015-01-01

    The merger of binary neutron stars (NSs) ejects a small quantity of neutron-rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ˜10-4 M⊙) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here, we show that the β-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a time-scale of ˜ few hours following merger at U-band magnitude ˜22 (for an assumed distance of 200 Mpc). The high luminosity and blue colours of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast-moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground-based telescopes.

  11. Selective wave-transmitting electromagnetic absorber through composite metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  12. Using AORSA to simulate helicon waves in DIII-D

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2015-12-01

    Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.

  13. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  14. Modeling multimode feed-horn coupled bolometers for millimeter-wave and terahertz astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio

    2016-07-01

    Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.

  15. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  16. Absorption of sound by tree bark

    Treesearch

    G. Reethof; L. D. Frank; O. H. McDaniel

    1976-01-01

    Laboratory tests were conducted with a standing wave tube to measure the acoustic absorption of normally incident sound by the bark of six species of trees. Twelve bark samples, 10 cm in diameter, were tested. Sound of seven frequencies between 400 and 1600 Hz was used in the measurements. Absorption was generally about 5 percent; it exceeded 10 percent for only three...

  17. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Montes-Solís, María; Arregui, Iñigo

    2017-09-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  18. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternativemore » mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.« less

  19. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    PubMed Central

    Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.

    2013-01-01

    Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331

  20. Influence of hole shape on sound absorption of underwater anechoic layers

    NASA Astrophysics Data System (ADS)

    Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian

    2018-07-01

    A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.

  1. New acoustical technology of sound absorption based on reverse horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  2. Effect of electrolytes and temperature on dications and radical cations of carotenoids: Electrochemical, optical absorption, and high-performance liquid chromatography studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Kispert, L.D.

    1999-11-25

    The effect of supporting electrolytes and temperature on the behavior of dications and radical cations of carotenoids is studied. Cyclic voltammograms (CVs) of canthaxanthin (I) at 23 and {minus}25 C show that Car{sup sm{underscore}bullet+} of I has similar stability during the time of the CV scan, when using tetrabutylammonium perchlorate (TBAPC), tetrabutylammonium tetrafluoroborate (TBATFB), or tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte. However, the stability of Car{sup 2+} decreases when using TBAPC or TBATFB; {beta}-carotene (II) shows similar behavior. The CV of I at {minus}25 C shows a strong cathodic wave (wave 6) near {minus}0.15 V (vs Ag) with an intensitymore » about half that of the neutral oxidation wave when TBAPC or TBATFB is the supporting electrolyte. When TBAHFP is used, wave 6 (ca. {minus}0.05 V vs Ag) is ca. 8 times weaker than when TBAPC or TBATFB is used. This wave results from the reduction of a species that may be a decay product of Car{sup 2+} of I. Results show that these electrolytes commonly used in electrochemical studies may affect the studied systems to different extents. In simultaneous bulk electrolysis (BE) and optical absorption spectroscopic measurements, the absorption band of Car{sup 2+} of I in the presence of 0.1 M TBAHFP can be observed by lowering the BE temperature to {minus}20 C. In the presence of 0.1 M TBAPC or TBATFB, this band is not observed, even at {minus}50 C. Isomerization of neutral I (as shown by HPLC and its blue absorption band shift) is observed only when the Car{sup 2+} absorption band is absent during BE. This observation, along with an increase of the neutral absorption band after stopping BE, suggests that the equilibrium Car + Car{sup 2+} {r{underscore}equilibrium} 2Car{sup {sm{underscore}bullet}+} is shifted to the left because Car{sup 2+} decays more quickly than Car{sup {sm{underscore}bullet}+} in the presence of electrolyte and this is a major path for formation of cis neutral species from cis Car{sup {sm{underscore}bullet}+}. The optical absorption of Car{sup 2+} of I at 18 C in the presence of 0.1 M TBAHFP is obtained, which suggests that Car{sup 2+} of I is not as unstable at room temperature in the presence of TBAHFP as was thought before.« less

  3. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    NASA Astrophysics Data System (ADS)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  4. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  5. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures.

