Sample records for wave radar system

  1. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded

  2. Millimeter Wave Radar Applications to Weapons Systems

    DTIC Science & Technology

    1976-06-01

    meter wave region compared with the high attenuation in the optical region. It is this unique characteristic of millimeter waves to penetrate fog...miiliaeter wave radars in graund-to-- air , ground-to-ground, and air -to-ground weapons systems aye presented. The advantages and limitation~s¶ of operating...MILLIMETER WAVE RADAR CHARACTERISTICS ..... ............ .. 27 A, General ................ ......................... ... 27 B. Ground-to- Air Millimeter

  3. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  4. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7). [3]Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., (2004). Inversion of Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 1291-1300. [4] Fucile, F., Ludeno, G., Serafino, F.,Bulian, G., Soldovieri, F., Lugni, C. "Some challenges in recovering wave features from a wave radar system". Paper submitted to the International Ocean and Polar Engineering Conference, ISOPE, Rhodes 2016

  5. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  6. Digital Beamforming Interferometry

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F. (Inventor)

    2016-01-01

    Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.

  7. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and direction) were obtained during 2013 and 2014 from one 13.5 MHz CODAR SeaSonde radar station from Hydrographic Institute, located in Espichel Cape (Portugal). These data were compared with those obtained from one wave buoy Datawell Directional Waverider, also from Hydrographic Institute, moored inbound Sines (Portugal) at 100 m depth. For this first approach, was assumed that all the waves are in a deep water situation. Results showed that during high energetic periods, the HF radar system revealed a good correlation with wave buoy data following the bulk wave parameters gradient variations.

  8. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    NASA Astrophysics Data System (ADS)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  9. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  10. Millimeter wave radar for automobile crash avoidance systems

    NASA Astrophysics Data System (ADS)

    Huguenin, G. Richard

    1994-08-01

    Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.

  11. A study of rain effects on radar scattering from water waves

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  12. Millimeter-wave micro-Doppler measurements of small UAVs

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Robertson, Duncan A.

    2017-05-01

    This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.

  13. HF Radar Sea-echo from Shallow Water.

    PubMed

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-08-06

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  14. HF Radar Sea-echo from Shallow Water

    PubMed Central

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-01-01

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776

  15. Optical-fiber-connected 300-GHz FM-CW radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2017-05-01

    300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.

  16. A model for gravity-wave spectra observed by Doppler sounding systems

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.

  17. Millimeter wave scattering characteristics and radar cross section measurements of common roadway objects

    NASA Astrophysics Data System (ADS)

    Zoratti, Paul K.; Gilbert, R. Kent; Majewski, Ronald; Ference, Jack

    1995-12-01

    Development of automotive collision warning systems has progressed rapidly over the past several years. A key enabling technology for these systems is millimeter-wave radar. This paper addresses a very critical millimeter-wave radar sensing issue for automotive radar, namely the scattering characteristics of common roadway objects such as vehicles, roadsigns, and bridge overpass structures. The data presented in this paper were collected on ERIM's Fine Resolution Radar Imaging Rotary Platform Facility and processed with ERIM's image processing tools. The value of this approach is that it provides system developers with a 2D radar image from which information about individual point scatterers `within a single target' can be extracted. This information on scattering characteristics will be utilized to refine threat assessment processing algorithms and automotive radar hardware configurations. (1) By evaluating the scattering characteristics identified in the radar image, radar signatures as a function of aspect angle for common roadway objects can be established. These signatures will aid in the refinement of threat assessment processing algorithms. (2) Utilizing ERIM's image manipulation tools, total RCS and RCS as a function of range and azimuth can be extracted from the radar image data. This RCS information will be essential in defining the operational envelope (e.g. dynamic range) within which any radar sensor hardware must be designed.

  18. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    NASA Astrophysics Data System (ADS)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that acceptable quality were assured for most weather conditions on a diurnal basis using a modest tower height. A new coherent microwave radar has recently been developed by ISR and preliminary testing was conducted in the spring of 2007. The radar is based on the Quadrapus four-channel transceiver card, mixed up to microwave frequencies for pulse transmission and back down to base-band for reception. We use frequency-modulated pulse compression methods to obtain 3-m spatial resolution. A standard marine radar pedestal is used to house the microwave components, and rotating radar PPI images similar to marine radar images are obtained. Many of the methods used for the marine radar system have been transferred to the coherent imaging radar. New processing methods applied to the coherent data allow summing of radial velocity images to map mean currents in the near shore zone, such as rip currents. A pair of such radars operating with a few hundred meter separation can be used to map vector currents continuously in the near shore zone and in harbors on a timely basis. Results of preliminary testing of the system will be presented.

  19. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.

    PubMed

    Occhipinti, Giovanni; Aden-Antoniow, Florent; Bablet, Aurélien; Molinie, Jean-Philippe; Farges, Thomas

    2018-01-24

    Surface waves emitted after large earthquakes are known to induce atmospheric infrasonic waves detectable at ionospheric heights using a variety of techniques, such as high frequency (HF) Doppler, global positioning system (GPS), and recently over-the-horizon (OTH) radar. The HF Doppler and OTH radar are particularly sensitive to the ionospheric signature of Rayleigh waves and are used here to show ionospheric perturbations consistent with the propagation of Rayleigh waves related to 28 and 10 events, with a magnitude larger than 6.2, detected by HF Doppler and OTH radar respectively. A transfer function is introduced to convert the ionospheric measurement into the correspondent ground displacement in order to compare it with classic seismometers. The ground vertical displacement, measured at the ground by seismometers, and measured at the ionospheric altitude by HF Doppler and OTH radar, is used here to compute surface wave magnitude. The ionospheric surface wave magnitude (M s iono ) proposed here introduces a new way to characterize earthquakes observing the signature of surface Rayleigh waves in the ionosphere. This work proves that ionospheric observations are useful seismological data to better cover the Earth and to explore the seismology of the Solar system bodies observing the ionosphere of other planets.

  20. Monitoring internal organ motion with continuous wave radar in CT.

    PubMed

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-09-01

    To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT. The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements. Concerning the measurements of the test persons, there is a very good correlation (ρ = 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements. A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  1. National Radar Conference, Los Angeles, CA, March 12, 13, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    The topics discussed include radar systems, radar subsystems, and radar signal processing. Papers are presented on millimeter wave radar for proximity fuzing of smart munitions, a solid state low pulse power ground surveillance radar, and the Radarsat prototype synthetic-aperture radar signal processor. Consideration is also given to automatic track quality assessment in ADT radar systems instrumentation of RCS measurements of modulation spectra of aircraft blades.

  2. See-through Detection and 3D Reconstruction Using Terahertz Leaky-Wave Radar Based on Sparse Signal Processing

    NASA Astrophysics Data System (ADS)

    Murata, Koji; Murano, Kosuke; Watanabe, Issei; Kasamatsu, Akifumi; Tanaka, Toshiyuki; Monnai, Yasuaki

    2018-02-01

    We experimentally demonstrate see-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. The application of terahertz waves to radar has received increasing attention in recent years for its potential to high-resolution and see-through detection. Among others, the implementation using a leaky-wave antenna is promising for compact system integration with beam steering capability based on frequency sweep. However, the use of a leaky-wave antenna poses a challenge on signal processing. Since a leaky-wave antenna combines the entire signal captured by each part of the aperture into a single output, the conventional array signal processing assuming access to a respective antenna element is not applicable. In this paper, we apply an iterative recovery algorithm "CoSaMP" to signals acquired with terahertz leaky-wave radar for clutter mitigation and aperture synthesis. We firstly demonstrate see-through detection of target location even when the radar is covered with an opaque screen, and therefore, the radar signal is disturbed by clutter. Furthermore, leveraging the robustness of the algorithm against noise, we also demonstrate 3D reconstruction of distributed targets by synthesizing signals collected from different orientations. The proposed approach will contribute to the smart implementation of terahertz leaky-wave radar.

  3. The Urbana coherent-scatter radar: Synthesis and first results

    NASA Technical Reports Server (NTRS)

    Gibbs, K. P.; Bowhill, S. A.

    1979-01-01

    A coherent scatter radar system was synthesized and several hundred hours of echo power and line of sight velocity data obtained. The coherent scatter radar utilizes a diode array and components from meteor radar. The receiving system permits a time resolution of one minute in the data. Echo power from the D region shows a high degree of variability from day to day. Examples of changes in power level at shorter time scales are observed. Velocity data show the existence of gravity waves and occasionally exhibit vertical standing wave characteristics.

  4. Multi-Antenna Radar Systems for Doppler Rain Measurements

    NASA Technical Reports Server (NTRS)

    Durden, Stephen; Tanelli, Simone; Siqueira, Paul

    2007-01-01

    Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.

  5. Directional wave navigation radar measurements compared with pitch-roll buoy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.-Munoyerro, M.A.; Borge, J.C.N.

    1997-02-01

    The knowledge of the spectral behavior of a specific sea region is complete when one knows surface elevations and directional wave movements. Usually, sea directional descriptions have been made using pitch-roll buoys, which can provide one with several wave characteristic time series. Alternatively, there are other measure systems, which belong to remote sensing technics, such as shipboard navigation radars. The aim of the present work is to compare results obtained from pitch-roll data and ship radar wave measurements obtained during a campaign in the Cantabric Sea.

  6. Monitoring internal organ motion with continuous wave radar in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods:more » The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.« less

  7. Monitoring cardiac motion in CT using a continuous wave radar embedded in the patient table.

    PubMed

    Pfanner, Florian; Allmendinger, Thomas; Bohn, Birgit; Flohr, Thomas; Kachelrieß, Marc

    2014-08-01

    To avoid motion artifacts, medical imaging devices are often synchronized with the patient's cardiac motion. Today, the ECG is used to determine the heartbeat and therewith trigger the imaging device. However, the ECG requires additional effort to prepare the patient, e.g., mount and wire electrodes and it is not able to determine the motion of the heart. An interesting alternative to assess the cardiac motion is continuous wave radar. The aim of this work is to evaluate such a radar system focusing on measuring the cardiac motion. A radar system operating in the 860 MHz band is used. In the intended application of the radar system, the antennas are located close to the patient's body, for example, inside the table of a CT system. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example, at the borderline between muscle and adipose tissue, or at the boundaries of organs. Here, the authors focus on the detection of cardiac motion. The radar system consists of hardware as well as of dedicated signal processing software to extract the desired information from the radar signals. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the ECG was recorded simultaneously with the radar measurements. Additionally, ultrasound measurements are performed and compared with the motion information from the radar data. According to the authors' measurements on volunteers (test persons), the heartbeat and heart rate can be detected well using the proposed radar system. The authors were further able to extract the amplitude and phase of the heart motion itself from the radar data. This was confirmed by the ultrasound measurements. However, this motion assessment is dependent on the antenna position and it remains unclear which antenna sees the motion that is the most relevant to CT imaging. A continuous wave radar operating in the near field of the antennas can be used to determine the heartbeat and the cardiac motion of humans without special patient preparation. The authors' radar system is very close to the patient because it is embedded in the patient table, but it has no direct contact to the patient or to the patient skin (as it would be necessary to acquire the ECG of the patient). Therefore, radar motion monitoring does not require special patient preparation. In contrast to other methods used today, this is a significant improvement. The authors' radar system may allow to trigger a CT scan in dependency of the cardiac phase, without requiring an ECG, and it allows to determine quiet, and thus favorable, heart phases prior to the scan start.

  8. HF Surface Wave Radar Tests at the Eastern China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Xiong Bin; Cheng, Feng; Wu, Shi Cai; Yang, Zi Jie; Wen, Biyang; Shi, Zhen Hua; Tian, Jiansheng; Ke, Hengyu; Gao, Huotao

    2005-01-01

    The HF surface wave radar system OSMAR2000 adopts Frequency Modulated Interrupted Continuous Waveform (FMICW) and its 120m-antenna array is transmitting/receiving co-used. MUSIC and MVM are applied to obtain sea echo's direction of arrival (DOA) when extracting currents information. Verification tests of OSMAR2000 ocean surface dynamics detection against in-situ measurements had been accomplished on Oct. 23~29, 2000. Ship detection test was carried out on Dec.24, 2001. It shows that OSMAR2000 is capable of detecting 1000 tons ships with a wide beam out to 70 km. This paper introduces the radar system and the applied DOA estimation methods in the first, and then presents ship detection results and some sea state measurement results of surface currents and waves. The results indicate the validity of the developed radar system and the effectiveness of the applied signal processing methods.

  9. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    NASA Astrophysics Data System (ADS)

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  10. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  11. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.

  12. A Short Distance CW-Radar Sensor at 77 GHz in LTCC for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Rusch, Christian; Klein, Tobias; Beer, Stefan; Zwick, Thomas

    2013-12-01

    The paper presents a Continuous-Wave(CW)-Radar sensor for high accuracy distance measurements in industrial applications. The usage of radar sensors in industrial scenarios has the advantage of a robust functionality in wet or dusty environments where optical systems reach their limits. This publication shows that accuracies of a few micro-meters are possible with millimeter-wave systems. In addition to distance measurement results the paper describes the sensor concept, the experimental set-up with the measurement process and possibilities to increase the accuracy even further.

  13. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    EPA Science Inventory

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  14. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  15. Computer simulation of a multiple-aperture coherent laser radar

    NASA Astrophysics Data System (ADS)

    Gamble, Kevin J.; Weeks, Arthur R.

    1996-06-01

    This paper presents the construction of a 2D multiple aperture coherent laser radar simulation that is capable of including the effects of the time evolution of speckle on the laser radar output. Every portion of a laser radar system is modeled in software, including quarter and half wave plates, beamsplitters (polarizing and non-polarizing), the detector, the laser source, and all necessary lenses. Free space propagation is implemented using the Rayleigh- Sommerfeld integral for both orthogonal polarizations. Atmospheric turbulence is also included in the simulation and is modeled using time correlated Kolmogorov phase screens. The simulation itself can be configured to simulate both monostatic and bistatic systems. The simulation allows the user to specify component level parameters such as extinction ratios for polarizing beam splitters, detector sizes and shapes. orientation of the slow axis for quarter/half wave plates and other components used in the system. This is useful from a standpoint of being a tool in the design of a multiple aperture laser radar system.

  16. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  17. Performance assessment techniques for Doppler radar physiological sensors.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2009-01-01

    This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.

  18. Portable concealed weapon detection using millimeter-wave FMCW radar imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Michael A.; Chang, Yu-Wen

    2001-02-01

    Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.

  19. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  20. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.

  1. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  2. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  3. MIMO-OFDM signal optimization for SAR imaging radar

    NASA Astrophysics Data System (ADS)

    Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.

    2016-12-01

    This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.

  4. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  5. A simulation study of detection of weapon of mass destruction based on radar

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, E.; Choi, Y.; Latifi, S.

    2013-05-01

    Typical systems used for detection of Weapon of Mass Destruction (WMD) are based on sensing objects using gamma rays or neutrons. Nonetheless, depending on environmental conditions, current methods for detecting fissile materials have limited distance of effectiveness. Moreover, radiation related to gamma- rays can be easily shielded. Here, detecting concealed WMD from a distance is simulated and studied based on radar, especially WideBand (WB) technology. The WB-based method capitalizes on the fact that electromagnetic waves penetrate through different materials at different rates. While low-frequency waves can pass through objects more easily, high-frequency waves have a higher rate of absorption by objects, making the object recognition easier. Measuring the penetration depth allows one to identify the sensed material. During simulation, radar waves and propagation area including free space, and objects in the scene are modeled. In fact, each material is modeled as a layer with a certain thickness. At start of simulation, a modeled radar wave is radiated toward the layers. At the receiver side, based on the received signals from every layer, each layer can be identified. When an electromagnetic wave passes through an object, the wave's power will be subject to a certain level of attenuation depending of the object's characteristics. Simulation is performed using radar signals with different frequencies (ranges MHz-GHz) and powers to identify different layers.

  6. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  7. A nearshore processes field experiment at Cape Hatteras, North Carolina, U.S.A.

    USGS Publications Warehouse

    List, Jeffrey H.; Warner, John C.; Thieler, E. Robert; Haas, Kevin; Voulgaris, George; McNinch, Jesse E.; Brodie, Katherine L.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    A month-long field experiment focused on the nearshore hydrodynamics of Diamond Shoals adjacent to Cape Hatteras Point, North Carolina, was conducted in February 2010. The objectives of this multi-institutional experiment were to test hypotheses related to Diamond Shoals as a sink in the regional sediment budget and to provide data for evaluating numerical models. The experiment included in-situ instrumentation for measuring waves and currents; a video camera system for measuring surface currents at a nearshore transect; a radar system for measuring regional surface currents over Diamond Shoals and the adjacent coast; a vehicle-based scanning lidar and radar system for mapping beach topography, nearshore wave breaking intensity, bathymetry (through wave celerity inversion), and wave direction; and an amphibious vehicle system for surveying single-beam bathymetry. Preliminary results from wave and current measurements suggest that shoal-building processes were active during the experiment.

  8. An integrated sea monitoring system based on a X-band wave radar to support the removal activities of the Costa Concordia wreck.

    NASA Astrophysics Data System (ADS)

    Gozzini, Bernardo; Serafino, Francesco; Lugni, Claudio; Antonini, Andrea; Costanza, Letizia; Orlandi, Andrea; Arturi, Daniele; Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Ortolani, Alberto; Brandini, Carlo

    2013-04-01

    The planning and management of different types of operations at sea requires a number of sea state data as much in real-time as possible, for rapid and effective response to different situations. This need is particularly strong in emergency management practices, in accidents due to man-made or natural causes, that require the planning of civil protection activities (such as search-and-rescue, cleaning of pollution, ship recovery), transport planning etc. The use of X-band radar technology nowadays provides great advantages over traditional in-situ and satellite-based techniques for sea state measuring, to update information on waves and currents over a sea area with high spatial and temporal resolution. Other advantages include a good spatial coverage around the area of interest, the flexibility of use, the capacity to provide, on-demand and when necessary, complementary information (possible oil spills detection, integration with VTS, etc.). X-band coastal radars (so-called "wave-radars") are widely used in the monitoring of large marine areas, in integration with in-situ measurements, satellites and other radar types (HF), as a key element of the observational component of present operational oceanography systems. Outside of these systems, the use of this technology to support emergency management practices is very promising for both the quality and quantity of available parameters, and for an easy integration with all other available monitoring and forecasting tools. A case study particularly relevant is offered by the presence of the Costa Concordia ship near the Giglio Island. The management of this disaster has requested at an early stage a large number of data to support the monitoring of marine environment around the ship, e.g. to optimally plan water samples. In the next and present phase, to support the highly risky and costly activities linked to the wreck removal, which are extremely sea-state dependent, the installation of a wave-radar allows to detect, in real-time and with high revisiting time, waves and currents in the area surrounding the wreck. In addition wave spectra measures allow to check the reliability of present wave forecasting models, which are unlikely to represent the local and coastal scales of interest and therefore require a continuous process of verification, calibration and quality control. Similar considerations can be made for the reconstruction of marine currents at a local scale, whose uncertainty is inherently greater. The integration of X-band radar data with in-situ data has allowed to optimally calibrate the data itself (especially for what concerns the significant wave height) and to provide a local scale observation system which proved to be fundamental to support the work of continuous sea state monitoring and forecasting around the area of the disaster. The observation system at Giglio is a kind of laboratory unique in its kind, to test the reliability of the wave and hydrodynamic models at a local scale, to assess our present ability to use X-band radars for emergency management activities, and to evaluate the response capacity of such practices to the actual needs of involved stakeholders and private users.

  9. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  10. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  11. Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.

  12. Developing hydrological monitoring system based on HF radar for islands and reefs in the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.

    2016-12-01

    There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.

  13. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    NASA Technical Reports Server (NTRS)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  14. Bistatic radar sea state monitoring

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Barrick, D. E.; Kaliszewski, T.

    1972-01-01

    Bistatic radar techniques were examined for remote measurement of the two-dimensional surface wave height spectrum of the ocean. One technique operates at high frequencies (HF), 3-30 MHz, and the other at ultrahigh frequencies (UHF), approximately 1 GHz. Only a preliminary theoretical examination of the UHF technique was performed; however the principle underlying the HF technique was demonstrated experimentally with results indicating that an HF bistatic system using a surface transmitter and an orbital receiver would be capable of measuring the two-dimensional wave height spectrum in the vicinity of the transmitter. An HF bistatic system could also be used with an airborne receiver for ground truth ocean wave spectrum measurements. Preliminary system requirements and hardware configurations are discussed for both an orbital system and an aircraft verification experiment.

  15. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  16. Multifunctional millimeter-wave radar system for helicopter safety

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.

    2012-06-01

    A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.

  17. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  18. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  19. User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model

    DTIC Science & Technology

    1991-10-01

    propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT

  20. SIR-B ocean-wave enhancement with fast Fourier transform techniques

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1987-01-01

    Shuttle Imaging Radar (SIR-B) imagery is Fourier filtered to remove the estimated system-transfer function, reduce speckle noise, and produce ocean scenes with a gray scale that is proportional to wave height. The SIR-B system response to speckled scenes of uniform surfaces yields an estimate of the stationary wavenumber response of the imaging radar, modeled by the 15 even terms of an eighth-order two-dimensional polynomial. Speckle can also be used to estimate the dynamic wavenumber response of the system due to surface motion during the aperture synthesis period, modeled with a single adaptive parameter describing an exponential correlation along track. A Fourier filter can then be devised to correct for the wavenumber response of the remote sensor and scene correlation, with subsequent subtraction of an estimate of the speckle noise component. A linearized velocity bunching model, combined with a surface tilt and hydrodynamic model, is incorporated in the Fourier filter to derive estimates of wave height from the radar intensities corresponding to individual picture elements.

  1. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  2. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  3. Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence

    NASA Astrophysics Data System (ADS)

    Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.

    2016-02-01

    Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.

  4. On the radar cross section (RCS) prediction of vehicles moving on the ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  5. Collision Avoidance W-Band FMCW Radars in an Altimeter Application

    DTIC Science & Technology

    2006-08-01

    underground mining applications. Potentially, a small low– powered downward looking aerial radar employing Frequency Modulated Continuous Wave (FMCW) ranging...frequency [1]. 3 Figure 3: Epsilon Lambda ELF 171-1A radar. Model and System block diagram [2]. 4 Figure 4: Beam limited resolution cell (after [3]). 6...Figure 5: (black curves) Projected SNR variation of clutter return with range for ELF 171-1A type system in different weather conditions. Clutter-to

  6. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  7. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  8. Directional ocean wave measurements in a coastal setting using a focused array imaging radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frasier, S.J.; Liu, Y.; Moller, D.

    1995-03-01

    A unique focused array imaging Doppler radar was used to measure directional spectra of ocean surface waves in a nearshore experiment performed on the North Carolina Outer Banks. Radar images of the ocean surface`s Doppler velocity were used to generate two dimensional spectra of the radial component of the ocean surface velocity field. These are compared to simultaneous in-situ measurements made by a nearby array of submerged pressure sensors. Analysis of the resulting two-dimensional spectra include comparisons of dominant wave lengths, wave directions, and wave energy accounting for relative differences in water depth at the measurement locations. Limited estimates ofmore » the two-dimensional surface displacement spectrum are derived from the radar data. The radar measurements are analogous to those of interferometric synthetic aperture radars (INSAR), and the equivalent INSAR parameters are shown. The agreement between the remote and in-situ measurements suggests that an imaging Doppler radar is effective for these wave measurements at near grazing incidence angles.« less

  9. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform, occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR observed sensitivity as low as -37 dBZ at 1 km range and resolved linear depolarization ratio (LDR) signature better than -29 dB during its latest test flights. References: Kollias, P., and B. A. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter wavelength radar observation. J. Atmos. Sci., 57, 2417-2434. Kollias, P., B.A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 58, 1750-1766. Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. Hunning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bulletin of the American Meteorological Society, 87, 896-909. Pazmany, A. L., R. E. McIntosh, R. Kelly, and V. G., 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731-739. Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., McIntosh, R., Pazmany, A., 1998. Fine-scale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540-3564.

  10. Mutual Coupling and Compensation in FMCW MIMO Radar Systems

    NASA Astrophysics Data System (ADS)

    Schmid, Christian M.; Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas

    2011-09-01

    This paper deals with mutual coupling, its effects and the compensation thereof in frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) array radar systems. Starting with a signal model we introduce mutual coupling and its primary sources in FMCW MIMO systems. We also give a worst-case boundary of the effects that mutual coupling can have on the side lobe level of an array. A method of dealing with and compensating for these effects is covered in this paper and verified by measurements from a 77-GHz FMCW radar system.

  11. Radar for tracer particles

    NASA Astrophysics Data System (ADS)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  12. A new method for blood velocity measurements using ultrasound FMCW signals.

    PubMed

    Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro

    2010-05-01

    The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.

  13. Millimeter wave front-end figure of merit, part 2

    NASA Astrophysics Data System (ADS)

    Silberman, Gabriel G.

    1995-09-01

    This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.

  14. Measuring ocean waves from space; Proceedings of the Symposium, Johns Hopkins University, Laurel, MD, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Beal, Robert C. (Editor)

    1987-01-01

    Papers are presented on ocean-wave prediction; the quasi-universal form of the spectra of wind-generated gravity waves at different stages of their development; the limitations of the spectral measurements and observations of the group structure of surface waves; the effect of swell on the growth of wind wave; operational wave forecasting; ocean-wave models, and seakeeping using directional wave spectra. Consideration is given to microwave measurements of the ocean-wave directional spectra; SIR research; estimating wave energy spectra from SAR imagery, with the radar ocean-wave spectrometer, and SIR-B; the wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar; and SIR-B ocean-wave enhancement with fast-Fourier transform techniques. Topics discussed include wave-current interaction; the design and applicability of Spectrasat; the need for a global wave monitoring system; the age and source of ocean swell observed in Hurricane Josephine; and the use of satellite technology for insulin treatment.

