NASA Astrophysics Data System (ADS)
Iyer, S. K.; Heitsenrether, R.
2015-12-01
Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.
Guided wave and damage detection in composite laminates using different fiber optic sensors.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro
2009-01-01
Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.
Rabani, Amir
2016-01-01
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324
Rabani, Amir
2016-10-12
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
Optimal Control of a Surge-Mode WEC in Random Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertok, Allan; Ceberio, Olivier; Staby, Bill
2016-08-30
The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from anmore » array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.« less
Design and laboratory testing of a prototype linear temperature sensor
NASA Astrophysics Data System (ADS)
Dube, C. M.; Nielsen, C. M.
1982-07-01
This report discusses the basic theory, design, and laboratory testing of a prototype linear temperature sensor (or "line sensor'), which is an instrument for measuring internal waves in the ocean. The operating principle of the line sensor consists of measuring the average resistance change of a vertically suspended wire (or coil of wire) induced by the passage of an internal wave in a thermocline. The advantage of the line sensor over conventional internal wave measurement techniques is that it is insensitive to thermal finestructure which contaminates point sensor measurements, and its output is approximately linearly proportional to the internal wave displacement. An approximately one-half scale prototype line sensor module was teste in the laboratory. The line sensor signal was linearly related to the actual fluid displacement to within 10%. Furthermore, the absolute output was well predicted (within 25%) from the theoretical model and the sensor material properties alone. Comparisons of the line sensor and a point sensor in a wavefield with superimposed turbulence (finestructure) revealed negligible distortion in the line sensor signal, while the point sensor signal was swamped by "turbulent noise'. The effects of internal wave strain were also found to be negligible.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... Partially Exclusive Licensing of U.S. Provisional Patent Application Concerning Blast Wave Sensor AGENCY... ``Blast Wave Sensor,'' filed January 4, 2010. The United States Government, as represented by the... wave sensors and their use to detect blast induced pressure changes, and, in particular, a blast wave...
Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor
NASA Astrophysics Data System (ADS)
Komatsu, K.
2009-12-01
Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall’s (1978) empirical formula and Naess’s (1985) distribution for a narrow-band Gaussian sea. Fig.1. Time series of the ratio of the significant wave height to the maximum wave height in 20 minutes sampling period observed by a drifting buoy with a GPS sensor
Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan
2017-03-22
Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.
NASA Astrophysics Data System (ADS)
Zhang, B.; Yu, S.
2018-03-01
In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
NASA Astrophysics Data System (ADS)
Komatsu, Kosei
Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall's (1978) empirical formula and Naess's (1985) distribution for a narrow-band Gaussian sea.
NASA Technical Reports Server (NTRS)
Swedberg, J. L.; Maschhogg, R. H.
1982-01-01
Characterization studies were performed on flight spare ERB wide field of view Earth flux sensors. Field of view sensitivity profiles were determined for total energy sensors with and without painted baffles. Similarly, sensors with filter domes were also characterized in terms of field of view. The transient response of sensors with filter domes was determined for both long wave and short wave radiation. Long wave radiation interacts directly with the quartz dome causing undesired responses. While short wave radiation was shown not to interact with the domes, modules as a whole exhibited a secondary response to bursts of short wave radiation indicative of a heating mechanism. How the results of this characterization can or should be applied to the data emanating from these sensors on ERB-6 and 7 is outlined.
Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent
Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.
1998-08-18
The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.
Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent
Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.
1998-01-01
The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).
In Situ Guided Wave Structural Health Monitoring System
NASA Technical Reports Server (NTRS)
Zhao, George; Tittmann, Bernhard R.
2011-01-01
Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.
Method of Laser Vibration Defect Analysis
2010-06-04
415. In one embodiment, the frequencies from the reflected ultrasonic wave 430 are sensed and transformed to an electrical signal by transducer...actuator and sensor patches, respectively. Then, a process module loads sensor signal data to identify wave modes, determine the time of arrival of...conditions. An interrogation system includes at least one wave generator for generating a wave signal and optical fiber sensors applied to a structure
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2014-03-11
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-01-01
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010
Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-02-27
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.
Holographic leaky-wave metasurfaces for dual-sensor imaging.
Li, Yun Bo; Li, Lian Lin; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-12-10
Metasurfaces have huge potentials to develop new type imaging systems due to their abilities of controlling electromagnetic waves. Here, we propose a new method for dual-sensor imaging based on cross-like holographic leaky-wave metasurfaces which are composed of hybrid isotropic and anisotropic surface impedance textures. The holographic leaky-wave radiations are generated by special impedance modulations of surface waves excited by the sensor ports. For one independent sensor, the main leaky-wave radiation beam can be scanned by frequency in one-dimensional space, while the frequency scanning in the orthogonal spatial dimension is accomplished by the other sensor. Thus, for a probed object, the imaging plane can be illuminated adequately to obtain the two-dimensional backward scattered fields by the dual-sensor for reconstructing the object. The relativity of beams under different frequencies is very low due to the frequency-scanning beam performance rather than the random beam radiations operated by frequency, and the multi-illuminations with low relativity are very appropriate for multi-mode imaging method with high resolution and anti- noise. Good reconstruction results are given to validate the proposed imaging method.
High-Temperature Surface-Acoustic-Wave Transducer
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang; Tittmann, Bernhard R.
2010-01-01
Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System
NASA Technical Reports Server (NTRS)
Duncan, Joshua J.; Youngquist, Robert C.
2013-01-01
The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors
Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho
2010-03-01
Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.
Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2017-07-01
A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
An acousto-optic sensor based on resonance grating waveguide structure
Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo
2014-01-01
This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203
Theory of fiber-optic, evanescent-wave spectroscopy and sensors
NASA Astrophysics Data System (ADS)
Messica, A.; Greenstein, A.; Katzir, A.
1996-05-01
A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction
NASA Astrophysics Data System (ADS)
McLaskey, Gregory Christofer
Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asperities as well as their failure behavior. With proper scaling, the strong link between material properties and laboratory earthquakes will aid in our understanding of fault mechanics and the generation of earthquakes and seismic tremor.
Velocity Profile measurements in two-phase flow using multi-wave sensors
NASA Astrophysics Data System (ADS)
Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.
2009-02-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
Characterization and Performance of a Liquid Hydrocarbon-Fueled Pulse Detonation Rocket Engine
2001-12-01
head wall pressure (P3) and the two sensors at the end of the tube provided indication of detonation wave passage (Wave1 and Wave2 ). These data...wave speed using the time of passage at Wave1 and Wave2 and the user-defined value of the distance between each sensor (this distance varied slightly...for each tube extension). A detonation velocity of zero was returned for any event in which neither Wave1 or Wave2 sensed a pressure rise of
NASA Technical Reports Server (NTRS)
Dhawan, R.; Gunther, M. F.; Claus, R. O.
1991-01-01
Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.
Calibration of a shock wave position sensor using artificial neural networks
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
1993-01-01
This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.
Optimization of PZT ceramic IDT sensors for health monitoring of structures.
Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed
2017-08-01
Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
The quality of our drinking water: aluminium determination with an acoustic wave sensor.
Veríssimo, Marta I S; Gomes, M Teresa S R
2008-06-09
A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Calculation Of Pneumatic Attenuation In Pressure Sensors
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1991-01-01
Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.
Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals.
Tadokoro, Yuzuru; Nishikawa, Tomohiro; Kang, Boyoung; Takano, Keisuke; Hangyo, Masanori; Nakajima, Makoto
2015-10-01
We demonstrate a sensor card with cholesteric liquid crystals (CLCs) for terahertz (THz) waves generated from a nonlinear crystal pumped by a table-top laser. A beam profile of the THz waves is successfully visualized as color change by the sensor card without additional electronic devices, power supplies, and connecting cables. Above the power density of 4.3 mW/cm2, the approximate beam diameter of the THz waves is measured using the hue image that is digitalized from the picture of the sensor card. The sensor card is low in cost, portable, and suitable for various situations such as THz imaging and alignment of THz systems.
A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.
El Gowini, Mohamed M; Moussa, Walied A
2010-01-01
Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.
Spates, J.J.; Martin, S.J.; Mansure, A.J.
1997-08-26
An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.
Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.
1997-01-01
An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.
Statistical analysis of wavefront fluctuations from measurements of a wave-front sensor
NASA Astrophysics Data System (ADS)
Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.
2017-11-01
Measurements of the wave front aberrations at the input aperture of the Big Solar Vacuum Telescope (LSVT) were carried out by a wave-front sensor (WFS) of an adaptive optical system when the controlled deformable mirror was replaced by a plane one.
Precision cleaning apparatus and method
Schneider, T.W.; Frye, G.C.; Martin, S.J.
1998-01-13
A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.
Evaluation of taste solutions by sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko
In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less
Precision cleaning apparatus and method
Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.
1998-01-01
A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.
A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves
Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian
2016-01-01
Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183
Array of Love-wave sensors to detect CWA low-levels
NASA Astrophysics Data System (ADS)
Matatagui, D.; Fontecha, J.; Fernández, M. J.; Gràcia, I.; Cané, C.; Horrillo, M. C.
2011-11-01
Different Love-wave sensors have been developed in order to detect low-levels of chemical warfare agents for security applications. The different types of sensors have been realized using quartz and LiTaO3, as piezoelectric substrates, and SiO2 and Novolac, as guiding layers. Excellent results have been achieved with the sensors fabricated, measuring up to 200 ppb of DMMP.
Modeling of a Surface Acoustic Wave Strain Sensor
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
NASA Astrophysics Data System (ADS)
Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara
2012-01-01
We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.
Investigation of optical/infrared sensor techniques for application satellites
NASA Technical Reports Server (NTRS)
Kaufman, I.
1972-01-01
A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.
Wireless Multiplexed Surface Acoustic Wave Sensors Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
Recent Progresses of Microwave Marine Remote Sensing
NASA Astrophysics Data System (ADS)
Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui
2016-08-01
It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.
Xiong, Yan; Wu, Jiayi; Wang, Qing; Xu, Jing; Fang, Shenwen; Chen, Jie; Duan, Ming
2017-11-01
In this work, a miniaturized optical sensor was developed for fluoride determination in tea samples to evaluate their specific risks of fluorosis for public health based on evanescent-wave interaction. The sensor design was integrated on the optical fiber by utilizing the evanescent wave produced on the fiber surface to react with sensing reagents. According to the absorption change at 575nm, fluoride could be determined by colorimetric method and evaluated by Beer's law. With improved performances of small detection volume (1.2μL), fast analysis (0.41min), wide linear range (0.01-1.4mgL -1 ), low detection limit (3.5μgL -1 , 3σ) and excellent repeatability (2.34%), the sensor has been applied to fluoride determination in six different tea samples. Conventional spectrophotometry and ion chromatography were employed to validate the sensor's accuracy and potential application. Furthermore, this sensor fabrication provided a miniaturized colorimetric detection platform for other hazardous species monitoring based on evanescent wave interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Dazhong; Kang, Qi; Li, Xiaoyu; Cai, Hongmei; Wang, Yuandong
2007-06-19
This paper presents different experimental results of the influence of an immersion angle (theta, the angle between the surface of a quartz crystal resonator and the horizon) on the resonant frequency of a quartz crystal microbalance (QCM) sensor exposed one side of its sensing surfaces to liquid. The experimental results show that the immersion angle is an added factor that may influence the frequency of the QCM sensor. This type of influence is caused by variation of the reflection conditions of the longitudinal wave between the QCM sensor and the walls of the detection cell. The frequency shifts, measured by varying theta, are related to the QCM sensor used. When a QCM sensor with a weak longitudinal wave is used, its resonant frequency is nearly independent of theta. But, if a QCM sensor with a strong longitudinal wave is employed, the immersion angle is a potential error source for the measurements performed on the QCM sensor. When the reflection conditions of the longitudinal wave are reduced, the influence of theta on the resonant frequency of the QCM sensor is negligible. The slope of the plot of frequency shifts (deltaF) versus (rho eta)(1/2), the square root of the product of solution density (rho) and viscosity (eta), may be influenced by theta in a single experiment for the QCM sensor with a strong longitudinal wave in low viscous liquids, which can however, be effectively weakened by using the averaged values of reduplicated experiments. In solutions with a large (rho eta)(1/2) region (0-55 wt% sucrose solution as an example, with rho value from 1.00 to 1.26 g cm(-3) and eta value from 0.01 to 0.22 g cm(-1) s(-1), respectively), the slope of the plot of deltaF versus (rho eta)(1/2) is independent of theta even for the QCM sensor with a strong longitudinal wave in a single experiment. The influence of theta on the resonant frequency of the QCM sensor should be taken into consideration in its applications in liquid phase.
The Harp probe - An in situ Bragg scattering sensor
NASA Technical Reports Server (NTRS)
Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.
1984-01-01
A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.
Disbonding effects on elastic wave generation and reception by bonded piezoelectric sensor systems
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Martin, Steven A.; Na, Jeong K.
2007-04-01
Durable integrated sensor systems are needed for long-term health monitoring evaluations of aerospace systems. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this research effort, the bonding state of a piezo sensor system was systematically studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand elastic wave generation and reception performance for various states of sensor disbond. Experimental studies were also conducted using scanning laser vibrometry, pitch-catch ultrasound, and pulse-echo ultrasound methods to understand elastic wave propagation effects in thin plate materials. Significant performance loss was observed for increasing levels of sensor disbond as well as characteristic frequency signatures which may be useful in understanding sensor performance levels for future structural health monitoring systems.
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin
2017-11-03
Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.
Ultrasonic liquid-level detector for varying temperature and pressure environments
Anderson, R.L.; Miller, G.N.
1981-10-26
An ultrasonic liquid level detector for use in varying temperature and pressure environments, such as a pressurized water nuclear reactor vessel, is provided. The detector employs ultrasonic extensional and torsional waves launched in a multiplexed alternating sequence into a common sensor. The sensor is a rectangular cross section stainless steel rod which extends into the liquid medium whose level is to be detected. The sensor temperature derived from the extensional wave velocity measurements is used to compensate for the temperature dependence of the torsional wave velocity measurements which are also level dependent. The torsional wave velocity measurements of a multiple reflection sensor then provide a measurement of liquid level over a range of several meters with a small uncertainty over a temperature range of 20 to 250/sup 0/C and pressures up to 15 MPa.
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
NASA Astrophysics Data System (ADS)
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
NASA Astrophysics Data System (ADS)
Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.
2018-01-01
Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.
Methods for use in detecting seismic waves in a borehole
West, Phillip B.; Fincke, James R.; Reed, Teddy R.
2007-02-20
The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.; Gupta, Jyoti
2018-03-01
Fiber optic evanescent wave sensor with graphene as an absorption-enhancing layer to measure hemoglobin concentration in human blood is proposed. Previous modal functions and experimental results describing the variation of optical constants of human blood with different hemoglobin concentrations in the near-infrared spectral region are considered for sensor design simulation. The sensor's performance is closely analyzed in terms of its absorption coefficient, sensitivity, and detection limit. It is found that the proposed sensor should be operated at longer light wavelength to get more enhanced sensitivity and smaller detection limit. At 1000 nm wavelength, a detection limit of 18 μg/dL and sensitivity of 6.71 × 10-4 per g/dL is achievable with the proposed sensor. The sensitivity is found to be better for larger hemoglobin concentrations. The results are correlated with the evanescent wave penetration depth.
NASA Astrophysics Data System (ADS)
Tougher, B. B.
2011-12-01
Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.
Lan, Chengming; Zhou, Wensong; Xie, Yawen
2018-04-16
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.
Xie, Yawen
2018-01-01
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540
2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Kergerise, Michael A.; Rufer, Shann J.
2016-01-01
In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
NASA Astrophysics Data System (ADS)
Kegerise, Michael A.; Rufer, Shann J.
2016-08-01
In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
Shen, Qi; Wang, Tianmiao; Kim, Kwang J
2015-09-28
The ionic polymer-metal composite (IPMC) is a soft material based actuator and sensor and has a promising potential in underwater application. This paper describes a hybrid biomimetic underwater vehicle that uses IPMCs as sensors. Propelled by the energy of waves, this underwater vehicle does not need an additional energy source. A physical model based on the hydrodynamics of the vehicle was developed, and simulations were conducted. Using the Poisson-Nernst-Planck system of equations, a physics model for the IPMC sensor was proposed. For this study, experimental apparatus was developed to conduct hydrodynamic experiments for both the underwater vehicle and the IPMC sensors. By comparing the experimental and theoretical results, the speed of the underwater vehicle and the output of the IPMC sensors were well predicted by the theoretical models. A maximum speed of 1.08 × 10(-1) m s(-1) was recorded experimentally at a wave frequency of 1.6 Hz. The peak output voltage of the IPMC sensor was 2.27 × 10(-4) V, recorded at 0.8 Hz. It was found that the speed of the underwater vehicle increased as the wave frequency increased and the IPMC output decreased as the wave frequency increased. Further, the energy harvesting capabilities of the underwater vehicle hosting the IPMCs were tested. A maximum power of 9.50 × 10(-10) W was recorded at 1.6 Hz.
Workshop proceedings: Sensor systems for space astrophysics in the 21st century
NASA Technical Reports Server (NTRS)
1991-01-01
This proceedings provides a summary of the Astrotech 21 Sensor Technology Workshop. Topics covered include: high energy sensors, ultraviolet and visible sensors, direct infrared sensors, heterodyne submillimeter wave sensors, sensor readout electronics, and sensor cooler technology.