    PubMed

    Gao, Weilu; Shu, Jie; Reichel, Kimberly; Nickel, Daniel V; He, Xiaowei; Shi, Gang; Vajtai, Robert; Ajayan, Pulickel M; Kono, Junichiro; Mittleman, Daniel M; Xu, Qianfan

    2014-03-12

    Gate-controllable transmission of terahertz (THz) radiation makes graphene a promising material for making high-speed THz wave modulators. However, to date, graphene-based THz modulators have exhibited only small on/off ratios due to small THz absorption in single-layer graphene. Here we demonstrate a ∼50% amplitude modulation of THz waves with gated single-layer graphene by the use of extraordinary transmission through metallic ring apertures placed right above the graphene layer. The extraordinary transmission induced ∼7 times near-filed enhancement of THz absorption in graphene. These results promise complementary metal-oxide-semiconductor compatible THz modulators with tailored operation frequencies, large on/off ratios, and high speeds, ideal for applications in THz communications, imaging, and sensing.

  6. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  7. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  8. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  9. Investigation into the absorptivity change in metals with increased laser power

    NASA Astrophysics Data System (ADS)

    Blidegn, M. Sc. K.; Olsen, Flemming O.

    1997-04-01

    At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.

  10. The 5-day wave and ionospheric absorption

    NASA Technical Reports Server (NTRS)

    Fraser, G. J.

    1977-01-01

    In a previous paper, Fraser and Thorpe (1976) indicated that the average partial-coherence spectra for three summers and the average for three winters at a southern mid-latitude site had a dominant peak at a period of about six days. This peak in coherence between absorption and temperature is anomalous, and the present paper explains how some of the unexpected coherence features can be explained by the five-day wave described by Geisler and Dickinson (1976) and whose existence in the upper stratosphere was discussed by Rodgers (1976).

  11. Peculiarities of spreading of acoustic waves over a shelf with decreasing depth

    NASA Astrophysics Data System (ADS)

    Dolgikh, G. I.; Budrin, S. S.; Ovcharenko, V. V.; Plotnikov, A. A.

    2016-09-01

    We analyze experimental data collected in Vityaz Bay of the Sea of Japan during study of the peculiarities of spreading of hydroacoustic waves over a shelf with decreasing depth. We found that the waves propagate over a shelf with depths greater than half of the hydroacoustic wave according to the law of cylindrical divergence with least losses of the wave energy. If the depths are shallower than half of the hydroacoustic wave, they spread along the water-bottom boundary as Rayleigh waves of decaying and undamped types with significant absorption of the wave energy by the bottom.

  12. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  13. Airborne Remote Earth Sensing (ARES) Program: an operational airborne MWIR imaging spectrometer and applications

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin D.; Diestel, Michael J.

    1996-11-01

    Since 1993, the Airborne Remote Earth Sensing (ARES) Program has collected a wide variety of mid-wave infrared hyperspectral data on an interesting assortment of atmospheric, geologic, urban and chemical emission/absorption features. Flown in NASA's high altitude WB-57F aircraft, the ARES sensor is a 75 channel cryo-cooled prism spectrometer covering the 2 - 6 micrometers spectral region, and is capable of up or down-looking measurements over a wide range of collection geometries. Sensor characteristics, pointing capabilities, and overall performance are discussed. Highlights from some of the recent data collections, such as the 1993 and 95 thermal mapping of the active lava flow areas from the Kilauea volcano; the 1993 collection of the direct solar specular reflection off high altitude (ice) cloud layers over West Texas; upper atmospheric H2O vapor sounding using the 6 micrometers solar absorption spectra; Sulfur Dioxide detection from a coal burning power plant in Page, AZ (SO2 in emission) and from the Pu'u O'o vent of the Kilauea volcano (SO2 in absorption); and MWIR imagery from various terrestrial and urban background scenes, including West Los Angeles, and the Capitol area of Washington, D.C. Supporting spectral analysis and radiometric modeling are presented.