  15. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  16. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  17. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  18. Deriving Two-Dimensional Ocean Wave Spectra and Surface Height Maps from the Shuttle Imaging Radar (SIR-B)

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1986-01-01

    Directional ocean wave spectra were derived from Shuttle Imaging Radar (SIR-B) imagery in regions where nearly simultaneous aircraft-based measurements of the wave spectra were also available as part of the NASA Shuttle Mission 41G experiments. The SIR-B response to a coherently speckled scene is used to estimate the stationary system transfer function in the 15 even terms of an eighth-order two-dimensional polynomial. Surface elevation contours are assigned to SIR-B ocean scenes Fourier filtered using a empirical model of the modulation transfer function calibrated with independent measurements of wave height. The empirical measurements of the wave height distribution are illustrated for a variety of sea states.

  19. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  20. Tsunami Detection by High-Frequency Radar Beyond the Continental Shelf

    NASA Astrophysics Data System (ADS)

    Grilli, Stéphan T.; Grosdidier, Samuel; Guérin, Charles-Antoine

    2016-12-01

    Where coastal tsunami hazard is governed by near-field sources, such as submarine mass failures or meteo-tsunamis, tsunami propagation times may be too small for a detection based on deep or shallow water buoys. To offer sufficient warning time, it has been proposed to implement early warning systems relying on high-frequency (HF) radar remote sensing, that can provide a dense spatial coverage as far offshore as 200-300 km (e.g., for Diginext Ltd.'s Stradivarius radar). Shore-based HF radars have been used to measure nearshore currents (e.g., CODAR SeaSonde® system; http://www.codar.com/), by inverting the Doppler spectral shifts, these cause on ocean waves at the Bragg frequency. Both modeling work and an analysis of radar data following the Tohoku 2011 tsunami, have shown that, given proper detection algorithms, such radars could be used to detect tsunami-induced currents and issue a warning. However, long wave physics is such that tsunami currents will only rise above noise and background currents (i.e., be at least 10-15 cm/s), and become detectable, in fairly shallow water which would limit the direct detection of tsunami currents by HF radar to nearshore areas, unless there is a very wide shallow shelf. Here, we use numerical simulations of both HF radar remote sensing and tsunami propagation to develop and validate a new type of tsunami detection algorithm that does not have these limitations. To simulate the radar backscattered signal, we develop a numerical model including second-order effects in both wind waves and radar signal, with the wave angular frequency being modulated by a time-varying surface current, combining tsunami and background currents. In each "radar cell", the model represents wind waves with random phases and amplitudes extracted from a specified (wind speed dependent) energy density frequency spectrum, and includes effects of random environmental noise and background current; phases, noise, and background current are extracted from independent Gaussian distributions. The principle of the new algorithm is to compute correlations of HF radar signals measured/simulated in many pairs of distant "cells" located along the same tsunami wave ray, shifted in time by the tsunami propagation time between these cell locations; both rays and travel time are easily obtained as a function of long wave phase speed and local bathymetry. It is expected that, in the presence of a tsunami current, correlations computed as a function of range and an additional time lag will show a narrow elevated peak near the zero time lag, whereas no pattern in correlation will be observed in the absence of a tsunami current; this is because surface waves and background current are uncorrelated between pair of cells, particularly when time-shifted by the long-wave propagation time. This change in correlation pattern can be used as a threshold for tsunami detection. To validate the algorithm, we first identify key features of tsunami propagation in the Western Mediterranean Basin, where Stradivarius is deployed, by way of direct numerical simulations with a long wave model. Then, for the purpose of validating the algorithm we only model HF radar detection for idealized tsunami wave trains and bathymetry, but verify that such idealized case studies capture well the salient tsunami wave physics. Results show that, in the presence of strong background currents, the proposed method still allows detecting a tsunami with currents as low as 0.05 m/s, whereas a standard direct inversion based on radar signal Doppler spectra fails to reproduce tsunami currents weaker than 0.15-0.2 m/s. Hence, the new algorithm allows detecting tsunami arrival in deeper water, beyond the shelf and further away from the coast, and providing an early warning. Because the standard detection of tsunami currents works well at short range, we envision that, in a field situation, the new algorithm could complement the standard approach of direct near-field detection by providing a warning that a tsunami is approaching, at larger range and in greater depth. This warning would then be confirmed at shorter range by a direct inversion of tsunami currents, from which the magnitude of the tsunami would also estimated. Hence, both algorithms would be complementary. In future work, the algorithm will be applied to actual tsunami case studies performed using a state-of-the-art long wave model, such as briefly presented here in the Mediterranean Basin.

  1. In Pursuit of Nearshore Wave Characteristics- Implementation and Validation of a Shallow Water Correction for High Frequency Radars along the New Jersey Coast

    NASA Astrophysics Data System (ADS)

    Livermont, E. A.

    2014-12-01

    Within the U.S., coastal ocean current mapping with HF radar has matured to the point where it is now considered an essential component of regional ocean observing systems. A Mid-Atlantic HF radar network now provides high-resolution coverage within five localized networks, which are linked together to cover the full range of the Mid-Atlantic coast. While the primary focus of these networks has been on offshore current mapping observations, a long-term objective has been to develop and evaluate nearshore waves and currents. Of particular interest is the height of ocean waves that play a crucial role in engineering projects, ship navigation and design, vessel traffic control as well as shoreline protection, beach erosion, and mitigation of oil spills and ocean pollution. The radars owned by Rutgers University cover the coastline of New Jersey at multiple frequencies from 4.5 to 25 MHz. Their echoes contain information on both currents and waves from deep water up into the shallow coastal zone, providing an excellent archive for this study. Radar sea-echo spectra consist of dominant first-order peaks surrounded with lower-energy second-order structures. Present analysis methods assume that the waves do not interact with the ocean floor. The assumption of deep water is often invalid close to the coast and for broad continental shelves, and is particularly inadequate to describe the second-order sea-echo used to give information on ocean waves. Additionally, second-order echo is often only visible above the noise floor at close ranges. In this paper, a shallow water spectral theory is implemented at four locations on the New Jersey coast- Strathmere, Wildwood, Brant Beach, and Sea Bright. The corrected wave characteristics extracted from the HF radars were then compared to several in situ wave measurements. The first three sites—Strathmere, Wildwood and Brant Beach—were validated against two long-term (1999-2007) wave gauges deployed by Stevens Institute of Technology in 5 meters of water. Based on this initial comparison, several additional corrections to the radar processing were implemented. The site at Sea Bright was used for independent verification and validated against an ADCP deployed for three weeks in March 2012.

  2. Millimeter wave radars raise weapon IQ

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  3. Ocean wind field measurement performance of the ERS-1 scatterometer

    NASA Technical Reports Server (NTRS)

    Hans, P.; Schuessler, H.

    1984-01-01

    The Active Microwave Instrumentation (AMI), which will be implemented on the ERS-1, is a 5.3 GHz multipurpose radar for land surface imaging, ocean wave spectrum measurement and wind observations over oceans. The imaging and wave measurements apply Synthetic Aperture Radar (SAR) techniques, while wind field detection is performed by the Scatterometer as part of the AMI. The Scatterometer system design was developed and optimized with the aid of a performance simulator. This paper, aimed at giving an overview, is presented about the: (1) ERS-1 Scatterometer system design; (2) Error budget; and the (3) Overall calibration concept.

  4. Propagation characteristic of THz wave in camouflage net material

    NASA Astrophysics Data System (ADS)

    Dong, Hailong; Wang, Jiachun; Chen, Zongsheng; Lin, Zhidan; Zhao, Dapeng; Liu, Ruihuang

    2017-10-01

    Terahertz (THz) radar system, with excellent potentials such as high-resolution and strong penetration capability, is promising in the field of anti-camouflage. Camouflage net is processed by cutting the camouflage net material, which is fabricated on pre-processing substrate by depositing coatings with camouflage abilities in different bands, such as visible, infrared and radar. In this paper, we concentrate on the propagation characteristic of THz wave in camouflage net material. Firstly, function and structure of camouflage net were analyzed. Then the advantage and appliance of terahertz time-domain spectroscopy (THz-TDS) was introduced. And the relevant experiments were conducted by utilizing THz-TDS. The results obtained indicate that THz wave has better penetration capacity in camouflage net material, which demonstrates the feasibility of using THz radar to detect those targets covered with camouflage net.

  5. Ocean waves and turbulence as observed with an adaptive coherent multifrequency radar

    NASA Technical Reports Server (NTRS)

    Gjessing, D. T.; Hjelmstad, J.

    1984-01-01

    An adaptive coherent multifrequency radar system is developed for several applications. The velocity distribution (Doppler spectrum) and spectral intensity of 15 different irregularity scales (waves and turbulence) can be measured simultaneously. Changing the azimuth angle of the antennas at regular intervals, the directivity of the wave/turbulence pattern on the sea surface can also be studied. A series of measurements for different air/sea conditions are carried out from a coast based platform. Experiments in the Atlantic are also performed with the same equipment making use of the NASA Electra aircraft. The multifrequency radar allows the measurement of the velocity distribution (""coherent and incoherent component'') associated with 15 different ocean irregularity scales simultaneously in a directional manner. It is possible to study the different air/sea mechanisms in some degree of detail.

  6. 35-GHz radar sensor for automotive collision avoidance

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  7. Comparison of the impedance cardiogram with continuous wave radar using body-contact antennas.

    PubMed

    Buxi, Dilpreet; Dugar, Rahul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2017-07-01

    This paper describes a continuous wave (CW) radar system with body-contact antennas and basic signal processing. The goal is to assess the signals' reproducibility across different subjects as well as a respiration cycle. Radar signals using body-contact antennas with a carrier frequency of 868 MHz are used to acquire the cardiac activity at the sternum. The radar I and Q channel signals are combined to form their magnitude. Signals are collected from six healthy males during paced breathing conditions. The electrocardiogram (ECG) and impedance cardiogram (ICG) signals are acquired simultaneously as reference. The chosen feature in the radar signal is the maximum of its second derivative, which is closest to the ICG B-point. The median and mean absolute errors in pre-ejection period (PEP) in milliseconds between the ICG's B-point and chosen feature in the radar signal range from -6-119.7 ms and 7.8-62.3 ms for all subjects. The results indicate that a reproducible radar signal is obtained from all six subjects. More work is needed on understanding the origin of the radar signals using ultrasound as a comparison.

  8. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar

    PubMed Central

    Chen, Fuming; Li, Sheng; Zhang, Yang; Wang, Jianqi

    2017-01-01

    The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD) and the auto-correlation function (ACF) method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance. PMID:28282892

  9. SAR imaging of ocean waves - Theory

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1981-01-01

    A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.

  10. Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves

    NASA Astrophysics Data System (ADS)

    Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.

    2017-12-01

    Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).

  11. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  12. A novel multi-dimensional absolute distance measurement system using a basic frequency modulated continuous wave radar and an external cavity laser with trilateration metrology

    NASA Astrophysics Data System (ADS)

    Xiong, Xingting; Qu, Xinghua; Zhang, Fumin

    2018-01-01

    We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.

  13. Introduction to electronic warfare

    NASA Astrophysics Data System (ADS)

    Schleher, D. C.

    A broad overview of electronic warfare (EW) is given, emphasizing radar-related EW applications. A broad perspective of the EW field is first given, defining EW terms and giving methods of EW threat analysis and simulation. Electronic support measures and electronic countermeasures (ECM) systems are described, stressing their application to radar EW. Radars are comprehensively discussed from a system viewpoint with emphasis on their application in weapon systems and their electronic counter-countermeasures capabilities. Some general topics in C3 systems are described, stressing communication systems, C3I systems, and air defense systems. Performance calculations for EW and radar systems are covered, and modern EW signal processing is described from an airborne ECM perspective. Future trends and technology in the EW world are considered, discussing such topics as millimeter-wave EW, low-observable EW technology, GaAs monolithic circuits, VHSIC, and AI.

  14. NRL Fact Book

    DTIC Science & Technology

    2008-01-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR

  15. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  16. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1982-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  17. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Alexandra; Haller, Merrick; Walker, David

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.« less

  18. Cavity detection and delineation research. Report 5: Electromagnetic (Radar) techniques applied to cavity detection

    NASA Astrophysics Data System (ADS)

    Ballard, R. F., Jr.

    1983-07-01

    This study evaluated four different radar systems to determine their effectiveness in locating subterranean cavities. Tests were conducted at three well-documented sites: Vicksburg, Miss.; Medford Cave, Fla. (near Ocala); and Manatee Springs, Fla. (near Chiefland). None of the radar systems was effective at the Vicksburg, Miss., site because of extremely high conductivities encountered in the overburden materials which were comprised primarily of silts (loess) and clays. The following radar systems were used in this study: (a) A pulsed system fabricated and operated by personnel from Texas A/M University; (b) A pulsed system commercially manufactured by GSSI operated by the owners, Technos, Inc.; (c) A pulsed system developed, fabricated, and operated by personnel from SwRI; and (d) A continuous wave system development, fabricated and operated by personnel from LLNL.

  19. Modelling of long-wave chaotic radar system for anti-stealth applications

    NASA Astrophysics Data System (ADS)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  20. Experimental study of dual polarized radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  1. Hurricane Wave Topography and Directional Wave Spectra in Near Real-Time

    DTIC Science & Technology

    2005-09-30

    Develop and/or modify the real - time operating system and analysis techniques and programs of the NASA Scanning Radar Altimeter (SRA) to process the...Wayne Wright is responsible for the real - time operating system of the SRA and making whatever modifications are required to enable near real-time

  2. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  3. Bistatic radar sea state monitoring system design

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.

    1975-01-01

    Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.

  4. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    NASA Astrophysics Data System (ADS)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental validation of new calibration techniques, which are needed for coherent imaging with multistatic configurations; and (4) Investigation of novel compressive antennas, which spatially modulate the wavefield in order to enhance the information transfer efficiency between sampling and imaging regions and use of Compressive Sensing algorithms.

  5. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  6. Introduction of a Ground Penetrating Radar System for Subsurface Investigation in Balik Pulau, Penang Island

    NASA Astrophysics Data System (ADS)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.

  7. Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN)

    NASA Astrophysics Data System (ADS)

    Sundararaman, Sathishkumar

    Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN) S. Sathishkumar1, R. Dhanya1, K. Emperumal1, D. Tiwari2, S. Gurubaran1 and A. Bhattacharyya2 1. Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli, India 2. Indian Institute of Geomagnetism, Navi Mumbai, India Email: sathishmaths@gmail.com Abstract The equatorial atmosphere-ionosphere system has been studied theoretically and observationally in the past. In the equatorial atmosphere, oscillations with periods of 3-4 days are often observed in the medium frequency (MF) radar over Tirunelveli (8.7oN, 77.8oE, 1.34oN geomag. lat.). Earlier observations show the clear evidence that these waves can propagate from the stratosphere to ionosphere. A digital ionosonde has been providing useful information on several ionospheric parameters from the same site. Simultaneous observations of mesospheric winds using medium frequency radar and F-layer height (h'F) from ionosonde reveal that the 3-4 day wave was evident in both the component during the 01 June 2007 and 31 July 2007. The 3-4 day wave could have an important role in the day to day variability of the equatorial ionosphere evening uplift. Results from an extensive analysis that is being carried out in the direction of 3-4 day wave present in the ionosphere will be presented.

  8. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  9. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  10. Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.

    2012-01-01

    A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”

  11. Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.

    2014-12-01

    Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)

  12. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  13. Complex phase error and motion estimation in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Soumekh, M.; Yang, H.

    1991-06-01

    Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.

  14. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  15. Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Bettencourt, João H.; Dias, Frederic

    2017-01-01

    Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013-2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.

  16. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All circuits except the oscillators are shared between the two bands. A multi-functional injection-locked circuit is used after the oscillators to reconfigure the division ratio inside the phase-locked loop. The synthesizer is suitable for integration in automotive radar transceivers and heterodyne receivers for 94-GHz imaging applications. The transceiver chip includes a dual-band low noise amplifier, a shared downconversion chain, dual-band pulse formers, power amplifiers, a dual-band frequency synthesizer and a high-speed programmable baseband pulse generator. Radar functionality is demonstrated using loopback measurements.

  17. Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1991-01-01

    Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.

  18. A Powerful Method of Measuring Sea Wave Spectra and their Direction

    NASA Astrophysics Data System (ADS)

    Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich

    2014-05-01

    Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.

  19. Target scattering characteristics for OAM-based radar

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  20. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    PubMed

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  1. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  2. Battlefield radar imaging through airborne millimetric wave SAR (Synthetic Aperture Radar)

    NASA Astrophysics Data System (ADS)

    Carletti, U.; Daddio, E.; Farina, A.; Morabito, C.; Pangrazi, R.; Studer, F. A.

    Airborne synthetic aperture radar (SAR), operating in the millimetric-wave (mmw) region, is discussed with reference to a battlefield surveillance application. The SAR system provides high resolution real-time imaging of the battlefield and moving target detection, under adverse environmental conditions (e.g., weather, dust, smoke, obscurants). The most relevant and original aspects of the system are the band of operation (i.e., mmw in lieu of the more traditional microwave region) and the use of an unmanned platform. The former implies reduced weight and size requirements, thus allowing use of small unmanned platforms. The latter enchances the system operational effectiveness by permitting accomplishment of recognition missions in depth beyond the FEBA. An overall system architecture based on the onboard sensor, the platform, the communication equipment, and a mobile ground station is described. The main areas of ongoing investigation are presented: the simulation of the end-to-end system, and the critical technological issues such as mmw antenna, transmitter, signal processor for image formation and platform attitude errors compensation and detection and imaging of moving targets.

  3. Morphodynamics of a tidal ridge system in the southwestern Yellow Sea: HF radar study

    NASA Astrophysics Data System (ADS)

    Zhong, Yao-Zhao; Li, Yan; Wu, Xiong-Bin; Gao, Shu; Zhou, Tao; Wang, Ya Ping; Gao, Jian-Hua

    2018-06-01

    A radial tidal ridge system is present throughout the coastal waters of the southwestern Yellow Sea (China) with varied and complicated ridges and channels between them. A newly designed ground-wave high-frequency (HF radar), with full-coverage and high spatial-temporal resolution, was employed in this study to measure the surface currents and bathymetric features correlated wave celerity in the study area from July 17 to August 6, 2011. We found that the spatial distribution pattern of the tidal channels is generally stable with periodic adjustments during a spring-neap tidal cycle and with higher degree of spatial orderliness from neap to spring tides than from spring to neap tides; the nearshore part of the channels is most stable in lateral, the middle part is relatively lateral unstable, and the offshore part changes complicatedly; flood-dominated channels and ebb-dominated ridges are identified using HF radar signals. The horizontal Kelvin number (Keh) is workable in lateral stability evaluation. This study reveals the potential of HF radar in morphodynamic studies on shallow coastal waters.

  4. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Kollias; MA Miller; KB Widener

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digitalmore » Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.« less

  5. Event Recognition for Contactless Activity Monitoring Using Phase-Modulated Continuous Wave Radar.

    PubMed

    Forouzanfar, Mohamad; Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Dajani, Hilmi R; Groza, Voicu Z

    2017-02-01

    The use of remote sensing technologies such as radar is gaining popularity as a technique for contactless detection of physiological signals and analysis of human motion. This paper presents a methodology for classifying different events in a collection of phase modulated continuous wave radar returns. The primary application of interest is to monitor inmates where the presence of human vital signs amidst different, interferences needs to be identified. A comprehensive set of features is derived through time and frequency domain analyses of the radar returns. The Bhattacharyya distance is used to preselect the features with highest class separability as the possible candidate features for use in the classification process. The uncorrelated linear discriminant analysis is performed to decorrelate, denoise, and reduce the dimension of the candidate feature set. Linear and quadratic Bayesian classifiers are designed to distinguish breathing, different human motions, and nonhuman motions. The performance of these classifiers is evaluated on a pilot dataset of radar returns that contained different events including breathing, stopped breathing, simple human motions, and movement of fan and water. Our proposed pattern classification system achieved accuracies of up to 93% in stationary subject detection, 90% in stop-breathing detection, and 86% in interference detection. Our proposed radar pattern recognition system was able to accurately distinguish the predefined events amidst interferences. Besides inmate monitoring and suicide attempt detection, this paper can be extended to other radar applications such as home-based monitoring of elderly people, apnea detection, and home occupancy detection.

  6. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  7. Weather Radars and Lidar for Observing the Atmosphere

    NASA Astrophysics Data System (ADS)

    (Vivek) Vivekanandan, J.

    2010-05-01

    The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.

  8. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    PubMed Central

    Gu, Changzhan

    2016-01-01

    Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends. PMID:27472330

  9. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  10. Fly Eye radar: detection through high scattered media

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  11. A Short Range, High Accuracy Radar Ranging System,

    DTIC Science & Technology

    1984-12-01

    may be of any type and can perform the same functions as any other type of radar (pulsed or continuous wave (CW), coherent or noncoherent , etc.). The...use of an optical carrier frequency 4 enables laser radars to take advantage of the benefits inherent in higher frequencies: higher bandwidths allow...results that are inaccurate or incorrect. Also, directing a laser beam at an aircraft cockpit from a range of 25 feet would pose a serious safety

  12. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell

    PubMed Central

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-01-01

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884

  13. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.

    PubMed

    González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo

    2008-05-23

    This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.

  14. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  15. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    NASA Astrophysics Data System (ADS)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  16. Defining a relationship between incident wave parameters and morphologic evolution of shoals on ebb tidal deltas using long term X-band radar observation from RIOS

    NASA Astrophysics Data System (ADS)

    Humberston, J. L.; McNinch, J.; Lippmann, T. C.

    2016-12-01

    The morphology of tidal inlet ebb-shoals varies dynamically over time, particularly in response to large wave events. Understanding which wave qualities most influence shoals' evolution would support advancements in sediment bypassing models as well as targeted maintenance dredging for hydrographic purposes. Unfortunately, shallow and rapidly changing bathymetry, turbid waters and ambiguous wave speeds resulting from multiple shoaling and de-shoaling areas limits many traditional surveying techniques from obtaining the spatial and temporal resolution necessary to effectively characterize shoal development. The Radar Inlet Observing System (RIOS) is a uniquely designed mobile X-band radar system that can be deployed to inlet environments and, using roof-mounted solar panels and an automatically triggered highly efficient diesel generator, run automated hourly collections and wirelessly stream data for up to several months at a time in nearly all weather and water conditions. During 2015 and early 2016, RIOS was deployed to St. Augustine Inlet, FL., New River Inlet, N.C., and Oregon Inlet, N.C. for periods of one to six months to allow for measureable shoal evolution. During deployments, ten minute collections (at 1 Hz) were conducted every hour and the data gridded to a 5m alongshore/cross-shore grid. Raw intensity returns were time-averaged and analyzed to define three metrics of shoal evolution: movement direction, movement velocity and inferred bathymetry. For each location and time period, wave frequencies, wave directions and significant wave heights were collected from the nearest wave-buoy. Time lapse videos of shoal positions were inspected and used in concert with cross-correlations values from each pair of shoal and wave parameters to determine the incident wave qualities most strongly relating to shoal evolution. Preliminary results suggest wave height, more than frequency, controls shoal movement. Wave direction and size collaboratively appear to direct the shoal's alongshore movement direction as well as general trends of morphologic evolution.

  17. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  18. Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, Fuk K.; Lou, Shu-Hsiang; Neumann, Gregory; McIntosh, Robert E.; Carson, Steven C.; Carswell, James R.; Walsh, Edward J.; Donelan, Mark A.; Drennan, William M.

    1995-01-01

    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented.

  19. Basic examination of a technique to visualize space filled with dense smoke using millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Omine, Yukio; Sakai, Masaki; Aoki, Yoshimitsu; Takagi, Mikio

    2004-10-01

    In recent years, crisis management in response to terrorist attacks and natural disasters, as well as accelerating rescue operations has become an important issue. Rescue operations greatly influence human lives, and require the ability to accurately and swiftly communicate information as well as assess the status of the site. Currently, considerable amount of research is being conducted for assisting rescue operations, with the application of various engineering techniques such as information technology and radar technology. In the present research, we believe that assessing the status of the site is most crucial in rescue and firefighting operations at a fire disaster site, and aim to visualize the space that is smothered with dense smoke. In a space filled with dense smoke, where visual or infrared sensing techniques are not feasible, three-dimensional measurements can be realized using a compact millimeter wave radar device combined with directional information from a gyro sensor. Using these techniques, we construct a system that can build and visualize a three-dimensional geometric model of the space. The final objective is to implement such a system on a wearable computer, which will improve the firefighters' spatial perception, assisting them in the baseline assessment and the decision-making process. In the present paper, we report the results of the basic experiments on three-dimensional measurement and visualization of a space that is smoke free, using a millimeter wave radar.

  20. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  1. A millimetre-wave MIMO radar system for threat detection in urban environments

    NASA Astrophysics Data System (ADS)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  2. The Relationship Between Sea Breeze Forcing and HF Radar-Derived Surface Currents in Monterey Bay

    DTIC Science & Technology

    2014-06-01

    the ocean wave backscattering the radar signal is one half the radar’s wavelength (Neal 1992). This process is called Bragg scattering (Barrick 1977...transmit frequency of radar is important because it helps us to figure out the length of the ocean waves and backscattered radar wavelength (Harlan et al...Representation of some remote sensing methods exploiting signals backscattered from the sea surface (from Shearman 1981). 7 HF radars have many advantages

  3. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1980-01-01

    A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.