Development of a novel omnidirectional magnetostrictive transducer for plate applications
NASA Astrophysics Data System (ADS)
Vinogradov, Sergey; Cobb, Adam; Bartlett, Jonathan; Udagawa, Youichi
2018-04-01
The application of guided waves for the testing of plate-type structures has been recently investigated by a number of research groups due to the ability of guided waves to detect corrosion in remote and hidden areas. Guided wave sensors for plate applications can be either directed (i.e., the waves propagate in a single direction) or omnidirectional. Each type has certain advantages and disadvantages. Omnidirectional sensors can inspect large areas from a single location, but it is challenging to define where a feature is located. Conversely, directed sensors can be used to precisely locate an indication, but have no sensitivity to flaws away from the wave propagation direction. This work describes a newly developed sensor that combines the strengths of both sensor types to create a novel omnidirectional transducer. The sensor transduction is based on a custom magnetostrictive transducer (MsT). In this new probe design, a directed, plate-application MsT with known characteristics was incorporated into an automated scanner. This scanner rotates the directed MsT for data collection at regular intervals. Coupling of the transducer to the plate is accomplished using a shear wave couplant. The array of data that is received is used for compiling B-scans and imaging, utilizing a synthetic aperture focusing algorithm (SAFT). The performance of the probe was evaluated on a 0.5-inch thick carbon steel plate mockup with a surface area of over 100 square feet. The mockup had a variety of known anomalies representing localized and distributed pitting corrosion, gradual wall thinning, and notches of different depths. Experimental data was also acquired using the new probe on a retired storage tank with known corrosion damage. The performance of the new sensor and its limitations are discussed together with general directions in technology development.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
NASA Astrophysics Data System (ADS)
Kupke, Renate; Gavel, Don; Johnson, Jess; Reinig, Marc
2008-07-01
We investigate the non-modulating pyramid wave-front sensor's (P-WFS) implementation in the context of Lick Observatory's Villages visible light AO system on the Nickel 1-meter telescope. A complete adaptive optics correction, using a non-modulated P-WFS in slope sensing mode as a boot-strap to a regime in which the P-WFS can act as a direct phase sensor is explored. An iterative approach to reconstructing the wave-front phase, given the pyramid wave-front sensor's non-linear signal, is developed. Using Monte Carlo simulations, the iterative reconstruction method's photon noise propagation behavior is compared to both the pyramid sensor used in slope-sensing mode, and the traditional Shack Hartmann sensor's theoretical performance limits. We determine that bootstrapping using the P-WFS as a slope sensor does not offer enough correction to bring the phase residuals into a regime in which the iterative algorithm can provide much improvement in phase measurement. It is found that both the iterative phase reconstructor and the slope reconstruction methods offer an advantage in noise propagation over Shack Hartmann sensors.
Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li
2016-03-15
Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced Sensitivity of Wireless Chemical Sensor Based on Love Wave Mode
NASA Astrophysics Data System (ADS)
Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yang, Sangsik
2008-09-01
A 440 MHz wireless and passive Love-wave-based chemical sensor was developed for CO2 detection. The developed device was composed of a reflective delay line patterned on 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and Teflon AF 2400 sensitive film. A theoretical model is presented to describe wave propagation in Love wave devices with large piezoelectricity and to allow the design of an optimized structure. In wireless device testing using a network analyzer, infusion of CO2 into the testing chamber induced large phase shifts of the reflection peaks owing to the interaction between the sensing film and the test gas (CO2). Good linearity and repeatability were observed at CO2 concentrations of 0-350 ppm. The obtained sensitivity from the Love wave device was approximately 7.07° ppm-1. The gas response properties of the fabricated Love-wave sensor in terms of linearity and sensitivity were provided, and a comparison to surface acoustic wave devices was also discussed.
Methods and apparatus for use in detecting seismic waves in a borehole
West, Phillip B.; Fincke, James R.; Reed, Teddy R.
2006-05-23
The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
Lo, Kam W; Ferguson, Brian G
2012-11-01
The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.
Damage detection in composite materials using Lamb wave methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos
2002-04-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698
A fiber optic Doppler sensor and its application in debonding detection for composite structures.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.
Wide Band Low Noise Love Wave Magnetic Field Sensor System.
Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard
2018-01-10
We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRANCH,DARREN W.; BROZIK,SUSAN M.
Crucial to low-level detection of biowarfare agents in aqueous environments is the mass sensitivity optimization of Love-wave acoustic sensors. The present work is an experimental study of 36{sup o} YX cut LiTaO{sub 3} based Love-wave devices for detection of pathogenic spores in aqueous conditions. Given that the detection limit (DL) of Love-wave based sensors is a strong function of the overlying waveguide, two waveguide materials have been investigated, which are polyimide and polystyrene. To determine the mass sensitivity of Love-wave sensor, bovine serum albumin (BSA) protein was injected into the Love-wave test cell while recording magnitude and phase shift acrossmore » each sensor. Polyimide had the lowest mass detection limit with an estimated value of 1-2 ng/cm{sup 2}, as compared to polystyrene where DL = 2.0 ng/cm{sup 2}. Suitable chemistries were used to orient antibodies on the Love-wave sensor using adsorbed protein G. The thickness of each biofilm was measured using ellipsometry from which the surface concentrations were calculated. The monoclonal antibody BD8 with a high degree of selectivity for anthrax spores was used to capture the non-pathogenic simulant B. thuringiensis B8 spores. Bacillus Subtilis spores were used as a negative control to determine whether significant non-specific binding would occur. Spore aliquots were prepared using an optical counting method, which permitted removal of background particles for consistent sample preparation. This work demonstrates that Love-wave devices can be used to detect B. anthracis simulant below reported infectious levels.« less
Dual output acoustic wave sensor for molecular identification
Frye, Gregory C.; Martin, Stephen J.
1991-01-01
A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.
Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor
NASA Astrophysics Data System (ADS)
John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand
2002-12-01
A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
Surface-acoustic-wave (SAW) flow sensor
NASA Astrophysics Data System (ADS)
Joshi, Shrinivas G.
1991-03-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Surface-acoustic-wave (SAW) flow sensor.
Joshi, S G
1991-01-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions.
Saitakis, Michael; Gizeli, Electra
2012-02-01
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Color constancy: enhancing von Kries adaption via sensor transformations
NASA Astrophysics Data System (ADS)
Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.
1993-09-01
Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.
Numerical analysis of wavefront measurement characteristics by using plenoptic camera
NASA Astrophysics Data System (ADS)
Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun
2016-01-01
To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.
NASA Astrophysics Data System (ADS)
Pan'kov, A. A.
2017-05-01
A mathematical model is developed for a piezoelectroluminescent optical fiber pressure sensor is developed in which the mechanoluminescence effect results from the interaction of electroluminescent and piezoelectric coverings put on an optical fiber. The additional control electrodes expand the possibilities of analyzing the distribution of pressure along the fiber. The probability density function of pressure distribution along the sensor is found from results of the measured intensity of light coming from the optical fiber. The problem is reduced to the solution of the Fredholm integral equation of the first kind with a difference kernel depending on the effective parameters of the sensor and properties of an electroluminophor. An algorithm of step-by-step scanning of the nonuniform pressure along the sensor by using the running wave of control voltage is developed. On each step, the amplitude of the wave is increased by a small value, which leads to the appearance of additional luminescence sections of the electroluminophor and the corresponding "glow pulses" at the output of the optical fiber sensor. The sought-for nodal values of pressure and their locations are calculated according to the form of the glow pulses with account of amplitude of the wave at each scanning step. Results of numerical modeling of the process of location of pressure nonuniformities along the sensor by the running wave are found for different scanning steps.
NASA Technical Reports Server (NTRS)
Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally
2003-01-01
This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.
Passive hybrid sensing tag with flexible substrate saw device
Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey
2012-12-25
The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.
Semi-continuous detection of mercury in gases
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2011-12-06
A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.
NASA Astrophysics Data System (ADS)
Arumnika, N.; Kuswanto, H.
2018-04-01
This study aimed to determine the effect of curvature configuration to sensitivities and linearities of Polymer Optical Fiber (POF) water level sensor. POF type SH-4001-1.3 has been used in this study. The jacket of POF of 20 cm was removed. Transparent piped inserted by alcohol gel has been used to replace the jacket. This is head of a sensor. The head of a sensor is curved with variations of the specified path length, peel length, the width of curvature, the height of curvature and waveform. Configuration A (20 cm, 34 cm, 6 cm, 2 cm, 1 wave), configuration B (20 cm, 34 cm, 8 cm, 2 cm, 1 wave), configuration C (20 cm, 34 cm, 9 cm, 2 cm, ½ wave), configuration D (20 cm, 34 cm, 10 cm, 2 cm, ½ wave). The head of a sensor inserted into the water tank. The light source inserted to one end POF is a He-Ne laser light with a power of 5 mW and a wavelength of 632.8 nm. Power output at the other end received by the Optical Power Meter (OPM). The curvature configuration the head sensor of POF affects the output. Configuration A has good sensitivity, however good linearity given by configuration.
Caliendo, Cinzia; Hamidullah, Muhammad
2016-01-01
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419
A Short Distance CW-Radar Sensor at 77 GHz in LTCC for Industrial Applications
NASA Astrophysics Data System (ADS)
Rusch, Christian; Klein, Tobias; Beer, Stefan; Zwick, Thomas
2013-12-01
The paper presents a Continuous-Wave(CW)-Radar sensor for high accuracy distance measurements in industrial applications. The usage of radar sensors in industrial scenarios has the advantage of a robust functionality in wet or dusty environments where optical systems reach their limits. This publication shows that accuracies of a few micro-meters are possible with millimeter-wave systems. In addition to distance measurement results the paper describes the sensor concept, the experimental set-up with the measurement process and possibilities to increase the accuracy even further.
Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers
Kuznetsov, Sergei A.; Paulish, Andrey G.; Navarro-Cía, Miguel; Arzhannikov, Andrey V.
2016-01-01
Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyro-sensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultra-thin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetre-wave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands. PMID:26879250
NASA Astrophysics Data System (ADS)
Helmers, H.; Greco, Pierre; Benech, Pierre; Rustad, Rolf; Kherrat, Rochdi; Bouvier, Gérard
1996-02-01
We describe a hybrid evanescent-wave sensor component that we fabricated by using an integrated optical interferometer with a specially adapted photodetector array. The design of the interferometer is based on the use of tapered waveguides to obtain two intersecting collimated beams. Phase shifts can be measured with an angular precision of better than 10-3 rad, which corresponds to a superstrate index change inferior of 10-6 with our structure. The interest in the device as a chemical sensor is experimentally demonstrated. The same optical component could be used in a variety of other sensor applications, e.g., biological and immunological sensors.
MB3a Infrasound Sensor Evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; McDowell, Kyle D.
2014-11-01
Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, manufactured by Seismo Wave. These infrasound sensors measure pressure output by a methodology developed by researchers at the French Alternative Energies and Atomic Energy Commission (CEA) and the technology was recently licensed to Seismo Wave for production and sales. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self- calibration ability. The MB3a infrasound sensors are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Experimental and theoretical study of Rayleigh-Lamb wave propagation
NASA Technical Reports Server (NTRS)
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity
NASA Astrophysics Data System (ADS)
Manohar, Greeshma
Surface acoustic wave sensors have been a focus of active research for many years. Its ability to respond for surface perturbation is a basic principle for its sensing capability. Sensitivity to surface perturbation changes with every inter-digital transducer (IDT) design parameters, substrate selection, metallization choice and technique, delay line length and working environment. In this thesis, surface acoustic wave (SAW) sensors are designed and characterized to improve sensitivity and reduce loss. To quantify the improvements with a specific design configuration, the sensors are employed to measure temperature. Four SAW sensors design configurations, namely bi-directional, split electrode, single phase unidirectional transducer (SPUDT) and metal grating on delay line (shear transvers wave sensors) are designed and then fabricated in Nanotechnology Research and Education Center (NREC) facility using traditional MEMS fabrication processes Additionally, sensors are then coated with guiding layer SU8-2035 of 40µm using spin coating and SiO 2 of 6µm using plasma enhanced chemical vapor deposition (PECVD) process. Sensors are later diced and tested for every 5°C increment using network analyzer for temperature ranging from 30°C±0.5°C to 80°C±0.5°C. Data acquired from network analyzer is analyzed using plot of logarithmic magnitude, phase and frequency shift. Furthermore, to investigate the effect of metallization technique on the sensor performance, sensors are also fabricated on substrates that were metallized at a commercial MEMS foundry. All in-house and outside sputtered sensor configurations are compared to investigate quality of sputtered metal on wafer. One with better quality sputtered metal is chosen for further study. Later sensors coated with SU8 and SiO2 as guiding layer are compared to investigate effect of each waveguide on sensors and determine which waveguide offers better performance. The results showed that company sputtered sensors have higher sensitivity compared to in-house sputtered wafers. Furthermore after comparing SU8 and SiO2 coated sensors in the same instrumental and environmental condition, it was observed that SU8 coated di-directional and single phase unidirectional transducer (SPUDT) sensors showed best response.
Threat detection in desert environment with passive millimeter-wave sensor
NASA Astrophysics Data System (ADS)
Wilson, John P.; Schuetz, Christopher A.; Martin, Richard D.; Dillon, Thomas E.; Murakowski, Maciej; Prather, Dennis W.
2011-06-01
A new technique for improvised explosive device (IED) creation uses an explosive device buried in foam and covered in a layer of dirt. These devices are difficult to detect visually, however, their material characteristics make them detectable by passive millimeter-wave (pmmW) sensors. Results are presented from a test using a mock IED and an outdoor set-up consisting of two mock IEDs on a dirt background. The results show that the mock IEDs produces a millimeter-wave signature which is distinguishable from the background surrounding the mock IEDs. Simulations based on the measured data are presented and a design for a future vehicle mounted sensor is shown.
DOT National Transportation Integrated Search
2014-08-01
The evaluation of the curing process of a fresh concrete is critical to its construction process and monitoring. Traditionally stress : sensor and compressive wave sensor were often used to measure concrete properties. Bender element (BE) test, a non...
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Liauh, Chihng-Tsung; Shih, Tzu-Ching; Huang, Huang-Wen; Lin, Win-Li
2004-02-01
An inverse algorithm with Tikhonov regularization of order zero has been used to estimate the intensity ratios of the reflected longitudinal wave to the incident longitudinal wave and that of the refracted shear wave to the total transmitted wave into bone in calculating the absorbed power field and then to reconstruct the temperature distribution in muscle and bone regions based on a limited number of temperature measurements during simulated ultrasound hyperthermia. The effects of the number of temperature sensors are investigated, as is the amount of noise superimposed on the temperature measurements, and the effects of the optimal sensor location on the performance of the inverse algorithm. Results show that noisy input data degrades the performance of this inverse algorithm, especially when the number of temperature sensors is small. Results are also presented demonstrating an improvement in the accuracy of the temperature estimates by employing an optimal value of the regularization parameter. Based on the analysis of singular-value decomposition, the optimal sensor position in a case utilizing only one temperature sensor can be determined to make the inverse algorithm converge to the true solution.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-02-08
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x -axis and y -axis in-plane and z -axis magnetic fields into piezoelectric voltage outputs. Under the x -axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z -axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x -axis vibration (sine-wave, 100 Hz, 3.5 g) and z -axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.
Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan
2017-01-01
In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on. PMID:28208693
Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.
Ham, Suyun; Popovics, John S
2015-04-17
The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.
Detection of Low-volume Blood Loss: Compensatory Reserve Versus Traditional Vital Signs
2014-01-01
studies have demonstrated that photoplethysmogram (PPG) wave forms obtained with a pulse oximeter sensor significantly change with volume loss.5 With this...donation, including PPG wave forms (OEM III pulse oximeter , Nonin, Minneapolis, MN), and a noninvasive BPwave form (ccNexfin, Edwards Lifesciences, Irvine...a PPG wave form obtained with a pulse oximeter sensor. CRI is calculated after 30 heart beats and is recalculated beat-to-beat in a continuous
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices
NASA Astrophysics Data System (ADS)
O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram
2015-07-01
While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.
50 CFR 216.175 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
...., FFG, DDG, or CG). (G) Length of time observers maintained visual contact with marine mammal. (H) Wave... height in feet (high, low and average during exercise). (I) Narrative description of sensors and... sensor. (F) Length of time observers maintained visual contact with marine mammal. (G) Wave height. (H...
Kabir, K M Mohibul; Sabri, Ylias M; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J; Bhargava, Suresh K
2016-04-21
Piezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied. The SAW sensor was fabricated with nickel (Ni) interdigitated transducer (IDT) electrodes and a Ag thin film on the delay line of the device. In the case of the QCM sensor, the electrodes were constructed of Ag thin film and simultaneously employed as a sensitive layer. Mercury sensing experiments were conducted for a range of concentrations between 24-365 ppbv without/with the presence of some common industrial interfering gas species (i.e. ammonia, acetaldehyde, ethyl mercaptan, dimethyl disulphide, methyl ethyl ketone and humidity) at various operating temperatures in the range of 35-95 °C. The SAW sensor was found to possess up to 70 times higher response magnitudes than its QCM counterpart at 35 °C while up to 30 and 23 times higher response magnitudes were observed for the SAW sensor at elevated temperatures of 75 and 95 °C, respectively. Furthermore, the SAW sensor showed good selectivity (>89%) toward Hg(0) vapor in the presence of all the interferents tested at an operating temperature of 75 °C while the QCM sensor exhibited significant cross-sensitivity when ethyl mercaptan was introduced along with Hg(0) vapor. Overall, it is indicative that Ag-based acoustic wave sensors do have great potential for Hg sensing applications, given that right operating conditions are applied.
Study of ultrasonic sensor that is effective for all direction using an electromagnetic force
NASA Astrophysics Data System (ADS)
Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro
2015-03-01
Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.
Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers
Jiang, Tianyong; Kong, Qingzhao; Wang, Wenxi; Huo, Linsheng; Song, Gangbing
2016-01-01
A post-tensioning tendon duct filled with grout can effectively prevent corrosion of the reinforcement, maintain bonding behavior between the reinforcement and concrete, and enhance the load bearing capacity of concrete structures. In practice, grouting of the post-tensioning tendon ducts always causes quality problems, which may reduce structural integrity and service life, and even cause accidents. However, monitoring of the grouting compactness is still a challenge due to the invisibility of the grout in the duct during the grouting process. This paper presents a stress wave-based active sensing approach using piezoceramic transducers to monitor the grouting compactness in real time. A segment of a commercial tendon duct was used as research object in this study. One lead zirconate titanate (PZT) piezoceramic transducer with marble protection, called a smart aggregate (SA), was bonded on the tendon and installed in the tendon duct. Two PZT patch sensors were mounted on the top outside surface of the duct, and one PZT patch sensor was bonded on the bottom outside surface of the tendon duct. In the active sensing approach, the SA was used as an actuator to generate a stress wave and the PZT sensors were utilized to detect the wave response. Cement or grout in the duct functions as a wave conduit, which can propagate the stress wave. If the cement or grout is not fully filled in the tendon duct, the top PZT sensors cannot receive much stress wave energy. The experimental procedures simulated four stages during the grout pouring process, which includes empty status, half grouting, 90% grouting, and full grouting of the duct. Experimental results show that the bottom PZT sensor can detect the signal when the grout level increases towards 50%, when a conduit between the SA and PZT sensor is formed. The top PZT sensors cannot receive any signal until the grout process is completely finished. The wavelet packet-based energy analysis was adopted in this research to compute the total signal energy received by PZT sensors. Experimental results show that the energy levels of the PZT sensors can reflect the degree of grouting compactness in the duct. The proposed method has the potential to be implemented to monitor the tendon duct grouting compactness of the reinforced concrete structures with post tensioning. PMID:27556470
Pulse based sensor networking using mechanical waves through metal substrates
NASA Astrophysics Data System (ADS)
Lorenz, S.; Dong, B.; Huo, Q.; Tomlinson, W. J.; Biswas, S.