  14. Doppler-free satellites of resonances of electromagnetically induced transparency and absorption on the D 2 lines of alkali metals

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Staedter, D.; Akulshin, A. M.

    2006-11-01

    The peculiarities of intra-Doppler structures that are observed in the atomic absorption spectrum of alkali metals with the help of two independent lasers have been studied. These structures accompany ultranarrow coherent resonances of electromagnetically induced transparency and absorption. With the D 2 line of rubidium taken as an example, it is shown that, in the scheme of unidirectional waves, the maximum number of satellite resonances caused by optical pumping selective with respect to the atomic velocity is equal to seven, while only six resonances are observed in the traditional scheme of saturated absorption with counterpropagating waves of the same frequency. The spectral position of the resonances and their polarity depend on the frequency of the saturating radiation, while their number and relative amplitude depend also on the experimental geometry. These features are of general character and should show themselves in the absorption spectrum on the D 2 lines of all alkali metals. An explanation of these features is given. The calculated spectral separations between the resonances are compared to the experimental ones, and their possible application is discussed.

  15. Light Source Effects on Aerosol Photoacoustic Spectroscopy Measurements

    PubMed Central

    Radney, James G.; Zangmeister, Christopher D.

    2016-01-01

    Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section. PMID:28066027

  16. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  17. Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.

    PubMed

    Kim, Seulong; Kim, Kihong

    2016-01-25

    It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.

  18. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  19. Special Features of Light Absorption by the Dimer of Bilayer Microparticles

    NASA Astrophysics Data System (ADS)

    Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.

    2018-05-01

    Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.

  20. Enhanced absorption of TM waves in conductive nanoparticles structure

    NASA Astrophysics Data System (ADS)

    Mousa, H. M.; Shabat, M. M.; Ouda, A. K.; Schaadt, D. M.

    2018-05-01

    This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50∘. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.

  1. Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.

    Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.

  2. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  3. Multiheterodyne spectroscopy using interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Sterczewski, Lukasz A.; Westberg, Jonas; Patrick, Charles Link; Kim, Chul Soo; Kim, Mijin; Canedy, Chadwick L.; Bewley, William W.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Wysocki, Gerard

    2018-01-01

    While midinfrared radiation can be used to identify and quantify numerous chemical species, contemporary broadband midinfrared spectroscopic systems are often hindered by large footprints, moving parts, and high power consumption. In this work, we demonstrate multiheterodyne spectroscopy (MHS) using interband cascade lasers, which combines broadband spectral coverage with high spectral resolution and energy-efficient operation. The lasers generate up to 30 mW of continuous-wave optical power while consuming <0.5 W of electrical power. A computational phase and timing correction algorithm is used to obtain kHz linewidths of the multiheterodyne beat notes and up to 30 dB improvement in signal-to-noise ratio. The versatility of the multiheterodyne technique is demonstrated by performing both rapidly swept absorption and dispersion spectroscopic assessments of low-pressure ethylene (C2H4) acquired by extracting a single beat note from the multiheterodyne signal, as well as broadband MHS of methane (CH4) acquired with all available beat notes with microsecond temporal resolution and an instantaneous optical bandwidth of ˜240 GHz. The technology shows excellent potential for portable and high-resolution solid-state spectroscopic chemical sensors operating in the midinfrared.

  4. Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.

    PubMed

    Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan

    2015-06-20

    Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.

  5. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  6. Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Kazakov, Ye O.; Koch, R.; Ragona, R.; Bobkov, V.; Crombé, K.; Durodié, F.; Goniche, M.; Krivska, A.; Lerche, E.; Louche, F.; Lyssoivan, A.; Vervier, M.; Van Eester, D.; Van Schoor, M.; Wauters, T.; Wright, J.; Wukitch, S.

    2017-05-01

    Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.