  4. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  5. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  6. Rough surface wavelength measurement through self mixing of Doppler microwave backscatter. [from ocean waves

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1979-01-01

    A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.

  7. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  8. Radar System Characterization Extended to Hardware-in-the-Loop Simulation for the Lab-Volt (Trademark) Training System

    DTIC Science & Technology

    2007-09-01

    devices such as klystrons , magnetrons, and traveling wave tubes. These microwave devices produce high power levels but may have limited bandwidths [20...diagram. The specific arrangement of components within a RADAR transmitter varies with operational specifications. Two options exist to produce high power ...cascading to generate sufficient power [20]. The second option to generate high power levels is to replace RF oscillators and amplifiers with microwave

  9. Investigation of the performance characteristics of Doppler radar technique for aircraft collision hazard warning, phase 3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    System studies, equipment simulation, hardware development and flight tests which were conducted during the development of aircraft collision hazard warning system are discussed. The system uses a cooperative, continuous wave Doppler radar principle with pseudo-random frequency modulation. The report presents a description of the system operation and deals at length with the use of pseudo-random coding techniques. In addition, the use of mathematical modeling and computer simulation to determine the alarm statistics and system saturation characteristics in terminal area traffic of variable density is discussed.

  10. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  11. Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.

    2010-09-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.

  12. A laboratory study of the electromagnetic bias of rough surface scattering by water waves

    NASA Technical Reports Server (NTRS)

    Parsons, Chester L.; Miller, Lee S.

    1990-01-01

    The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.

  13. A modeling study of the radar signatures of rip currents with comparisons to data

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2016-12-01

    Rip currents are important components of nearshore circulation systems and can pose serious dangers to swimmers. In recent years, X-band imaging radar has been shown to be an effective remote sensor of rip currents over large spatial scales, for long durations, and with high temporal resolution. In contrast to remote sensing methods that infer rip location through the identification of morphological features (i.e. rip channels), rip detection in radar arises directly from the backscatter characteristics of the rip current flow field, thus offering the potential of direct extraction of quantitative information on rip current hydrodynamics. In this study, we present a model for the radar imaging of rip currents based on the wave action balance equation and the changes to the wind-wave spectrum at Bragg (capillary) wavelengths induced by the underlying rip current field. Model results are compared to field data (both in situ and remote sensing) from a 10-day experiment at Duck, NC conducted in September 2010. The model/data comparisons are then used to assess the physical mechanisms contributing to the radar imaging of rip currents including the role of rip current strength, wind speed, wind direction, and very short-scale wave breaking in rip current imaging. Following the methodology of Rascle et al. (J. Phys. Oceanography, 2014), the radar imaging model uses a relaxation approach that models perturbations to the equilibrium wave action spectrum induced by gradients in the underlying current field (specifically, the divergence and strain components of the deformation tensor). From the perturbed wind-wave spectrum, changes in the mean square slope (MSS) are then calculated and taken as a proxy for the change in radar backscatter intensity due to rip currents. Model simulations of rip current velocity fields for the field experiments were developed previously by Wilson et al. (J. Geophys. Res., 2014) using ROMS. The modeled velocities are used as input into the backscatter model and the predicted changes in MSS are compared with the radar observations. Modeled changes in MSS are shown to compare well with the observed occurrence and spatial scales of the rips, including their oblique orientation and their offshore extent. Remaining questions include the effect of wind direction and fetch on the imaging of rips.

  14. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  15. Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar Imaging

    PubMed Central

    Oh, Daegun; Kim, Sunwoo; Chong, Jong-Wha

    2018-01-01

    This article deals with the development of a dual channel S-Band frequency-modulated continuous wave (FMCW) system for a through-the-wall imaging (TWRI) system. Most existing TWRI systems using FMCW were developed for synthetic aperture radar (SAR) which has many drawbacks such as the need for several antenna elements and movement of the system. Our implemented TWRI system comprises a transmitting antenna and two receiving antennas, resulting in a significant reduction of the number of antenna elements. Moreover, a proposed algorithm for range-angle-Doppler 3D estimation based on a 3D shift invariant structure is utilized in our implemented dual channel S-band FMCW TWRI system. Indoor and outdoor experiments were conducted to image the scene beyond a wall for water targets and person targets, respectively. The experimental results demonstrate that high-quality imaging can be achieved under both experimental scenarios. PMID:29361777

  16. High Frequency Backscatter from the Polar and Auroral E-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.

    The Earth's ionosphere contains collisional and partially-ionized plasma. The electric field, produced by the interaction between the Earth's magnetosphere and the solar wind, drives the plasma bulk motion, also known as convection, in the F-region of the ionosphere. It can also destabilize the plasma in the E-region, producing irregularities or waves. Intermediate-scale waves with wavelengths of hundreds of meters can cause scintillation and fading of the Global Navigation Satellite System (GNSS) signals, whereas the small-scale waves (lambda < 100 m) can scatter radar signals, making possible detection of these plasma structures and measurements of their characteristics such as their phase velocity and intensity. In this work, production of the decameter-scale (lambda ≈ 10 m) irregularities in the ionospheric E-region (100-120 km in altitude) at high latitudes is investigated both theoretically, using linear fluid theory of plasma instability processes that generate small-scale plasma waves, and experimentally, by analyzing data collected with the newly-deployed high-southern-latitude radars within the Super Dual Auroral Radar Network (SuperDARN). The theoretical part of this work focuses on symmetry properties of the general dispersion relation that describes wave propagation in the collisional plasma in the two-stream and gradient-drift instability regimes. The instability growth rate and phase velocity are examined under the presence of a background parallel electric field, whose influence is demonstrated to break the spatial symmetry of the wave propagation patterns. In the observational part of this thesis, a novel dual radar setup is used to examine E-region irregularities in the magnetic polar cap by probing the E-region along the same line from opposite directions. The phase velocity analysis together with raytracing simulations demonstrated that, in the polar cap, the radar backscatter is primarily controlled by the plasma density conditions. In particular, when the E-region layer is strong and stratified, the radar backscatter properties are controlled by the convection velocity, whereas for a tilted E-layer, the height and aspect angle conditions are more important. Finally, the fundamental dependence of the E-region irregularity phase velocity on the component of the plasma convection is investigated using two new SuperDARN radars at high southern latitudes where plasma convection estimates are accurately deduced from all SuperDARN radars in the southern hemisphere. Statistical analysis is presented showing that the predominance of the E-region echoes of a particular polarity is strongly dictated by the orientation of the convection plasma flow which itself has a significant asymmetry towards westward zonal flow.

  17. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  18. A compendium of millimeter wave propagation studies performed by NASA

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Rogers, D.; Bremer, J.

    1977-01-01

    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.

  19. Radar-acoustic interaction for IFF applications

    NASA Astrophysics Data System (ADS)

    Saffold, James A.; Williamson, Frank R.; Ahuja, Krishan; Stein, Lawrence R.; Muller, Marjorie

    1998-08-01

    This paper describes the results of an internal development program (IDP) No. 97-1 conducted from August 1-October 1 1996 at the Georgia Tech Research Institute. The IDP program was implemented to establish theoretical relationships and verify the interaction between X-band radar waves and ultrasonic acoustics. Low cost, off-the-shelf components were used for the verification in order to illustrate the cost savings potential of developing and utilizing these systems. The measured data was used to calibrate the developed models of the phenomenology and to support extrapolation for radar systems which can exploit these interactions. One such exploitation is for soldier identification IFF and radar taggant concepts. The described IDP program provided the phenomenological data which is being used to extrapolate concept system performances based on technological limitations and battlefield conditions for low cost IFF and taggant configurations.

  20. Improved Design/Reduction of Manufacturing Costs of Space-Traveling Wave Tiube Amplifiers Final Report CRADA No. TC-0461-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.; Drasco, M.

    The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.

  1. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  2. Quality assurance and control issues for HF radar wave and current measurements

    NASA Astrophysics Data System (ADS)

    Wyatt, Lucy

    2015-04-01

    HF radars are now widely used to provide surface current measurements over wide areas of the coastal ocean for scientific and operational applications. In general data quality is acceptable for these applications but there remain issues that impact on the quantity and quality of the data. These include problems with calibration and interference which impact on both phased array (e.g. WERA, Pisces) and direction-finding (e.g. SeaSonde) radars. These same issues and others (e.g. signal-to-noise, in-cell current variability, antenna sidelobes) also impact on the quality and quantity of wave data that can be obtained. These issues will be discussed in this paper, illustrated with examples from deployments of WERA, Pisces and SeaSonde radars in the UK, Europe, USA and Australia. These issues involve both quality assurance (making sure the radars perform to spec and the software is fully operational) and in quality control (identifying problems with the data due to radar hardware or software performance issues and flagging these in the provided data streams). Recommendations for the former, and current practice (of the author and within the Australian Coastal Ocean Radar Network, ACORN*) for the latter, will be discussed. The quality control processes for wave measurement are not yet as well developed as those for currents and data from some deployments can be rather noisy. Some new methods, currently under development by SeaView Sensing Ltd and being tested with ACORN data, will be described and results presented. *ACORN is a facility of the Australian Integrated Marine Observing System, IMOS. IMOS is a national collaborative research infrastructure, supported by Australian Government. It is led by University of Tasmania in partnership with the Australian marine and climate science community.

  3. An initial assessment of the performance achieved by the Seasat-1 radar altimeter

    NASA Technical Reports Server (NTRS)

    Townsend, W. F.

    1980-01-01

    The results of an initial on-orbit engineering assessment of the performance achieved by the radar altimeter system flown on SEASAT-1 are presented. Additionally, the general design characteristics of this system are discussed and illustrations of altimeter data product are provided. The instrument consists of a 13.5 GHz monostatic radar system that tracks in range only using a one meter parabolic antenna pointed at the satellite nadir. Two of its unique features are a linear FM transmitter with 320 MHz bandwidth which yields a 3.125 nanosecond time delay resolution, and microprocessor implemented closed loop range tracking, automatic gain control (AGC), and real time estimation of significant wave height (SWH). Results presented show that the altimeter generally performed in accordance with its orginal performance requirments of measuring altitude to a precision of less the 10 cm RMS, significant wave height to an accuracy of + or - 0.5 m or 10%, whichever is greater, and ocean backscatter coefficient to an accuracy of + or - 1 db, all over an SWH range of 1 to 20 meters.

  4. High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.

    1984-01-01

    A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.

  5. Advanced application flight experiment breadboard pulse compression radar altimeter program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.

  6. Collection and processing of data from a phase-coherent meteor radar

    NASA Technical Reports Server (NTRS)

    Backof, C. A., Jr.; Bowhill, S. A.

    1974-01-01

    An analysis of the measurement accuracy requirement of a high resolution meteor radar for observing short period, atmospheric waves is presented, and a system which satisfies the requirements is described. A medium scale, real time computer is programmed to perform all echo recognition and coordinate measurement functions. The measurement algorithms are exercised on noisy data generated by a program which simulates the hardware system, in order to find the effects of noise on the measurement accuracies.

  7. European Science Notes Information Bulletin. Report on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-10-01

    oceanographers. This has occurred at a time of current radar systems . The independent develop- rapidly increasing government interest in and fund...over each area in which surface current is ment of the waves (some motions caused by wave determined (for HF systems , averaging time spans action and...Ocean Observing System ; high-resolution model capabilities; ocean- atmosphere interface; Surface Density Depression Pool; forecasting INTRODUCTION tion

  8. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  9. Multi Ray Model for Near-Ground Millimeter Wave Radar

    PubMed Central

    Litvak, Boris; Pinhasi, Yosef

    2017-01-01

    A quasi-optical multi-ray model for a short-range millimeter wave radar is presented. The model considers multi-path effects emerging while multiple rays are scattered from the target and reflected to the radar receiver. Among the examined scenarios, the special case of grazing ground reflections is analyzed. Such a case becomes relevant when short range anti-collision radars are employed in vehicles. Such radars operate at millimeter wavelengths, and are aimed at the detection of targets located several tens of meters from the transmitter. Reflections from the road are expected to play a role in the received signal strength, together with the direct line-of-sight beams illuminated and scattered from the target. The model is demonstrated experimentally using radar operating in the W-band. Controlled measurements were done to distinguish between several scattering target features. The experimental setup was designed to imitate vehicle near-ground millimeter wave radars operating in vehicles. A comparison between analytical calculations and experimental results is made and discussed. PMID:28867776

  10. Retrieving mesospheric winds and gravity waves using high resolution radar measurements of polar mesospheric summer echoes with MAARSY

    NASA Astrophysics Data System (ADS)

    Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.

    2013-12-01

    The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.

  11. Middle Atmosphere Program. Handbook for MAP, volume 28

    NASA Technical Reports Server (NTRS)

    Liu, C. H. (Editor); Edwards, Belva (Editor)

    1989-01-01

    Extended abstracts from the fourth workshop on the technical and scientific aspects of MST (mesosphere stratosphere troposphere) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence; intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.

  12. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar-reflection data. There are several steeply dipping reflectors with orientations similar to the fracture patterns observed with borehole imaging techniques and in outcrops. The radar-reflection data showed that the vitrophyre in borehole MW09 was more highly fractured than the underlying gabbroic unit. The velocities of radar waves in the bedrock surrounding the boreholes were determined using single-hole vertical radar profiling. Velocities of 114 and 125 meters per microsecond were used to determine the distance to reflectors, the radial depth of penetration, and the dip of reflectors. The bimodal volcanic units appear to be ideal for radar-wave propagation. For the radar surveys collected at this site, radar reflections were detected up to 40 m into the rock from the borehole. These results indicate that boreholes could conservatively be spaced about 15-20 m apart for hole-to-hole radar methods to be effective for imaging between the boreholes and monitoring remediation. Integrated analysis of drilling and borehole-geophysical logs indicates the vitrophyric formation is more fractured than the more mafic gabbroic units in these boreholes. There does not, however, appear to be a quantifiable difference in the radar-wave penetration in these two rock units.

  13. Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1984-01-01

    The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.

  14. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  15. First Joint Observations of Radio Aurora by the VHF and HF Radars of the ISTP SB RAS

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Lebedev, V. P.; Kutelev, K. A.; Kushnarev, D. S.; Grkovich, K. V.

    2018-01-01

    Two modern radars for diagnosis of the ionosphere by the radio-wave backscattering method, namely, the Irkutsk incoherent scatter radar at VHF (IISR, 154-162 MHz) and the Ekaterinburg coherent radar at HF (EKB, 8-20 MHz) are operated at the Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS). The paper analyzes the results of joint observations of strong scattering (radio aurora) on June 8, 2015. To determine the geographical position of the radio aurora, we developed original methods that take into account both the features of the radio-wave propagation and the features of the radar antenna systems. It is shown that there are areas where the spatial position of the HF and VHF radio aurora can coincide. This permits using the radars as a single complex for diagnosis of the characteristics of small-scale high-latitude irregularities in the ionospheric E and F layers. A comparative analysis of the characteristics and temporal dynamics of the radio-aurora region in the HF and VHF ranges is performed. Using the DMSP satellite data, it has been shown that the radio aurora dynamics during this experiment with the EKB radar can be related with the spatial dynamics of the localized area with high electric field, which moves from high to equatorial latitudes. It is found that due to the broader field of view, radio aurora at the HF radar was stably observed 6-12 min earlier than at the VHF radar. This permits using the EKB radar data for prediction of the radio-aurora detection by the IISR radar.

  16. Radar studies of gravity waves and tides in the middle atmosphere - A review

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1981-01-01

    A review is presented of recent radar studies of gravity waves and tides in the middle atmosphere (over regions of approximately 10-30 and 60-90 km). The techniques used for monitoring the motions are outlined and their limitations are pointed out. The radars provide observations of short-period (1 min-1 h) gravity waves and tides at selected height intervals, depending on the radar frequency and the observation technique. The following contributions to the study of the midatmosphere are included in the discussion: (1) buoyancy oscillations and short-period (less than 10 min) acoustic-gravity waves have been observed in the troposphere and stratosphere and, in several cases, their generation and propagation near critical levels has been reconciled with theoretical models; (2) excitation of stratospheric waves by penetrative convection associated with thunderstorms has been established; (3) stratospheric and mesospheric tides at diurnal and semidiurnal periods have been observed; and (4) long-period (approximately 2 to 5 days) waves have been observed in the mesosphere. It is noted that more comprehensive data bases need to be obtained for further tidal and wave studies.

  17. Radar backscatter from the sea: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1992-04-01

    The subwindowing method of modelling synthetic-aperture-radar (SAR) imaging of ocean waves was extended to allow wave propagation in arbitrary directions. Simulated images show that the SAR image response to swells that are imaged by velocity bunching is reduced by random smearing due to wind-generated waves. The magnitude of this response is not accurately predicted by introducing a finite coherence time in the radar backscatter. The smearing does not affect the imaging of waves by surface radar cross-section modulation, and is independent of the wind direction. Adjusting the focus of the SAR processor introduces an offset in the image response of the surface scatters. When adjusted by one-half the azimuthal phase velocity of the wave, this compensates the incoherent advance of the wave being imaged, leading to a higher image contrast. The azimuthal cut-off and range rotation of the spectral peak are predicted when the imaging of wind-generated wave trains is simulated. The simulated images suggest that velocity bunching and azimuthal smearing are strongly interdependent, and cannot be included in a model separately.

  18. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  19. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  20. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-02-26

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  1. Field Experiments on SAR Detection of Film Slicks

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.

    2013-03-01

    Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.

  2. MIT Lincoln Laboratory Facts 2015

    DTIC Science & Technology

    2015-01-01

    this technology to industry for deployment in operational systems. Current efforts focus on radio - frequency (RF) military satellite communications ... frequency submarine communications demonstration ■■ Continuous-wave diode laser developed in InGaAsP/InP alloy ■■ Ground-based Electro-Optical Deep...Radar upgrade ■■ Miniaturized radio - frequency receiver ■■ Missile Alternative Range Target Instrument payloads ■■ Multifunction phased array radar

  3. Auroral-Region Dynamics Determined with the Chatanika Radar.

    DTIC Science & Technology

    1982-11-01

    report) 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from report) 18 . SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on...for 1 April 1973 .......... ... 41 18 Vertical Neutral Wind Measured with the Fabry-Perot Interferometer ......... ........................ ... 44 vii...Waves Determined from Radar Observations on 18 January 1976 ..... ............... ... 50 23 Meridional Wind and Gravity Waves Determined from Radar

  4. Proceedings of the 1981 RADC Microwave Magnetics Technology Workshop, June 10-11, 1981,

    DTIC Science & Technology

    1983-01-01

    tactical radar system, one that is not unrealistic, a tactical radar system of 20,000 elements. If the Air Force were to buy 50 of these systems, which...that you need to accurately match the devices RF-IF. One of the problems that we have right now is that, say at 30 GHz you wanted to buy match down...converters at 30 GHz, you’d have a very difficult time buying matched down converters. The people developing millimeter wave devices are right now

  5. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  6. A Coupled Model System for Southeast Florida: Wave Model Validation Using Radar and In Situ Observations

    DTIC Science & Technology

    2012-02-24

    also included. The “ground truth” for waves validation includes in situ data (ADCP and buoy) and high frequency Wellen Radar (WERA HF) data...which swells are able to pass through islands and shoals to arrive at the in situ data region is highly sensitive to whether currents are included...grid 1: WW3 • ∆x = ∆y = 0.5° ≈ 55 km • Longitude: x = -100° to -0.5° W (260° to 359.5° E), nx =200 • Latitude: y =17° to 59° N, ny =85 • no

  7. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  8. Flight test of MMW radar for brown-out helicopter landing

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.

    2012-06-01

    Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.

  9. Selective wave-transmitting electromagnetic absorber through composite metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  10. HF radar detection of infrasonic waves generated in the ionosphere by the 28 March 2005 Sumatra earthquake

    NASA Astrophysics Data System (ADS)

    Bourdillon, Alain; Occhipinti, Giovanni; Molinié, Jean-Philippe; Rannou, Véronique

    2014-03-01

    Surface waves generated by earthquakes create atmospheric waves detectable in the ionosphere using radio waves techniques: i.e., HF Doppler sounding, GPS and altimeter TEC measurements, as well as radar measurements. We present observations performed with the over-the-horizon (OTH) radar NOSTRADAMUS after the very strong earthquake (M=8.6) that occurred in Sumatra on March 28, 2005. An original method based on the analysis of the RTD (Range-Time-Doppler) image is suggested to identify the multi-chromatic ionospheric signature of the Rayleigh wave. The proposed method presents the advantage to preserve the information on the range variation and time evolution, and provides comprehensive results, as well as easy identification of the waves. In essence, a Burg algorithm of order 1 is proposed to compute the Doppler shift of the radar signal, resulting in sensitivity as good as obtained with higher orders. The multi-chromatic observation of the ionospheric signature of Rayleigh wave allows to extrapolate information coherent with the dispersion curve of Rayleigh waves, that is, we observe two components of the Rayleigh waves with estimated group velocities of 3.8 km/s and 3.6 km/s associated to 28 mHz (T~36 s) and 6.1 mHz (T~164 s) waves, respectively. Spectral analysis of the RTD image reveals anyway the presence of several oscillations at frequencies between 3 and 8 mHz clearly associated to the transfer of energy from the solid-Earth to the atmosphere, and nominally described by the normal modes theory for a complete planet with atmosphere. Oscillations at frequencies larger than 8 mHz are also observed in the spectrum but with smaller amplitudes. Particular attention is pointed out to normal modes 0S29 and 0S37 which are strongly involved in the coupling process. As the proposed method is frequency free, it could be used not only for detection of ionospheric perturbations induced by earthquakes, but also by other natural phenomena as well as volcanic explosions and particularly tsunamis, for future oceanic monitoring and tsunami warning systems.

  11. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiswell, S.

    2010-01-15

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located closemore » to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.« less

  12. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  13. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  14. Operational wave forecasting with spaceborne SAR: Prospects and pitfalls

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1986-01-01

    Measurements collected in the Shuttle Imaging Radar (SIR-B) Extreme Waves Experiment confirm the ability of Synthetic Aperture Radar (SAR) to yield useful estimates of wave directional energy spectra over global scales, at least for shuttle altitudes. However, azimuth fall-off effects tend to become severe for wavelengths shorter than about 100 m in most sea states. Moreover, the azimuth fall-off problem becomes increasingly severe as the platform altitude increases beyond 300 km. The most viable solution to the global wave measurements problem may be a low altitude spacecraft containing a combination of both the SAR and the Radar Ocean Wave Spectrometry (ROWS). Such a combination could have a synergy which yield global spectral estimates superior to those of either instrument singly employed.

  15. Study of and proposals for the correction of errors in a radar ranging device designed to facilitate docking of a teleoperator maneuvering system

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1982-01-01

    A frequency modulated continuous wave radar system was developed. The system operates in the 35 gigahertz frequency range and provides millimeter accuracy range and range rate measurements. This level of range resolution allows soft docking for the proposed teleoperator maneuvering system (TMS) or other autonomous or robotic space vehicles. Sources of error in the operation of the system which tend to limit its range resolution capabilities are identified. Alternative signal processing techniques are explored with emphasis on determination of the effects of inserting various signal filtering circuits in the system. The identification and elimination of an extraneous low frequency signal component created as a result of zero range immediate reflection of radar energy from the surface of the antenna dish back into the mixer of the system is described.

  16. Medical applications of shortwave FM radar: remote monitoring of cardiac and respiratory motion.

    PubMed

    Mostov, K; Liptsen, E; Boutchko, R

    2010-03-01

    This article introduces the use of low power continuous wave frequency modulated radar for medical applications, specifically for remote monitoring of vital signs in patients. Gigahertz frequency radar measures the electromagnetic wave signal reflected from the surface of a human body and from tissue boundaries. Time series analysis of the measured signal provides simultaneous information on range, size, and reflective properties of multiple targets in the field of view of the radar. This information is used to extract the respiratory and cardiac rates of the patient in real time. The results from several preliminary human subject experiments are provided. The heart and respiration rate frequencies extracted from the radar signal match those measured independently for all the experiments, including a case when additional targets are simultaneously resolved in the field of view and a case when only the patient's extremity is visible to the radar antennas. Micropower continuous wave FM radar is a reliable, robust, inexpensive, and harmless tool for real-time monitoring of the cardiac and respiratory rates. Additionally, it opens a range of new and exciting opportunities in diagnostic and critical care medicine. Differences between the presented approach and other types of radars used for biomedical applications are discussed.

  17. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  18. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  19. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  20. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array

    PubMed Central

    Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860

  1. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    PubMed

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  2. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  3. Conference on the Ionosphere and Radio Wave Propagation, 3rd, University of Sydney, Australia, February 11-15, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Cole, D. G.; McNamara, L. F.

    1985-12-01

    Various papers on the ionosphere and radio wave propagation are presented. The subjects discussed include: day-to-day variability in foF2 at low latitudes over a solar cycle; semiempirical, low-latitude ionospheric model; remote sensing with the Jindalee skywave radar; photographic approach to irregularities in the 80-100 km region; interference of radio waves in a CW system; study of the F-region characteristics at Waltair; recent developments in the international reference ionosphere; research-oriented ionosonde with directional capabilities; and ionospheric forecasting for specific applications. Also addressed are: experimental and theoretical techniques for the equatorial F region; empirical models of ionospheric electron concentration; the Jindalee ionospheric sounding system; a semiempirical midlatitude ionospheric model; Es structure using an HF radar; short-term variations in f0F2 and IEC; nonreciprocity in Omega propagation observed at middle latitudes; propagation management for no acknowledge HF links; new techniques in ionospheric sounding and studies; and lunar effects in the ionospheric F region.