2013-05-01
This paper presents a novel wireless sensor networking technique using ultrasonic signal as the carrier wave for binary data exchange. Using the properties of lamb wave propagation through metal substrates, the proposed network structure can be used for runtime transport of structural fault information to ultrasound access points. Primary applications of the proposed sensor networking technique will include conveying fault information on an aircraft wing or on a bridge to an ultrasonic access point using ultrasonic wave through the structure itself (i.e. wing or bridge). Once a fault event has been detected, a mechanical pulse is forwarded to the access node using shortest path multi-hop ultrasonic pulse routing. The advantages of mechanical waves over traditional radio transmission using pulses are the following: First, unlike radio frequency, surface acoustic waves are not detectable outside the medium, which increases the inherent security for sensitive environments in respect to tapping. Second, event detection can be represented by the injection of a single mechanical pulse at a specific temporal position, whereas radio messages usually take several bits. The contributions of this paper are: 1) Development of a transceiver for transmitting/receiving ultrasound pulses with a pulse loss rate below 2·10-5 and false positive rate with an upper bound of 2·10-4. 2) A novel one-hop distance estimation based on the properties of lamb wave propagation with an accuracy of above 80%. 3) Implementation of a wireless sensor network using mechanical wave propagation for event detection on a 2024 aluminum alloy commonly used for aircraft skin construction.
Wave velocity characteristic for Kenaf natural fibre under impact damage
NASA Astrophysics Data System (ADS)
Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd
2017-01-01
This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.
NASA Astrophysics Data System (ADS)
Zolfaghari, Abolfazl; Jeon, Seongkyul; Stepanick, Christopher K.; Lee, ChaBum
2017-06-01
This paper presents a novel method for measuring two-degree-of-freedom (DOF) motion of flexure-based nanopositioning systems based on optical knife-edge sensing (OKES) technology, which utilizes the interference of two superimposed waves: a geometrical wave from the primary source of light and a boundary diffraction wave from the secondary source. This technique allows for two-DOF motion measurement of the linear and pitch motions of nanopositioning systems. Two capacitive sensors (CSs) are used for a baseline comparison with the proposed sensor by simultaneously measuring the motions of the nanopositioning system. The experimental results show that the proposed sensor closely agrees with the fundamental linear motion of the CS. However, the two-DOF OKES technology was shown to be approximately three times more sensitive to the pitch motion than the CS. The discrepancy in the two sensor outputs is discussed in terms of measuring principle, linearity, bandwidth, control effectiveness, and resolution.
Experimental study on the bed shear stress under breaking waves
NASA Astrophysics Data System (ADS)
Hao, Si-yu; Xia, Yun-feng; Xu, Hua
2017-06-01
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Coded acoustic wave sensors and system using time diversity
NASA Technical Reports Server (NTRS)
Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)
2012-01-01
An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.
Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror
NASA Astrophysics Data System (ADS)
Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu
2017-02-01
Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
Wireless SAW Sensors Having Integrated Antennas
NASA Technical Reports Server (NTRS)
Malocha, Donald C. (Inventor); Gallagher, Mark (Inventor)
2015-01-01
A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.
Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors
Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka
2016-01-01
In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people. PMID:28036015
Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.
Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka
2016-12-28
In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.
Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring
Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco
2017-01-01
A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios. PMID:28773154
Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi
2014-01-20
The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.
Long period gratings in multimode optical fibers: application in chemical sensing
NASA Astrophysics Data System (ADS)
Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.
2003-09-01
We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.
Detection of gas atoms with carbon nanotubes
Arash, B.; Wang, Q.
2013-01-01
Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.
Ram-air sample collection device for a chemical warfare agent sensor
Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.
2002-01-01
In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.
Frustrated total internal reflection acoustic field sensor
Kallman, Jeffrey S.
2000-01-01
A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.
Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.
Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi
2011-01-01
This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.
A Powerful Method of Measuring Sea Wave Spectra and their Direction
NASA Astrophysics Data System (ADS)
Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich
2014-05-01
Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
NASA Astrophysics Data System (ADS)
Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.
2006-01-01
The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.
In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor
NASA Astrophysics Data System (ADS)
Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan
2018-05-01
The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.
Vertical directivities of seismic arrays on the ground surface
NASA Astrophysics Data System (ADS)
Shiraishi, H.; Asanuma, H.
2012-12-01
Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.
40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...
40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...
40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...
40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...
Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya
2012-01-01
In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.
Long-wave infrared profile feature extractor (PFx) sensor
NASA Astrophysics Data System (ADS)
Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David
2009-05-01
The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
Unsteady self-sustained detonation in flake aluminum dust/air mixtures
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, S.; Huang, J.; Zhang, Y.
2017-07-01
Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Weiss, Jonathan D.
1995-01-01
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.
Weiss, J.D.
1995-08-29
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.
Characterising a holographic modal phase mask for the detection of ocular aberrations
NASA Astrophysics Data System (ADS)
Corbett, A. D.; Leyva, D. Gil; Diaz-Santana, L.; Wilkinson, T. D.; Zhong, J. J.
2005-12-01
The accurate measurement of the double-pass ocular wave front has been shown to have a broad range of applications from LASIK surgery to adaptively corrected retinal imaging. The ocular wave front can be accurately described by a small number of Zernike circle polynomials. The modal wave front sensor was first proposed by Neil et al. and allows the coefficients of the individual Zernike modes to be measured directly. Typically the aberrations measured with the modal sensor are smaller than those seen in the ocular wave front. In this work, we investigated a technique for adapting a modal phase mask for the sensing of the ocular wave front. This involved extending the dynamic range of the sensor by increasing the pinhole size to 2.4mm and optimising the mask bias to 0.75λ. This was found to decrease the RMS error by up to a factor of three for eye-like aberrations with amplitudes up to 0.2μm. For aberrations taken from a sample of real-eye measurements a 20% decrease in the RMS error was observed.
Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar
2016-02-01
A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.C.; Ricco, A.J.; Butler, M.A.
There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.
Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues
NASA Astrophysics Data System (ADS)
Beard, Paul C.; Mills, Timothy N.
1995-02-01
Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.
Beamforming array techniques for acoustic emission monitoring of large concrete structures
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2010-06-01
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.
Auditory evoked field measurement using magneto-impedance sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.
The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (ormore » N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.« less
Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna
2014-01-01
In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.
Differentiation of red wines using an electronic nose based on surface acoustic wave devices.
García, M; Fernández, M J; Fontecha, J L; Lozano, J; Santos, J P; Aleixandre, M; Sayago, I; Gutiérrez, J; Horrillo, M C
2006-02-15
An electronic nose, utilizing the principle of surface acoustic waves (SAW), was used to differentiate among different wines of the same variety of grapes which come from the same cellar. The electronic nose is based on eight surface acoustic wave sensors, one is a reference sensor and the others are coated by different polymers by spray coating technique. Data analysis was performed by two pattern recognition methods; principal component analysis (PCA) and probabilistic neuronal network (PNN). The results showed that electronic nose was able to identify the tested wines.
A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission
NASA Technical Reports Server (NTRS)
Kurth, W. S.
2001-01-01
The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-01-01
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760
SAW Sensors for Chemical Vapors and Gases
Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.
2017-04-08
Here, surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identifymore » new opportunities and needs for additional research in this area moving into the future.« less
SAW Sensors for Chemical Vapors and Gases.
Devkota, Jagannath; Ohodnicki, Paul R; Greve, David W
2017-04-08
Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future.
Low-cost rapid miniature optical pressure sensors for blast wave measurements.
Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei
2011-05-23
This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.
Simulation tools for guided wave based structural health monitoring
NASA Astrophysics Data System (ADS)
Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien
2018-04-01
Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.
NASA Astrophysics Data System (ADS)
Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.
2014-05-01
We investigate theoretically and experimentally the performance of low-noise capacitive sensors based on polyvinylidene fluoride (PVDF) piezoelectric films to sense water-borne ultrasound signals for their use in photoacoustic tomography. We derive a mechanical-to-electrical transfer function of a piezoelectric capacitor sensor of infinite lateral dimensions and arbitrary thickness assuming that an ultrasound wave is normally incident. Then, we analyse the response for obliquely incident ultrasound waves on sensors of large but finite area and derive an expression for the angle dependence of the sensor's response. We also present experimental different measurements with home-made sensors and compare with our theoretical model. We present measurements of the sensors' response to harmonic signals of variable frequency in the range from 0.5 to 50 MHz and of the angular-dependence factor at 6 MHz. Additionally, because of the scope of interest in these kinds of sensors, we also tested the sensors' response for photoacoustic perturbations. These are generated by laser pulses from directly impinging on the sensor and from ultrasound perturbations produced on neoprene by the same kind of laser pulses and then travelling through water to the sensor.
Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok
2014-01-01
A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440
Water-level and wave measurements in the Chandeleur Islands, Louisiana, 2012 and 2013
Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.
2015-01-01
This report documents measurements of atmospheric pressure, water levels, and waves made by the U.S. Geological Survey in the Chandeleur Islands, Louisiana, during 2012 and 2013 as part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left for one hurricane season and one winter-storm season. Gauges with rapid-sampling pressure sensors that provided nondirectional wave data and water-level data were mounted on rugged mounts on the Chandeleur Sound side and at the base of a tower at the northern end of the island chain. Additionally, an atmospheric pressure sensor was mounted on the tower to provide a local atmospheric pressure measurement for correcting the submerged pressure records.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Zhao, Xiaohui
2017-02-01
The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.
Vorontsov, Mikhail A; Kolosov, Valeriy
2005-01-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.
Development of flexible SAW sensors for non-destructive testing of structure
NASA Astrophysics Data System (ADS)
Takpara, R.; Duquennoy, M.; Courtois, C.; Gonon, M.; Ouaftouh, M.; Martic, G.; Rguiti, M.; Jenot, F.; Seronveaux, L.; Pelegris, C.
2016-02-01
In order to accurately examine structures surfaces, it is interesting to use surface SAW (Surface Acoustic Wave). Such waves are well suited for example to detect early emerging cracks or to test the quality of a coating. In addition, when coatings are thin or when emergent cracks are precocious, it is necessary to excite surface waves beyond 10MHz. Finally, when structures are not flat, it makes sense to have flexible or conformable sensors for their characterization. To address this problem, we propose to develop SAW type of interdigital sensors (or IDT for InterDigital Transducer), based on flexible piezoelectric plates. Initially, in order to optimize these sensors, we modeled the behavior of these sensors and identified the optimum characteristic sizes. In particular, the thickness of the piezoelectric plate and the width of the interdigital electrodes have been studied. Secondly, we made composites based on barium titanate foams in order to have flexible piezoelectric plates and to carry out thereafter sensors. Then, we studied several techniques in order to optimize the interdigitated electrodes deposition on this type of material. One of the difficulties concerns the fineness of these electrodes because the ratio between the length (typically several millimeters) and the width (a few tens of micrometers) of electrodes is very high. Finally, mechanical, electrical and acoustical characterizations of the sensors deposited on aluminum substrates were able to show the quality of our achievement.
Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm
2012-09-07
We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid - and air pouch sensors when evaluating the dynamic ICP parameters.
Optical fiber humidity sensor based on evanescent-wave scattering.
Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan
2004-06-01
The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.
NASA Astrophysics Data System (ADS)
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
NASA Technical Reports Server (NTRS)
Wang, Gang; Banks, Curtis E.
2015-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.
NASA Technical Reports Server (NTRS)
Wang, Gag; Banks, Curtis E.
2016-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.
Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui
2018-02-01
A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.
Study on miss distance based on projectile shock wave sensor
NASA Astrophysics Data System (ADS)
Gu, Guohua; Cheng, Gang; Zhang, Chenjun; Zhou, Lei
2017-05-01
The paper establishes miss distance models based on physical characteristic of shock-wave. The aerodynamic theory shows that the shock-wave of flying super-sonic projectile is generated for the projectile compressing and expending its ambient atmosphere. It advances getting miss distance according to interval of the first sensors, which first catches shock-wave, to solve the problem such as noise filtering on severe background, and signals of amplifier vibration dynamic disposal and electromagnetism compatibility, in order to improves the precision and reliability of gathering wave N signals. For the first time, it can identify the kinds of pills and firing units automatically, measure miss distance and azimuth when pills are firing. Application shows that the tactics and technique index is advanced all of the world.
Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete
NASA Astrophysics Data System (ADS)
In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.
2008-02-01
This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.
Analysis and optimization of Love wave liquid sensors.
Jakoby, B; Vellekoop, M J
1998-01-01
Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1982-01-01
Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7.
Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing.
Larose, Eric; Roux, Philippe; Campillo, Michel
2007-12-01
The time-domain cross correlation of incoherent and random noise recorded by a series of passive sensors contains the impulse response of the medium between these sensors. By using noise generated by a can of compressed air sprayed on the surface of a plexiglass plate, we are able to reconstruct not only the time of flight but the whole wave forms between the sensors. From the reconstruction of the direct A(0) and S(0) waves, we derive the dispersion curves of the flexural waves, thus estimating the mechanical properties of the material without a conventional electromechanical source. The dense array of receivers employed here allow a precise frequency-wavenumber study of flexural waves, along with a thorough evaluation of the rate of convergence of the correlation with respect to the record length, the frequency, and the distance between the receivers. The reconstruction of the actual amplitude and attenuation of the impulse response is also addressed in this paper.
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Vector Acoustics, Vector Sensors, and 3D Underwater Imaging
NASA Astrophysics Data System (ADS)
Lindwall, D.
2007-12-01
Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.
Sequential Analysis: Hypothesis Testing and Changepoint Detection
2014-07-11
it is necessary to estimate in situ the geographical coordinates and other parameters of earthquakes . The standard sensor equipment of a three...components. When an earthquake arises, the sensors begin to record several types of seismic waves (body and surface waves), among which the more important...machines and to increased safety norms. Many structures to be monitored, e.g., civil engineering structures subject to wind and earthquakes , aircraft
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
NASA Astrophysics Data System (ADS)
Kong, Weijing; Wan, Yuhang; Du, Kun; Zhao, Wenhui; Wang, Shuang; Zheng, Zheng
2016-11-01
The reflected intensity change of the Bloch-surface-wave (BSW) resonance influenced by the loss of a truncated onedimensional photonic crystal structure is numerically analyzed and studied in order to enhance the sensitivity of the Bloch-surface-wave-based sensors. The finite truncated one-dimensional photonic crystal structure is designed to be able to excite BSW mode for water (n=1.33) as the external medium and for p-polarized plane wave incident light. The intensity interrogation scheme which can be operated on a typical Kretschmann prism-coupling configuration by measuring the reflected intensity change of the resonance dip is investigated to optimize the sensitivity. A figure of merit (FOM) is introduced to measure the performance of the one-dimensional photonic crystal multilayer structure under the scheme. The detection sensitivities are calculated under different device parameters with a refractive index change corresponding to different solutions of glycerol in de-ionized (DI)-water. The results show that the intensity sensitivity curve varies similarly with the FOM curve and the sensitivity of the Bloch-surface-wave sensor is greatly affected by the device loss, where an optimized loss value can be got. For the low-loss BSW devices, the intensity interrogation sensing sensitivity may drop sharply from the optimal value. On the other hand, the performance of the detection scheme is less affected by the higher device loss. This observation is in accordance with BSW experimental sensing demonstrations as well. The results obtained could be useful for improving the performance of the Bloch-surface-wave sensors for the investigated sensing scheme.
Recent Progress in Brillouin Scattering Based Fiber Sensors
Bao, Xiaoyi; Chen, Liang
2011-01-01
Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures. PMID:22163842
Recent progress in Brillouin scattering based fiber sensors.
Bao, Xiaoyi; Chen, Liang
2011-01-01
Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.
2014-03-31
Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for
Swiontek, Stephen E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2013-01-01
The commonly used optical sensor based on surface plasmon-polariton wave phenomenon can sense just one chemical, because only one SPP wave can be guided by the interface of a metal and a dielectric material contained in the sensor. Multiple analytes could be detected and/or the sensing reliability for a single analyte could be enhanced, if multiple SPP-wave modes could be excited on a single metal/dielectric interface. For that to happen, the partnering dielectric material must be periodically non-homogeneous. Using a chiral sculptured thin film (CSTF) as that material in a SPP-wave platform, we show that the angular locations of multiple SPP-wave modes shift when the void regions of the CSTF are infiltrated with a fluid. The sensitivities realized in the proof-of-concept experiments are comparable to state-of-research values. PMID:23474988
Comparisons between wave directional spectra from SAR and pressure sensor arrays
NASA Technical Reports Server (NTRS)
Pawka, S. S.; Inman, D. L.; Hsiao, S. V.; Shemdin, O. H.
1980-01-01
Simultaneous directional wave measurements were made at Torrey Pines Beach, California, by a synthetic aperture radar (SAR) and a linear array of pressure sensors. The measurements were conducted during the West Coast Experiment in March 1977. Quantitative comparisons of the normalized directional spectra from the two systems were made for wave periods of 6.9-17.0 s. The comparison results were variable but generally showed good agreement of the primary mode of the normalized directional energy. An attempt was made to quantify the physical criteria for good wave imaging in the SAR. A frequency band analysis of wave parameters such as band energy, slope, and orbital velocity did not show good correlation with the directional comparisons. It is noted that absolute values of the wave height spectrum cannot be derived from the SAR images yet and, consequently, no comparisons of absolute energy levels with corresponding array measurements were intended.
NASA Astrophysics Data System (ADS)
Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.
2011-06-01
The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.
Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet
Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.; ...
2018-04-09
Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less
Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.
Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less
NASA Astrophysics Data System (ADS)
Jechumtálová, Z.; Šílený, J.; Trifu, C.-I.
2014-06-01
The resolution of event mechanism is investigated in terms of the unconstrained moment tensor (MT) source model and the shear-tensile crack (STC) source model representing a slip along the fault with an off-plane component. Data are simulated as recorded by the actual seismic array installed at Ocnele Mari (Romania), where sensors are placed in shallow boreholes. Noise is included as superimposed on synthetic data, and the analysis explores how the results are influenced (i) by data recorded by the complete seismic array compared to that provided by the subarray of surface sensors, (ii) by using three- or one-component sensors and (iii) by inverting P- and S-wave amplitudes versus P-wave amplitudes only. The orientation of the pure shear fracture component is resolved almost always well. On the other hand, the noise increase distorts the non-double-couple components (non-DC) of the MT unless a high-quality data set is available. The STC source model yields considerably less spurious non-shear fracture components. Incorporating recordings at deeper sensors in addition to those obtained from the surface ones allows for the processing of noisier data. Performance of the network equipped with three-component sensors is only slightly better than that with uniaxial sensors. Inverting both P- and S-wave amplitudes compared to the inversion of P-wave amplitudes only markedly improves the resolution of the orientation of the source mechanism. Comparison of the inversion results for the two alternative source models permits the assessment of the reliability of non-shear components retrieved. As example, the approach is investigated on three microseismic events occurred at Ocnele Mari, where both large and small non-DC components were found. The analysis confirms a tensile fracturing for two of these events, and a shear slip for the third.