  7. High temperature heat source generation with a very low power level quasi-cw(continuous wave) semiconductor laser for medical use

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Fujioka, Tomoo; Yamaguchi, Shigeru

    2013-03-01

    In most of medical and dental laser treatments, high power pulsed laser have been used as desirable light sources employing with an optical fiber delivery system. The treatment process involves high temperature thermal effect associated with direct laser absorption of the materials such as hard and soft tissues, tooth, bones and so on. Such treatments sometimes face technical difficulties suffering from their optical absorption properties. We investigate a new technology to create high temperature heat source on the tip surface of the glass fiber proposed for the medical surgery applications. Using a low power level (4 6W) semiconductor laser at a wavelength of 980nm, a laser coupled fiber tip was pre-processed to contain certain amount of TiO2 powder with a depth of 400μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus the laser treatment can be performed without suffering from any optical characteristic of the material. Semiconductor laser was operated quasi-CW mode pulse time duration of 180ms and more than 95% of the laser energy was converted to thermal energy in the fiber tip. by Based on twocolor thermometry by using a gated optical multichannel analyzer with 0.25m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be approximately 3000K. Demonstration of laser processing employing this system was successfully carried out drilling through holes in ceramic materials simulating bone surgery.

  8. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  9. RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.

    PubMed

    Bushberg, Jerrold T; Tupin, J Paul

    2017-05-01

    The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.

  10. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  11. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    PubMed

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  12. EC assisted start-up experiments reproduction in FTU and AUG for simulations of the ITER case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granucci, G.; Ricci, D.; Farina, D.

    The breakdown and plasma start-up in ITER are well known issues studied in the last few years in many tokamaks with the aid of calculation based on simplified modeling. The thickness of ITER metallic wall and the voltage limits of the Central Solenoid Power Supply strongly limit the maximum toroidal electric field achievable (0.3 V/m), well below the level used in the present generation of tokamaks. In order to have a safe and robust breakdown, the use of Electron Cyclotron Power to assist plasma formation and current rump up has been foreseen. This has raised attention on plasma formation phasemore » in presence of EC wave, especially in order to predict the required power for a robust breakdown in ITER. Few detailed theory studies have been performed up to nowadays, due to the complexity of the problems. A simplified approach, extended from that proposed in ref[1] has been developed including a impurity multispecies distribution and an EC wave propagation and absorption based on GRAY code. This integrated model (BK0D) has been benchmarked on ohmic and EC assisted experiments on FTU and AUG, finding the key aspects for a good reproduction of data. On the basis of this, the simulation has been devoted to understand the best configuration for ITER case. The dependency of impurity distribution content and neutral gas pressure limits has been considered. As results of the analysis a reasonable amount of power (1 - 2 MW) seems to be enough to extend in a significant way the breakdown and current start up capability of ITER. The work reports the FTU data reproduction and the ITER case simulations.« less

  13. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

    NASA Astrophysics Data System (ADS)

    Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza

    2015-12-01

    One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

  14. Moderately nonlinear ultrasound propagation in blood-mimicking fluid.

    PubMed

    Kharin, Nikolay A; Vince, D Geoffrey

    2004-04-01

    In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.

  15. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    PubMed Central

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  16. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    PubMed

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  17. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    PubMed

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  18. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  19. Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vurgaftman, I.; Belenky, G., E-mail: gregory.belenky@stonybrook.edu; Lin, Y.

    The absorption spectra for the antimonide-based type-II superlattices (SLs) for detection in the long-wave infrared (LWIR) are calculated and compared to the measured data for SLs and bulk materials with the same energy gap (HgCdTe and InAsSb). We include the results for the metamorphic InAsSb{sub x}/InAsSb{sub y} SLs with small periods as well as the more conventional strain-balanced InAs/Ga(In)Sb and InAs/InAsSb SLs on GaSb substrates. The absorption strength in small-period metamorphic SLs is similar to the bulk materials, while the SLs with an average lattice constant matched to GaSb have significantly lower absorption. This is because the electron-hole overlap inmore » the strain-balanced type-II LWIR SLs occurs primarily in the hole well, which constitutes a relatively small fraction of the total thickness.« less

  20. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner

    NASA Astrophysics Data System (ADS)

    Beck, Benjamin S.

    2014-03-01

    To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.

Top