  4. In-situ Calibration Methods for Phased Array High Frequency Radars

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.

    2016-12-01

    HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in the presence of reflecting structures (buildings, fences), or possibly fractal nature of the wavefronts; (e) amplitudes lack stability in time and azimuth to be usable as a-priori calibrations, confirming the accepted method of re-normalizing amplitudes by the signal of nearby cells prior to beam-forming.

  5. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  6. Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B

    NASA Technical Reports Server (NTRS)

    Scheffler, A. O.; Liu, C. H.

    1984-01-01

    A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed.

  7. A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1986-01-01

    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope.

  8. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no.2, pp. 231-235, April 2010. [2] Senet, C. M., Seemann, J., Flampouris, S., and Ziemer, F. (2008). Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-Band radar image sequences of the sea surface (November 2007). IEEE Trans. on Geoscience and Remote Sensing, 46(8), 2267-2279. [3] F. Ziemer, and W. Rosenthal, "Directional spectra from shipboard navigation radar during LEWEX". Directional Ocean Wave Spectra: Measuring, Modeling, Predicting, and Applying, 1991 R. C. Beal, Ed., The Johns Hopkins University Press, pp. 125-127. [4] Weimin Huang ; Gill, E.," Surface Current Measurement Under Low Sea State Using Dual Polarized X-Band Nautical Radar", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, no.6, page 186-1873, 2012.

  9. Millimeter-wave radar for vital signs sensing

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; Benton, Carla; Bryan, Erik

    2009-05-01

    In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.

  10. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    PubMed

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  11. Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation (Les Effets des Conditions Defavorables de Propagation sur les Systemes Optiques, IR et a Ondes Millimetiques)

    DTIC Science & Technology

    1993-11-01

    In this section, we recall definitions of dual linear incoherent KH,’ radar measurables, rainfall rate and the specific attenuation (7) due to...reflectivity data. Two different path lengths (d1,) 10 and 20 from a C-band dual linear polarization radar measurements, Km., have been considered...model for simulation of dual linear polarization radar 7. REFERENCES measurement fields", to be published on lEE 1. Leitao, M. J. and P. A. Watson

  12. Localization and Mapping Using Only a Rotating FMCW Radar Sensor

    PubMed Central

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-01-01

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523

  13. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  14. Localization and mapping using only a rotating FMCW radar sensor.

    PubMed

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-04-08

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.

  15. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

    PubMed Central

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  16. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  17. Development of new tsunami detection algorithms for high frequency radars and application to tsunami warning in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Grilli, S. T.; Guérin, C. A.; Shelby, M. R.; Grilli, A. R.; Insua, T. L.; Moran, P., Jr.

    2016-12-01

    A High-Frequency (HF) radar was installed by Ocean Networks Canada in Tofino, BC, to detect tsunamis from far- and near-field seismic sources; in particular, from the Cascadia Subduction Zone. This HF radar can measure ocean surface currents up to a 70-85 km range, depending on atmospheric conditions, based on the Doppler shift they cause in ocean waves at the Bragg frequency. In earlier work, we showed that tsunami currents must be at least 0.15 m/s to be directly detectable by a HF radar, when considering environmental noise and background currents (from tide/mesoscale circulation). This limits a direct tsunami detection to shallow water areas where currents are sufficiently strong due to wave shoaling and, hence, to the continental shelf. It follows that, in locations with a narrow shelf, warning times using a direct inversion method will be small. To detect tsunamis in deeper water, beyond the continental shelf, we proposed a new algorithm that does not require directly inverting currents, but instead is based on observing changes in patterns of spatial correlations of the raw radar signal between two radar cells located along the same wave ray, after time is shifted by the tsunami propagation time along the ray. A pattern change will indicate the presence of a tsunami. We validated this new algorithm for idealized tsunami wave trains propagating over a simple seafloor geometry in a direction normally incident to shore. Here, we further develop, extend, and validate the algorithm for realistic case studies of seismic tsunami sources impacting Vancouver Island, BC. Tsunami currents, computed with a state-of-the-art long wave model are spatially averaged over cells aligned along individual wave rays, located within the radar sweep area, obtained by solving the wave geometric optic equation; for long waves, such rays and tsunami propagation times along those are only function of the seafloor bathymetry, and hence can be precalculated for different incident tsunami directions. A model simulating the radar backscattered signal in space and time as a function of simulated tsunami currents is applied to the sweep area. Numerical experiments show that the new algorithm can detect a realistic tsunami further offshore than a direct detection method. Correlation thresholds for tsunami detection will be derived from the results.

  18. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  19. Planar near-field scanning for compact range bistatic radar cross-section measurement. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S. R.; Walton, E. K.

    1991-01-01

    The design, construction, and testing of a low cost, planar scanning system to be used in a compact range environment for bistatic radar cross-section (bistatic RCS) measurement data are discussed. This scanning system is similar to structures used for measuring near-field antenna patterns. A synthetic aperture technique is used for plane wave reception. System testing entailed comparison of measured and theoretical bistatic RCS of a sphere and a right circular cylinder. Bistatic scattering analysis of the ogival target support, target and pedestal interactions, and compact range room was necessary to determine measurement validity.

  20. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  1. Coplanar monolithic integrated circuits for low-noise communication and radar systems

    NASA Astrophysics Data System (ADS)

    Bessemoulin, Alexandre; Verweyen, Ludger; Marsetz, Waldemar; Massler, Hermann; Neumann, Markus; Hulsmann, Axel; Schlechtweg, Michael

    1999-12-01

    This paper presents coplanar millimeter-wave monolithic integrated circuits with high performance and small size for use in low noise communication and radar system applications. Technology and modeling issues with respect to active and passive elements are discussed first. In a second step, the potential of coplanar waveguides to realize compact ICs is illustrated through various design examples, such as low noise amplifiers, mixers and power amplifiers. The performance of multifunctional ICs is also presented by comparing simulated and measured results for a complete 77 GHz Transceive MMIC.

  2. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  3. New Eye for the Navy: The Origin of Radar at the Naval Research Laboratory

    DTIC Science & Technology

    1981-09-29

    had raged in Europe for almost a year was troubling man) Americans. On May 7, the British liner Lusitania , with 128 U.S. citizens among the 1200...crude form of continuous-wave radar-was installed on the French liner Normandie.32 As it was not a secret development, there were numerous reports...recent news items report the French liner S.S. Normandie as being equipped with a system for detecting objects in her path. The system is said to use a 16

  4. Measuring Directional Wave Spectra and Wind Speed with a Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D.; Wright, C. W.; Swift, R. N.; Scott, J. F.; Hines, D. E.

    1999-01-01

    The geometry for the NASA Scanning Radar Altimeter (SRA) is shown. It transmits a 8-ns duration pulse at Ka-band (8.3 mm) and measures time of flight as it scans a 1 degree (two-way) beam from left to right across the aircraft ground track. The most recent configuration determines the surface elevation at 64 points spaced at uniform angular intervals of about 0.7 across a swath whose width is about 0.8 times the aircraft altitude. The system generates these raster lines of the surface topography beneath the aircraft at about a 10 Hz rate. In postflight processing the SRA wave topographic data are transformed with a two-dimensional Fast Fourier Transformation (FFT) and Doppler corrected to produce directional wave spectra. The SRA is not absolutely calibrated in power, but by measuring the relative fall-off of backscatter with increasing incidence angle, the SRA can also determine the mean square slope (mss) of the sea surface, a surrogate for wind speed. For the slope-dependent specular point model of radar sea surface scattering, an expression approximated by a geometric optics form, for the relative variation with incidence angle of the normalized backscatter radar cross section would be sigma (sup 0) (sub rel) = sec (exp 4) theta exp (-tan squared theta/mss) where theta is the off-nadir incidence angle.

  5. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  6. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  7. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    NASA Astrophysics Data System (ADS)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  8. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    NASA Astrophysics Data System (ADS)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a gigantic refrigerator that cools the polar mesospheres in summer. Momentum flux investigations will be the subject of a separate report.

  9. On wind-wave-current interactions during the Shoaling Waves Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.

    2009-01-01

    This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.

  10. Observations with the ROWS instrument during the Grand Banks calibration/validation experiments

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Chapron, B.

    1994-01-01

    As part of a global program to validate the ocean surface sensors on board ERS-1, a joint experiment on the Grand Banks of Newfoundland was carried out in Nov. 1991. The principal objective was to provide a field validation of ERS-1 Synthetic Aperture Radar (SAR) measurement of ocean surface structure. The NASA-P3 aircraft measurements made during this experiment provide independent measurements of the ocean surface along the validation swath. The Radar Ocean Wave Spectrometer (ROWS) is a radar sensor designed to measure direction of the long wave components using spectral analysis of the tilt induced radar backscatter modulation. This technique greatly differs from SAR and thus, provides a unique set of measurements for use in evaluating SAR performance. Also, an altimeter channel in the ROWS gives simultaneous information on the surface wave height and radar mean square slope parameter. The sets of geophysical parameters (wind speed, significant wave height, directional spectrum) are used to study the SAR's ability to accurately measure ocean gravity waves. The known distortion imposed on the true directional spectrum by the SAR imaging mechanism is discussed in light of the direct comparisons between ERS-1 SAR, airborne Canadian Center for Remote Sensing (CCRS) SAR, and ROWS spectra and the use of the nonlinear ocean SAR transform.

  11. 2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station

    USGS Publications Warehouse

    Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.

    2011-01-01

    The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.

  12. A synopsis of X-band radar-derived results from New River Inlet, NC (May 2012): Wave transformation, bathymetry, and tidal currents

    NASA Astrophysics Data System (ADS)

    Honegger, D. A.; Haller, M. C.; Diaz Mendez, G. M.; Pittman, R.; Catalan, P. A.

    2012-12-01

    Land-based X-band marine radar observations were collected as part of the month-long DARLA-MURI / RIVET-DRI field experiment at New River Inlet, NC in May 2012. Here we present a synopsis of preliminary results utilizing microwave radar backscatter time series collected from an antenna located 400 m inside the inlet mouth and with a footprint spanning 1000 m beyond the ebb shoals. Two crucial factors in the forcing and constraining of nearshore numerical models are accurate bathymetry and offshore variability in the wave field. Image time series of radar backscatter from surface gravity waves can be utilized to infer these parameters over a large swath and during times of poor optical visibility. Presented are radar-derived wavenumber vector maps obtained from the Plant et al. (2008) algorithm and bathymetric estimates as calculated using Holman et al. (JGR, in review). We also evaluate the effects of tidal currents on the wave directions and depth inversion accuracy. In addition, shifts in the average wave breaking patterns at tidal frequencies shed light on depth- (and possibly current-) induced breaking as a function of tide level and tidal current velocity, while shifts over longer timescales imply bedform movement during the course of the experiment. Lastly, lowpass filtered radar image time series of backscatter intensity are shown to identify the structure and propagation of tidal plume fronts and multiscale ebb jets at the offshore shoal boundary.

  13. The Science and Technology of the US National Missile Defense System

    NASA Astrophysics Data System (ADS)

    Postol, Theodore A.

    2010-03-01

    The National Missile Defense System utilizes UHF and X-band radars for search, track and discrimination, and interceptors that use long-wave infrared sensors to identify and home on attacking warheads. The radars and infrared sensors in the missile defense system perform at near the theoretical limits predicted by physics. However, in spite of the fantastic technical advances in sensor technology, signal processing, and computational support functions, the National Missile Defense System cannot be expected to ever work in realistic combat environments. This talk will describe why these impressive technologies can never deliver on the promise of a credible defense against long-range ballistic missiles.

  14. Antenna array geometry optimization for a passive coherent localisation system

    NASA Astrophysics Data System (ADS)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  15. Nostradamus: The radar that wanted to be a seismometer

    NASA Astrophysics Data System (ADS)

    Occhipinti, Giovanni; Dorey, Philippe; Farges, Thomas; Lognonné, Philippe

    2010-09-01

    Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra earthquake on the 28 March 2005 (M = 8.6). This is in our knowledge the first time that the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. The latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the “ionospheric seismometers” we discuss and compare the performances of the three different instruments mentioned above, namely HF Doppler sounding, GPS receivers and OTH radar.

  16. Using Radars in Place of Magnetometers: Detection and Properties of Pc3-5 Wave Fields in HF Radar Data

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P.; Menk, F. W.; Waters, C. L.

    2004-12-01

    SuperDARN HF radars are usually used to examine HF echoes from field-aligned ionospheric irregularity structures. However, ground scatter is also often recorded. Because the ground scatter signal is reflected from the ionosphere its Doppler shift is a sensitive indicator of ionospheric motions. We have used the TIGER radar, which operates at relatively low latitudes, to examine ground scatter returns with high time resolution. Ground scatter returns are present virtually every day and wave-like Doppler shift features are evident almost each time. Comparison with ground magnetometer data shows that these are the ionospheric signature of downgoing ULF waves. Several different types of wave features have been observed, including very large scale Pc5, harmonics of field line resonances in the Pc3-4 range, and bandlimited Pc4 at night. This paper presents examples and discusses the wave generation and propagation mechanisms. Furthermore, estimates of the ionospheric transfer function over the 10-110 mHz range are compared with results of numerical and analytical modelling.

  17. Ocean wave-radar modulation transfer functions from the West Coast experiment

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  18. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH, and VV polarizations to estimate wind speed and directional wave spectra, cross-polarized cross-sections and parameters derived from the full polarimetric matrix will be analyzed to investigate their relation with the environmental conditions (wind, waves), using co-located in situ measurements. With this combination of measurements we will first assess the performance of the ASAR products and inversion scheme to estimate the 2D wave spectra and wind in various configurations of polarization state. In addition, we expect new results on the parameters related to the full polarimetric matrix and their relation with environmental conditions. During this workshop, first results of this experiment will be presented.

  19. Modeling and simulation of continuous wave velocity radar based on third-order DPLL

    NASA Astrophysics Data System (ADS)

    Di, Yan; Zhu, Chen; Hong, Ma

    2015-02-01

    Second-order digital phase-locked-loop (DPLL) is widely used in traditional Continuous wave (CW) velocity radar with poor performance in high dynamic conditions. Using the third-order DPLL can improve the performance. Firstly, the echo signal model of CW radar is given. Secondly, theoretical derivations of the tracking performance in different velocity conditions are given. Finally, simulation model of CW radar is established based on Simulink tool. Tracking performance of the two kinds of DPLL in different acceleration and jerk conditions is studied by this model. The results show that third-order PLL has better performance in high dynamic conditions. This model provides a platform for further research of CW radar.

  20. Handbook for MAP, volume 32. Part 1: MAP summary. Part 2: MAPSC minutes, reading, August 1989. MAP summaries from nations. Part 3: MAP data catalogue

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor); Edwards, B. (Editor); Hirota, I. (Editor)

    1991-01-01

    Extended abstracts from the fourth workshop on the technical and scientific aspects of mesosphere stratosphere troposphere (MST) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; the dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence, intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.

  1. Maritime over the Horizon Sensor Integration: High Frequency Surface-Wave-Radar and Automatic Identification System Data Integration Algorithm.

    PubMed

    Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola

    2018-04-09

    To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.

  2. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    PubMed

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  3. Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1993-01-01

    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.

  4. IoSiS: a radar system for imaging of satellites in space

    NASA Astrophysics Data System (ADS)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  5. Full polarimetric millimetre wave radar for stand-off security screening

    NASA Astrophysics Data System (ADS)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  6. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    NASA Astrophysics Data System (ADS)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  7. Solar Radar Experiments

    DTIC Science & Technology

    1998-01-01

    communications satellites and electric power grids. RELATED PROJECTS Studies with the HAARP radar facility being constructed in Alaska are conducted with...on wave-plasma interactions and also are assessing the possible use of HAARP as a solar radar. REFERENCES James, J. C., Radar studies of the sun, in

  8. World War II Radar and Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, G.

    2005-08-01

    The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.

  9. A Cascaded Self-Similar Rat-Race Hybrid Coupler Architecture and its Compact Ka-Band Implementation

    DTIC Science & Technology

    2017-03-01

    real-estate and limit the system-level performance, including bandwidth, gain, and energy - efficiency. These many challenges are positioning passive...and are used in numerous RF/mm-wave systems for radar and wireless communications. Although a Marchand balun covers a large bandwidth, it is...requires multiple λ/4 transmission lines (t-lines), making its on-chip designs very costly even for RF/mm-wave bands. Reported miniaturized rat-race

  10. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.

  11. Low-cost mm-wave Doppler/FMCW transceivers for ground surveillance applications

    NASA Astrophysics Data System (ADS)

    Hansen, H. J.; Lindop, R. W.; Majstorovic, D.

    2005-12-01

    A 35 GHz Doppler CW/FMCW transceiver (Equivalent Radiated Power ERP=30dBm) has been assembled and its operation described. Both instantaneous beat signals (relating to range in FMCW mode) and Doppler signals (relating to targets moving at ~1.5 ms -1) exhibit audio frequencies. Consequently, the radar processing is provided by laptop PC using its inbuilt video-audio media system with appropriate MathWorks software. The implications of radar-on-chip developments are addressed.

  12. Space Radar Image of Oil Slicks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. The image is located at 19.25 degrees north latitude and 71.34 degrees east longitude and covers an area 20 km by 45 km (12.4 miles by 27.9 miles). SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  13. Development, Test, and Evaluation of Microwave Radar Water Level (MWWL) Sensors' Wave Measurement Capability

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Heitsenrether, R.

    2015-12-01

    Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.

  14. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  15. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.

  16. Expanding the spectrum: 20 years of advances in MMW imagery

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Lovberg, John A.; Kolinko, Valdimir G.

    2017-05-01

    Millimeter-wave imaging has expanded from the single-pixel swept imagers developed in the 1960s to large field-ofview real-time systems in use today. Trex Enterprises has been developing millimeter-wave imagers since 1991 for aviation and security applications, as well as millimeter-wave communications devices. As MMIC device development was stretching into the MMW band in the 1990s, Trex developed novel imaging architectures to create 2-D staring systems with large pixel counts and no moving parts while using a minimal number of devices. Trex also contributed to the device development in amplifiers, switches, and detectors to enable the next generation of passive MMW imaging systems. The architectures and devices developed continue to be employed in security imagers, radar, and radios produced by Trex. This paper reviews the development of the initial real-time MMW imagers and associated devices by Trex Enterprises from the 1990s through the 2000s. The devices include W-band MMIC amplifiers, switches, and detector didoes, and MMW circuit boards and optical processors. The imaging systems discussed include two different real-time passive MMW imagers flown on helicopters and a MMW radar system, as well as implementation of the devices and architectures in simpler stand-off and gateway security imagers.

  17. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  18. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  19. Radar studies of the atmosphere using spatial and frequency diversity

    NASA Astrophysics Data System (ADS)

    Yu, Tian-You

    This work provides results from a thorough investigation of atmospheric radar imaging including theory, numerical simulations, observational verification, and applications. The theory is generalized to include the existing imaging techniques of coherent radar imaging (CRI) and range imaging (RIM), which are shown to be special cases of three-dimensional imaging (3D Imaging). Mathematically, the problem of atmospheric radar imaging is posed as an inverse problem. In this study, the Fourier, Capon, and maximum entropy (MaxEnt) methods are proposed to solve the inverse problem. After the introduction of the theory, numerical simulations are used to test, validate, and exercise these techniques. Statistical comparisons of the three methods of atmospheric radar imaging are presented for various signal-to-noise ratio (SNR), receiver configuration, and frequency sampling. The MaxEnt method is shown to generally possess the best performance for low SNR. The performance of the Capon method approaches the performance of the MaxEnt method for high SNR. In limited cases, the Capon method actually outperforms the MaxEnt method. The Fourier method generally tends to distort the model structure due to its limited resolution. Experimental justification of CRI and RIM is accomplished using the Middle and Upper (MU) Atmosphere Radar in Japan and the SOUnding SYstem (SOUSY) in Germany, respectively. A special application of CRI to the observation of polar mesosphere summer echoes (PMSE) is used to show direct evidence of wave steepening and possibly explain gravity wave variations associated with PMSE.

  20. Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the Electromagnetic Perspective

    DTIC Science & Technology

    2011-09-01

    and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the

  1. Quad-channel beam switching WR3-band transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Eren, Gülesin; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar

    2017-05-01

    Millimeter wave radar systems offer several advantages such as the combination of high resolution and the penetration of adverse atmosphere like smoke, dust or rain. This paper presents a monolithic millimeter wave integrated circuit (MMIC) transmitter which offers four channel beam steering capabilities and can be used as a radar or communication system transmitter. At the local oscillator input, in order to simplify packaging, a frequency tripler is used to multiply the 76.6 - 83.3 GHz input signal to the intended 230 - 250 GHz output frequency range. A resistive mixer is used for the conversion of the intermediate frequency signal into the RF domain. The actual beam steering network is realized using an active single pole quadruple throw (SP4T) switch, which is connected to a integrated Butler matrix. The MMIC was fabricated in a 35 nm InGaAs mHEMT process and has a size of 4.0 mm × 1.5 mm

  2. Upper ocean fine-scale features in synthetic aperture radar imagery. Part I: Simultaneous satellite and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Maingot, C.; Matt, S.; Fenton, J.; Lehner, S.; Brusch, S.; Perrie, W. A.; Zhang, B.

    2011-12-01

    The new generation of synthetic aperture radar (SAR) satellites provides high resolution images that open new opportunities for identifying and studying fine features in the upper ocean. The problem is, however, that SAR images of the sea surface can be affected by atmospheric phenomena (rain cells, fronts, internal waves, etc.). Implementation of in-situ techniques in conjunction with SAR is instrumental for discerning the origin of features on the image. This work is aimed at the interpretation of natural and artificial features in SAR images. These features can include fresh water lenses, sharp frontal interfaces, internal wave signatures, as well as slicks of artificial and natural origin. We have conducted field experiments in the summer of 2008 and 2010 and in the spring of 2011 to collect in-situ measurements coordinated with overpasses of the TerraSAR-X, RADARSAT-2, ALOS PALSAR, and COSMO SkyMed satellites. The in-situ sensors deployed in the Straits of Florida included a vessel-mounted sonar and CTD system to record near-surface data on stratification and frontal boundaries, a bottom-mounted Nortek AWAC system to gather information on currents and directional wave spectra, an ADCP mooring at a 240 m isobath, and a meteorological station. A nearby NOAA NEXRAD Doppler radar station provided a record of rainfall in the area. Controlled releases of menhaden fish oil were performed from our vessel before several satellite overpasses in order to evaluate the effect of surface active materials on visibility of sea surface features in SAR imagery under different wind-wave conditions. We found evidence in the satellite images of rain cells, squall lines, internal waves of atmospheric and possibly oceanic origin, oceanic frontal interfaces and submesoscale eddies, as well as anthropogenic signatures of ships and their wakes, and near-shore surface slicks. The combination of satellite imagery and coordinated in-situ measurements was helpful in interpreting fine-scale features on the sea surface observed in the SAR images and, in some cases, linking them to thermohaline features in the upper ocean. Finally, we have been able to reproduce SAR signatures of freshwater plumes and sharp frontal interfaces interacting with wind stress, as well as internal waves by combining hydrodynamic simulations with a radar imaging algorithm. The modeling results are presented in a companion paper (Matt et al., 2011).

  3. Forward-looking automotive radar sensor

    NASA Astrophysics Data System (ADS)

    Ganci, Paul; Potts, Steven; Okurowski, Frank

    1995-12-01

    For intelligent cruise control (ICC) and forward looking collision warning systems to be successful products they must provide robust performance in a complex roadway environment. Inconveniences caused by dropped tracks and nuisance alarms will not be tolerated by consumers, and would likely result in rejection of these new technologies in the marketplace. The authors report on a low-cost automotive millimeter wave (MMW) radar design which addresses shortcomings associated with previously reported ICC system implementations. The importance of the sensor's ability to identify and separately track all obstacles in the field of view is discussed. The applicability of the MMW's FM-CW sensor implementation to collision warning systems is also discussed.

  4. Basic gait analysis based on continuous wave radar.

    PubMed

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Simulation of the trajectory of microwaves during passage of Mesoescale Convective System over Southern Brazil

    NASA Astrophysics Data System (ADS)

    Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.

    2010-12-01

    When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.

  6. Simplified human model and pedestrian simulation in the millimeter-wave region

    NASA Astrophysics Data System (ADS)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  7. Radar analysis of free oscillations of rail for diagnostics defects

    NASA Astrophysics Data System (ADS)

    Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.

    2018-05-01

    One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.

  8. Slope stability radar for monitoring mine walls

    NASA Astrophysics Data System (ADS)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  9. HISCAT: A proposed new scatter facility in Northern Scandinavia

    NASA Technical Reports Server (NTRS)

    Bostrom, R.; Thide, B.

    1986-01-01

    It is proposed that a new versatile ionospheric and atmospheric scatter radar be constructed in northern Scandavia through a multinational collaborative effort. The new facility tentatively named HISCAT (High frequency, High power, High latitude, Heating and Ionospheric Scatter facility), should be used for scientific investigations of: the physics of the neutral (middle) atmosphere; fundamental plasma phenomena, natural or artificially induced in the ionosphere; electrodynamic conditions at high altitudes above the auroral region and in the polar cap ionosphere; plasma waves in the solar atmosphere. The system should thus be able to operate as a mesosphere-stratosphere-troposphere (MST) radar, a so-called ionospheric modification facility, incoherent-scatter radar, coherent-scatter radar, and solar radar. Basically, the new facility should be a device that can operate simultaneously on several frequencies in the frequency range 5 to 50 MHz not covered by other instruments. It should comprise: powerful transmitters, capable of delivering a total average power of several megawatts; an advanced phased antenna array of high gain forming one or two steerable and well collimated beams; and an advanced data collection and analysis system.