Optimal sensor placement for active guided wave interrogation of complex metallic components
NASA Astrophysics Data System (ADS)
Coelho, Clyde K.; Kim, Seung Bum; Chattopadhyay, Aditi
2011-04-01
With research in structural health monitoring (SHM) moving towards increasingly complex structures for damage interrogation, the placement of sensors is becoming a key issue in the performance of the damage detection methodologies. For ultrasonic wave based approaches, this is especially important because of the sensitivity of the travelling Lamb waves to material properties, geometry and boundary conditions that may obscure the presence of damage if they are not taken into account during sensor placement. The framework proposed in this paper defines a sensing region for a pair of piezoelectric transducers in a pitch-catch damage detection approach by taking into account the material attenuation and probability of false alarm. Using information about the region interrogated by a sensoractuator pair, a simulated annealing optimization framework was implemented in order to place sensors on complex metallic geometries such that a selected minimum damage type and size could be detected with an acceptable probability of false alarm anywhere on the structure. This approach was demonstrated on a lug joint to detect a crack and on a large Naval SHM test bed and resulted in a placement of sensors that was able to interrogate all parts of the structure using the minimum number of transducers.
Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence
NASA Astrophysics Data System (ADS)
Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.
2012-10-01
Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.
Rotational motions for teleseismic surface waves
NASA Astrophysics Data System (ADS)
Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.
2011-08-01
We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.
Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie
2013-11-10
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor
NASA Astrophysics Data System (ADS)
Preejith, P. V.; Lim, C. S.; Chia, T. F.
2006-12-01
A novel method to measure the total serum protein concentration is described in this paper. The method is based on the principles of fibre-optic evanescent wave spectroscopy. The biosensor applies a fluorescent dye-immobilized porous glass coating on a multi-mode optical fibre. The evanescent wave's intensity at the fibre-optic core-cladding interface is used to monitor the protein-induced changes in the sensor element. The sensor offers a rapid, single-step method for quantifying protein concentrations without destroying the sample. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.
Nonlinear Time-Reversal in a Wave Chaotic System
NASA Astrophysics Data System (ADS)
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Wireless power transmission using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.
2011-07-01
The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.
Ultrasonic guided wave sensing characteristics of large area thin piezo coating
NASA Astrophysics Data System (ADS)
Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy
2017-10-01
This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).
Borcherdt, R.D.
1988-01-01
Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author
Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
NASA Astrophysics Data System (ADS)
Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita
2016-02-01
Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020
Flow Control in Wells Turbines for Harnessing Maximum Wave Power.
Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-02-10
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.
Flow Control in Wells Turbines for Harnessing Maximum Wave Power
Garrido, Aitor J.; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-01-01
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness. PMID:29439408
Li, Zhenghan; Li, Xinyang
2018-04-30
Real time transverse wind estimation contributes to predictive correction which is used to compensate for the time delay error in the control systems of adaptive optics (AO) system. Many methods that apply Shack-Hartmann wave-front sensor to wind profile measurement have been proposed. One of the obvious problems is the lack of a fundamental benchmark to compare the various methods. In this work, we present the fundamental performance limits for transverse wind estimator from Shack-Hartmann wave-front sensor measurements using Cramér-Rao lower bound (CRLB). The bound provides insight into the nature of the transverse wind estimation, thereby suggesting how to design and improve the estimator in the different application scenario. We analyze the theoretical bound and find that factors such as slope measurement noise, wind velocity and atmospheric coherence length r 0 have important influence on the performance. Then, we introduced the non-iterative gradient-based transverse wind estimator. The source of the deterministic bias of the gradient-based transverse wind estimators is analyzed for the first time. Finally, we derived biased CRLB for the gradient-based transverse wind estimators from Shack-Hartmann wave-front sensor measurements and the bound can predict the performance of estimator more accurately.
The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.
Avramov, Ivan D
2004-09-01
A novel, passive wireless surface acoustic wave (SAW) sensor providing a highly coherent measurand proportional frequency, frequency modulated (FM) with identification (ID) data and immune to interference with multiple-path signals is described. The sensor is appropriate for bandwidth-limited applications requiring high-frequency accuracy. It comprises a low-power oscillator, stabilized with the sensing SAW resonator and powered by the rectified radio frequency (RF) power of the interrogating signal received by an antenna on the sensor part. A few hundred microwatts of direct current (DC) power are enough to power the sensor oscillator and ID modulation circuit and achieve stable operation at 1.0 and 2.49 GHz. Reliable sensor interrogation was achieved over a distance of 0.45 m from a SAW-based interrogation unit providing 50 mW of continuous RF power at 915 MHz. The -30 to -35 dBm of returned sensor power was enough to receive the sensor signal over a long distance and through several walls with a simple superheterodyne FM receiver converting the sensor signal to a low measurand proportional intermediate frequency and retrieving the ID data through FM detection. Different sensor implementations, including continuous and pulsed power versions and the possibility of transmitting data from several measurands with a single sensor, are discussed.
The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite
NASA Astrophysics Data System (ADS)
Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.[Figure not available: see fulltext.
Sensor technology workshop: Structure and goals
NASA Technical Reports Server (NTRS)
Wilson, Barbara A.
1991-01-01
The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Transformation of apparent ocean wave spectra observed from an aircraft sensor platform
NASA Technical Reports Server (NTRS)
Poole, L. R.
1976-01-01
The problem considered was transformation of a unidirectional apparent ocean wave spectrum observed from an aircraft sensor platform into the true spectrum that would be observed from a stationary platform. Spectral transformation equations were developed in terms of the linear wave dispersion relationship and the wave group speed. An iterative solution to the equations was outlined and used to transform reference theoretical apparent spectra for several assumed values of average water depth. Results show that changing the average water depth leads to a redistribution of energy density among the various frequency bands of the transformed spectrum. This redistribution is most severe when much of the energy density is expected, a priori, to reside at relatively low true frequencies.
Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications
Melnykowycz, Mark; Tschudin, Michael; Clemens, Frank
2016-01-01
A soft condensed matter sensor (SCMS) designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB) and a thermoplastic elastomer (TPE) was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain. PMID:26959025
Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications.
Melnykowycz, Mark; Tschudin, Michael; Clemens, Frank
2016-03-04
A soft condensed matter sensor (SCMS) designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB) and a thermoplastic elastomer (TPE) was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4-6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.
Multi-reflective acoustic wave device
Andle, Jeffrey C.
2006-02-21
An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.
ZnO nanomaterials based surface acoustic wave ethanol gas sensor.
Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H
2012-08-01
ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.
NASA Astrophysics Data System (ADS)
McKee, K. F.; Fee, D.; Haney, M. M.; Lyons, J. J.; Matoza, R. S.
2016-12-01
A ground-coupled airwave (GCA) occurs when an incident atmospheric pressure wave encounters the Earth's surface and part of the energy of the wave is transferred to the ground (i.e. coupled to the ground) as a seismic wave. This seismic wave propagates as a surface Rayleigh wave evidenced by the retrograde particle motion detected on a three-component seismometer. Acoustic waves recorded on a collocated microphone and seismometer can be coherent and have a 90-degree phase difference, predicted by theory and in agreement with observations. If the sensors are separated relative to the frequencies of interest, usually 10s to 100s of meters, then recorded wind noise becomes incoherent and an additional phase shift is present due to the separation distance. These characteristics of GCAs have been used to distinguish wind noise from other sources as well as to determine the acoustic contribution to seismic recordings. Here we aim to develop a minimalist infrasound signal detection and characterization technique requiring just one microphone and one three-component seismometer. Based on GCA theory, determining a source azimuth should be possible using a single seismo-acoustic sensor pair by utilizing the phase difference and exploiting the characteristic particle motion. We will use synthetic seismo-acoustic data generated by a coupled Earth-atmosphere 3D finite difference code to test and tune the detection and characterization method. The method will then be further tested using various well-constrained sources (e.g. Chelyabinsk meteor, Pagan Volcano, Cleveland Volcano). Such a technique would be advantageous in situations where resources are limited and large sensor networks are not feasible.
2012-01-01
Background We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Materials and Methods: During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Results Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Conclusions Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid – and air pouch sensors when evaluating the dynamic ICP parameters. PMID:22958653
A self-mixing based ring-type fiber-optic acoustic sensor
NASA Astrophysics Data System (ADS)
Wang, Lutang; Wu, Chunxu; Fang, Nian
2014-07-01
A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.
NASA Astrophysics Data System (ADS)
Yun, Jinsik; Ha, Dong Sam; Inman, Daniel J.; Owen, Robert B.
2011-03-01
Structural damage for spacecraft is mainly due to impacts such as collision of meteorites or space debris. We present a structural health monitoring (SHM) system for space applications, named Adverse Event Detection (AED), which integrates an acoustic sensor, an impedance-based SHM system, and a Lamb wave SHM system. With these three health-monitoring methods in place, we can determine the presence, location, and severity of damage. An acoustic sensor continuously monitors acoustic events, while the impedance-based and Lamb wave SHM systems are in sleep mode. If an acoustic sensor detects an impact, it activates the impedance-based SHM. The impedance-based system determines if the impact incurred damage. When damage is detected, it activates the Lamb wave SHM system to determine the severity and location of the damage. Further, since an acoustic sensor dissipates much less power than the two SHM systems and the two systems are activated only when there is an acoustic event, our system reduces overall power dissipation significantly. Our prototype system demonstrates the feasibility of the proposed concept.
NASA Astrophysics Data System (ADS)
Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon
2014-03-01
Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.
NASA Astrophysics Data System (ADS)
Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun
2017-07-01
In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.
Passive Sensors for Long Duration Internet of Things Networks.
Pereira, Felisberto; Correia, Ricardo; Carvalho, Nuno Borges
2017-10-03
In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.
Passive Sensors for Long Duration Internet of Things Networks
Correia, Ricardo; Carvalho, Nuno Borges
2017-01-01
In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices. PMID:28972554
Stable Research Platform Workshop
1988-04-01
autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE
Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation
NASA Astrophysics Data System (ADS)
De Marchi, L.; Testoni, N.; Marzani, A.
2018-04-01
A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.
Third-generation imaging sensor system concepts
NASA Astrophysics Data System (ADS)
Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.
1999-07-01
Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.
Study of Composite Plate Damages Using Embedded PZT Sensors with Various Center Frequency
NASA Astrophysics Data System (ADS)
Kang, Kyoung-Tak; Chun, Heoung-Jae; Son, Ju-Hyun; Byun, Joon-Hyung; Um, Moon-Kwang; Lee, Sang-Kwan
This study presents part of an experimental and analytical survey of candidate methods for damage detection of composite structural. Embedded piezoceramic (PZT) sensors were excited with the high power ultrasonic wave generator generating a propagation of stress wave along the composite plate. The same embedded piezoceramic (PZT) sensors are used as receivers for acquiring stress signals. The effects of center frequency of embedded sensor were evaluated for the damage identification capability with known localized defects. The study was carried out to assess damage in composite plate by fusing information from multiple sensing paths of the embedded network. It was based on the Hilbert transform, signal correlation and probabilistic searching. The obtained results show that satisfactory detection of defects could be achieved by proposed method.
Surface Acoustic Wave Devices as Chemical Vapor Sensors
2009-03-26
x105cm/s) (x10−6cm1/2g1/2) (pF/cm) (ppm/oC) Quartz ST 3.158 0.13 1.34 0.88 0.0011 0.5 ∼ 0 X Lithium Niobate -Y 3.488 0 0.83 0.56 0.048 4.6 94 X Gallium ...sensitivity, followed by lithium niobate and gallium arsenide in ratios of 7.4:5.9:4.8, re- spectively. Thus, even though lithium niobate has the superior...Acoustic Wave (SAW) Sensor for 2,4-Dinitro Toluene (DNT) Vapour Detection,” Sensors and Actuators B: Chemical, vol. 101, no. 3, pp. 328–334, 2004. 8
An oxygen pressure sensor using surface acoustic wave devices
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.
1993-01-01
Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.
NASA Astrophysics Data System (ADS)
Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.
2011-07-01
Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.
Non-Intrusive Sensor for In-Situ Measurement of Recession Rate of Ablative and Eroding Materials
NASA Technical Reports Server (NTRS)
Papadopoulos, George (Inventor); Tiliakos, Nicholas (Inventor); Thomson, Clint (Inventor); Benel, Gabriel (Inventor)
2014-01-01
A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.
50 CFR 218.115 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Narrative description of sensors and platforms utilized for marine mammal detection and timeline... sensor; (vi) Length of time observers maintained visual contact with marine mammal; (vii) Wave height...
Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model
2006-08-14
brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe
Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...
2013-11-08
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Houston, J.
2012-01-01
The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.
Advanced Sensor Technologies for Next-Generation Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, S H; Chien, H T; Gopalsami, N
2002-01-30
This report summarizes the development of automobile emissions sensors at Argonne National Laboratory. Three types of sensor technologies, i.e., ultrasound, microwave, and ion-mobility spectrometry (IMS), were evaluated for engine-out emissions monitoring. Two acoustic sensor technologies, i.e., surface acoustic wave and flexural plate wave, were evaluated for detection of hydrocarbons. The microwave technique involves a cavity design and measures the shifts in resonance frequency that are a result of the presence of trace organic compounds. The IMS technique was chosen for further development into a practical emissions sensor. An IMS sensor with a radioactive {sup 63}Ni ion source was initially developedmore » and applied to measurement of hydrocarbons and NO{sub x} emissions. For practical applications, corona and spark discharge ion sources were later developed and applied to NO{sub x} emission measurement. The concentrations of NO{sub 2} in dry nitrogen and in a typical exhaust gas mixture are presented. The sensor response to moisture was evaluated, and a cooling method to control the moisture content in the gas stream was examined. Results show that the moisture effect can be reduced by using a thermoelectric cold plate. The design and performance of a laboratory prototype sensor are described.« less
Hair sensor using a photoelectronic principle for sensing airflow and its direction
NASA Astrophysics Data System (ADS)
Huang, Kuang-Yuh; Huang, Chien-Tai
2011-01-01
Many organisms have diverse hair cells to instantaneously perceive the change of surroundings so that they can keep away from threats. These organs can precisely detect the tiny variations of airflow, water flow, sound, or pressure, and also resolve their affecting directions. Through this brilliant inspiration by the insects' cilia, we decided to design and develop a hair sensor for detecting two-dimensional airflow and pressure waves by using photoelectronic principles. The hair sensor inherently consists of an artificial cilium supported by an elastic membrane. A light-emitting diode and a quadrant photodiode are used as the photoelectronic sensor. The airflow or pressure wave directly stimulates the cilium to sway, and this motion contributes to let the projected light beam shift over the quadrant photodiode, whose four photodiodes produce then corresponding output signals. Because of dynamic and high-sensitive properties of the photoelectronic sensor, the hair sensor we developed possesses a high measurement resolution to be able to detect very tiny stimulation and its affecting direction. According to its multifaceted characteristics and simple structure, the hair sensor can be applied in numerous potential application fields, such as intrusion alarm system, noise detection system, as well as a tactile sensor.
Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin
2014-04-01
A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
NASA Technical Reports Server (NTRS)
Justak, John
2010-01-01
An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.
NASA Astrophysics Data System (ADS)
Budiyanto, M.; Suhariningsih; Yasin, M.
2018-04-01
The use of instructional media needs to be implemented in one of the courses such as wave and optics to cover up the contents of material. To bring this advantage, one of the alternatives that can be used is to use fiber optic sensors for detecting cholesterol concentration. This device brings about the concepts of how the wave and optics behaves and operates. In doing so, the variation concentration of cholesterol solution is 0 ppm, 50 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, and 300 ppm. The work mechanism of cholesterol concentration detection is laser propagation of He-Ne wavelength 632.5 nm through fiber optic in cholesterol solution and reflected back by flat mirror then ray reflected through fiber optic bundle so detected by SL-818 silicon detector in the form of voltage Output. The detection results showed that the maximum output voltage showed a linear decrease in the concentration of cholesterol solution with a sensitivity of 0.21 mV/ppm and linearity of more than 95%. In terms of developed learning media, the use of optical fiber sensor learning media is compatible with optical wave learning in terms of basic competence of lectures, learning indicators, learning materials, student worksheets and science process skills. From the assessment of validation of learning media obtained an assessment of more than 95%. The results of this study indicate the parameters and performance of sensors that have accurate potential as a medium for learning wave and optics.
Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun
2017-11-23
This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.
Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo
2017-08-07
Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.
Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors
Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo
2017-01-01
Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128
Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal.
Nakayama, Shinsuke; Uchiyama, Tusyoshi
2015-03-06
Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.
Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeri V.
2004-10-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal
NASA Astrophysics Data System (ADS)
Nakayama, Shinsuke; Uchiyama, Tusyoshi
2015-03-01
Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.
Uncooled long-wave infrared hyperspectral imaging
NASA Technical Reports Server (NTRS)
Lucey, Paul G. (Inventor)
2006-01-01
A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
NASA Astrophysics Data System (ADS)
Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran
2006-04-01
Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.
Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors
NASA Astrophysics Data System (ADS)
Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev
2017-02-01
Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.
NASA Astrophysics Data System (ADS)
Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.
2017-08-01
The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.
Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea
2018-04-27
We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando
2017-01-01
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161
González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco
2017-09-06
A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.
Ultrasonic guided wave interpretation for structural health inspections
NASA Astrophysics Data System (ADS)
Bingham, Jill Paisley
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
Wave Energy Prize MASK wave calibration data for the 1:20 scale testing at MASK
Driscoll, Rick
2017-05-08
Time series data, sensor layout, and wave calibration summaries for the wave height measurements for the 10 calibration sea states for the 1:20 scale testing of the Wave Energy Prize (WEP) at the US Navy's Maneuvering and Seakeeping (MASK) Basin at the Naval Surface Warfare Center in Carderock, Maryland. Measurements were made in the test area and upstream of the test area.
Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.
Liu, Jiansheng; Lu, Yanyan
2014-04-16
A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.
NASA Astrophysics Data System (ADS)
Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.
2016-02-01
Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.
NASA Astrophysics Data System (ADS)
Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin
2018-07-01
Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.
2009-09-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.