  10. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  11. MIMIC For Millimeter Wave Integrated Circuit Radars

    NASA Astrophysics Data System (ADS)

    Seashore, C. R.

    1987-09-01

    A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.

  12. MF/HF Multistatic Mid-Ocean Radar Experiments in Support of SWOTHR (surface-Wave Over-the-Horizon Radar)

    DTIC Science & Technology

    1989-09-16

    SWOTHR was conceived to be an organic asset capable of providing early detection and tracking of fast , surface-skimming threats, such as cruise missiles...distributed real-time processing and threat tracking system. Spe- cific project goals were to verify detection performance pree ctions for small, fast targets...means that enlarging the ground plane would have been a fruitless excercise in any event. B-6 5 i I U Table B-1 summarizes the calculated parameters of

  13. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  14. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  15. Shuttle imaging radar-C science plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit.

  16. Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.

    2010-12-01

    We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.

  17. Test and evaluation of the Airport Surveillance Radar (ASR)-8 wind shear detection system (phase 2), revision

    NASA Astrophysics Data System (ADS)

    Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.

    1980-08-01

    A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.

  18. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  19. TerraSAR-X Measurements of Wind Fields, Ocean Waves and Currents

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.

    2008-01-01

    TerraSAR-X is a new german X-band radar satellite launched on June 15, 2007. In this mission an operational spaceborne synthetic aperture radar (SAR) system with very high spatial resolution is set up producing remote sensing products for commercial and scientific use. TerraSAR-X is a scientific and technological continuation of the successful Space Shuttle missions SIR-C/X and SRTM.The spacecraft is equipped with a phased array X-band SAR, which can operate in different polarisations and has furthermore beam stearing capabilities. In addition the system has a split antenna mode, which is able to provide along track interferometric information. The instrument is designed for multiple imaging modes like Stripmap, Spotlight and ScanSAR.Due to its polarimetric and interferometric capabilities as well as the high spatial resolution of up to 1 m, the TerraSAR-X sensor is a very interesting tool for oceanography. The presentation will give an overview of several applications, which are of both scientific and commercial interest, like e.g. current and ocean wave measurements, monitoring of morphodynamical processes or high resolution wind field retrieval. The potential as well as limitations of the instrument will be summarized and compared with existing sensors. Necessary steps to translate existing C-band SAR inversion algorithms for wind and wave measurements to X-band will be discussed. A strategy will be outlined to achieve this by a combination of theoretical investigations and the use of existing experimental data acquired by both airborne and groundbased X-band radar. First results on the adaption of existing C-band wind retrieval algorithms will be presented. Wind and ocean wave parameter retrievals will be presented, e.g., based on TerraSAR-X scenes taken over the English channel.

  20. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  1. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale convective systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of convective strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale convective systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale convective characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to identified African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. Convective intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points identified as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and ice and liquid water content, suggesting modulation of mesoscale characteristics possibly through feedback with the synoptic environment. Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. One of the MCSs, the 8 September 2006 system, is associated with the passage of an African easterly wave trough while the other, the 14 July 2006 case, is not. Simulations are performed using 1 km horizontal grid spacing, a lower limit on current embedded cloud resolving models within a multi-scale modeling framework. Simulated system structure is compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Results indicate general agreement in the temporal distribution of hydrometeors. Vertical distributions show that ice hydrometeors are often underestimated at mid- and upper-levels, partially due to the inability of the model to produce adequate system heights. Abundance of high reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles indicate larger reflectivities aloft compared to simulated values. Despite these differences and biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model is able to capture gross observed differences between the two MCSs.

  2. High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Hunter, Robert I.; Cassidy, Scott L.; Llombart, Nuria; Gandini, Erio; Bryllert, Tomas; Ferndahl, Mattias; Lindström, Hannu; Tenhunen, Jussi; Vasama, Hannu; Huopana, Jouni; Selkälä, Timo; Vuotikka, Antti-Jussi

    2017-05-01

    The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of 1 x 1 x 1 m3 and a 10 Hz frame rate.

  3. Comet encke: radar detection of nucleus.

    PubMed

    Kamoun, P G; Campbell, D B; Ostro, S J; Pettengill, G H; Shapiro, I I

    1982-04-16

    The nucleus of the periodic comet Encke was detected in November 1980 with the Arecibo Observatory's radar system (wavelength, 12.6 centimeters). The echoes in the one sense of circular polarization received imply a radar cross section of 1.1 +/- 0.7 square kilometers. The estimated bandwidth of these echoes combined with an estimate of the rotation vector of Encke yields a radius for the nucleus of l.5(+2.3)(-1.0) kilometers. The uncertainties given are dependent primarily on the range of models considered for the comet and for the manner in which its nucleus backscatters radio waves. Should this range prove inadequate, the true value of the radius of the nucleus might lie outside the limits given.

  4. Performance of the Colorado wind-profiling network, part 1.5A

    NASA Technical Reports Server (NTRS)

    Strauch, R. G.; Earnshaw, K. B.; Merritt, D. A.; Moran, K. P.; Vandekamp, D. W.

    1984-01-01

    The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed.

  5. Space Shuttle Exhaust Modifications of the Mid-Latitude Ionospheric Plasma As Diagnosed By Ground Based Radar

    NASA Astrophysics Data System (ADS)

    Lind, F. D.; Erickson, P. J.; Bhatt, A.; Bernhardt, P. A.

    2009-12-01

    The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used since the early days of the STS program for active ionospheric modification experiments designed to be viewed by ground based ionospheric radar systems. In 1995, the Naval Research Laboratory initiated the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) Program using dedicated Space Shuttle OMS burns scheduled through the US Department of Defense's Space Test Program. SIMPLEX objectives include generation of localized ion-acoustic turbulence and the formation of ionospheric density irregularities for injections perpendicular to the local magnetic field, creating structures which can scatter incident UHF radar signals. We discuss radar observations made during several recent SIMPLEX mid-latitude experiments conducted over the Millstone Hill incoherent scatter radar system in Westford, Massachusetts. OMS engine firings release 10 kg/s of CO2, H2, H2O, and N2 molecules which charge exchange with ambient O+ ions in the F region, producing molecular ions and long lived electron density depletions as recombination occurs with ambient electrons. Depending on the magnetic field angle, the high velocity of the injected reactive exhaust molecules relative to the background ionosphere can create longitudinal propagating ion acoustic waves with amplitudes well above normal thermal levels and stimulate a wide variety of plasma instability processes. These effects produce high radar cross section targets readily visible to the Millstone Hill system, a high power large aperture radar designed to measure very weak scatter from the quiescent background ionosphere. We will survey the plasma instability parameter space explored to date and discuss plans for future SIMPLEX observations.

  6. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  7. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Atlas, David

    1994-01-01

    Synthetic aperture radar (SAR) on board Seasat observed images of stormlike echoes on the sea in 1978. The core of these images is usually an echo-free hole which is attributed to the damping of the short (30-cm) radar detectable gravity waves by the intense rain in the storm core. Although 'the beating down of waves by rain' is consistent with observations by seafarers and with the first scientific explanation of the phenomenon by Reynolds (1875), neither theory nor experiment has provided definitive support. One experiment appears to provide the key; it shows that the kenetic energy of the rain produces sufficient turbulence in a thin fresh water layer to damp 30-cm waves in 10-20 s, thus producing the echo-free hole. A sequence of positive feedbacks then serves to damp the longer waves. The angular dependence of the sea surface echo cross sections seen by Seasat SAR outside the echo-free hole indicates winds diverging from the downdraft induced by the intense rain core. The wind-generated waves and associated echoes extend out to a sharply defined gust front. The sea surface footprint thus mimics the features of a storm microburst. The variations in surface radar cross section due to a combination of rain and wind effects impacts spaceborne measurements of surface winds by scatterometry and rainfall measurements by radar. Portions of this synthesis remain speculative but serve as hypotheses for further research.

  8. Technical guidance and analytic services in support of SEASAT-A. [radar altimeters for altimetry and ocean wave height

    NASA Technical Reports Server (NTRS)

    Brooks, W. L.; Dooley, R. P.

    1975-01-01

    The design of a high resolution radar for altimetry and ocean wave height estimation was studied. From basic principles, it is shown that a short pulse wide beam radar is the most appropriate and recommended technique for measuring both altitude and ocean wave height. To achieve a topographic resolution of + or - 10 cm RMS at 5.0 meter RMS wave heights, as required for SEASAT-A, it is recommended that the altimeter design include an onboard adaptive processor. The resulting design, which assumes a maximum likelihood estimation (MLE) processor, is shown to satisfy all performance requirements. A design summary is given for the recommended radar altimeter, which includes a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns as well as the assumed MLE processor. The feedback loop implementation of the MLE on a digital computer was examined in detail, and computer size, estimation accuracies, and bias due to range sidelobes are given for the MLE with typical SEASAT-A parameters. The standard deviation of the altitude estimate was developed and evaluated for several adaptive and nonadaptive split-gate trackers. Split-gate tracker biases due to range sidelobes and transmitter noise are examined. An approximate closed form solution for the altimeter power return is derived and evaluated. The feasibility of utilizing the basic radar altimeter design for the measurement of ocean wave spectra was examined.

  9. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  10. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  11. Detailed ocean current maps may lie over the horizon

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In another case of military swords being turned into scientific plowshares, two American researchers have used radar systems once designed to detect Soviet planes during the Cold War to map open-ocean currents instead.In the name of science, Thomas Georges and Jack Harlan of NOAA's Environmental Technology Laboratory borrowed some time last summer on the U.S. Navy's over-the-horizon (OTH) radar systems in both Virginia and Texas. Training the radars on the waters off of the southern coast of Florida, the researchers gathered enough data to deduce the surface motion of two 70,000 km2 swatches of the Caribbean Sea and Gulf of Mexico. By bouncing 5-28 MHz radio waves off the ionosphere down to the sea surface and back, the researchers were able to derive the characteristics of the ocean surface from Bragg backscatter resonance.

  12. Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Ralph, F. Martin

    1993-01-01

    Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.

  13. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.

  14. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  15. Frequency Agility Radar,

    DTIC Science & Technology

    1982-12-06

    different model aircraft in different wave bands (P,L, S and X). Yet, the obtained results were relatively complex and it was not easy to find regularity...hertz for the S wave band . This type of narrow wave band signifies that the drift velocity of the target viewed in the reflection center is very low... Band of Airborne Radar With Pulse Width of 0.02)4 s and Grazing Angle of 470) Key: 1. Probability exceeding horizontal coordinates 2. Clutter section 3

  16. Collaborative analysis of Planetary Waves in the Mesospheric Neutral Winds with SuperDARN and TIMED Observations

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.

    2004-12-01

    The SuperDARN HF radars are best known for observing the ExB drift of ionospheric plasma in the high-latitude F region. At mesospheric altitudes the trails of ionization produced by meteors provide another kind of target for radar backscatter, and the motions imparted to these trails by winds in the neutral atmosphere can be measured. In the northern hemisphere the coverage of mesospheric winds currently extends over a 180 deg longitude sector but is confined by propagation conditions to latitudes near 55 deg geographic. We have analyzed several extended periods of simultaneous observations of the neutral wind involving SuperDARN and the TIMED suite of instruments. Often, the winds show clear evidence of large-scale wave events. The quasi 2-day planetary waves are prominent and their occurrence is seen to depend on season. By comparing the wave characteristics between the satellite and ground observations we obtain a complete breakdown of the wave activity in terms of wave periods and zonal wavenumbers. In addition, the semidiurnal tide is a ubiquitous feature of the mid-latitude mesosphere. A single radar station cannot resolve the sun-synchronous component from other contributions at the semidiurnal frequency. We show that with a chain of radars along a latitude band, the true sun-synchronous, or migrating, component can be inferred. Joint analysis can be performed chiefly with data from the SABRE and TIDI instruments.

  17. A case study of A mesoscale gravity wave in the MLT region using simultaneous multi-instruments in Beijing

    NASA Astrophysics Data System (ADS)

    Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars

    2016-03-01

    In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.

  18. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  19. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  20. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  1. Atmospheric Gravity Waves and Turbulent Processes in the Mesopause Region Based on PMSE MAARSY Observations

    NASA Astrophysics Data System (ADS)

    Gudadze, N.; Chau, J. L.; Stober, G.; Latteck, R.

    2016-12-01

    Mesosphere-lower-thermosphere (MLT) polar dynamics are interesting and important subject for study in atmospheric physic. It is considered that mesopause region is where the main part of the Atmospheric gravity waves breaks and/or dissipates. However this region is difficult to observe. Continuous Observations of the polar summer mesosphere with the Middle Atmosphere Alomar Radar System (MAARSY) and its predecessor the ALOMAR-Wind-Radar (ALWIN) (before 2010), have been used to investigate dynamical structures of well-known phenomenon - Polar Mesosphere Summer Echoes (PMSE) which is an important tracer in the summer polar mesopause region. Signal to Noise Ratio (SNR) and Doppler radial velocity from the PMSE are used to investigate the wave-like motions with periods larger than 5 minutes. Such oscillations are studied in terms of atmospheric gravity waves (AGWs). Processes also connected with AGWs as PMSE layering, are studied in connection with the background conditions of the neutral atmosphere as well. Background winds are obtained from collocated meteor radar (MR). We used local enhancement method for the processing of altitude-time SNR images to detect layers in the PMSEs and characterised them. Our preliminary results indicate that PMSE strength and behaviour is correlated with the meridional wind. Furthermore we found that the spectral width (SW), which is a proxy of turbulence, is most of the time weakly dependent on SNR strength. However, there are some events where SW is highly dependent on SNR intensity indicating that they could be associated to turbulent-dominated events.

  2. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  3. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  4. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    DTIC Science & Technology

    2017-07-01

    reradiated wave is captured by the radar’s receive antenna. The presence of measurable EM energy at any discrete multiple of the audio frequency away...the radar receiver (Rx). The presence of measurable EM energy at any discrete multiple of faudio away from the original RF carrier fRF (i.e., at any n

  5. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  6. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  7. Microwave and millimeter-wave Doppler radar heart sensing

    NASA Astrophysics Data System (ADS)

    Boric-Lubecke, Olga; Lin, Jenshan; Lubecke, Victor M.; Host-Madsen, Anders; Sizer, Tod

    2007-04-01

    Technology that can be used to unobtrusively detect and monitor the presence of human subjects from a distance and through barriers can be a powerful tool for meeting new security challenges, including asymmetric battlefield threats abroad and defense infrastructure needs back home. Our team is developing mobile remote sensing technology for battle-space awareness and warfighter protection, based on microwave and millimeter-wave Doppler radar motion sensing devices that detect human presence. This technology will help overcome a shortfall of current see-through-thewall (STTW) systems, which is, the poor detection of stationary personnel. By detecting the minute Doppler shifts induced by a subject's cardiopulmonary related chest motion, the technology will allow users to detect personnel that are completely stationary more effectively. This personnel detection technique can also have an extremely low probability of intercept since the signals used can be those from everyday communications. The software and hardware developments and challenges for personnel detection and count at a distance will be discussed, including a 2.4 GHz quadrature radar single-chip silicon CMOS implementation, a low-power double side-band Ka-band transmission radar, and phase demodulation and heart rate extraction algorithms. In addition, the application of MIMO techniques for determining the number of subjects will be discussed.

  8. Aspect sensitive E- and F-region SPEAR-enhanced incoherent backscatter observed by the EISCAT Svalbard radar

    NASA Astrophysics Data System (ADS)

    Dhillon, R. S.; Robinson, T. R.; Yeoman, T. K.

    2009-01-01

    Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR) facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR), which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.

  9. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical) profile, acquired in October 2016 over a boreal test site in Evo, Finland. The intensity of the reflected backscatter energy was used to measure the height canopy distribution within an individual footprint. As the intensity of the backscatter energy from the ground is exceeding the intensity from vegetation, the estimation of canopy height and the forest structure were based on i) a threshold between canopy and ground and ii) a peak analysis of the backscattering profile. ALS data collected simultaneously was used to validate the TomoRadar results (i.e. canopy height) and to obtain elevation ground truth. The first results show a high agreement between ALS and TomoRadar derived canopy heights. The derived knowledge about the energy distribution within the canopy height profile leads to an increased understanding of the interactions between the radar signal and the forest canopy and will support optimization of future radar systems with respect to forest structure observation.

  10. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  11. Parametric dependence of ocean wave-radar modulation transfer functions

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Cross, A.

    1983-01-01

    Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

  12. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  13. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  14. Stable Research Platform Workshop

    DTIC Science & Technology

    1988-04-01

    autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE

  15. A novel forward and backward scattering wave measurement system for optimizing GPR standoff mine/IED detector

    NASA Astrophysics Data System (ADS)

    Fuse, Yukinori

    2012-06-01

    Standoff detection of mines and improvised explosive devices by ground penetrating radar has advantages in terms of safety and efficiency. However, the reflected signals from buried targets are often disturbed by those from the ground surface, which vary with the antennas angle, making it more difficult to detect at a safe distance. An understanding of the forward and backward scattering wave is thus essential for improving standoff detection capability. We present some experimental results from using our measurement system for such an analysis.

  16. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  17. The Effects of High Frequency ULF Wave Activity on the Spectral Characteristics of Coherent HF Radar Returns

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.

    2003-12-01

    It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.

  18. Borehole radar interferometry revisited

    USGS Publications Warehouse

    Liu, Lanbo; Ma, Chunguang; Lane, John W.; Joesten, Peter K.

    2014-01-01

    Single-hole, multi-offset borehole-radar reflection (SHMOR) is an effective technique for fracture detection. However, commercial radar system limitations hinder the acquisition of multi-offset reflection data in a single borehole. Transforming cross-hole transmission mode radar data to virtual single-hole, multi-offset reflection data using a wave interferometric virtual source (WIVS) approach has been proposed but not fully demonstrated. In this study, we compare WIVS-derived virtual single-hole, multi-offset reflection data to real SHMOR radar reflection profiles using cross-hole and single-hole radar data acquired in two boreholes located at the University of Connecticut (Storrs, CT USA). The field data results are similar to full-waveform numerical simulations developed for a two-borehole model. The reflection from the adjacent borehole is clearly imaged by both the real and WIVS-derived virtual reflection profiles. Reflector travel-time changes induced by deviation of the two boreholes from the vertical can also be observed on the real and virtual reflection profiles. The results of this study demonstrate the potential of the WIVS approach to improve bedrock fracture imaging for hydrogeological and petroleum reservoir development applications.

  19. Electromagnetic-wave propagation in unmagnetized plasmas

    NASA Astrophysics Data System (ADS)

    Gregoire, D. J.; Santoru, J.; Schumacher, R. W.

    1992-03-01

    This final report describes an investigation of electromagnetic-wave propagation in unmagnetized plasmas and its application to the reduction of the radar cross section (RCS) of a plasma-filled enclosure. We have demonstrated RCS reduction of 20 to 25 dB with a prototype system at the radar range at Hughes Aircraft's Microwave Products Division in Torrance. The prototype consists of a sealed ceramic enclosure with a microwave reflector and a plasma generator inside it. When the plasma is present, the RCS is significantly reduced over a frequency range of 4 to 14 GHz. As part of the program, we also investigated the basic-plasma-physics issues relating to the absorption and refraction of electromagnetic (EM) waves in collisional plasmas. We demonstrated absorption as high as 63 dB in a section of plasma-loaded C-band rectangular waveguide. We also developed a theoretical model for the plasma cloaking process that includes scattering contributions from the plasma-vacuum interface, partial reflections from the plasma, and collisional absorption in the plasma. The theoretical model is found to be in reasonable agreement with the experimental results and can be used to confidently design future plasma cloaking systems.

  20. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.

  1. Sporadic E ionization layers observed with radar imaging and ionospheric modification

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Munk, J.; McCarrick, M.

    2014-10-01

    Sporadic E ionization layers have been observed in the daytime subauroral ionospheric E layer by a 30 MHz radar in Alaska. The radar detects coherent backscatter from meter-scale field-aligned plasma density irregularities. The irregularities were generated by ionospheric modification—by the emission of strong HF electromagnetic waves directly beneath the layers—making the layers visible to the radar. Aperture-synthesis methods are used to generate imagery of the layers from the radar data. The layers are patchy, with patches organized along fronts spaced by tens of kilometers and propagating slowly toward the southwest. Similar, naturally occurring layers are commonly observed at middle latitudes at night in the absence of ionospheric modification. That the patchy layers can be found at high magnetic latitudes during the day argues that they are most likely produced through the interaction of the ionospheric layer with neutral atmospheric waves and instabilities. Attenuation of the radar echoes when the HF emission frequency exceeded the third harmonic of the electron gyrofrequency was observed and is discussed.

  2. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  3. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  4. Monte Carlo simulation of wave sensing with a short pulse radar

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Davisson, L. D.; Kutz, R. L.

    1977-01-01

    A Monte Carlo simulation is used to study the ocean wave sensing potential of a radar which scatters short pulses at small off-nadir angles. In the simulation, realizations of a random surface are created commensurate with an assigned probability density and power spectrum. Then the signal scattered back to the radar is computed for each realization using a physical optics analysis which takes wavefront curvature and finite radar-to-surface distance into account. In the case of a Pierson-Moskowitz spectrum and a normally distributed surface, reasonable assumptions for a fully developed sea, it has been found that the cumulative distribution of time intervals between peaks in the scattered power provides a measure of surface roughness. This observation is supported by experiments.

  5. Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.

    2016-07-01

    Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 hPa. The presence of these waves and oscillations right from upper troposphere to lower thermosphere simultaneously is noticed. Though these waves are expected to have higher wave number (higher horizontal wave lengths) few important differences are noticed between Tirupati and Thumba, that are separated by only 500 km. The implication of these waves and oscillations on the background atmosphere and vice versa are discussed. Thus, installation of SVU meteor radar made good complementary observations that can be effectively used to investigate vertical and lateral coupling. Role of these tides in modulating the mesopause altitude is further investigated using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. It is found that mesopause altitude is always close to 100 km and is strongly affected by gravity waves, tides and planetary waves.

  6. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    NASA Astrophysics Data System (ADS)

    Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.

    2017-06-01

    Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.

  7. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  8. Design and development of a multifunction millimeter wave sensor

    NASA Astrophysics Data System (ADS)

    Nadimi, Sayyid Abdolmajid

    1998-11-01

    The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results for backscattering and transmission measurements are presented for both targets for the frequencies from 95.1 to 110.1 GHz.

  9. Studying Nearshore Ocean Waves Using X-Band Radar

    NASA Astrophysics Data System (ADS)

    Laughlin, B.; Bland, R. W.

    2014-12-01

    In January of 2010, ocean waves generated by an unusually large storm caused major erosion damage to the San Francisco coastline, with an erosion "hot spot" partially collapsing a four-lane throughway and threatening important infrastructure. Every winter, swells from the northwest approach San Francisco's Ocean Beach by passing over the southern limb of the San Francisco Bar, an ebb-tidal delta seaward of the Golden Gate Bridge. Refraction of approaching wave-fronts causes focusing of wave energy at the southern end of Ocean Beach where the S.F. Bar meets the coast, possibly explaining the location of the 2010 hot spot. In 2011 an x-band radar system was installed on a site near the erosion hot spot, at an elevation of 13 m above low tide, about 40 m back from the high-tide line. The radar system collects images of wave crests out to 3 km from the scanner. Study of these images when offshore buoys report a single NW swell shows two swell patterns arriving at Ocean Beach, separated in direction by about 30 degrees, and producing a quilted interference pattern, as seen in the accompanying figure. We interpret these swells as following two different paths around the Bar. Preliminary ray-tracing studies tend to confirm this interpretation. To enhance these images we have employed two techniques. The first technique, which is concerned with identification and visualization of swells in the region of interest, involves iteration over possible swell periods: scans taken at integral multiples of a given period are added together, with the sharpest image determining the swell period (see figure) and providing an enhanced image for further analysis. The second technique involves displacement of images in time by phase incrementation in k-space, with subsequent addition of images. We will present results concerning the stability of the relative phase of the two swells, and the applicability to models for propagation of waves. Establishment of a tested propagation model would permit prediction of erosion hazards for hypothetical enhanced storms and rising sea level due to global climate change.

  10. Active shoreline of Ontario Lacus, Titan: A morphological study of the lake and its surroundings

    USGS Publications Warehouse

    Wall, S.; Hayes, A.; Bristow, C.; Lorenz, R.; Stofan, E.; Lunine, J.; Le, Gall A.; Janssen, M.; Lopes, R.; Wye, L.; Soderblom, L.; Paillou, P.; Aharonson, O.; Zebker, H.; Farr, Tom; Mitri, Giuseppe; Kirk, R.; Mitchell, Ken; Notarnicola, C.; Casarano, D.; Ventura, B.

    2010-01-01

    Of more than 400 filled lakes now identified on Titan, the first and largest reported in the southern latitudes is Ontario Lacus, which is dark in both infrared and microwave. Here we describe recent observations including synthetic aperture radar (SAR) images by Cassini's radar instrument (??= 2 cm) and show morphological evidence for active material transport and erosion. Ontario Lacus lies in a shallow depression, with greater relief on the southwestern shore and a gently sloping, possibly wave-generated beach to the northeast. The lake has a closed internal drainage system fed by Earth-like rivers, deltas and alluvial fans. Evidence for active shoreline processes, including the wave-modified lakefront and deltaic deposition, indicates that Ontario is a dynamic feature undergoing typical terrestrial forms of littoral modification. Copyright ?? 2010 by the American Geophysical Union.

  11. Effects of modification of the polar ionosphere with high-power short-wave extraordinary-mode HF waves produced by the spear heating facility

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; S. Kalishin, A.; Oksavik, K.; Baddelley, L.; K. Yeoman, T.

    2012-06-01

    We present the results of modifying the F2 layer of the polar ionosphere experimentally with highpower HF extraordinary-mode waves. The experiments were performed in October 2010 using the short-wave SPEAR heating facility (Longyearbyen, Spitsbergen). To diagnose the effects of high-power HF waves by the aspect-scattering method in a network of diagnostic paths, we used the short-wave Doppler radar CUTLASS (Hankasalmi, Finland) and the incoherent scatter radar ESR (Longyearbyen, Spitsbergen). Excitation of small-scale artificial ionospheric irregularities was revealed, which were responsible for the aspect and backward scattering of the diagnostic signals. The measurements performed by the ESR incoherent scatter radar simultaneously with the heating demonstrated changes in the parameters of the ionospheric plasma, specifically, an increase in the electron density by 10-25 % and an increase in the electron temperature by 10-30 % at the altitudes of the F2 layer, as well as formation of sporadic ionization at altitudes of 140-180 km (below the F2 layer maximum). To explain the effects of ionosphere heating with HF extraordinary-mode waves, we propose a hypothesis of transformation of extraordinary electromagnetic waves to ordinary in the anisotropic, smoothly nonuniform ionosphere.

  12. Tsunami Detection by High Frequency Radar Beyond the Continental Shelf: II. Extension of Time Correlation Algorithm and Validation on Realistic Case Studies

    NASA Astrophysics Data System (ADS)

    Grilli, Stéphan T.; Guérin, Charles-Antoine; Shelby, Michael; Grilli, Annette R.; Moran, Patrick; Grosdidier, Samuel; Insua, Tania L.

    2017-08-01

    In past work, tsunami detection algorithms (TDAs) have been proposed, and successfully applied to offline tsunami detection, based on analyzing tsunami currents inverted from high-frequency (HF) radar Doppler spectra. With this method, however, the detection of small and short-lived tsunami currents in the most distant radar ranges is challenging due to conflicting requirements on the Doppler spectra integration time and resolution. To circumvent this issue, in Part I of this work, we proposed an alternative TDA, referred to as time correlation (TC) TDA, that does not require inverting currents, but instead detects changes in patterns of correlations of radar signal time series measured in pairs of cells located along the main directions of tsunami propagation (predicted by geometric optics theory); such correlations can be maximized when one signal is time-shifted by the pre-computed long wave propagation time. We initially validated the TC-TDA based on numerical simulations of idealized tsunamis in a simplified geometry. Here, we further develop, extend, and apply the TC algorithm to more realistic tsunami case studies. These are performed in the area West of Vancouver Island, BC, where Ocean Networks Canada recently deployed a HF radar (in Tofino, BC), to detect tsunamis from far- and near-field sources, up to a 110 km range. Two case studies are considered, both simulated using long wave models (1) a far-field seismic, and (2) a near-field landslide, tsunami. Pending the availability of radar data, a radar signal simulator is parameterized for the Tofino HF radar characteristics, in particular its signal-to-noise ratio with range, and combined with the simulated tsunami currents to produce realistic time series of backscattered radar signal from a dense grid of cells. Numerical experiments show that the arrival of a tsunami causes a clear change in radar signal correlation patterns, even at the most distant ranges beyond the continental shelf, thus making an early tsunami detection possible with the TC-TDA. Based on these results, we discuss how the new algorithm could be combined with standard methods proposed earlier, based on a Doppler analysis, to develop a new tsunami detection system based on HF radar data, that could increase warning time. This will be the object of future work, which will be based on actual, rather than simulated, radar data.

  13. Clear-air radar observations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation presents two case studies with the measurements of remote (the FM-CW radar and Doppler lidar) and in-situ (research aircraft, kite, and radiosonde) sensors from the stable nighttime boundary layer. It also presents a unique observation of evolution of the convective and nocturnal boundary layers by the S-band radar, and provides description of the observed boundary layer characteristics with the aid of in-situ measurements by the 55m instrumented tower and radiosonde.

  14. Contribution of Small-Scale Correlated Fluctuations of Microstructural Properties of a Spatially Extended Geophysical Target Under the Assessment of Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Yurchak, Boris S.

    2010-01-01

    The study of the collective effects of radar scattering from an aggregation of discrete scatterers randomly distributed in a space is important for better understanding the origin of the backscatter from spatially extended geophysical targets (SEGT). We consider the microstructure irregularities of a SEGT as the essential factor that affect radar backscatter. To evaluate their contribution this study uses the "slice" approach: particles close to the front of incident radar wave are considered to reflect incident electromagnetic wave coherently. The radar equation for a SEGT is derived. The equation includes contributions to the total backscatter from correlated small-scale fluctuations of the slice's reflectivity. The correlation contribution changes in accordance with an earlier proposed idea by Smith (1964) based on physical consideration. The slice approach applied allows parameterizing the features of the SEGT's inhomogeneities.

  15. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    PubMed

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  16. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    PubMed Central

    Lee, Jeong-Yun; Kim, Jeong-Geun

    2018-01-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777

  17. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less

  18. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  19. Detection of MAVs (Micro Aerial Vehicles) based on millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Noetel, Denis; Johannes, Winfried; Caris, Michael; Hommes, Alexander; Stanko, Stephan

    2016-10-01

    In this paper we present two system approaches for perimeter surveillance with radar techniques focused on the detection of Micro Aerial Vehicles (MAVs). The main task of such radars is to detect movements of targets such as an individual or a vehicle approaching a facility. The systems typically cover a range of several hundred meters up to several kilometers. In particular, the capability of identifying Remotely Piloted Aircraft Systems (RPAS), which pose a growing threat on critical infrastructure areas, is of great importance nowadays. The low costs, the ease of handling and a considerable payload make them an excellent tool for unwanted surveillance or attacks. Most platforms can be equipped with all kind of sensors or, in the worst case, with destructive devices. A typical MAV is able to take off and land vertically, to hover, and in many cases to fly forward at high speed. Thus, it can reach all kinds of places in short time while the concealed operator of the MAV resides at a remote and riskless place.

  20. Design of hybrid optical delay line for automotive radar test system

    NASA Astrophysics Data System (ADS)

    Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan

    2015-03-01

    In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.

  1. An airborne study of microwave surface sensing and boundary layer heat and moisture fluxes for FIFE

    NASA Technical Reports Server (NTRS)

    Gogineni, S. P.

    1995-01-01

    The objectives of this work were to perform imaging radar and scatterometer measurements over the Konza Prairie as a part of the First International land surface climatology project Field Experiments (EIFE) and to develop an mm-wave radiometer and the data acquisition system for this radiometer. We collected imaging radar data with the University of Kansas Side-Looking Airborne Radar (SLAR) operating at 9.375 GHz and scatterometer data with a helicopter-mounted scatterometer at 5.3 and 9.6 GHz. We also developed a 35-GHz null-balancing radiometer and data acquisition system. Although radar images showed good delineation of various features of the FIFE site, the data were not useful for quantitative analysis for extracting soil moisture information because of day-to-day changes in the system transfer characteristics. Our scatterometer results show that both C and X bands are sensitive to soil moisture variations over grass-covered soils. Scattering coefficients near vertical are about 4 dB lower for unburned areas because of the presence of a thatch layer, in comparison with those for burned areas. The results of the research have been documented in reports, oral presentations, and published papers.

  2. Remocean : a marine radar as a safety tool for offshore platforms

    NASA Astrophysics Data System (ADS)

    Serafino, Francesco; Ludeno, Giovanni; Arturi, Daniele; Lugni, Claudio; Natale, Antonio; Soldovieri, Francesco

    2013-04-01

    In the recent years, there is a growing interest towards offshore platforms for electric power energy with a focus to the ones exploiting wind or sea surface currents force. In this frame, an important role can be played the marine X-band radar systems, which are able to acquire high resolution information (of the order of the meters) on the sea state (direction and height of the waves) and sea surface current in a range of several kilometers from the radar platform. The information gained from the radar is therefore very useful for many issues related to the offshore platforms installation and safety. In fact, the X-band radar system can be deployed to gain a long-term information about the direction and the velocity of sea surface current so to drive in a proper way the installation of the turbines by choosing the right areas; to use the information about the long-term sea state monitoring to evaluate the vulnerability of the platforms not only against the extreme climate events but also against the structural solicitation due to ordinary conditions; to gain indirect information about the wind intensity and direction for the right management of the wind farms. In this work, we will present the marine radar system designed and developed by REMOCEAN (www.remocean.com), a Spin-off of the National Research Council (CNR, Italy). In particular, we will present the application of the REMOCEAN system to the case of the monitoring of the sea state for the offshore platform safety in real conditions.

  3. Time synchronization via lunar radar.

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1972-01-01

    The advent of round-trip radar measurements has permitted the determination of the ranges to the nearby planets with greater precision than was previously possible. When the distances to the planets are known with high precision, the propagation delay for electromagnetic waves reflected by the planets may be calculated and used to synchronize remotely located clocks. Details basic to the operation of a lunar radar indicate a capability for clock synchronization to plus or minus 20 microsec. One of the design goals for this system was to achieve a simple semiautomatic receiver for remotely located tracking stations. The lunar radar system is in operational use for deep space tracking at Jet Propulsion Laboratory and synchronizes five world-wide tracking stations with a master clock at Goldstone, Calif. Computers are programmed to correct the Goldstone transmissions for transit time delay and Doppler shifts so as to be received on time at the tracking stations; this dictates that only one station can be synchronized at a given time period and that the moon must be simultaneously visible to both the transmitter and receiver for a minimum time of 10 min.-

  4. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    NASA Astrophysics Data System (ADS)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at frequencies above 60GHz in a small, cost effective and low power integrated circuit. But with the state of the art (commercial available) SiGe and p-HEMPT GaAs semiconductor processes it becomes possible to implement this concept even at 300GHz in a small MMIC or hybrid circuit.

  5. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  6. An algorithm for power line detection and warning based on a millimeter-wave radar video.

    PubMed

    Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting

    2011-12-01

    Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE

  7. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  8. 39. Perimeter acquisition radar building room #504, techinal maintenance and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Perimeter acquisition radar building room #504, techinal maintenance and repair center (TMRC) and tactical support equipment (TSE) storage area; storage-travel wave tubes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Power allocation and range performance considerations for a dual-frequency EBPSK/MPPSK system

    NASA Astrophysics Data System (ADS)

    Yao, Yu; Wu, Lenan; Zhao, Junhui

    2017-12-01

    Extended binary phase shift keying/M-ary position phase shift keying (EBPSK/MPPSK)-MODEM provides radar and communication functions on a single hardware platform with a single waveform. However, its range estimation accuracy is worse than continuous-wave (CW) radar because of the imbalance of power in two carrier frequencies. In this article, the power allocation method for dual-frequency EBPSK/MPPSK modulated systems is presented. The power of two signal transmitters is adequately allocated to ensure that the power in two carrier frequencies is equal. The power allocation ratios for two types of modulation systems are obtained. Moreover, considerations regarding the range of operation of the dual-frequency system are analysed. In addition to theoretical considerations, computer simulations are provided to illustrate the performance.

  10. Observation of Kelvin-Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway

    NASA Astrophysics Data System (ADS)

    Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.

    2018-05-01

    We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.

  11. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    USGS Publications Warehouse

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  12. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  13. A contactless approach for respiratory gating in PET using continuous-wave radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ersepke, Thomas, E-mail: Thomas.Ersepke@rub.de; Büther, Florian; Heß, Mirco

    Purpose: Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient’s torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. Methods: The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient’s torso. A 24 GHz carrier frequencymore » was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [{sup 18}F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. Results: The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69–0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53–0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Conclusions: Accurate respiratory signals were obtained successfully by the proposed method with high spatial and temporal resolution. By working without contact and passing through clothing and blankets, this approach minimizes preparation time and increases the convenience of the patient during the scan.« less

  14. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  15. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented. The estimates of roughness parameters variability during precipitation are obtained. The first measurements of rain influencing on cross section and Doppler spectrum of backscattered acoustic signal was carried out. The obtained results were compared with calculations based on the theoretical model. Acknowledgments. The reported study was supported by RFBR, research project No. 14-05-31517 mol_a. References 1. Bliven Larry, Branger Hubert, Sobieski Piotr, Giovanangeli Jean-Paul, An analysis of scatterometer returns from a water surface agitated by artificial rain : evidence that ring-waves are the mean feature, Intl. Jl. of Remote Sensing, Vol. 14, n 12, 1993, pp. 2315-2329, 1993 2. Sobieski Piotr, Craeye Christophe, Bliven Larry, A Relationship Between Rain Radar Reflectivity and Height Elevation Variance of Ringwaves due to the Impact of Rain on the Sea Surface, Radio Science, AGU, 44, RS3005, 1-20, 2009 3. Weissman, D. E., and M. A. Bourassa, Measurements of the Effect of Rain-induced Sea Surface Roughness on the Satellite Scatterometer Radar Cross Section, IEEE Trans. Geosci. Remote Sens., 46, 2882-2894, 2008 4. B. Brumley, La Jolla, E.Terray, B.String, «System and method for measuring wave directional spectrum and wave height», USA Patent N US 2004/0184350 A1,23 September 2004 5. James H. Churchill, Albert J. Plueddemann, Stephen M. Faluotico, «Extracting Wind Sea and Swell from Directional Wave Spectra derived from a bottom-mounted ADCP», Woods Hole Oceanographic Institution, Technical Report WHOI-2006-13 6. V. Yu. Karaev, M. B. Kanevsky, E. M. Meshkov, Measuring the parameters of sea-surface roughness by underwater acoustic systems: discussion of the device concept, Radiophysics and Quantum Electronics, V. 53, I. 9-10. pp. 569-579, 2011

  16. Study on De-noising Technology of Radar Life Signal

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Fang; Wang, Lian-Huan; Ma, Jiang-Fei; Wang, Pei-Pei

    2016-05-01

    Radar detection is a kind of novel life detection technology, which can be applied to medical monitoring, anti-terrorism and disaster relief street fighting, etc. As the radar life signal is very weak, it is often submerged in the noise. Because of non-stationary and randomness of these clutter signals, it is necessary to denoise efficiently before extracting and separating the useful signal. This paper improves the radar life signal's theoretical model of the continuous wave, does de-noising processing by introducing lifting wavelet transform and determine the best threshold function through comparing the de-noising effects of different threshold functions. The result indicates that both SNR and MSE of the signal are better than the traditional ones by introducing lifting wave transform and using a new improved soft threshold function de-noising method..

  17. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  18. Detecting Negative Obstacles by Use of Radar

    NASA Technical Reports Server (NTRS)

    Mittskus, Anthony; Lux, James

    2006-01-01

    Robotic land vehicles would be equipped with small radar systems to detect negative obstacles, according to a proposal. The term "negative obstacles" denotes holes, ditches, and any other terrain features characterized by abrupt steep downslopes that could be hazardous for vehicles. Video cameras and other optically based obstacle-avoidance sensors now installed on some robotic vehicles cannot detect obstacles under adverse lighting conditions. Even under favorable lighting conditions, they cannot detect negative obstacles. A radar system according to the proposal would be of the frequency-modulation/ continuous-wave (FM/CW) type. It would be installed on a vehicle, facing forward, possibly with a downward slant of the main lobe(s) of the radar beam(s) (see figure). It would utilize one or more wavelength(s) of the order of centimeters. Because such wavelengths are comparable to the characteristic dimensions of terrain features associated with negative hazards, a significant amount of diffraction would occur at such features. In effect, the diffraction would afford a limited ability to see corners and to see around corners. Hence, the system might utilize diffraction to detect corners associated with negative obstacles. At the time of reporting the information for this article, preliminary analyses of diffraction at simple negative obstacles had been performed, but an explicit description of how the system would utilize diffraction was not available.

  19. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    PubMed

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  20. A comparison of in situ and airborne radar observations of ocean wave directionality

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Peng, C. Y.

    1985-01-01

    The directional spectrum of a fully arisen, about 3 m sea as measured by an experimental airborne radar, the NASA K(u)-band radar ocean wave spectrometer (ROWS), is compared to reference pitch-roll buoy data and to the classical SWOP (stereo wave observations project) spectrum for fully developed conditions. The ROWS spectrum, inferred indirectly from backscattered power measurements at 5-km altitude, is shown to be in excellent agreement with the buoy spectrum. Specifically, excellent agreement is found between the two nondirectional height spectra, and mean wave directions and directional spreads as functions of frequency. A comparison of the ROWS and SWOP spectra shows the two spectra to be very similar, in detailed shape as well as in terms of the gross spreading characteristics. Both spectra are seen to exhibit bimodal structures which accord with the Phillips' (1958) resonance mechanism. This observation is thus seen to support Phillips' contention that the SWOP modes were indeed resonance modes, not statistical artifacts.

  1. Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats

    NASA Astrophysics Data System (ADS)

    Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik

    2014-05-01

    Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.

  2. 48. View of typical 90 degree elbow located at horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. View of typical 90 degree elbow located at horizontal corner with output (to scanner radar system control switch) waveguide on top and return wave on bottom of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. System Transversal Equalizer.

    DTIC Science & Technology

    The report describes the implementation, theory of operation, and performance of an adjustable, 48 tap, surface wave transversal equalizer designed...for the Rome Air Development Center, Floyd Site Radar. The transversal equalizer achieves equalization of system distortion by an array of fixed taps...which provide leading and lagging echoes of the main signal. Equalization is achieved by the introduction of an equal but oppositely phased echo of

  4. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  5. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  6. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  7. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  8. Integrated multisensor perimeter detection systems

    NASA Astrophysics Data System (ADS)

    Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.

    2007-10-01

    The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.

  9. Plasma Pancakes and Deep Cavities Generated by High Power Radio Waves from the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Briczinski, S. J., Jr.; Zawdie, K.; Huba, J.; Siefring, C. L.; Sulzer, M. P.; Nossa, E.; Aponte, N.; Perillat, P.; Jackson-Booth, N.

    2017-12-01

    Breakdown of the neutral atmosphere at ionospheric altitudes can be achieved with high power HF waves that reflect on the bottomside of the ionosphere. For overdense heating (i.e., wave frequency < maximum plasma frequency in the F-layer), the largest electric fields in the plasma are found just below the reflection altitude. There, electromagnetic waves are converted into electron plasma (Langmir) waves and ion acoustic waves. These waves are measured by scattering of the 430 MHz radar at Arecibo to from an enhanced plasma line. The photo-electron excitation of Langmuir waves yields a weaker plasma-line profile that shows the complete electron profile with the radar. Once HF enhanced Langmuir waves are formed, they can accelerate the photo-electron population to sufficient energies for neutral breakdown and enhanced ionization inside the HF Radio Beam. Plasma pancakes are produced because the breakdown process continues to build up plasma on bottom of the breakdown clouds and recombination occurs on the older breakdown plasma at the top of these clouds. Thus, the plasma pancake falls with altitude from the initial HF wave reflection altitude near 250 km to about 160 km where ion-electron recombination prevents the plasma cloud from being sustained by the high power HF. Experiments in March 2017 have produced plasma pancakes with about 100 Mega-Watts effective radiated power 5.1 MHz with the Arecibo HF Facility. Observations using the 430 MHz radar show falling plasma pancakes that disappear at low altitudes and reform at the F-layer critical reflection altitude. Sometimes the periodic and regular falling motion of the plasma pancakes is influenced by Acoustic Gravity Waves (AGW) propagating through the modified HF region. A rising AGW can cause the plasma pancake to reside at nearly constant altitude for 10 to 20 minutes. Dense cavities are also produced by high power radio waves interacting with the F-Layer. These structures are observed with the Arecibo 430 MHz radar as intense bight-outs in the plasma profile. Multiple cavities are seen simultaneously.

  10. Rough surface scattering based on facet model

    NASA Technical Reports Server (NTRS)

    Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.

    1974-01-01

    A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.

  11. URSI and Nachrichtentechnische Gesellschaft, General Session, Kleinheubach, West Germany, Oct. 6-10, 1986, Reports

    NASA Astrophysics Data System (ADS)

    Factors affecting the atmospheric propagation of EM waves, research on the ionosphere, and advances in radar and communications technology are examined in reviews and reports. Topics discussed include refraction corrections for radio astronomy and geodesy, speckle masking, radar studies of atmospheric motion, EISCAT measurements in the polar electrojet, active experiments in the polar ionosphere, and dispersion relations for drift-Alfven and drift-acoustic waves. Consideration is given to a microcomputer prediction system for HF communications over Europe, frequency determination of a hyperfine line of CH4 at 88 THz, multipath propagation in digital mobile communication, a robust digital voice transmission technique for land mobile radio, CMOS LSI for digital signal processing in mobile radio equipment, the representation of EM fields by dyadic Green functions, scalarization of Maxwell's equations for anisotropic media, and satellite antennas for land vehicles and aircraft.

  12. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  13. Capturing atmospheric effects on 3D millimeter wave radar propagation patterns

    NASA Astrophysics Data System (ADS)

    Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy

    2016-05-01

    Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.

  14. REMOTE SENSING IN OCEANOGRAPHY.

    DTIC Science & Technology

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  15. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  16. Oil Slick Observation at Low Incidence Angles in Ku-Band

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  17. Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application

    NASA Astrophysics Data System (ADS)

    Zulpadrianto, Z.; Yohandri, Y.; Putra, A.

    2018-04-01

    The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.

  18. Microwave Magnetic Materials for Radar and Signal Processing Devices - Thin Film and Bulk Oxides and Metals

    DTIC Science & Technology

    2007-11-29

    films, (3) low field effective linewidth in polycrystalline ferrites, (4) Fermi-Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet...Fermi- Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet (YIG) film strips in a feedback ring system, (5) the Hamiltonian...XRD data. point in field was so small that field modulation and lock -in The FMR field is taken at the peak loss point in the (b) detection methods

  19. GP Workbench Manual: Technical Manual, User's Guide, and Software Guide

    USGS Publications Warehouse

    Oden, Charles P.; Moulton, Craig W.

    2006-01-01

    GP Workbench is an open-source general-purpose geophysical data processing software package written primarily for ground penetrating radar (GPR) data. It also includes support for several USGS prototype electromagnetic instruments such as the VETEM and ALLTEM. The two main programs in the package are GP Workbench and GP Wave Utilities. GP Workbench has routines for filtering, gridding, and migrating GPR data; as well as an inversion routine for characterizing UXO (unexploded ordinance) using ALLTEM data. GP Workbench provides two-dimensional (section view) and three-dimensional (plan view or time slice view) processing for GPR data. GP Workbench can produce high-quality graphics for reports when Surfer 8 or higher (Golden Software) is installed. GP Wave Utilities provides a wide range of processing algorithms for single waveforms, such as filtering, correlation, deconvolution, and calculating GPR waveforms. GP Wave Utilities is used primarily for calibrating radar systems and processing individual traces. Both programs also contain research features related to the calibration of GPR systems and calculating subsurface waveforms. The software is written to run on the Windows operating systems. GP Workbench can import GPR data file formats used by major commercial instrument manufacturers including Sensors and Software, GSSI, and Mala. The GP Workbench native file format is SU (Seismic Unix), and subsequently, files generated by GP Workbench can be read by Seismic Unix as well as many other data processing packages.

  20. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  1. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    NASA Astrophysics Data System (ADS)

    Provan, G.; Yeoman, T. K.

    1997-02-01

    Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  2. Design of a Forward Looking Synthetic Aperture Radar for an Autonomous Cryobot for Subsurface Exploration of Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.; Stone, W.

    2017-12-01

    We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.

  3. The aperture synthesis imaging capability of the EISCAT_3D radars

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2010-05-01

    The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.

  4. Observation of wave refraction at an ice edge by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.

    1991-01-01

    In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).

  5. Studies of Tidal and Planetary Wave Variability in the Middle Atmosphere using UARS and Correlative MF Radar Data

    NASA Technical Reports Server (NTRS)

    Fritts, David C.

    1996-01-01

    The goals of this research effort have been to use MF radar and UARS/HRDI wind measurements for correlative studies of large-scale atmospheric dynamics, focusing specifically on the tidal and various planetary wave structures occurring in the middle atmosphere. We believed that the two data sets together would provide the potential for much more comprehensive studies than either by itself, since they jointly would allow the removal of ambiguities in wave structure that are difficult to resolve with either data set alone. The joint data were to be used for studies of wave structure, variability, and the coupling of these motions to mean and higher-frequency motions.

  6. Internal inertia-gravity waves in the tropical lower stratosphere observed by the Arecibo radar

    NASA Technical Reports Server (NTRS)

    Maekawa, Y.; Kato, S.; Fukao, S.; Sato, T.; Woodman, R. F.

    1984-01-01

    A quasi-periodic wind oscillation with an apparent 20-50 hour period was observed at between 16 and 20 km in every experiment conducted during three periods from 1979 to 1981 with the Arecibo UHF radar. The wave disappeared near 20 km, where the mean zonal flow had easterly shear with height. This phenomenon is discussed in terms of wave absorption at a critical level, and it is suggested that the wave had a westward horizontal phase speed of 10-20 m/sec. On the basis of a relationship from f-plane theory in which the Doppler-shifted wave frequency approaches the Coriolis frequency at the critical level, an intrinsic period and horizontal wavelength at the wave-generated height of 20-30 hours and about 2000 km, respectively, are inferred.