2009-05-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
Gas pipeline leakage detection based on PZT sensors
NASA Astrophysics Data System (ADS)
Zhu, Junxiao; Ren, Liang; Ho, Siu-Chun; Jia, Ziguang; Song, Gangbing
2017-02-01
In this paper, an innovative method for rapid detection and location determination of pipeline leakage utilizing lead zirconate titanate (PZT) sensors is proposed. The negative pressure wave (NPW) is a stress wave generated by leakage in the pipeline, and propagates along the pipeline from the leakage point to both ends. Thus the NPW is associated with hoop strain variation along the pipe wall. PZT sensors mounted on the pipeline were used to measure the strain variation and allowed accurate (within 2% error) and repeatable location (within 4% variance) of five manually controlled leakage points. Experimental results have verified the effectiveness and the location accuracy for leakage in a 55 meter long model pipeline.
Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83
NASA Technical Reports Server (NTRS)
Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.
1984-01-01
The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.
Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.
Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei
2013-02-20
A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.
A surface acoustic wave ICP sensor with good temperature stability.
Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng
2017-07-20
Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.
Surface acoustic wave devices for sensor applications
NASA Astrophysics Data System (ADS)
Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren
2016-02-01
Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).
Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y
2014-01-31
Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.
Scanning Shack-Hartmann wavefront sensor
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.
2004-09-01
Criss-crossing of focal images is the cause of a narrow dynamic range in Shack-Hartmann sensors. Practically, aberration range wider than +/-3 diopters can not be measured. A method has been proposed for ophthalmologic applications using a rarefied lenslet array through which a wave front is projected with the successive step-by-step changing of the global tilt. The data acquired in each step are accumulated and processed. In experimental setup, a doubled dynamic range was achieved with four steps of wave front tilting.
1991-08-01
parameters is an essential prerequisite when attempting to predict the performance of ASW sensors or weapon systems. Since a greater portion of the acoustic...operations at sea. Bad weather can result in a sever -’ ’ radation in the performance level of most sensor and weapon systems, axi- ...at of the...MS. February 9 to 11. 1983. Kibblewhite, A.C. 1985. Wave-wave interactions. microseisms, and infra - sonic ambient noise in the ocean. Journal of the
Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang
2015-01-01
Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Lamb Wave Propagation in a Restricted Geometry Composite PI-Joint Specimen (Preprint)
2011-11-01
adhesive, and were located along the length and height of the specimen as depicted in Figure 3. The sensors were 6.35 mm round disks of PZT , with a...in both cases for R1, R2, and R3. 3D Finite Element Model Geometry 200mm length 50mm width 140mm height x z y PZT Actuation Sensor...health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection”, Smart Mater. Struct., Vol. 14, No. 6, 2005. 16
A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring.
Yang, Tingting; Jiang, Xin; Zhong, Yujia; Zhao, Xuanliang; Lin, Shuyuan; Li, Jing; Li, Xinming; Xu, Jianlong; Li, Zhihong; Zhu, Hongwei
2017-07-28
Profuse medical information about cardiovascular properties can be gathered from pulse waveforms. Therefore, it is desirable to design a smart pulse monitoring device to achieve noninvasive and real-time acquisition of cardiovascular parameters. The majority of current pulse sensors are usually bulky or insufficient in sensitivity. In this work, a graphene-based skin-like sensor is explored for pulse wave sensing with features of easy use and wearing comfort. Moreover, the adjustment of the substrate stiffness and interfacial bonding accomplish the optimal balance between sensor linearity and signal sensitivity, as well as measurement of the beat-to-beat radial arterial pulse. Compared with the existing bulky and nonportable clinical instruments, this highly sensitive and soft sensing patch not only provides primary sensor interface to human skin, but also can objectively and accurately detect the subtle pulse signal variations in a real-time fashion, such as pulse waveforms with different ages, pre- and post-exercise, thus presenting a promising solution to home-based pulse monitoring.
Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael
2015-06-01
The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Yu, Qingxu; Zhou, Xinlei
2011-03-01
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
NASA Astrophysics Data System (ADS)
Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.
1995-09-01
The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.
Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W
2004-01-15
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.
Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System
NASA Astrophysics Data System (ADS)
Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.
2010-02-01
A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.
Following butter flavour deterioration with an acoustic wave sensor.
Gaspar, Cláudia R B S; Gomes, M Teresa S R
2012-09-15
Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors
NASA Astrophysics Data System (ADS)
Westafer, Ryan S.
The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.
NASA Astrophysics Data System (ADS)
Turton, Andrew; Bhattacharyya, Debabrata; Wood, David
2006-02-01
A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.
Langasite surface acoustic wave gas sensors: modeling and verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Zheng,; Greve, D. W.; Oppenheim, I. J.
2013-03-01
We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave modemore » and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.« less
Framework of passive millimeter-wave scene simulation based on material classification
NASA Astrophysics Data System (ADS)
Park, Hyuk; Kim, Sung-Hyun; Lee, Ho-Jin; Kim, Yong-Hoon; Ki, Jae-Sug; Yoon, In-Bok; Lee, Jung-Min; Park, Soon-Jun
2006-05-01
Over the past few decades, passive millimeter-wave (PMMW) sensors have emerged as useful implements in transportation and military applications such as autonomous flight-landing system, smart weapons, night- and all weather vision system. As an efficient way to predict the performance of a PMMW sensor and apply it to system, it is required to test in SoftWare-In-the-Loop (SWIL). The PMMW scene simulation is a key component for implementation of this simulator. However, there is no commercial on-the-shelf available to construct the PMMW scene simulation; only there have been a few studies on this technology. We have studied the PMMW scene simulation method to develop the PMMW sensor SWIL simulator. This paper describes the framework of the PMMW scene simulation and the tentative results. The purpose of the PMMW scene simulation is to generate sensor outputs (or image) from a visible image and environmental conditions. We organize it into four parts; material classification mapping, PMMW environmental setting, PMMW scene forming, and millimeter-wave (MMW) sensorworks. The background and the objects in the scene are classified based on properties related with MMW radiation and reflectivity. The environmental setting part calculates the following PMMW phenomenology; atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Then, PMMW raw images are formed with surface geometry. Finally, PMMW sensor outputs are generated from PMMW raw images by applying the sensor characteristics such as an aperture size and noise level. Through the simulation process, PMMW phenomenology and sensor characteristics are simulated on the output scene. We have finished the design of framework of the simulator, and are working on implementation in detail. As a tentative result, the flight observation was simulated in specific conditions. After implementation details, we plan to increase the reliability of the simulation by data collecting using actual PMMW sensors. With the reliable PMMW scene simulator, it will be more efficient to apply the PMMW sensor to various applications.
Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration
2010-06-01
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.
Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun
2017-05-15
We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l) -1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO 2 . The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming
2013-02-14
University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less
Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M
2012-01-01
It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.
Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.
2018-04-01
Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.
Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field
NASA Astrophysics Data System (ADS)
Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu
2018-01-01
This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.
Ultrasonic wave-based structural health monitoring embedded instrument.
Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano
2013-12-01
Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.
Design of an Optical System for Phase Retrieval based on a Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; von Kopylow, Christoph; Bergmann, Ralf B.
2010-04-01
We present an optical configuration for phase retrieval from a sequence of intensity measurements. The setup is based on a 4f-configuration with a phase modulating spatial light modulator (SLM) located in the Fourier domain. The SLM is used to modulate the incoming light with the transfer function of propagation, thus a sequence of propagated representations of the subjected wave field can be captured across a common sensor plane. The main advantage of this technique is the greatly reduced measurement time, since no mechanical adjustment of the camera sensor is required throughout the measurement process. The treatise is focused on the analysis of the wave field in the sensor domain. From the discussion a set of parameters is derived in order to minimize disturbing effects arising from the discrete nature of the SLM. Finally, the big potential of this approach is demonstrated by means of experimental investigations with regard to wave field sensing.
NASA Astrophysics Data System (ADS)
Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.
2016-12-01
We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.
A survey and analysis of experimental hydrogen sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
1992-01-01
In order to ascertain the applicability of hydrogen sensors to aerospace applications, a survey was conducted of promising experimental point-contact hydrogen sensors and their operation was analyzed. The techniques discussed are metal-oxide-semiconductor or MOS based sensors, catalytic resistor sensors, acoustic wave detectors, and pyroelectric detectors. All of these sensors depend on the interaction of hydrogen with Pd or a Pd-alloy. It is concluded that no single technique will meet the needs of aerospace applications but a combination of approaches is necessary. The most promising combination is an MOS based sensor with a catalytic resistor.
Transmission-grating-based wavefront tilt sensor.
Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke
2009-07-10
We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.
Millimeter wave radar for automobile crash avoidance systems
NASA Astrophysics Data System (ADS)
Huguenin, G. Richard
1994-08-01
Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.
Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption
Liu, Jiansheng; Lu, Yanyan
2014-01-01
A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data. PMID:24743157
Low noise WDR ROIC for InGaAs SWIR image sensor
NASA Astrophysics Data System (ADS)
Ni, Yang
2017-11-01
Hybridized image sensors are actually the only solution for image sensing beyond the spectral response of silicon devices. By hybridization, we can combine the best sensing material and photo-detector design with high performance CMOS readout circuitry. In the infrared band, we are facing typically 2 configurations: high background situation and low background situation. The performance of high background sensors are conditioned mainly by the integration capacity in each pixel which is the case for mid-wave and long-wave infrared detectors. For low background situation, the detector's performance is mainly limited by the pixel's noise performance which is conditioned by dark signal and readout noise. In the case of reflection based imaging condition, the pixel's dynamic range is also an important parameter. This is the case for SWIR band imaging. We are particularly interested by InGaAs based SWIR image sensors.
NASA Astrophysics Data System (ADS)
Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.
2018-05-01
The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.
Surfzone vorticity in the presence of extreme bathymetric variability
NASA Astrophysics Data System (ADS)
Clark, D.; Elgar, S.; Raubenheimer, B.
2014-12-01
Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.
Implication of changing loading conditions on structural health monitoring utilising guided waves
NASA Astrophysics Data System (ADS)
Mohabuth, Munawwar; Kotousov, Andrei; Ng, Ching-Tai; Rose, L. R. Francis
2018-02-01
Structural health monitoring systems based on guided waves typically utilise a network of embedded or permanently attached sensors, allowing for the continuous detection of damage remote from a sensor location. The presence of damage is often diagnosed by analysing the residual signals from the structure after subtracting damage-free reference data. However, variations in environmental and operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the measured residuals. A previously developed acoustoelastic formulation is here extended and employed as the basis for a simplified analytical model to estimate the effect of applied or thermally-induced stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there are special combinations of frequency, biaxial stress ratio and direction of wave propagation for which there is no change in the phase velocity of the fundamental anti-symmetric mode. The implication of these results in devising effective strategies to mitigate the effect of stress induced variations in guided-wave damage diagnostics is briefly discussed.
Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe
2017-01-01
Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379
Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System
NASA Astrophysics Data System (ADS)
Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.
2016-12-01
Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.
Alay, Eren; Zheng, James Q.; Chandra, Namas
2018-01-01
We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521
RoMi: Refraction Microtremor Using Rotational Seismometers
NASA Astrophysics Data System (ADS)
Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.
2013-12-01
We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Huang, Guoliang; Song, Fei; Wang, Xiaodong
2010-01-01
Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.
NASA Technical Reports Server (NTRS)
Eckermann, S. D.; Wu, D. L.
2012-01-01
Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.
Fatigue disbonding analysis of wide composite panels by means of Lamb waves
NASA Astrophysics Data System (ADS)
Michalcová, Lenka; Rechcígel, Lukáš; Bělský, Petr; Kucharský, Pavel
2018-03-01
Guided wave-based monitoring of composite structures plays an important role in the area of structural health monitoring (SHM) of aerospace structures. Adhesively bonded joints have not yet fulfilled current airworthiness requirements; hence, assemblies of carbon fibre-reinforced parts still require mechanical fasteners, and a verified SHM method with reliable disbonding/delamination detection and propagation assessment is needed. This study investigated the disbonding/delamination propagation in adhesively bonded panels using Lamb waves during fatigue tests. Analyses focused on the proper frequency and mode selection, sensor placement and selection of parameter sensitive to the growth of disbonding areas. Piezoelectric transducers placed across the bonded area were used as actuators and sensors. Lamb wave propagation was investigated considering the actual shape of the crack front and the mode of the crack propagation. The actual cracked area was determined by ultrasonic A-scans. A correlation between the crack propagation rate and the A0 mode velocity was found.
Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.
Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy
2018-04-01
The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.
Fiber optic evanescent wave (FOEW) microbial sensor for dental application
NASA Astrophysics Data System (ADS)
Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.
2001-10-01
In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.
High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.
2011-01-01
High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.
An ocean bottom seismic observatory with near real-time telemetry
NASA Astrophysics Data System (ADS)
Berger, J.; Laske, G.; Babcock, J.; Orcutt, J.
2016-02-01
We describe a new technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA, which harvests wave and solar energy for motive and electrical power. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. We also demonstrated that a wave glider could tow a suitably designed ocean bottom package with acceptable loss of speed. With further development such a system could be deployed autonomously and provide real-time telemetry of data from seafloor sensors.
Flexural Plate Wave Devices for Chemical Analysis
1991-04-16
Naval Research Laboratory Washi..gton. DC 20375-5000 NRL Memorandum Report 6815 AD-A234 129 Flexural Plate Wave Devices for Chemical Analysis JAY W...4. TITLE AND SUBTITLE S. FUNDING NUMBERS Flexural Plate Wave Devices for Chemical Analysis 6. AUTHOR(S) 61-1638-01 Jay W. Grate. Stuart W. Wenzel... ANALYSIS INTRODUCTION Flexural plate wave (FPW) devices offer many attractive features for chemical analysis (1-9). As gravimetric sensors for chemical
Applications of variable focus liquid lenses for curvature wave-front sensors in astronomy
NASA Astrophysics Data System (ADS)
Fuentes-Fernández, J.; Cuevas, S.; Alvarez-Nuñez, L. C.; Watson, A. M.
2014-08-01
Curvature wavefront sensors obtain the wave-front aberrations from two defocused intensity images at each side of the pupil plane. Typically, when high modulation speeds are required, as it is the case with Adaptive Optics, that defocusing is done with a fast vibrating membrane mirror. We propose an alternative defocusing mechanism based on an electrowetting variable focus liquid lens. The use of such lenses may perform the required focus modulation without the need of extra moving parts, reducing the overall size of the system.
Detection of crack in thin cylindrical pipes using piezo-actuated Lamb waves
NASA Astrophysics Data System (ADS)
Tua, P. S.; Quek, S. T.; Wang, Q.
2005-05-01
The detection of cracks in beams and plates using piezo-actuated Lamb waves has been presented in the last SPIE Symposium. This paper is an extension of the technique to pipes. It has been shown that for a thin-walled pipe, the assumption of Lamb wave propagation is valid. Such waves can be efficiently excited using piezoceramic transducers (PZT) with good control on the pulse characteristics to assess the health of structural components, such as the presence of cracks. In this paper, a systematic methodology to detect and locate cracks in homogenous cylinder/pipe based on the time-of-flight and strength analysis of propagating Lamb wave is proposed. By observing the attenuation in strength of the direct wave incidence at the sensor, the presence of a crack along the propagation path can be determined. At least four actuation positions, two on each end of the pipe segment of interest, are needed to exhaustively interrogate for the presence of cracks. The detailed procedure for locating and tracing the geometry of the crack(s) is described. It is shown experimentally that the detection using circular PZT actuator and sensor, with dimensions of 5.0 mm diameter and 0.5 mm thick, is possible for an aluminum pipe segment of up to at least 4.0 m in length. The proposed methodology is also explored for the aluminum pipe under more practical situations, such as burying it in sand with only the actuator and sensor positions exposed. Experimental results obtained showed the feasibility of detecting the 'concealed' crack on the pipe buried in sand.
Proving and Improving Wave Models in the Arctic Ocean and its MIZ
2013-09-30
wave buoy was deployed in the ocean near the berg throughout the experiment, and recorded a persistent swell from the SE. An array of tiltmeters and GPS...vertical movement sensors was placed on the berg near the edge. These recorded the berg response to the waves, and on one occasion a calving event
NASA Astrophysics Data System (ADS)
Nalladega, V.; Na, J. K.; Druffner, C.
2011-06-01
Interdigital transducers (IDT) generate and receive ultrasonic surface waves without the complexity involved with secondary devices such as angled wedges or combs. The IDT sensors have been successfully applied for the NDE of homogeneous materials like metals in order to detect cracks and de-bond. However, these transducers have not been yet adapted for complex and anisotropic materials like fiber-reinforced composites. This work presents the possibility of using IDT sensors for monitoring structural damages in wind turbine blades, typically made of fiberglass composites. IDT sensors with a range of operating frequency between 250 kHz and 1 MHz are initially tested on representative composite test panels for ultrasonic surface wave properties including beam spread, propagation distance and effect of material's anisotropy. Based on these results, an optimum frequency range for the IDT sensor is found to be 250-500 kHz. Subsequently, IDT sensors with operating frequency 500 kHz are used to detect and quantify artificial defects created in the composite test samples. Discussions are made on the interaction of ultrasonic fields with these defects along with the effects of fiber directionality and composite layer stacking.
Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.
Monitoring Inland Storm Surge and Flooding from Hurricane Ike in Texas and Louisiana, September 2008
East, Jeffery W.; Turco, Michael J.; Mason, Jr., Robert R.
2008-01-01
The U.S. Geological Survey (USGS) deployed a temporary monitoring network of 117 pressure transducers (sensors) at 65 sites over an area of about 5,000 square miles to record the timing, areal extent, and magnitude of inland hurricane storm surge and coastal flooding generated by Hurricane Ike, which struck southeastern Texas and southwestern Louisiana September 12-13, 2008. Fifty-six sites were in Texas and nine were in Louisiana. Sites were categorized as surge, riverine, or beach/wave on the basis of proximity to the Gulf Coast. One-hundred five sensors from 59 sites (fig. 1) were recovered; 12 sensors from six sites either were lost during the storm or were not retrieved. All 59 sites (41 surge, 10 riverine, 8 beach/wave) had sensors to record water pressure (fig. 2), which is expressed as water level in feet above North American Vertical Datum of 1988 (NAVD88), and 46 sites had an additional sensor to record barometric pressure, expressed in pounds per square inch. Figure 3 shows an example of water level and barometric pressure over time recorded by sensors during the storm.