  7. Development of Oil Spill Monitoring System for the Black Sea, Caspian Sea and the Barents/Kara Seas (DEMOSS)

    NASA Astrophysics Data System (ADS)

    Sandven, Stein; Kudriavtsev, Vladimir; Malinovsky, Vladimir; Stanovoy, Vladimir

    2008-01-01

    DEMOSS will develop and demonstrate elements of a marine oil spill detection and prediction system based on satellite Synthetic Aperture Radar (SAR) and other space data. In addition, models for prediction of sea surface pollution drift will be developed and tested. The project implements field experiments to study the effect of artificial crude oil and oil derivatives films on short wind waves and multi-frequency (Ka-, Ku-, X-, and C-band) dual polarization radar backscatter power and Doppler shift at different wind and wave conditions. On the basis of these and other available experimental data, the present model of short wind waves and radar scattering will be improved and tested.A new approach for detection and quantification of the oil slicks/spills in satellite SAR images is developed that can discriminate human oil spills from biogenic slicks and look-alikes in the SAR images. New SAR images are obtained in coordination with the field experiments to test the detection algorithm. Satellite SAR images from archives as well as from new acquisitions will be analyzed for the Black/Caspian/Kara/Barents seas to investigate oil slicks/spills occurrence statistics.A model for oil spills/slicks transport and evolution is developed and tested in ice-infested arctic seas, including the Caspian Sea. Case studies using the model will be conducted to simulate drift and evolution of oil spill events observed in SAR images. The results of the project will be disseminated via scientific publications and by demonstration to users and agencies working with marine monitoring. The project lasts for two years (2007 - 2009) and is funded under INTAS Thematic Call with ESA 2006.

  8. Integrating Millimeter Wave Radar with a Monocular Vision Sensor for On-Road Obstacle Detection Applications

    PubMed Central

    Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng

    2011-01-01

    This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver’s visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible. PMID:22164117

  9. Integrating millimeter wave radar with a monocular vision sensor for on-road obstacle detection applications.

    PubMed

    Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng

    2011-01-01

    This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver's visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible.

  10. Optical frequency modulation continuous wave coherent laser radar for spacecraft safe landing vector velocity measurement

    NASA Astrophysics Data System (ADS)

    Sui, Xiao-lin; Zhou, Shou-huan

    2013-05-01

    The design and performance of Optical frequency modulation continuous wave (OFMCW) coherent laser radar is presented. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed.We also give a hardware structure of the OFMCW coherent laser radar. We made a detailed analysis of the measurement error. Its accuracy in the speed range is less than 0.5%.Measurement results for the movement of the carrier has also made a detailed assessment. The results show that its acceleration vector has better adaptability. The circuit structure is also given a detailed design. At the end of the article, we give the actual authentication method and experimental results.

  11. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors.

    PubMed

    Kagawa, Masayuki; Suzumura, Kazuki; Matsui, Takemi

    2016-08-01

    Disturbed sleep has become more common in recent years. To improve the quality of sleep, undergoing sleep observation has gained interest as a means to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures heart rate (HR), heart rate variability (HRV), body movements, and respiratory signals of a sleeping person using two 24-GHz microwave radars placed beneath the mattress. We introduce a method that dynamically selects the window width of the moving average filter to extract the pulse waves from the radar output signals. The Pearson correlation coefficient between two HR measurements derived from the radars overnight, and the reference polysomnography was the average of 88.3% and the correlation coefficient for HRV parameters was the average of 71.2%. For identifying wake and sleep periods, the body-movement index reached sensitivity of 76.0%, and a specificity of 77.0% with 10 participants. Low-frequency (LF) components of HRV and the LF/HF ratio had a high degree of contribution and differed significantly across the three sleep stages (REM, LIGHT, and DEEP; p <; 0.01). In contrast, high-frequency (HF) components of HRV were not significantly different across the three sleep stages (p > 0.05). We applied a canonical discriminant analysis to identify wake or sleep periods and to classify the three sleep stages with leave-one-out cross validation. Classification accuracy was 66.4% for simply identifying wake and sleep, 57.1% for three stages (wake, REM, and NREM) and 34% for four stages (wake, REM, LIGHT, and DEEP). This is a novel system for measuring HRs, HRV, body movements, and respiratory intervals and for measuring high sensitivity pulse waves using two radar signals. It simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to improve sleep quality.

  12. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    DTIC Science & Technology

    2017-03-30

    rely on use of Fourier transforms (FFT) and filtering spectra on the linear dispersion relationship for ocean surface waves. This report discusses...the measured signal (e.g., Young et al., 1985). In addition, the methods often rely on filtering the FFT of radar backscatter or Doppler velocities...to those obtained with conventional FFT and dispersion curve filtering techniques (iv) Compare both results of(iii) to ground truth sensors (i .e

  13. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  14. Convection and Easterly Wave Structure Observed in the Eastern Pacific Warm-Pool during EPIC-2001

    NASA Technical Reports Server (NTRS)

    Peterson, Walter A.; Cifelli, R.; Boccippio, D.; Rutledge, S. A.; Fairall, C. W.; Arnold, James E. (Technical Monitor)

    2002-01-01

    During September-October 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC-2001) ITCZ field campaign focused on studies of deep convection in the warm-pool region of the East Pacific. In addition to the TAO mooring array, observational platforms deployed during the field phase included the NOAA ship RN Ronald H. Brown, the NSF ship RN Horizon, and the NOAA P-3 and NCAR C-130 aircraft. This study combines C-band Doppler radar, rawinsonde, and surface heat flux data collected aboard the RN Brown to describe ITCZ convective structure and rainfall statistics in the eastern Pacific as a function of 3-5 day easterly wave phase. Three distinct easterly wave passages occurred during EPIC-2001. Wind and thermodynamic data reveal that the wave trough axes exhibited positively correlated U and V winds and a slight westward phase tilt with height. A relatively strong (weak) northeasterly deep tropospheric shear followed the trough (ridge) axis. Temperature and humidity perturbations exhibited mid-to upper level cooling (warming) and drying (moistening) in the northerly (trough and southerly) phase. At low levels warming (cooling) occurred in the northerly (southerly) phase with little change in the relative humidity, though mixed layer mixing ratios were larger during the northerly phase. When composited, radar, sounding, lightning and surface heat flux observations suggest the following systematic behavior as a function of wave phase: approximately zero to one quarter wavelength ahead of (behind) the wave trough in northerly (southerly) flow, larger (smaller) CAPE, lower (higher) CIN, weaker (stronger) tropospheric shear, higher (lower) conditional mean rain rates, higher (lower) lightning flash densities, and more (less) robust convective vertical structure occurred. Latent and sensible heat fluxes reached a minimum in the northerly phase and then increased through the trough, reaching a peak during the ridge phase (leading the peak in CAPE). From a radar echo coverage perspective, larger areas of light rain and slightly larger (10%) area averaged rain rates occurred in the vicinity of, and just behind, the trough axes in southerly flow. Importantly, the transition in convective structure observed across the trough axis when considered with the relatively small change in area mean rain rates suggests the presence of a transition in the vertical structure of diabatic heating across the easterly waves examined. The inferred transition in heating structure is supported by radar diagnosed divergence profiles that exhibit convective (stratiform) characteristics ahead of (behind) the trough.

  15. RLE progress report no. 133, 1 January - 31 December 1990

    NASA Technical Reports Server (NTRS)

    Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)

    1990-01-01

    Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.

  16. Detection of Humans and Light Vehicles Using Acoustic-to-Seismic Coupling

    DTIC Science & Technology

    2009-08-31

    microphones, video cameras (regular and infrared), magnetic sensors, and active Doppler radar and sonar systems. These sensors could be located at... sonar systems due to dramatic absorption/reflection of electromagnetic/ultrasonic waves [8,9]. 6...engine was turned off, and the car continued moving. This eliminated the engine sound. A PCB microphone, 377B41, with preamplifier , 426A30, and with

  17. Electro-Optics and Millimeter-Wave Technology in Japan.

    DTIC Science & Technology

    1987-05-01

    and communication set is about the price of a car airconditioner . a The GPS could be used in an interferometer application for seismic studies to...COMMUNICATIONS SYSTEM.................. 2-16 10 BATTLE COMMUNICATIONS SYSTEMS ....................... 2-17 11 OPTICAL MODULE PARAMETERS .............. 2-18 12...Conduct follow-up visits to Japanese industries in high interest areas (e.g., displays, radar modules , detectors, and fiber optics), * Visit additional

  18. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer (friction velocity and roughness height) were retrieved by velocity profiling and subsequent data processing based on self-similarity of the turbulent boundary layer and 10-m wind speed was calculated. The wind wave field parameters in the flume were measured by three wire gauges. The measured data on wind waves were used for estimation of the short wave spectra and slope probability density function for "long waves" within composite Bragg theory of microwave radar return. Estimations showed that for co-polarized radar returns the difference between measurements and the predictions of the model is about 1-2 dB and it can be explained by our poor knowledge about the short wave part of the spectrum. For cross-polarized return the difference exceeds 10 dB, and it indicates that some non-Bragg mechanisms (short-crested waves, foam, sprays, etc) are responsible for the depolarization of the returned signal. It seems reasonable then to suppose that the cross-polarized radar return in X- and C-bands will demonstrate similar dependence on wind speed. We compared the dependence of cross-polarized X-band radar cross-section on 10-m wind speed obtained in laboratory conditions with the similar dependence obtained in [2] from the field data for C-band radar cross-section and found out that the laboratory data follow the median of the field data with the constant bias -11 dB. Basing on laboratory data an empirical polynomial geophysical model function was suggested for retrieving wind speed up to 40 m/s from cross-polarized microwave return, which is in good agreement with the direct measurements. This work was carried out under financial support of the RFBR (project codes ¹ 13-05-00865, 12-05-12093) and by grant from the Government of the Russian Federation (project code 11.G34.31.0048). References [1] B. Zhang, W. Perrie Bull. Amer. Meteor. Soc., 93, 531-541, 2012. [2] G.-J. van Zadelhoff, et.al. Atmos. Meas. Tech. Discuss., 6, 7945-7984, doi:10.5194/amtd-6-7945-2013, 2013.

  19. HELIRADAR technology for helicopter all-weather operations

    NASA Astrophysics Data System (ADS)

    Kreitmair-Steck, Wolfgang; Braun, Guenter

    1997-06-01

    Currently available radar instruments are not capable of guiding a helicopter pilot safely during approach and landing under poor visibility conditions. This is due to lack of resolution and lack of elevation information. The RADAR technology that promises to improve this situation is called ROSAR, which stands for Synthetic Aperture Radar based on ROtating Antennas. In 1992 Eurocopter and Daimler- Benz Aerospace investigated the feasibility of an imaging radar based on ROSAR technology. The objective was to provide a video-like image with a resolution good enough to safely guide a helicopter pilot under poor visibility conditions. ROSAR proved to be especially well suited for this type of application since it allows for a stationary carrier platform: Rotating arms with antennas integrated into their tips can be mounted on top of the rotor head. In this way the scanning region of the antennas can cover 360 degree(s). While rotating, the antenna scans the environment from various visual angles without assuming a movement of the carrier platform itself. The signal is then processed as a function of the rotation angle of the antenna movement along a circular path. A radar system of this type is now under development at Eurocopter and Daimler-Benz Aerospace: HeliRadar. HeliRadar is designed as a frequency modulated continuous wave radar working in a frequency band around 35 GHz. The complete transmitter/receiver system is fixed mounted on top of the rotating axis of the helicopter. The received signals are transferred through the center of the rotor axis down into the cabin of the helicopter, where they are processed in a high performance digital signal processor (processing power: 10 GFLOPS). First encouraging results have been obtained from an experiment with `slow motion' movement of the antenna arm.

  20. Toward the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS, and seismic networks

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Perevalova, N. P.; Dobrynina, A. A.; Kutelev, K. A.; Shestakov, N. V.; Bakhtiarov, V. F.; Kusonsky, O. A.; Zagretdinov, R. V.; Zherebtsov, G. A.

    2015-12-01

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite `Chelyabinsk,' based on the data from the network of GPS receivers, coherent decameter radar EKB, and network of seismic stations, located near the meteorite fall trajectory. It is shown that 6-14 min after the bolide explosion, GPS network observed the cone-shaped wavefront of traveling ionospheric disturbances (TIDs) that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661 ± 256 m/s, which corresponds to the expected acoustic wave speed for 240 km height. Fourteen minutes after the bolide explosion, at distances of 200 km, we observed the emergence and propagation of a TID with annular wavefront that is interpreted as gravitational mode of internal atmospheric waves. The propagation velocity of this TID was 337 ± 89 m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite trajectory. The observed TID velocity (400 m/s) and azimuthal properties correlate well with the model of ballistic wave propagating at 120-140 km altitude. It is shown that the azimuthal distribution of the amplitude of vertical seismic oscillations with periods 3-60 s can be described qualitatively by the model of vertical strike-slip rupture, propagating at 1 km/s along the meteorite fall trajectory to distance of about 40 km. These parameters correspond to the direction and velocity of propagation of the ballistic wave peak by the ground. It is shown that the model of ballistic wave caused by supersonic motion and burning of the meteorite in the upper atmosphere can satisfactorily explain the various azimuthal ionospheric effects, observed by the coherent decameter radar EKB, GPS receivers network, and the azimuthal characteristics of seismic waves at large distances.

  1. A study of Equartorial wave characteristics using rockets, balloons, lidar and radar

    NASA Astrophysics Data System (ADS)

    Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.

    Dynamics of low latitude middle atmosphere is dominated by the zonal wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial waves play a significant role in the evolution of QBO and SAO through wave- mean flow interactions resulting in momentum transfer from the waves to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial wave characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin wave (~18 day period), fast Kelvin wave (~8 days) and ultra fast Kelvin wave (~3.3 day period) and RG wave (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin waves, in addition to fast Kelvin waves, contributing to the evolution of the westerly phase of the stratopause SAO.

  2. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  3. Middle Atmosphere Program. Handbook for MAP, volume 9

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1983-01-01

    The term Mesosphere-Stratosphere-Troposphere radar (MST) was invented to describe the use of a high power radar transmitter together with a large vertically, or near vertically, pointing antenna to study the dynamics and structure of the atmosphere from about 10 to 100 km, using the very weak coherently scattered radiation returned from small scale irregularities in refractive index. Nine topics were addressed including: meteorological and dynamic requirements for MST radar networks; interpretation of radar returns for clear air; techniques for the measurement of horizontal and vertical velocities; techniques for studying gravity waves and turbulence; capabilities and limitations of existing MST radar; design considerations for high power VHF radar transceivers; optimum radar antenna configurations; and data analysis techniques.

  4. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

    PubMed Central

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-01

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves. PMID:28106090

  5. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    PubMed

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  6. Titan's radar images: cross-cutting ripples are dunes or warping surface waves?

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    The radar mapping of the Titan's surface (Cassini SC) covering by wide mainly latitudinal strips an important portion of the satellite discovered one persisting pattern related to the dark smooth plains. They are rippled by very regular cross-cutting wavy forms hundred and thousand kilometers long with spacing between ridges or grooves about 1-2 km (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454)-so called "cat scratches". Some important characteristics of this pattern are: 1) it affects very vast expanses of dark smooth material (low-lying terrains of planetary scale) presumably consisting of frozen methane; it penetrates, in not so evident form, onto islands of light icy material (bright terrain) and normally curve them around. 2) it consists of intersecting (cross-cutting) ridge-groove structures not destroying each other under intersection; radar can fix at least two structure directions. 3) the most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long , 1120 km wide, almost a half length of the great planetary circle !) has ridge-to-ridge spacing about 10-20 km. 4) a width of ridges and grooves is nearly equal with variations to both sides. 5) ridges are more bright, grooves are more dark. 6) intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size. Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurisation is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orb. fr. : Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orb fr. around its central body Saturn about 16 days occupies position before Mercury -πR/91. But Titan as a satellite has also 1 another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (wave with granule πR/91) creating two side frequencies. They are get by division and multiplication of the higher fr. by the lower one: the modulations give size πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark parts of the satellite. Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1, # 3, 700; [2] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM). 2

  7. Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael

    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward.

  8. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  9. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. Further details of the methodology of data assimilation, the impact of different dual-pol variables, the influence on precipitation forecast will be presented at the conference.

  10. Micro-Doppler analysis of multiple frequency continuous wave radar signatures

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Rogers, Robert L.

    2007-04-01

    Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.

  11. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  12. New SuperDARN Radar Capabilities for Observing Ionospheric Plasma Convection and ITM Coupling in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.

    2010-12-01

    Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.

  13. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  14. Predicting dangerous ocean waves with spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1984-01-01

    It is pointed out that catastrophes, related to the occurrence of strong winds and large ocean waves, can consume more lives and property than most naval battles. The generation of waves by wind are considered, Pierson et al. (1955) have incorporated statistical concepts into a wave forecast model. The concept of an 'ocean wave spectrum' was introduced, with the wind acting independently on each Fourier component. However, even after 30 years of research and debate, the generation, propagation, and dissipation of the spectrum under arbitrary conditions continue to be controversial. It has now been found that spaceborne SAR has a surprising ability to precisely monitor spatially evolving wind and wave fields. Approaches to overcome certain weaknesses of the SAR method are discussed, taking into account the second Shuttle Imaging Radar experiment, and a possible long-term solution provided by Spectrasat. Spectrasat should be a low-altitude (200 to 250 km) satellite with active drag compensation.

  15. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-12-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  16. Millimeter-wave automotive radars: the markets, technologies, and production costs

    NASA Astrophysics Data System (ADS)

    Raffaelli, Lamberto; Stewart, Earle

    1995-01-01

    This paper examines markets, competing technologies, and required production costs of 77 GHz automotive radars. These products will be offered to the market a few years from now and represent the largest opportunity ever offered to the millimeter-wave (MMW) industry. To succeed in this business, an entire industry, primarily focused in the past on expensive small volume military applications, has to be re-engineered to successfully design and manufacture low cost, large volume parts.

  17. Summary of SAR (Synthetic Aperture Radar) Ocean Wave Data Archived at ERIM (Environmental Research Institute of Michigan).

    DTIC Science & Technology

    1984-05-01

    transform (FFT) techniques achieve the required azi- muthal compression of the SAR Doppler history (Ausherman, 1980). Specially- designed digital...processors have also been designed for 3 -[RIM RADAR DIVISION real-time processing of SAR data aboard the aircraft for display or transmission to a ground...included a multi-sided box pattern designed to image the dominant waves from various directions. Figure 2 presents the results obtained as a function of

  18. A low-cost FMCW radar for footprint detection from a mobile platform

    NASA Astrophysics Data System (ADS)

    Boutte, David; Taylor, Paul; Hunt, Allan

    2015-05-01

    Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.

  19. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    PubMed

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  20. An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.; Eng, W. P.

    1984-01-01

    A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.

  1. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  2. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  3. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  4. 1989 IEEE Aerospace Applications Conference, Breckenridge, CO, Feb. 12-17, 1989, Conference Digest

    NASA Astrophysics Data System (ADS)

    Recent advances in electronic devices for aerospace applications are discussed in reviews and reports. Topics addressed include large-aperture mm-wave antennas, a cross-array radiometer for spacecraft applications, a technique for computing the propagation characteristics of optical fibers, an analog light-wave system for improving microwave-telemetry data communication, and a ground demonstration of an orbital-debris radar. Consideration is given to a verifiable autonomous satellite control system, Inmarsat second-generation satellites for mobile communication, automated tools for data-base design and criteria for their selection, and a desk-top simulation work station based on the DSP96002 microprocessor chip.

  5. Monitoring by forward scatter radar techniques: an improved second-order analytical model

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco

    2017-10-01

    In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.

  6. Geomagnetic Dependence of Medium Scale Traveling Ionospheric Disturbances (MSTIDs) Observed by Mid- and High- Latitude SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J.; Miller, E.; West, M.; Bristow, W. A.

    2013-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min. They are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars for many years, and have typically been attributed to auroral sources propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. The goal of this study is to see if high- and mid- latitude MSTIDs share the same source region. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. A case study using MSTIDs observed at the high latitude Goose Bay Radar (GBR) and the midlatitude Blackstone Radar (BKS) suggest that the auroral source is more likely for GBR than for BKS. BKS radar data from June 2010 - June 2011 were searched for signatures of MSTIDs. Statistics of propagation direction and wavelength for each event are used to suggest MSTID sources. Results show that MSTIDs are observed at BKS primarily in the fall/winter months, which is consistent with previously published results for high latitude stations. Distributions of MSTID occurrence organized by geomagnetic parameters Kp, SYM-H, and AE are presented to investigate MSTID dependence on geomagnetic activity at BKS. No correlation is found between these parameters and midlatitude MSTID occurrence, which suggests that high- and mid-latitude MSTIDs have different sources.

  7. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  8. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.

  9. Survey of Pc3-5 ULF velocity oscillations in SuperDARN THEMIS-mode data: Occurrence statistics and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.

    2017-12-01

    Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.

  10. Investigation of Doppler Effects on the Detection of Polyphase Coded Radar Waveforms

    DTIC Science & Technology

    2003-02-01

    wave2 = amp * sin(2*pi*two+(2*pi/7)); %the second modulated waveform %wave = [wavec wave1 wave2 wavec]; %the wave form put togther wave = amp...waveform wave1 = sin(2*pi*two+(pi/2)); %the first modulated waveform wave2 = sin(2*pi*two+(2*pi/7)); %the second modulated waveform...wave = [wavec wave1 wave2 wavec]; %the wave form put togther normval = max(abs(xcorr(wave,wave))); N=length

  11. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  12. Measurement of hurricane winds and waves with a synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Shemdin, O. H.; King, D. B.

    1979-01-01

    An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.

  13. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  14. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils. Finally, we present laboratory and field results where the GPR measurements are compared to ground-truth gravimetric and time domain reflectometry data. An example of high resolution surface soil moisture map is presented and discussed. The proposed method appears to be an appropriate solution in any applications where soil surface water content must be known at the field scale.

  15. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  16. Ground-penetrating radar research in Belgium: from developments to applications

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Van Meirvenne, Marc; Craeye, Christophe

    2014-05-01

    Ground-penetrating radar research in Belgium spans a series of developments and applications, including mainly ultra wideband radar antenna design and optimization, non-destructive testing for the characterization of the electrical properties of soils and materials, and high-resolution subsurface imaging in agricultural engineering, archeology and transport infrastructures (e.g., road inspection and pipe detection). Security applications have also been the topic of active research for several years (i.e., landmine detection) and developments in forestry have recently been initiated (i.e., for root zone and tree trunk imaging and characterization). In particular, longstanding research has been devoted to the intrinsic modeling of antenna-medium systems for full-wave inversion, thereby providing an effective way for retrieving the electrical properties of soils and materials. Full-wave modeling is a prerequisite for benefiting from the full information contained in the radar data and is necessary to provide robust and accurate estimates of the properties of interest. Nevertheless, this has remained a major challenge in geophysics and electromagnetics for many years, mainly due to the complex interactions between the antennas and the media as well as to the significant computing resources that are usually required. Efforts have also been dedicated to the development of specific inversion strategies to cope with the complexity of the inverse problems usually dealt with as well as ill-posedness issues that arise from a lack of information in the radar data. To circumvent this last limitation, antenna arrays have been developed and modeled in order to provide additional information. Moreover, data fusion ways have been investigated, by mainly combining GPR data with electromagnetic induction complementary information in joint interpretation analyses and inversion procedures. Finally, inversions have been regularized by combining electromagnetics models together with soil hydrodynamic models in mechanistic data assimilation frameworks, assuming process knowledge as information as well. Acknowledgement: GPR research in Belgium benefits from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  17. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; hide

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  18. Variability of plasma-line enhancement in ionospheric modification experiments.

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1972-01-01

    A simple explanation for the variations of plasma-line intensity is suggested. The explanation is based on the fact that the plasma waves responsible for scattering the radar waves occur over a very limited range of heights. The explanation further makes use of the fact that the position of these height ranges of generation depends primarily on the gradient of the number density and to a lesser extent on the temperature and the orientation of the diagnostic radar beam.

  19. Advanced Electronic Technology

    DTIC Science & Technology

    1977-11-15

    Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched

  20. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  1. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb

    PubMed Central

    Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.

    2016-01-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040

  2. Remote wave measurements using autonomous mobile robotic systems

    NASA Astrophysics Data System (ADS)

    Kurkin, Andrey; Zeziulin, Denis; Makarov, Vladimir; Belyakov, Vladimir; Tyugin, Dmitry; Pelinovsky, Efim

    2016-04-01

    The project covers the development of a technology for monitoring and forecasting the state of the coastal zone environment using radar equipment transported by autonomous mobile robotic systems (AMRS). Sought-after areas of application are the eastern and northern coasts of Russia, where continuous collection of information on topographic changes of the coastal zone and carrying out hydrodynamic measurements in inaccessible to human environment are needed. The intensity of the reflection of waves, received by radar surveillance, is directly related to the height of the waves. Mathematical models and algorithms for processing experimental data (signal selection, spectral analysis, wavelet analysis), recalculation of landwash from data on heights of waves far from the shore, determination of the threshold values of heights of waves far from the shore have been developed. There has been developed the program complex for functioning of the experimental prototype of AMRS, comprising the following modules: data loading module, reporting module, module of georeferencing, data analysis module, monitoring module, hardware control module, graphical user interface. Further work will be connected with carrying out tests of manufactured experimental prototype in conditions of selected routes coastline of Sakhalin Island. Conducting field tests will allow to reveal the shortcomings of development and to identify ways of optimization of the structure and functioning algorithms of AMRS, as well as functioning the measuring equipment. The presented results have been obtained in Nizhny Novgorod State Technical University n.a. R. Alekseev in the framework of the Federal Target Program «Research and development on priority directions of scientific-technological complex of Russia for 2014 - 2020 years» (agreement № 14.574.21.0089 (unique identifier of agreement - RFMEFI57414X0089)).