NASA Astrophysics Data System (ADS)
Abeynayake, Canicious; Chant, Ian; Kempinger, Siegfried; Rye, Alan
2005-06-01
The Rapid Route Area and Mine Neutralisation System (RRAMNS) Capability Technology Demonstrator (CTD) is a countermine detection project undertaken by DSTO and supported by the Australian Defence Force (ADF). The limited time and budget for this CTD resulted in some difficult strategic decisions with regard to hardware selection and system architecture. Although the delivered system has certain limitations arising from its experimental status, many lessons have been learned which illustrate a pragmatic path for future development. RRAMNS a similar sensor suite to other systems, in that three complementary sensors are included. These are Ground Probing Radar, Metal Detector Array, and multi-band electro-optic sensors. However, RRAMNS uses a unique imaging system and a network based real-time control and sensor fusion architecture. The relatively simple integration of each of these components could be the basis for a robust and cost-effective operational system. The RRAMNS imaging system consists of three cameras which cover the visible spectrum, the mid-wave and long-wave infrared region. This subsystem can be used separately as a scouting sensor. This paper describes the system at its mid-2004 status, when full integration of all detection components was achieved.
Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun
2018-02-05
A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.
Compact, self-contained enhanced-vision system (EVS) sensor simulator
NASA Astrophysics Data System (ADS)
Tiana, Carlo
2007-04-01
We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.
Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi
2012-11-01
Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.
Improved Sensitivity Spontaneous Raman Scattering Multi-Gas Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buric, Michael P.; Chen, Kevin P.; Falk, Joel
2009-01-01
We report a backward-wave spontaneous-Raman multi-gas sensor employing a hollow-core photonic-bandgap-fiber to contain gasses and increase interaction length. Silica Raman noise and detection speed are reduced using a digital spatial filter and a cladding seal.
NASA Astrophysics Data System (ADS)
Mann, Ian; Chi, Peter
2016-07-01
Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport, acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.
Noise-based body-wave seismic tomography in an active underground mine.
NASA Astrophysics Data System (ADS)
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.
Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-02-26
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.
Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-01-01
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520
An ultra-fast fiber optic pressure sensor for blast event measurements
NASA Astrophysics Data System (ADS)
Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei
2012-05-01
Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.
NASA Astrophysics Data System (ADS)
Alam, Md Nazmul
Sensors and sensing system are playing dominant roles in monitoring the health of infrastructure, such as bridges, power lines, gas pipelines, rail roads etc. Sensing modalities employing Surface Acoustic Waves (SAW), Electromagnetic (EM) and optical have been investigated and reported. Sensors that utilize the perturbation of EM fields as function of the change in the physical structural or material phenomenon are of particular interest because of their inherent synergy with electronic system and diagnostic techniques, e.g. Time Domain Reflectometry (TDR), Joint-Time-Frequency-Domain-Reflectometry (JTFDR). The focus of this work is to study and develop new sensing and monitoring concepts that are based on EM principles. First, the analyses, design and development of a static electric field type sensor are presented for application in embedded concrete moisture content measurement. The analytical formulation and results based on conformal mapping method for an interdigitated sensor clearly show the dependency of the field penetration depth and the inter-electrode capacitance on the electrode sizes and their spacings. It is observed that larger electrode size and small separation are needed in order to achieve substantially higher capacitance or large field penetration depth. A meander and a circular sensor are fabricated and tested to demonstrate concrete moisture content measurements that show that moisture content is a linear function of sensor interelectrode capacitance. Second, sub-wavelength dimension non-intrusive wave launchers are designed and tested that can launch TDR or JTFDR type broadband surface wave waveforms in the VHF-UHF bands in order to detect cable faults. Greater than 3:1 transmission bandwidth (100-300 MHz) is obtained with a cylindrical launcher on square orthogonal ground plane while with a CSW launcher more than an octave (100-240 MHz) bandwidth is achieved. Open circuit faults are detected using surface waves and TDR on two XLPE cables. Third, a new mathematical method is developed that can be used to determine the changes in the dielectric constant of a cable insulating material. By comparing the experimental JTFDR waveform signatures from a new and an aged cable, it is demonstrated that the change in the average dielectric constant of the insulation material can be estimated from the phase transfer functions obtained from the FFT of measured magnitude and phase responses. The experimental data obtained for two types of cables, XLPE and EPR show that the dielectric constant decreases with accelerated aging. Finally, JTFDR surface wave sensing method is developed and applied to determine the locations of aging related insulation damage in power cables. The comparative power spectral responses of conducted and non-intrusive surface wave JTFDR waveforms clearly show the resulting bandwidth reduction in the latter primarily because of the reflective nature of the coupling. It is demonstrated that with the help of a non-intrusive wave launcher and a 120 MHz Gaussian chirp waveform the location of aging related insulation damages can be detected. Experiments conducted show the cross-correlation peaks at subsequent aging intervals as the cable is aged inside a heat chamber.
NASA Astrophysics Data System (ADS)
Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi
2010-10-01
We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.
Wireless SAW passive tag temperature measurement in the collision case
NASA Astrophysics Data System (ADS)
Sorokin, A.; Shepeta, A.; Wattimena, M.
2018-04-01
This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.
Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security
NASA Astrophysics Data System (ADS)
Krapels, Keith; Driggers, Ronald G.; Larson, Paul; Garcia, Jose; Walden, Barry; Agheera, Sameer; Deaver, Dawne; Hixson, Jonathan; Boettcher, Evelyn
2008-04-01
The need for Anti-Terrorism and Force Protection (AT/FP), for both shore and sea platform protection, has resulted in a need for imager design and evaluation tools which can predict field performance against maritime asymmetric threats. In the design of tactical imaging systems for target acquisition, a discrimination criterion is required for successful sensor realization. It characterizes the difficulty of the task being performed by the observer and varies for different target sets. This criterion is used in both assessment of existing infrared sensor and in the design of new conceptual sensors. In this experiment, we collected 8 small craft signatures (military and civilian) in the short wave infrared (SWIR) band during the day. These signatures were processed to determine the targets' characteristic dimension and contrast. They were also processed to bandlimit the signature's spatial information content (simulating longer range) and a perception experiment was performed to determine the task difficulty (N50 and V50). The results are presented in this paper and can be used for maritime security imaging sensor design and evaluation.
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Gravitational Wave Detection on the Moon and the Moons of Mars
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; YethadkaVenkateswara, Krishna
2004-01-01
The Moon and the moons of Mars should be extremely quiet seismically and could therefore become sensitive gravitational wave detectors, if instrumented properly. Highly sensitive displacement sensors could be deployed on these planetary bodies to monitor the motion induced by gravitational waves. A superconducting displacement sensor with a 10-kg test mass cooled to 2 K will have an intrinsic instrument noise of 10(exp -16) m Hz(exp -1/2). These sensors could be tuned to the lowest two quadrupole modes of the body or operated as a wideband detector below its fundamental mode. An interesting frequency range is 0.1 to approx. 1 Hz, which will be missed by both the ground detectors on the Earth and LISA and would be the best window for searching for stochastic background gravitational waves. Phobos and Deimos have their lowest quadrupole modes at 0.2 to approx. 0.3 Hz and could offer a sensitivity h(sub min) = 10(exp -22) Hz(exp -1/2) within their resonance peaks, which is within two orders of magnitude from the goal of the Big Bang Observer (BBO). The lunar and Martian moon detectors would detect many interesting foreground sources in a new frequency window and could serve as a valuable precursor for BBO.
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2004-12-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves
NASA Astrophysics Data System (ADS)
Agbasi, Chijioke Raphael
The non-linear elastodynamics of a flat plate subjected to low velocity foreign body impacts is studied, resembling the space debris impacts on the space structure. The work is based on a central hypothesis that in addition to identifying the impact locations, the material properties of the foreign objects can also be classified using acousto-ultrasonic signals (AUS). Simultaneous localization of impact point and classification of impact object is quite challenging using existing state-of-the-art structural health monitoring (SHM) approaches. Available techniques seek to report the exact location of impact on the structure, however, the reported information is likely to have errors from nonlinearity and variability in the AUS signals due to materials, geometry, boundary conditions, wave dispersion, environmental conditions, sensor and hardware calibration etc. It is found that the frequency and speed of the guided wave generated in the plate can be quantized based on the impactor's relationship with the plate (i.e. the wave speed and the impactor's mechanical properties are coupled). In this work, in order to characterize the impact location and mechanical properties of imapctors, nonlinear transient phenomenon is empirically studied to decouple the understanding using the dominant frequency band (DFB) and Lag Index (LI) of the acousto-ultrasonic signals. Next the understanding was correlated with the elastic modulus of the impactor to predict transmitted force histories. The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over conventional localized sensor clusters. It was found that the TSSC provides unbiased sensor voting that boosts sensitivity towards classification of impact events. To prove the concept, a coupled field (multiphysics) finite element model (CFFEM) is developed and a series of experiments were performed. The dominant frequency band (DBF) along with a Lag Index (LI) feature extraction technique was found to be suitable for classifying the impactors. Results show that TSSC with DBF features increase the sensitivity of impactor's elastic modulus, if the covariance of the AUS from the TSSC and other conventional sensor clusters are compared. It is observe that for the impact velocity, geometric and mechanical properties studied herein, longitudinal and flexural waves are excited, and there are quantifiable differences in the Lamb wave signatures excited for different impactor materials. It is found that such differences are distinguishable only by the proposed TSSC, but not by other state-of-the-art sensor configurations used in SHM. This study will be useful for modeling an inverse problem needed for classifying impactor materials and the subsequent reconstruction of force histories via neural network or artificial intelligence. Finally an alternative novel approach is proposed to describe the Probability Map of Impact (PMOI) over the entire structure. PMOI could serve as a read-out tool for simultaneously identifying the impact location and the type of the impactor that has impacted the structure. PMOI is intended to provide high risk areas of the space structures where the incipient damage could exist (e.g. area with PMOI > 95%) after an impact.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Pitarka, A.; Mellors, R. J.
2016-12-01
The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Tada, T.; Cho, I.; Shinozaki, Y.
2005-12-01
We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce estimates for the phase velocities of Love waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. We have also conducted a check of the estimated spectral ratios against the "model" spectral ratios, where we mean by "spectral ratio" an intermediary quantity that is calculated from observed records prior to the estimation of the phase velocity in the data analysis procedure of our TR method. In most cases, the estimated phase velocities coincided well with the model phase velocities within a wavelength range extending roughly from 3r to 6r (r: array radius). It was found out that, outside the upper and lower resolution limits of the TR method, the discrepancy between the estimated and model phase velocities, as well as the discrepancy between the estimated and model spectral ratios, were accounted for satisfactorily by theoretical consideration of three factors: the presence of higher surface-wave modes, directional aliasing effects related to the finite number of sensors in the seismic array, and the presence of incoherent noise.
Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.
2014-12-01
Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)
Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications
NASA Astrophysics Data System (ADS)
Melnykowycz, M.; Tschudin, M.; Clemens, F.
2017-02-01
For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.
Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves
NASA Technical Reports Server (NTRS)
Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.
2013-01-01
Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.
AlN/Pt/LN structure for SAW sensors capable of operating at high temperature
NASA Astrophysics Data System (ADS)
Naumenko, Natalya; Nicolay, Pascal
2017-08-01
There is a need for wireless sensors able to operate in the intermediate temperature range (ITR) between 300 °C and 600 °C. Surface acoustic wave (SAW) sensors are promising candidates to solve this issue. However, existing SAW sensors most often fail in the ITR, due to the quick degradation of the sensor housing in extreme conditions. A promising way to circumvent the issue is to use "package-less" devices, where the acoustic waves are guided in a multilayered structure where they are intrinsically protected from adverse environmental effects. We present here an innovative multilayered structure that fulfills all the basic requirements, to achieve a wireless and "package-less" SAW Sensor for the ITR. The structure is made of a thin AlN layer deposited on top of a Y + 128°LN substrate and equipped with buried Pt electrodes. Numerical simulations of the acoustic waves propagating in SAW resonators built on this structure reveal the existence of a useful Rayleigh-type SAW that propagates at the AlN/LN interface with a velocity up to 4500 m/s and a high electromechanical coupling k2=5.6%, without leakage into the substrate. The existence of this mode is due to specific properties of the Y + 128°LN cut, which are analyzed in detail in this paper. The performances of an optimized AlN/Pt/LN structure are also compared to the ones of previously suggested "package-less" structures, including AlN/ZnO/Sapphire. It is shown that better device characteristics can be expected from the AlN/Pt/LN structure in the ITR.
Electro-optic voltage sensor for sensing voltage in an E-field
Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.
2002-03-26
A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.
A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance
NASA Astrophysics Data System (ADS)
Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.
2017-11-01
We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.
Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji
2015-07-01
Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Guo, X S; Chen, Y Q; Yang, X L; Wang, L R
2005-01-01
Surface acoustic wave (SAW) devices based on shear-horizontal (SH) waves can be used as mass-sensitive immunosensors. This paper presents a novel SH-SAW sensor to detect anti-immunoglobulin (IgG) molecules by means of the antibody-antigen binding mechanism. The sensor system comprising dual delay lines was fabricated on 36° Y-X LiTaO
NASA Technical Reports Server (NTRS)
Evans, K. Franklin
2004-01-01
This grant supported the principal investigator's analysis of data obtained during CRYSTAL-FACE by two submillimeter-wave radiometers: the Far-Infrared Sensor for Cirrus (FIRSC) and the Conical Scanning Submillimeter-wave Imaging Radiometer (CoSSIR). The PI led the overall FIRSC investigation, though Co-I Michael Vanek led the instrument component at NASA Langley. The overall CoSSIR investigation was led by James Wang at NASA Goddard, but the cirrus retrieval and validation was performed at the University of Colorado. The goal of this research was to demonstrate the submillimeter-wave cirrus cloud remote sensing technique, provide retrievals of ice water path (IWP) and median mass particle diameter (D(sub me)), and perform validation of the cirrus retrievals using other CRYSTAL-FACE datasets.
The family of micro sensors for remote control the pollution in liquids and gases
NASA Astrophysics Data System (ADS)
Tulaikova, Tamara; Kocharyun, Gevorg; Rogerson, Graham; Burmistrova, Ludmyla; Sychugov, Vladimir; Dorojkin, Peter
2005-10-01
There are the results for the 3 groups of fiber-optical sensors. First is the fiber-optical sensor with changed sensitive heads on the base on porous polymer with clamped activated dye. Vibration method for fiber-optical sensors provides more convenient output measurements of resonant frequency changes, in comparison with the first device. The self-focusing of the living sells into optical wave-guides in laser road in water will be considered as a new touch method for environment remote sensing.
Analyzing spatial coherence using a single mobile field sensor.
Fridman, Peter
2007-04-01
According to the Van Cittert-Zernike theorem, the intensity distribution of a spatially incoherent source and the mutual coherence function of the light impinging on two wave sensors are related. It is the comparable relationship using a single mobile sensor moving at a certain velocity relative to the source that is calculated in this paper. The auto-corelation function of the electric field at the sensor contains information about the intensity distribution. This expression could be employed in aperture synthesis.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
Wireless passive radiation sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G
2013-12-03
A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.
Yan, Gang; Zhou, Li
2018-02-21
This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method.
Zhou, Li
2018-01-01
This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method. PMID:29466310
Reader Architectures for Wireless Surface Acoustic Wave Sensors.
Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander
2018-05-28
Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peth, Christian; Kranzusch, Sebastian; Mann, Klaus
2004-10-01
A table top extreme ultraviolet (EUV)-source was developed at Laser-Laboratorium Goettingen for the characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. EUV radiation is generated by focusing the beam of a Q-switched Nd:YAG laser into a pulsed xenon gas jet. Since a directed gas jet with a high number density is needed for an optimal performance of the source, conical nozzles with different cone angles were drilled with an excimer laser to produce a supersonic gas jet. The influence of the nozzle geometry on the gas jet was characterized with a Hartmann-Shackmore » wave front sensor. The deformation of a planar wave front after passing the gas jet was analyzed with this sensor, allowing a reconstruction of the gas density distribution. Thus, the gas jet was optimized resulting in an increase of EUV emission by a factor of two and a decrease of the plasma size at the same time.« less
Blood platelet adhesion to protein studied by on-line acoustic wave sensor.
Cavic, B A; Freedman, J; Morel, Z; Mody, M; Rand, M L; Stone, D C; Thompson, M
2001-03-01
The attachment of blood platelets to the surface of bare and protein-coated thickness-shear mode acoustic wave devices operating in a flow-through configuration has been studied. Platelets in washed from bind to the gold electrodes of such sensors, but the resulting frequency shifts are far less than predicted by the conventional mass-based model of device operation. Adherence to albumin and various types of collagen can be produced by on-line introduction of protein or by a pre-coating strategy. Differences in attachment of platelets to collagen types I and IV and the Horm variety can be detected. Platelets attached to collagen yield an interesting delayed, but reversible signal on exposure to a flowing medium of low pH. Scanning electron microscopy of sensor surfaces at various time points in this experiment reveals that originally intact platelets are eventually destroyed by the high acidity of the medium. The reversible frequency is attributed to the presence of removable platelet granular components at the sensor-liquid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hierlemann, A.; Hill, M.; Ricco, A.J.
We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseousmore » analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.« less
Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-01
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914
Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-16
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.
Fiber optic sensor technology - An opportunity for smart aerospace structures
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Rogowski, R. S.; Claus, R. O.
1988-01-01
Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.
Long-Wave Type-II Superlattice Detectors with Unipolar Electron and Hole Barriers
2012-12-01
technologies are readily deployed for the visible, short- wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared ( LWIR ) spectral bands.1 These... LWIR band, sensor technologies include Hg1−xCdxTe (MCT), microbolometers, and Type-II superlattices (SLS).3 In addition to the aforementioned materials...well infrared photodetector (QWIP) was born,6 and has since become well-positioned as a mainstream technology for LWIR sen- sors. In recognition of the
2008-09-30
propagation effects by splitting apart the longer period surface waves from the shorter period, depth-sensitive Pnl waves. Problematic, or high-error... Pnl waves. Problematic, or high-error, stations and paths were further analyzed to identify systematic errors with unknown sensor responses and...frequency Pnl components and slower, longer period surface waves. All cut windows are fit simultaneously, allowing equal weighting of phases that may be
Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2
NASA Technical Reports Server (NTRS)
Wilson, Barbara A. (Editor)
1991-01-01
In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
Wireless Monitoring of Automobile Tires for Intelligent Tires
Matsuzaki, Ryosuke; Todoroki, Akira
2008-01-01
This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission. Intelligent automobile tires, which monitor their pressure, deformation, wheel loading, friction, or tread wear, are expected to improve the reliability of tires and tire control systems. However, in installing sensors in a tire, many problems have to be considered, such as compatibility of the sensors with tire rubber, wireless transmission, and battery installments. As regards sensing, this review discusses indirect methods using existing sensors, such as that for wheel speed, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors. For wireless transmission, passive wireless methods and energy harvesting are also discussed. PMID:27873979
NASA Astrophysics Data System (ADS)
He, Ying; Ma, Yufei; Tong, Yao; Yu, Xin; Peng, Zhenfang; Gao, Jing; Tittel, Frank K.