  3. Middle Atmosphere Program. Handbook for MAP. Volume 14: URSI/SCOSTEP Workshop on Technical Aspects of MST Radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1984-01-01

    Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.

  4. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  5. Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.

    NASA Astrophysics Data System (ADS)

    Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus

    2017-04-01

    The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.

  6. 77 GHz radar for first responders

    NASA Astrophysics Data System (ADS)

    Kosowsky, L. H.; Aronoff, A. D.; Ferraro, R.; Alland, S.; Fleischman, E.

    2017-02-01

    First responders have the dangerous task of responding to emergency situations in firefighting scenarios involving homes and offices. The importance of this radar is its ability to see through walls and into adjacent areas to provide the first responder with information to assess the status of a building fire, its occupants, and to supplement his thermal camera which is obstructed by the wall. For the firefighter looking into an adjacent room containing unknown objects including humans, the challenge is to recognize what is in that room, the configuration of the room, and potential escape routes. We have just concluded a series of experiments to illustrate the performance of 77GHz radar in buildings. The experiments utilized the Delphi Automotive radar as the mm wave sensor and included display software developed by L. H. Kosowsky and Associates. The system has demonstrated the capability of seeing through walls consisting of sheetrock separated by two by four pieces of wood. It has demonstrated the ability to see into the adjacent room and to display the existence of persons and furniture Based on published data, the radar will perform well in a smoke, haze, and/or fog environment.

  7. A Novel Approach to Mapping Intertidal Areas Using Shore-Based X-band Marine Radar

    NASA Astrophysics Data System (ADS)

    Bird, Cai; Bell, Paul

    2014-05-01

    Monitoring the morphology of coastal zones in response to high energy weather events and changing patterns of erosion and deposition over time is vital in enabling effective decision-making at the coast. Common methods of mapping intertidal bathymetry currently include vessel-based sonar and airborne LiDAR surveys, which are expensive and thus not routinely collected on a continuous basis. Marine radar is a ubiquitous technology in the marine industry and many ports operate a system to guide ships into port, this work aims to utilise this already existing infrastructure to determine bathymetry over large intertidal areas, currently up to 4 km from the radar. Standard X-band navigational radar has been used in the marine industry to measure hydrodynamics and derive bathymetry using empirical techniques for several decades. Methods of depth mapping thus far have relied on the electromagnetic backscattering from wind-roughened water surface, which allows a radar to gather sea surface image data but requires the waves to be clearly defined. The work presented here does not rely on identifying and measuring these spatial wave features, which increases the robustness of the method. Image data collected by a 9.4Ghz Kelvin Hughes radar from a weather station on Hilbre Island at the mouth of the River Dee estuary, UK were used in the development of this method. Image intensity at each pixel is a function of returned electromagnetic energy, which in turn can be related to the roughness of the sea surface. Images collected over time periods of 30 minutes show general patterns of wave breaking and mark the advance and retreat of the waterline in accordance with the tidal cycle and intertidal morphology. Each pixel value can be extracted from these mean images and analysed over the course of several days, giving a fluctuating time series of pixel intensity, the gradient of which gives a series of pulses representing transitions between wet and dry at each location. A tidal elevation record collected from a gauge at the Island is used to generate a similar series of pulses for each elevation above chart datum. A matching algorithm compares these pulse sequences at each tide level and determines a bed elevation value for each pixel location. Values derived have a maximum error of 1 m when compared to a LiDAR survey of the area during the same time period. Refinements of this technique could form the basis of a long-term automated monitoring system for the morphology of intertidal coastal areas allowing varying scales of sedimentary features to be tracked. This may allow the optimisation of maintenance dredging and quantify the effects of beach nourishment and capital dredging along a shoreline.

  8. Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.

    2010-10-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.

  9. Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers

    NASA Astrophysics Data System (ADS)

    Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou

    2018-05-01

    This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.

  10. Interfacial waves generated by contact line motion through electrowetting

    NASA Astrophysics Data System (ADS)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Bae, Jungmok; Kim, Ho-Young

    2013-11-01

    The contact angle of a liquid-fluid interface can be effectively modulated by EWOD (electrowetting on dielectric). Rapid movement of the contact line, which can be achieved by swift change of voltages at the electrodes, can give rise to interfacial waves under the strong influence of surface tension. Many optofluidic devices employing EWOD actuation, such as lenses, three-dimensional displays and laser radar, use two different liquids in a single cell, implying that the motions of the two liquids should be considered simultaneously to solve the dynamics of interfacial waves. Furthermore, the capillary waves excited by moving contact lines, which inherently involve slipping flows at solid boundaries, pose an interesting problem that has not been treated so far. We perform a perturbation analysis for this novel wave system to find the dispersion relation that relates the wavenumber, and the decay length over which the wave is dissipated by viscous effects. We experimentally corroborate our theory.

  11. Comparisons between wave directional spectra from SAR and pressure sensor arrays

    NASA Technical Reports Server (NTRS)

    Pawka, S. S.; Inman, D. L.; Hsiao, S. V.; Shemdin, O. H.

    1980-01-01

    Simultaneous directional wave measurements were made at Torrey Pines Beach, California, by a synthetic aperture radar (SAR) and a linear array of pressure sensors. The measurements were conducted during the West Coast Experiment in March 1977. Quantitative comparisons of the normalized directional spectra from the two systems were made for wave periods of 6.9-17.0 s. The comparison results were variable but generally showed good agreement of the primary mode of the normalized directional energy. An attempt was made to quantify the physical criteria for good wave imaging in the SAR. A frequency band analysis of wave parameters such as band energy, slope, and orbital velocity did not show good correlation with the directional comparisons. It is noted that absolute values of the wave height spectrum cannot be derived from the SAR images yet and, consequently, no comparisons of absolute energy levels with corresponding array measurements were intended.

  12. The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.

    2017-11-01

    Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.

  13. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  14. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    NASA Technical Reports Server (NTRS)

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic (EM) bias 'epsilon' is an error present in radar altimetry of the ocean due to the nonuniform reflection from wave troughs and crests. The EM bias is defined as the difference between the mean reflecting surface and the mean sea surface. A knowledge of the EM bias is necessary to permit error reduction in mean sea level measurements by satellite radar altimeters. Direct measurements of the EM bias were made from a Shell Offshore oil production platform in the Gulf of Mexico for a six month period during 1989 and 1990. Measurements of the EM bias were made at 5 and 14 Ghz. During the EM bias experiments by Melville et al., a wire wave gauge was used to obtain the modulation of the high frequency waves by the low frequency waves. It became apparent that the EM bias was primarily caused by the modulation of the short waves. This was reported by Arnold et al. The EM bias is explained using physical optics scattering and an empirical model for the short wave modulation. Measurements of the short wave modulation using a wire wave gauge demonstrated a linear dependence of the normalized bias on the short wave modulation strength, M. The theory accurately predicts this dependence by the relation epsilon = -alphaMH sub 1/3. The wind speed dependence of the normalized bias is explained by the dependence of the short wave modulation strength on the wind speed. While other effects such as long wave tilt and curvature will have an effect on the bias, the primary cause of the bias is shown to be due to the short wave modulation. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to estimate the EM bias. The estimated EM bias will be compared to measurements at C and Ku bands.

  15. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    DOT National Transportation Integrated Search

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  16. Polarization Characteristics of Coherent Waves

    DTIC Science & Technology

    2012-03-12

    Columbus, OH, 1952. 9. F.T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience Applications (Artech House, Inc., 1990). 10. H. Mott...15. J.R. Huynen, “Comments on Target Decomposition Theorems,” Direct and Inverse Methods in Radar Polarimetry , Part 1. NAO ASI Series (Kluwer

  17. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  18. Polarimetric Radar images of the Moon at 6-meter Wavelength

    NASA Astrophysics Data System (ADS)

    Vierinen, J.

    2017-12-01

    We present new range-Doppler images of the Moon using 6-meterwavelength. The radar images were obtained using the Jicamarca RadioObservatory 49.92 MHz radar. The observations were performed usingcircular polarization on transmit and two orthogonal linearpolarizations on receive, allowing scattering images to be obtainedwith the polarization matched to the transmitted wave (polarized), andat a polarization orthogonal to the transmitted wave (depolarized).Due to the long wavelength that penetrates efficiently into thesubsurface of the Moon, the radar images are especially useful forstudies of subsurface composition. Two antenna interferometry onreceive was used to remove the Doppler north-south ambiguity. Theimages have approximately 10 km resolution in range 20 km resolutionin Doppler, allowing many large scale features, including maria,terrae, and impact craters to be identified. Strong depolarized returnis observed from relatively new larger impact craters with largebreccia and shallow regolith. Terrae regions with less lossy surfacematerial also appear brighter in both depolarized and polarizedimages. A large region in the area near the Mare Orientale impactbasin has overall higher than mean radar backscatter in both polarizedand depolaried returns, indicating higher than average presence ofrelatively newly formed large breccia in this region. Mare regions arecharacterized by lower polarized and depolarized return, indicatingthat there is higher loss of the radio wave in the subsurface,reducing the echo. We also report unexpected low polarized anddepolarized backscatter from an old impact basin in theSchiller-Schickard region, as well as from the region poleward fromMare Imbrium.

  19. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  20. Measurement of Thunderstorm Cloud-Top Parameters Using High-Frequency Satellite Imagery

    DTIC Science & Technology

    1978-01-01

    short wave was present well to the south of this system approximately 2000 ka west of Baja California. Two distinct flow patterns were present, one...view can be observed in near real time whereas radar observations, although excellent for local purposes, involve substantial errors when composited...on a large scale. The time delay in such large scale compositing is critical when attempting to monitor convective cloud systems for a potential

  1. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  2. An investigation of the RCS (radar cross section) computation of grid cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surfacemore » currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one.« less

  3. Wave Turning and Flow Angle in the E-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Young, M.; Oppenheim, M. M.; Dimant, Y. S.

    2016-12-01

    This work presents results of particle-in-cell (PIC) simulations of Farley-Buneman (FB) turbulence at various altitudes in the high-latitude E-region ionosphere. In that region, the FB instability regularly produces meter-scale plasma irregularities. VHF radars observe coherent echoes via Bragg scatter from wave fronts parallel or anti-parallel to the radar line of sight (LoS) but do not necessarily measure the mean direction of wave propagation. Haldoupis (1984) conducted a study of diffuse radar aurora and found that the spectral width of back-scattered power depends critically on the angle between the radar LoS and the true flow direction, called the flow angle. Knowledge of the flow angle will allow researchers to better interpret observations of coherent back-scatter. Experiments designed to observe meter-scale irregularities in the E-region ionosphere created by the FB instability typically assume that the predominant flow direction is the E×B direction. However, linear theory of Dimant and Oppenheim (2004) showed that FB waves should turn away from E×B and particle-in-cell simulations by Oppenheim and Dimant (2013) support the theory. The present study comprises a quantitative analysis of the dependence of back-scattered power, flow velocity, and spectral width as functions of the flow angle. It also demonstrates that the mean direction of meter-scale wave propagation may differ from the E×B direction by tens of degrees. The analysis includes 2-D and 3-D simulations at a range of altitudes in the auroral ionosphere. Comparison between 2-D and 3-D simulations illustrates the relative importance to the irregularity spectrum of a small but finite component in the direction parallel to B. Previous work has shown this small parallel component to be important to turbulent electron heating and nonlinear transport.

  4. VHF radar measurements during MAP/WINE

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Klostermeyer, J.; Ruster, R.; Schmidt, G.; Rottger, J.

    1983-01-01

    Sensitive Doppler radars which operate in the very high frequency (VHF) band, usually near 50 MHz can measure profiles of background winds, tides, atmospheric gravity waves and turbulence at tropospheric, stratospheric and mesospheric heights. Their ability to observe simultaneously large and small-scale processes makes them unique instruments for studying not only each process separately but also their nonlinear interactions. The mobile VHF radar to be used during the MAP/WINE campaign on Andoya is a modified version of the SOUSY VHF radar being in operation for six years in the Harz Mountains.

  5. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  6. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss the effects of the background ionospheric disturbances and uncertainty in atmospheric parameters on the feasibility and accuracy of retrieval of the open-ocean tsunami heights from observations of the ionosphere.

  7. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the hydrodynamic modulation, in agreement with experimental results reported in recent papers.

  8. A digital laser slopemeter

    NASA Astrophysics Data System (ADS)

    Crossingham, Grant James

    This thesis is concerned with the design of a new ocean going instrument to measure the local sea surface profile. The motivation behind this project was the need to investigate oceanographic features that have been observed using imaging radar aboard aircraft and satellites. The measurements made with this instrument will further the understanding of the processes involved in radar backscatter from the ocean surface and will enable further analysis of ocean phenomena detected using imaging radars. With an improved understanding of these processes it will be possible to analyse quantitatively satellite images generated from around the globe. This will allow global environmental monitoring which could lead to improved weather forecasting, pollution control such as oil slick monitoring and surface and subsurface operations. It is believed that radar signals having a wavelength of 10 to 300mm are backscattered from waves on the ocean surface of similar length. Earlier attempts to measure waves including those designed to measure millimetric waves are critically reviewed and an account of the evolution of the design of a new instrument to measure these small waves is presented. This new instrument has been tested in the laboratory, which has demonstrated that a repeatable wave slope measurement accuracy of +/-0.56° has been achieved in static tests. Dynamic tests made using a wave tank have generated a wave slope profile, clearly showing 10mm wavelengths present on the surface. The new Digital Slopemeter is designed to measure the small-scale sea surface roughness for wavelengths in the range 10mm to 224mm. This instrument uses two grids of wavelength shifting fibres to digitally record the slope of a refracted laser beam. The laser beam is rapidly scanned over the sea surface to ensure that the profile of the surface is effectively stationary over a length of 224mm. The wave slope is sampled at 3.5mm intervals along each scan, allowing 7mm wavelengths to be resolved. This efficient measurement of the sea surface roughness enables a real-time display of the data collected. The design of the instrument permits it to be deployed from the bow of a research vessel in moderate seas. This instrument is therefore simple and flexible to deploy.

  9. Standoff concealed weapon detection using a 350-GHz radar imaging system

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.

    2010-04-01

    The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented.

  10. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  11. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  12. Mapping of sea bottom topography

    NASA Technical Reports Server (NTRS)

    Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.

    1992-01-01

    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.

  13. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Jianping; Zhang, Yachun; Chen, Yudong; Zeng, Xiaojun; Tang, Chunmei

    2015-10-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities, China (No. 2013B33614)

  14. Chest-Worn Health Monitor Based on a Bistatic Self-Injection-Locked Radar.

    PubMed

    Wang, Fu-Kang; Chou, You-Rung; Chiu, Yen-Chen; Horng, Tzyy-Sheng

    2015-12-01

    This paper presents wearable health monitors that are based on continuous-wave Doppler radar technology. To achieve low complexity, low power consumption, and simultaneous wireless transmission of Doppler information, the radar architecture is bistatic with a self-injection-locked oscillator (SILO) tag and an injection-locked oscillator (ILO)-based frequency demodulator. In experiments with a prototype that was operated in the medical body area network and the industrial scientific and medical bands from 2.36 to 2.484 GHz, the SILO tag is attached to the chest of a subject to transform the movement of the chest due to cardiopulmonary activity and body exercise into a transmitted frequency-modulated wave. The tag consumes a very low power of 4.4 mW. The ILO-based frequency demodulator, located 30 cm from the subject, receives and processes this wave to yield the waveform that is associated with the movement of the chest. Following further digital signal processing, the cardiopulmonary activity and body exercise are displayed as time-frequency spectrograms. Promisingly, the experimental results that are presented in this paper reveal that the proposed health monitor has high potential to integrate a cardiopulmonary sensor, a pedometer, and a wireless transmission device on a single radar platform.

  15. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    PubMed

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  16. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-01

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users. PMID:26751445

  17. Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; Lynch, Kristina A.; Fernandes, Philip A.; Aruliah, Anasuya L.; Engebretson, Mark J.; Moen, Jøran I.; Oksavik, Kjellmar; Yahnin, Alexander G.; Yeoman, Timothy K.

    2017-05-01

    We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements with corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.

  18. Sea bottom topography imaging with SAR

    NASA Technical Reports Server (NTRS)

    Vanderkooij, M. W. A.; Wensink, G. J.; Vogelzang, J.

    1992-01-01

    It is well known that under favorable meteorological and hydrodynamical conditions the bottom topography of shallow seas can be mapped with airborne or spaceborne imaging radar. This phenomenon was observed for the first time in 1969 by de Loor and co-workers in Q-band Side Looking Airborne Radar (SLAR) imagery of sandwaves in the North Sea. It is now generally accepted that the imaging mechanism consists of three steps: (1) interaction between (tidal) current and bottom topography causes spatial modulations in the surface current velocity; (2) modulations in the surface current velocity give rise to variations in the spectrum of wind-generated waves, as described by the action balance equation; and (3) variations in the wave spectrum show up as intensity modulations in radar imagery. In order to predict radar backscatter modulations caused by sandwaves, an imaging model, covering the three steps, was developed by the Dutch Sea Bottom Topography Group. This model and some model results will be shown. On 16 Aug. 1989 an experiment was performed with the polarimetric P-, L-, and C-band synthetic aperture radar (SAR) of NASA/JPL. One scene was recorded in SAR mode. On 12 Jul. 1991 another three scenes were recorded, of which one was in the ATI-mode (Along-Track Interferometer). These experiments took place in the test area of the Sea Bottom Topography Group, 30 km off the Dutch coast, where the bottom topography is dominated by sand waves. In-situ data were gathered by a ship in the test area and on 'Measuring Platform Noordwijk', 20 km from the center of the test area. The radar images made during the experiment were compared with digitized maps of the bottom. Furthermore, the profiles of radar backscatter modulation were compared with the results of the model. During the workshop some preliminary results of the ATI measurements will be shown.

  19. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  20. Near- and Far-Field Characterization of Planar mm-Wave Antenna Arrays with Waveguide-to-Microstrip Transition

    NASA Astrophysics Data System (ADS)

    Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2016-09-01

    We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.

  1. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.

    PubMed

    Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio

    2015-01-22

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  2. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    PubMed Central

    Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio

    2015-01-01

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606

  3. Characterising soil surface roughness with a frequency modulated polarimetric radar

    NASA Astrophysics Data System (ADS)

    Seeger, Manuel; Gronz, Oliver; Beiske, Joshua; Klein, Tobias

    2014-05-01

    Soil surface roughness is considered crucial for soil erosion as it determines the effective surface exposed to the raindrop impact. It regulates surface runoff velocity and it causes runoff concentration. But a comprehensive characterisation of the shape of the soils' surface is still difficult to achieve. Photographic systems and terrestrial laser-scanning are nowadays able to generate high resolution DEMs, but the derivation of roughness parameters is still not clear. Spaceborne radar systems are used for about 3 decades for earth survey. Spatial soil moisture distribution, ice sheet monitoring and earth-wide topographic survey are the main objectives of these radar systems, working generally with frequencies <10 GHz. Contrasting with this, technologies emitting frequencies up to 77 GHz are generally used for object tracking purposes. But it is known, that the reflection characteristics, such as intensity and polarisation, strongly depend on the properties of the target object. A new design of a frequency modulated continuous wave radar, emitting a right hand shaped circular polarization and receiving both polarization directions, right and left-hand shaped, is tested here for its ability to detect and quantify different surface roughness. The reflection characteristics of 4 different materials 1) steel, 2) sand (0,5-1 mm), 3) fine (2-4 mm) and 4) coarse (15-30 mm) rock-fragments and different roughness as well as moisture content are analysed. In addition, the signals are taken at 2 different angles to the soil's surface (90° and 70°). For quantification of the roughness, a photographic method (Structure-from-Motion) is applied to generate a detailed DEM and random roughness (RR) is calculated. To characterise the radar signal, different ratios of the reflected channels and polarisations are calculated. The signals show differences for all substrates, also clearly visible between sand and fine rock fragments, despite a wavelength of 1 cm of the electromagnetic waves. A systematic change of the signals with changing roughness is also observed. Measurements show a significant influence of the angle of observation. Soil moisture shows also an influence on the reflected signal, but is quite well differentiable to the effects of the shape of the soil's surface. The results show that polarimetric radar technology may be suitable to characterise the surface of soils, but still faces a big lack of knowledge on how to quantify and differentiate the different signals, how to handle variable observation angles, and finally how to characterise roughness.

  4. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.

  5. Thermal imaging to detect physiological indicators of stress in humans

    NASA Astrophysics Data System (ADS)

    Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.

    2013-05-01

    Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

  6. Dynamics of the upper middle atmosphere (80-110 km) at Tromsoe, June-December 1987, using the Tromsoe/Saskatoon M.F. radar

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.

    1989-01-01

    A real time winds (RTW) system from Saskatoon operated with the Tromsoe M.F. (partial reflection) radar on a continuous basis, June to December 1987. Profiles with 3 km resolution were obtained every 5 minutes with weak ionization, and few geomagnetic disturbances limited the observations normally to 80 to 110 km. However, daily mean winds, tidal characteristics (24, 12 h) such as amplitudes, phases and wavelengths, and gravity wave characteristics (intensities, mean directions) are available throughout this interval, which includes MAC-SINE and Epsilon. This is particularly valuable in defining the background state for some experiments, e.g., rockets, and for comparison with related parameters from the lidar and other radars (EISCAT, SOUSY-VHF). Comparisons with dynamical parameters from Saskatoon (52 N) are made: the zonal circulation was weaker at Tromsoe, tidal amplitudes smaller, and summer 12 h tidal wavelengths shorter (approx. 80 km vs approx. 100 km). The fall transition for this tide occurred in September, earlier than observed elsewhere. Initial comparisons with other experimental systems are also made.

  7. Radar Ocean Wave Spectrometer (ROWS) preprocessing program (PREROWS2.EXE). User's manual and program description

    NASA Technical Reports Server (NTRS)

    Vaughn, Charles R.

    1993-01-01

    This Technical Memorandum is a user's manual with additional program documentation for the computer program PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in 1990. PREROWS2.EXE is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying blocks of data from the original 8mm tape to a PC file.

  8. Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2011-01-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  9. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  10. Radar Absorbing Material Design

    DTIC Science & Technology

    2003-09-01

    layer will depend on the angle of the incidence of the incoming wave. However, for large and ε µ values, the direction of the refracted ray in the...1995. 3. Federation of American Scientist Official Website (www.fas.org), 22 June 2003. 4. Asoke Bhattacharyya, D.L. Sengupta, Radar Cross Section

  11. A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching

    NASA Astrophysics Data System (ADS)

    Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl

    2017-05-01

    Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.

  12. Internal waves in the Gulf of California - Observations from a spaceborne radar

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Holt, B.

    1984-01-01

    Pronounced signatures of internal waves were detected repeatedly in the Gulf of California by the Seasat synthetic aperture radar (SAR). A series of nine images with exactly repeating ground coverage was used to study the temporal variability of the internal wave field in the area. It was found that the number of observed wave groups was highly correlated with the strength of the local tides: the maximum number occurred during spring tides and the minimum number occurred during neap tides, indicating that the internal waves were tidally forced. Most of the wave activity was found to the north of 28 deg N where the tides were the strongest in the Gulf. The application of a simple, nonlinear internal wave model to the observations indicated that the peak-to-peak amplitude of the observed waves was about 50 m with an uncertainty of a factor of 2. The estimated upper bound for the rate of the loss of tidal energy to internal waves was about 5 x 10 to the 15th erg/s, representing only 10 percent of the rate of the dissipation of the dominant M2 tide in the Gulf.

  13. Plug identification in drainage system using electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo

    2017-07-01

    The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.

  14. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  15. Synthesis of structures of electric small-sized radiators using impedance matching materials for millimeter waves

    NASA Astrophysics Data System (ADS)

    Klimov, Konstantin N.; Epaneshnikova, Irina K.; Belevtsev, Andrey M.; Godin, Andrey S.; Drize, Artemiy D.

    2017-10-01

    The usage of impedance matching materials for millimeters waves in antenna systems is a promising direction in the development of modern radar stations that allows unifying nomenclature of radiating elements. One of possible appliances of impedance matching materials is transfer of working frequencies of radiating elements to bands with greater wavelength. The usage of several impedance matching mediums, for example, with ɛr=μr=2, ɛr=μr=4, ɛr=μr=8, ɛr=μr=10 allows to extend waveband of the radiating element by 2, 4, 8 and 10 times.

  16. Nonlinear Internal Wave Interaction in the China Seas

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hsu, Ming-K.

    1998-01-01

    This project researched the nonlinear wave interactions in the East China Sea, and the South China Sea, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave interactions in the East China Sea, the area of the China Sea northeast of Taiwan, and the Yellow Sea is included.

  17. 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany, June 1-4, 1982, Digest. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less

  18. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  19. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  20. Altitude and intensity characteristics of parametric instability excited by an HF pump wave near the fifth electron harmonic

    NASA Astrophysics Data System (ADS)

    Jun, WU; Jian, WU; M, T. RIETVELD; I, HAGGSTROM; Haisheng, ZHAO; Zhengwen, XU

    2017-12-01

    An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Tromsø. The observation of the ultra high frequency radar illustrates the systematic variations of the enhanced ion line and plasma line in altitude and intensity as a function of the pump frequency. The analysis shows that those altitude variations are due to the thermal effect, and the intensity variations of the enhanced ion line are dependent on whether or not the enhanced ion acoustic wave satisfy the Bragg condition of radar. Moreover, a prediction that if the enhancement in electron temperature is suppressed, those systematic variations will be absent, is given.

Top