2017-12-01
A long distance, distributed gas sensing using the micro-nano fiber evanescent wave (FEW) quartz enhanced photoacoustic spectroscopy technique was demonstrated. Such a sensor scheme has the advantages of higher detection sensitivity, distributed gas sensing ability, lower cost, and a simpler fabrication procedure compared to conventional FEW gas sensors using a photonic crystal fiber or a tapered fiber with chemical sputtering. A 3 km single mode fiber with multiple tapers and an erbium doped fiber amplifier with an output optical power of 700 mW were employed to perform long distance, distributed gas measurements.
Wave front sensing for next generation earth observation telescope
NASA Astrophysics Data System (ADS)
Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.
2017-09-01
High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.
Effects of transients in LIGO suspensions on searches for gravitational waves
NASA Astrophysics Data System (ADS)
Walker, M.; Abbott, T. D.; Aston, S. M.; González, G.; Macleod, D. M.; McIver, J.; Abbott, B. P.; Abbott, R.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.
2017-12-01
This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.
Miniaturized optical wavelength sensors
NASA Astrophysics Data System (ADS)
Kung, Helen Ling-Ning
Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.
A study of rain effects on radar scattering from water waves
NASA Technical Reports Server (NTRS)
Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George
1988-01-01
Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.
Skotak, Maciej; Alay, Eren; Chandra, Namas
2018-01-01
Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2) at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly compared with others. PMID:29467718
Cheung, Shilin; Fick, Laura J; Belsham, Denise D; Thompson, Michael
2010-02-01
Isolation of neurons from animal tissue is an important aspect of understanding basic biochemical processes such as the action of hormones and neurotransmitters. In the present work, the focus is on an effort to evaluate the utility of acoustic wave physics for the study of such cells. Immortalised hypothalamic neuronal cells from mouse embryos were cultured on the surface of the gold electrode of a 9.0 MHz thickness-shear mode acoustic wave sensor. These cells, which are clonal, are imposed on the surface of the device at a confluence in the range of 80-100%. The coated sensor is incorporated into a flow-injection configuration such that electrolytes can be introduced in order to examine their effects through measurement by network analysis. Both series resonance frequency, fs, and motional resistance, R(m), were measured in a number of experiments involving the injection of KCl and NaCl into the sensor-neuron system. The various responses to these electrolytes were interpreted in terms of changes in cellular structure associated with the depolarization process. The sensor-neuron system was found to elicit different responses to the addition of KCl and NaCl. Preliminary findings indicate that the TSM sensor does not purely measure changes in the membrane potential upon KCl addition. Typical changes in fs for 15 mM, 30 mM and 60 mM KCl additions were 54 +/- 15, 80 +/- 26 and 142 +/- 58 Hz (mean +/- standard deviation) respectively. Typical changes in R(m) for these KCl additions were 7 +/- 3, 13 +/- 4 and 23 +/- 6 Omega, respectively. These results were concluded after 17 runs at each concentration. Despite the large relative standard deviations, the dependence of f(s) and R(m) with respect to concentration was apparent. Controls performed by coating the TSM sensor with laminin or a cell attachment matrix showed no significant changes in either f(s) or R(m) for the same solutions tested on the sensor-neuron system.
Fibre optic system for biochemical and microbiological sensing
NASA Astrophysics Data System (ADS)
Penwill, L. A.; Slater, J. H.; Hayes, N. W.; Tremlett, C. J.
2007-07-01
This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers
NASA Astrophysics Data System (ADS)
Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.
2018-06-01
A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.
50 CFR 218.125 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... observers maintained visual contact with marine mammal(s); (H) Wave height (ft); (I) Visibility; (J) Sonar..., low, and average during exercise); and (I) Narrative description of sensors and platforms utilized for...) Calves observed (y/n); (E) Initial detection sensor; (F) Length of time observers maintained visual...
USDA-ARS?s Scientific Manuscript database
Substrate integrated waveguide- based sensors balance the performance and well known design techniques of classical waveguides with the cheaper and more adaptable aspects of planar circuits. Propagation characteristics are similar to waveguides with the design retaining many positive aspects of wave...
Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng
2017-12-12
Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.
Experimentally determining the locations of two astigmatic images for an underwater light source
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping
2015-05-01
Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.
Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Chen; Lee, Ki Jung; Lee, Keekeun
2016-07-14
In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequencymore » shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.« less
Huang, Guoliang; Song, Fei; Wang, Xiaodong
2010-01-01
Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized. PMID:22319319
Statistical lamb wave localization based on extreme value theory
NASA Astrophysics Data System (ADS)
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984
NASA Astrophysics Data System (ADS)
The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.
Design and Laboratory Testing of a Prototype Linear Temperature Sensor
1982-07-01
computer, critical quantities such as the line sensor’s voltage, vertical position and, occasionally, a point sensor were also monitored in real time on a...REUT.............. ........... * 30 5.1 Linearity - Comparison With Thoy............... 31 5.2 Response Time ...from some initial time t 0 is more relevant to the measurement of internal waves (since the second term in 0 the above equation is usually small
Maximum Likelihood Detection of Electro-Optic Moving Targets
1992-01-16
indicates intensity. The Infrared Measurements Sensor (IRMS) is a scanning sensor that collects both long wave- length infrared ( LWIR , 8 to 12 fim...moving clutter. Nonstationary spatial statistics correspond to the nonuniform intensity of the background scene. An equivalent viewpoint is to...Figure 6 compares theory and experiment for 10 frames of the Longjump LWIR data obtained from the IRMS scanning sensor, which is looking at a background
2011-03-23
sensors (e.g., sensor fusion) or use different detector materials to increase spectral bands into the Near IR (NIR). 3. Holst2provides an...a. Detector type: Multi-element MCT SPRITE b. Wavelength: Long wave, 8-12 um c. Cooling system: Integrated Sterling cooler d. Cooldown...A-1 B. COLLIMATOR SYSTEM DESIGN AND EO/ IR TOPICS ................ B-1 C. ATTC FACILITIES AND INSTRUMENTATION
High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors
2013-03-21
relationship for incident plane wave on a linear array . . . . . . . . . . . 26 3.1 B-dot sensor design in CST Microwave Studio...CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.2 Radiation pattern of a single B-dot sensor at 32 MHz...simulated in CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.3 Radiation efficiency of single loop versus B-dot
Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan
2016-11-15
In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536
Long wave infrared cavity-enhanced sensors using quantum cascade lasers
NASA Astrophysics Data System (ADS)
Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Cannon, Bret D.
2005-11-01
Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitive systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.
Recent progress in millimeter-wave sensor system capabilities for enhanced (synthetic) vision
NASA Astrophysics Data System (ADS)
Hellemann, Karlheinz; Zachai, Reinhard
1999-07-01
Weather- and daylight independent operation of modern traffic systems is strongly required for an optimized and economic availability. Mainly helicopters, small aircraft and military transport aircraft operating frequently close to the ground have a need for effective and cost-effective Enhanced Vision sensors. The technical progress in sensor technology and processing speed offer today the possibility for new concepts to be realized. Derived from this background the paper reports on the improvements which are under development within the HiVision program at DaimlerChrysler Aerospace. A sensor demonstrator based on FMCW radar technology with high information update-rate and operating in the mm-wave band, has been up-graded to improve performance and fitted to fly on an experimental base. The results achieved so far demonstrate the capability to produce a weather independent enhanced vision. In addition the demonstrator has been tested on board a high- speed ferry at the Baltic sea, because fast vessels have a similar need for weather-independent operation and anti- collision measures. In the future one sensor type may serve both 'worlds' and help ease and save traffic. The described demonstrator fills up the technology gap between optical sensors (Infrared) and standard pulse radars with its specific features such as high speed scanning and weather penetration with the additional benefit of cost-effectiveness.
Yao, Chenguo; Chen, Pan; Huang, Congjian; Chen, Yu; Qiao, Panpan
2013-01-01
The ultra-high-frequency (UHF) method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM) waves excited by partial discharge (PD). As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD) method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection. PMID:24351641
Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity
Memon, Muhammad Usman; Lim, Sungjoon
2016-01-01
This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240
Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K
2015-03-27
A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.
Active sensors for health monitoring of aging aerospace structures
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk
2000-06-01
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
NASA Astrophysics Data System (ADS)
Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.
This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.
Veligdan, James T.
2000-01-11
An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.
NASA Astrophysics Data System (ADS)
Sbaa, Sarah; Hollender, Fabrice; Perron, Vincent; Imtiaz, Afifa; Bard, Pierre-Yves; Mariscal, Armand; Cochard, Alain; Dujardin, Alain
2017-09-01
Although rotational seismology has progressed in recent decades, the links between rotational ground motion and site soil conditions are poorly documented. New experiments were performed on Kefalonia Island (Greece) following two large earthquakes ( M W = 6.0, M W = 5.9) in early 2014 on two well-characterized sites (soft soil, V S30 250 m/s; rock, V S30 830 m/s, V S30 being harmonic average shear-wave velocity between 0 and 30 m depth). These earthquakes led to large six-component (three translations and three rotations) datasets of hundreds of well-recorded events. The relationship between peak translational acceleration versus peak rotational velocity is found sensitive to the site conditions mainly for the rotation around the vertical axis (torsion; dominated by Love waves): the stiffer the soil, the lower the torsion, for a given level of translational acceleration. For rotation around the horizontal axes (rocking; dominated by Rayleigh waves), this acceleration/rotation relationship exhibits much weaker differences between soft and rock sites. Using only the rotation sensor, an estimate of the Love-to-Rayleigh energy ratios could be carried out and provided the same results as previous studies that have analyzed the Love- and Rayleigh-wave energy proportions using data from translational arrays deployed at the same two sites. The coupling of translational and rotational measurements appears to be useful, not only for direct applications of engineering seismology, but also to investigate the composition of the wavefield, while avoiding deployment of dense arrays. The availability of new, low-noise rotation sensors that are easy to deploy in the field is of great interest and should extend the use of rotation sensors and expand their possible applications.[Figure not available: see fulltext.
Dual-mode acoustic wave biosensors microarrays
NASA Astrophysics Data System (ADS)
Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng
2003-04-01
We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.
Ultrasonic stress wave characterization of composite materials
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.
1986-01-01
The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.
NASA Technical Reports Server (NTRS)
Lorenz, R. D.; Kraal, E. R.; Eddlemon, E. E.; Cheney, J.; Greeley, R.
2004-01-01
The generation of waves by winds across Earth's water oceans is a topic of enduring fascination. However, the physics of the problem are rather forbidding and thus the relationships between real-world windspeed and sea state tend to be empirical. Such empirical relations are of limited utility in environments where the physical parameters are different, such as the surfaces of other planets. These environments have only recently come to oceanographers attention, with the discovery of ancient shorelines and lakes on Mars, and the prospects for and recent evidence of lakes and seas of liquid hydrocarbons on Saturn's moon Titan. We are aware of only one other published experimental wind-water tunnel study where the fluid parameters have been varied. This used artificially-generated mm-scale waves at 3.8-7.6 Hz in water, glycerol solutions (higher viscosity) and surfactant solutions (lower surface tension). Lower viscosity solutions had higher wave growth rates: surprisingly, higher surface tension led to more rapid wave growth. The liquid density was not appreciably varied, and 1 bar air was used throughout.We used the MARSWIT (Mars Wind Tunnel) operated by ASU at NASA Ames. A fiberglass tray (5 cm x 120 cm x 75 cm) was installed in the tunnel, with an approx. 1:5 ramp to prevent strong flow separation. The tray was filled to a depth of about 4 cm. Sensors were clamped to the tray itself or held by a steel and aluminium frame just above the water level. A towel was draped on the water surface at the downwind end of the tray to act as a damper to suppress wave reflection. Position-sensitive infrared (IR) reflection sensors (Sharp GP12D02) and ultrasonic rangers (Devantech DF-04) used in mobile robotics were used as water level sensors. The tray was observed with a video camera, whose output could be viewed on a monitor and recorded on VHS tape.
Combined wave propagation analysis of earthquake recordings from borehole and building sensors
NASA Astrophysics Data System (ADS)
Petrovic, B.; Parolai, S.; Dikmen, U.; Safak, E.; Moldobekov, B.; Orunbaev, S.
2015-12-01
In regions highly exposed to natural hazards, Early Warning Systems can play a central role in risk management and mitigation procedures. To improve at a relatively low cost the spatial resolution of regional earthquake early warning (EEW) systems, decentralized onsite EEW and building monitoring, a wireless sensing unit, the Self-Organizing Seismic Early Warning Information Network (SOSEWIN) was developed and further improved to include the multi-parameter acquisition. SOSEWINs working in continuous real time mode are currently tested on various sites. In Bishkek and Istanbul, an instrumented building is located close to a borehole equipped with downhole sensors. The joint data analysis of building and borehole earthquake recordings allows the study of the behavior of the building, characteristics of the soil, and soil-structure interactions. The interferometric approach applied to recordings of the building response is particularly suitable to characterize the wave propagation inside a building, including the propagation velocity of shear waves and attenuation. Applied to borehole sensors, it gives insights into velocity changes in different layers, reflections and mode conversion, and allows the estimation of the quality factor Qs. We used combined building and borehole data from the two test sites: 1) to estimate the characteristics of wave propagation through the building to the soil and back, and 2) to obtain an empirical insight into soil-structure interactions. The two test sites represent two different building and soil types, and soil structure impedance contrasts. The wave propagation through the soil to the building and back is investigated by the joint interferometric approach. The propagation of up and down-going waves through the building and soil is clearly imaged and the reflection of P and S waves from the earth surface and the top of the building identified. An estimate of the reflected and transmitted energy amounts is given, too.
Direct measurements of local bed shear stress in the presence of pressure gradients
NASA Astrophysics Data System (ADS)
Pujara, Nimish; Liu, Philip L.-F.
2014-07-01
This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.
Multi-Image Registration for an Enhanced Vision System
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2002-01-01
An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.
Wavefront sensor for the GAIA Mission
NASA Astrophysics Data System (ADS)
Vosteen, Amir; Draaisma, Folkert; van Werkhoven, Willem; van Riel, Luud; Mol, Margreet; Gielesen, Wim
2017-11-01
TNO has developed, built and tested the Wave Front Sensor (WFS) for ESA's Gaia mission. The WFS will help Gaia create an extraordinarily precise three-dimensional map of more than one billion stars in our Galaxy. Part of ESA's Cosmic Vision programme, Gaia's build is led by EADS Astrium and is scheduled for launch in 2012. The Wave Front Sensor will be used to monitor the wave front errors of the two main telescopes mounted on the GAIA satellite. These mirrors include a 5-degree of freedom (DOF) mechanism that can be used to minimize the wave front errors during operation. The GAIA-WFS will operate over a broad wavelength (450 to 900 nm) and under cryogenic conditions (130 to 200 K operation temperature). The WFS uses an all reflective, a-thermal design and is of the type of Shack-Hartmann. The boundary condition for the design is that the focal plane of the WFS is the same plane as the focal plane of the GAIA telescopes. The spot pattern generated after a micro lens array ( MLA) by a star is compared to the pattern of one of the three calibration sources that is included in the WFS, allowing in flight calibration. We show the robust and lightweight opto mechanical design that is optimised for launch and cryogenic operation. Details are given on its alignment and commissioning. The WFS is able to measure relative wave front distortions in the order of lambda/1000, and can determine the optimum position of the focal plane with an accuracy of 50 μm
Poster Presentation: Optical Test of NGST Developmental Mirrors
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg
2000-01-01
An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).
Development of a high-sensitivity strain measurement system based on a SH SAW sensor
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik
2012-02-01
A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.
Ballistocardiogaphic studies with acceleration and electromechanical film sensors.
Alametsä, J; Värri, A; Viik, J; Hyttinen, J; Palomäki, A
2009-11-01
The purpose of this research is to demonstrate and compare the utilization of electromechanical film (EMFi) and two acceleration sensors, ADXL202 and MXA2500U, for ballistocardiographic (BCG) and pulse transit time (PTT) studies. We have constructed a mobile physiological measurement station including amplifiers and a data collection system to record the previously mentioned signals and an electrocardiogram signal. Various versions of the measuring systems used in BCG studies in the past are also presented and evaluated. We have showed the ability of the EMFi sensor to define the elastic properties of the cardiovascular system and to ensure the functionality of the proposed instrumentation in different physiological loading conditions, before and after exercise and sauna bath. The EMFi sensor provided a BCG signal of good quality in the study of the human heart and function of the cardiovascular system with different measurement configurations. EMFi BCG measurements provided accurate and repeatable results for the different components of the heart cycle. In multiple-channel EMFi measurements, the carotid and limb pulse signals acquired were detailed and distinctive, allowing accurate PTT measurements. Changes in blood pressure were clearly observed and easily determined with EMFi sensor strips in pulse wave velocity (PWV) measurements. In conclusion, the configuration of the constructed device provided reliable measurements of the electrocardiogram, BCG, heart sound, and carotid and ankle pulse wave signals. Attached EMFi sensor strips on the neck and limbs yield completely new applications of the EMFi sensors aside from the conventional seat and supine recordings. Higher sensitivity, ease of utilization, and minimum discomfort of the EMFi sensor compared with acceleration sensors strengthen the status of the EMFi sensor for accurate and reliable BCG and PWV measurements, providing novel evaluation of the elastic properties of the cardiovascular system.
Robust numerical electromagnetic eigenfunction expansion algorithms
NASA Astrophysics Data System (ADS)
Sainath, Kamalesh
This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub-region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted-layer modeling formulation is Chapter 7's main contribution.
Detection of person borne IEDs using multiple cooperative sensors
NASA Astrophysics Data System (ADS)
MacIntosh, Scott; Deming, Ross; Hansen, Thorkild; Kishan, Neel; Tang, Ling; Shea, Jing; Lang, Stephen
2011-06-01
The use of multiple cooperative sensors for the detection of person borne IEDs is investigated. The purpose of the effort is to evaluate the performance benefits of adding multiple sensor data streams into an aided threat detection algorithm, and a quantitative analysis of which sensor data combinations improve overall detection performance. Testing includes both mannequins and human subjects with simulated suicide bomb devices of various configurations, materials, sizes and metal content. Aided threat recognition algorithms are being developed to test detection performance of individual sensors against combined fused sensors inputs. Sensors investigated include active and passive millimeter wave imaging systems, passive infrared, 3-D profiling sensors and acoustic imaging. The paper describes the experimental set-up and outlines the methodology behind a decision fusion algorithm-based on the concept of a "body model".
Non-Contact Detection of Breathing Using a Microwave Sensor
Dei, Devis; Grazzini, Gilberto; Luzi, Guido; Pieraccini, Massimiliano; Atzeni, Carlo; Boncinelli, Sergio; Camiciottoli, Gianna; Castellani, Walter; Marsili, Massimo; Dico, Juri Lo
2009-01-01
In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found. PMID:22574033
High-Temperature Piezoelectric Sensing
Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni
2014-01-01
Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928
Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren
2017-09-23
The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.
In-line optical fiber sensors based on cladded multimode tapered fibers.
Villatoro, Joel; Monzón-Hernández, David; Luna-Moreno, Donato
2004-11-10
The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.
Forced Internal Waves in the Arctic Ocean.
1980-05-01
AND CONCLUSIONS. .. ................. 223 REFERENCES. .. ........................... 237 APPENDICES A. APS SENSOR CALIBRATION AND DATA PROCESSING...and the anemometer mast with sensors at 2 m and 4 m. 7 (1974a), McPhee (1974) and Smith (1978), was to be used to measure tur- bulent flow in the...boundary layer and to detect any velocity fluctua- tions that might occur in the upper pycnocline. Data from all sensors was to be fed to a NOVA 1200
2015 USAFA Research Report: Discover Falcon Innovation
2015-01-01
delivery system deployed from a canister. Their solution allows the canister to release hundreds of the sensors at the right angle and in waves so that...Computer Science at the Air Force Academy. The center develops sensors for the aircraft – it uses commercially available UAVs known as Haulers – to allow... sensors and software development, said Tim McCarthy, one of the co-founders of Aspect Robotics. During the last semester, Academy cadets in the
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
Non-gravimetric contributions to QCR sensor response.
Lucklum, Ralf
2005-11-01
Quartz crystal resonator (QCR) sensors are commonly known as mass sensitive devices, usually called QCM (Quartz Crystal Microbalance). This constricted view should not be applied to biosensor applications. In many cases the sensor response is strongly influenced or even governed by non-gravimetric effects; the QCR sensor does not act as a microbalance. For better understanding of the sensor response as well as for sensor optimization a more general description of the sensor principle is required. The Transmission Line Model (TLM) is a powerful tool to describe the transduction scheme of QCR and other acoustic-wave based sensors. It is therefore applied to the analysis of the sensor behavior under several conditions, which can be expected in biochemical experiments. The generalization of acoustic parameters provides a concept to overcome some of the limiting assumptions of the present TLM.
Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate
NASA Astrophysics Data System (ADS)
Park, Woong-Ki; Lee, Changgil; Park, Seunghee
2012-04-01
Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.
NASA Astrophysics Data System (ADS)
Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing
2012-04-01
An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.
NASA Astrophysics Data System (ADS)
Ren, Baiyang
Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF) arrays, which can extract modal information from the received waves. Also, the PATs and array sensors have broad frequency bandwidth and can easily excite and receive high order guided wave modes which are not possible using PZT disks. Currently, many guided wave SHM techniques employ the fundamental guided wave modes below the first cut-off frequency because of their low dispersion in this frequency range. Such a practice ignores the possibility of using higher order modes which sometimes have much better sensitivity to defects. A frequency domain finite element model is created in this work to study the behavior of the interaction between guided waves and a disbond. The sensitivities of modes are classified into three levels, namely, good sensitivity, intermediate sensitivity and no sensitivity. The novel damage indicators, wave modal amplitude and wave modal composition, are proposed to increase the sensitivity to disbonds. The effects of environmental operational conditions (EOC) are presenting great challenges to reliable SHM practice because they may influence the wave amplitude and time of flight. The use of fundamental modes shows poor sensitivity to the disbond; but the use of higher order modes shows good sensitivity. The experiments demonstrate that the new damage indicators have excellent sensitivity to disbonds even with elevated temperatures and have the capability to characterize the size of a disbond. Additionally, the detection of other types of defects like notches on aluminum plates and disbonds in adhesively bonded aluminum plate are also demonstrated using the proposed damage indicators. The use of the new damage indicators for SHM applications relies on the capability of resolving the modal content of wave signals which is enabled only by using PFC PATs and polyvinylidene fluoride (PVDF) array sensors.
Using PVDF for wavenumber-frequency analysis and excitation of guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2018-04-01
The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.
Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection
NASA Astrophysics Data System (ADS)
Nardone, Vincent; Kapoor, Rakesh
2008-02-01
In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.
NASA Technical Reports Server (NTRS)
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.Inertial quantum sensors using light and matter
NASA Astrophysics Data System (ADS)
Barrett, B.; Bertoldi, A.; Bouyer, P.
2016-05-01
The past few decades have seen dramatic progress in our ability to manipulate and coherently control matter-waves. Although the duality between particles and waves has been well tested since de Broglie introduced the matter-wave analog of the optical wavelength in 1924, manipulating atoms with a level of coherence that enables one to use these properties for precision measurements has only become possible with our ability to produce atomic samples exhibiting temperatures of only a few millionths of a degree above absolute zero. Since the initial experiments a few decades ago, the field of atom optics has developed in many ways, with both fundamental and applied significance. The exquisite control of matter waves offers the prospect of a new generation of force sensors exhibiting unprecedented sensitivity and accuracy, for applications from navigation and geophysics to tests of general relativity. Thanks to the latest developments in this field, the first commercial products using this quantum technology are now available. In the future, our ability to create large coherent ensembles of atoms will allow us an even more precise control of the matter-wave and the ability to create highly entangled states for non-classical atom interferometry.
Application of the Solubility Parameter Concept to the Design of Chemiresistor Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, M.P.; Hughes, R.C.; Jenkins, M.W.
1999-01-11
Arrays of unheated chemically sensitive resistors (chemiresistors) can serve as extremely small, low-power-consumption sensors with simple read-out electronics. We report here results on carbon-loaded polymer composites, as well as polymeric ionic conductors, as chemiresistor sensors. We use the volubility parameter concept to understand and categorize the chemiresistor responses and, in particular, we compare chemiresistors fabricated from polyisobutylene (PIB) to results from PIB-coated acoustic wave sensors. One goal is to examine the possibility that a small number of diverse chemiresistors can sense all possible solvents-the "Universal Solvent Sensor Array". keywords: chemiresistor, volubility parameter, chemical sensor
Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K
2015-08-04
Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C.
Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens
NASA Technical Reports Server (NTRS)
Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.
2008-01-01
A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.
Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.
2006-01-01
We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, Charles B.
1992-01-01
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.
Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti
2016-02-08
Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.
The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions
Karachun, Volodimir; Mel’nick, Viktorij; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Kobzar, Svitlana
2016-01-01
The emergence of hypersonic technology pose a new challenge for inertial navigation sensors, widely used in aerospace industry. The main problems are: extremely high temperatures, vibration of the fuselage, penetrating acoustic radiation and shock N-waves. The nature of the additional errors of the gyroscopic inertial sensor with hydrostatic suspension components under operating conditions generated by forced precession of the movable part of the suspension due to diffraction phenomena in acoustic fields is explained. The cause of the disturbing moments in the form of the Coriolis inertia forces during the transition of the suspension surface into the category of impedance is revealed. The boundaries of occurrence of the features on the resonance wave match are described. The values of the “false” angular velocity as a result of the elastic-stress state of suspension in the acoustic fields are determined. PMID:26927122
CIAO: wavefront sensors for GRAVITY
NASA Astrophysics Data System (ADS)
Scheithauer, Silvia; Brandner, Wolfgang; Deen, Casey; Adler, Tobias; Bonnet, Henri; Bourget, Pierre; Chemla, Fanny; Clenet, Yann; Delplancke, Francoise; Ebert, Monica; Eisenhauer, Frank; Esselborn, Michael; Finger, Gert; Gendron, Eric; Glauser, Adrian; Gonte, Frederic; Henning, Thomas; Hippler, Stefan; Huber, Armin; Hubert, Zoltan; Jakob, Gerd; Jochum, Lieselotte; Jocou, Laurent; Kendrew, Sarah; Klein, Ralf; Kolb, Johann; Kulas, Martin; Laun, Werner; Lenzen, Rainer; Mellein, Marcus; Müller, Eric; Moreno-Ventas, Javier; Neumann, Udo; Oberti, Sylvain; Ott, Jürgen; Pallanca, Laurent; Panduro, Johana; Ramos, Jose; Riquelme, Miguel; Rohloff, Ralf-Rainer; Rousset, Gérard; Schuhler, Nicolas; Suarez, Marcos; Zins, Gerard
2016-07-01
GRAVITY is a second generation near-infrared VLTI instrument that will combine the light of the four unit or four auxiliary telescopes of the ESO Paranal observatory in Chile. The major science goals are the observation of objects in close orbit around, or spiraling into the black hole in the Galactic center with unrivaled sensitivity and angular resolution as well as studies of young stellar objects and evolved stars. In order to cancel out the effect of atmospheric turbulence and to be able to see beyond dusty layers, it needs infrared wave-front sensors when operating with the unit telescopes. Therefore GRAVITY consists of the Beam Combiner Instrument (BCI) located in the VLTI laboratory and a wave-front sensor in each unit telescope Coudé room, thus aptly named Coudé Infrared Adaptive Optics (CIAO). This paper describes the CIAO design, assembly, integration and verification at the Paranal observatory.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, C.B.
1992-12-15
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.
[Ballistocardiographic studies during the 4th expedition on the Saliut-6 orbital station].
Baevskiĭ, R M; Funtova, I I
1982-01-01
This paper presents ballistocardiographic examinations of the Salyut-6 fourth expedition crew members who showed variations in both the shape and the amplitude of ballistocardiographic complexes. Ballistocardiograms (BCG) were recorded by means of a piezoelectric sensor with a sensitivity of 3 mV/cm x s-2. The sensor weight was 30 g. The sensor was attached to the upper part of the iliac bone, near the body mass center. During ballistocardiography the ballistic forces in the head-to-feet direction were recorded. The examinations were performed preflight and on mission days 46, 71, 98, 133, and 175. Hemodynamic specificities of the right and left heart were determined with the aid of the breath holding test. Measurements of BCG amplitudes were used to determine the kinetic effect of heart rate. The largest amplitude of BCG waves was seen on mission day 133. At this time period the systolic wave amplitude decreased during inhalation holding.
Protocol to Exploit Waiting Resources for UASNs.
Hung, Li-Ling; Luo, Yung-Jeng
2016-03-08
The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols.
Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM
2011-12-06
Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.
Overview of the Shuttle Imaging Radar-B preliminary scientific results
NASA Technical Reports Server (NTRS)
Elachi, C.; Cimino, J.; Settle, M.
1986-01-01
Data collected with the Shuttle Imaging Radar-B (SIR-B) on the October 5, 1985 Shuttle mission are discussed. The design and capabilities of the sensor which operates in a fixed illumination geometry and has incidence angles between 15 and 60 deg with 1 deg increments are described. Problems encountered with the SIR-B during the mission are examined. the The radar stereo imaging capability of the sensor was verified and three-dimensional images of the earth surface were obtained. The oceanography experiments provided significant data on ocean wave and internal wave patterns, oil spills, and ice zones. The geological images revealed that the sensor can evaluate penetration effect in dry soil from buried receivers and the existence of subsurface dry channels in the Egyptian desert was validated. The use of multiincidence angle imaging to classify terrain units and derive vegetation maps and the development of terrain maps are confirmed.
Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.
Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob
2017-12-11
We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).
Wind Speed Measurement by Paper Anemometer
ERIC Educational Resources Information Center
Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan
2011-01-01
A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…
Quantitative Diagnostics of Multilayered Composite Structures with Ultrasonic Guided Waves
2014-09-01
sensors. These IDT sensors were fabricated from thin wafer of piezoelectric lead zirconate titanate ( PZT ) substrates by using a pulse laser micro...pavement structures," J. Acoust. Soc. Am., vol. 116, no. 5, pp. 2902-2913, 2004. [9] E. Kostson and P. Fromme, " Fatigue crack growth monitoring in multi
Fish-bone-structured acoustic sensor toward silicon cochlear systems
NASA Astrophysics Data System (ADS)
Harada, Muneo; Ikeuchi, Naoki; Fukui, Shoichi; Ando, Shigeru
1998-09-01
This paper describes a micro mechanical acoustic sensor modeling the basilar membrane of the human cochlea. The skeleton of the acoustic sensor is an array of resonators each of specific frequency selectivity. The mechanical structure of the sensor is designed using FEM analysis to have a particular geometrical structure looking like a fish bone that consists of cantilever ribs extending out from a backbone. Acoustic wave is supposed to be introduced to the diaphragm placed at one end of the backbone to travel in one way along the backbone. During traveling each frequency component of the wave is delivered to the corresponding cantilever according to its resonant frequency. The mechanical vibrations of each cantilever are detected in parallel by use of piezoresistors. The fish-bone structure is fabricated to be suspended in the air on a silicon substrate using silicon micromachining technology. We observe the frequency response of each cantilever to verify fairly sharp frequency selectivity associated with the one- way flow of the vibration energy. The present results encourage us to implement the human auditory system on a silicon chip toward the goal of silicon cochlea.
Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing
NASA Astrophysics Data System (ADS)
Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.
2017-01-01
Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.
Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome
NASA Astrophysics Data System (ADS)
Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal
2017-11-01
Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.
Investigating the use of multi-point coupling for single-sensor bearing estimation in one direction
NASA Astrophysics Data System (ADS)
Woolard, Americo G.; Phoenix, Austin A.; Tarazaga, Pablo A.
2018-04-01
Bearing estimation of radially propagating symmetric waves in solid structures typically requires a minimum of two sensors. As a test specimen, this research investigates the use of multi-point coupling to provide directional inference using a single-sensor. By this provision, the number of sensors required for localization can be reduced. A finite-element model of a beam is constructed with a symmetrically placed bipod that has asymmetric joint-stiffness properties. Impulse loading is applied at different points along the beam, and measurements are taken from the apex of the bipod. A technique is developed to determine the direction-of-arrival of the propagating wave. The accuracy when using the bipod with the developed technique is compared against results gathered without the bipod and measuring from an asymmetric location along the beam. The results show 92% accuracy when the bipod is used, compared to 75% when measuring without the bipod from an asymmetric location. A geometry investigation finds the best accuracy results when one leg of the bipod has a low stiffness and a large diameter relative to the other leg.
Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling
NASA Technical Reports Server (NTRS)
Wilson, William; Atkinson, Gary
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.
Sparse aperture differential piston measurements using the pyramid wave-front sensor
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-07-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo
2011-03-15
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.
Plunkett, S E; Jonas, R E; Braiman, M S
1997-01-01
We have used miniature planar IR waveguides, consisting of Ge strips 30-50 microm thick and 2 mm wide, as evanescent-wave sensors to detect the mid-(IR) evanescent-wave absorbance spectra of small areas of biomolecular monolayers and multilayers. Examples include picomolar quantities of an integral transmembrane protein (bacteriorhodopsin) and lipid (dimyristoyl phosphatidylcholine). IR bands due to the protein and lipid components of the plasma membrane of individual 1.5-mm-diameter devitellinized Xenopus laevis oocytes, submerged in buffer and sticking to the waveguide surface, were also detected. A significant improvement in sensitivity was observed, as compared to previous sizes and geometries of evanescent-wave sensors (e.g., commercially available internal reflection elements or tapered optical fibers). These measurements suggest the feasibility of using such miniature supported planar IR waveguides to observe structural changes in transmembrane proteins functioning in vivo in single cells. PMID:9336219
Detecting inertial effects with airborne matter-wave interferometry
Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.
2011-01-01
Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658
NASA Astrophysics Data System (ADS)
Richardson, M.; Sankaranarayanan, S. K. R. S.; Bhethanabotla, V. R.
2014-06-01
Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.
NASA Technical Reports Server (NTRS)
Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)
1992-01-01
Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.
NASA Astrophysics Data System (ADS)
Isnen, M.; Nasution, T. I.; Perangin-angin, B.
2016-08-01
The identification of changes in oil quality has been conducted by indicating the change of dielectric constant which was showed by sensor voltage. Sensor was formed from two parallel flats that worked by electromagnetic wave propagation principle. By measuring its amplitude of electromagnetic wave attenuation caused by interaction between edible oil samples and the sensor, dielectric constant could be identified and estimated as well as peroxide number. In this case, the parallel flats were connected to an electric oscillator 700 kHz. Furthermore, sensor system could showed measurable voltage differences for each different samples. The testing carried out to five oil samples after undergoing an oxidation treatment at fix temperature of 235oC for 0, 5, 10, 15 and 20 minutes. Iodometry method testing showed peroxide values about 1.99, 9.95, 5.96, 11.86, and 15.92 meq/kg respectively with rising trend. Besides that, the testing result by sensor system showed voltages values 1.139, 1.147, 1.165, 1.173, and 1.176 volts with rising trend, respectively. It means that the higher sensor voltages showed the higher damage rate of edible oil when the change in sensor voltage was caused by the change in oil dielectric constant in which heating process caused damage in edible oil molecules structure. The more damage of oil structure caused the more difficulties of oil molecules to polarize and it is indicated by smaller dielectric constant. Therefore electric current would be smaller when sensor voltage was higher. On the other side, the higher sensor voltage means the smaller dielectric constant and the higher peroxide number.
An Autonomous, Low Cost Platform for Seafloor Geodetic Observations
NASA Astrophysics Data System (ADS)
Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.
2014-12-01
The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.
Central arterial pressure assessment with intensity POF sensor
NASA Astrophysics Data System (ADS)
Leitão, Cátia; Gonçalves, Steve; Antunes, Paulo; Bastos, José M.; Pinto, João. L.; André, Paulo
2015-09-01
The central pressure monitoring is considered a new key factor in hypertension assessment and cardiovascular prevention. In this work, it is presented the central arterial systolic pressure assessment with an intensity based POF sensor. The device was tested in four subjects, and stable pulse waves were obtained, allowing the calculation of the central pressure for all the subjects. The results shown that the sensor performs reliably, being a simple and low-cost solution to the intended application.
NASA Astrophysics Data System (ADS)
Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo
2018-05-01
Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).
Wave analysis of a plenoptic system and its applications
NASA Astrophysics Data System (ADS)
Shroff, Sapna A.; Berkner, Kathrin
2013-03-01
Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.
Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien
2005-07-15
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.
1992-04-10
and passive tracer concentrations, and their cross correlations have generally been used to estimate the magnitude of dispersive atmospheric transport...of gravity waves and turbulence. . 10 III. METHODS .......... ........................ 12 A. Data .......... ........................ 12 B. Analysis ...unstable, i.e., strange. For waves or even limit cycle motion about fixed attractors, self-similarity does not occur. Pertinent to time series analysis , this
Statistical Analysis of Acoustic Signal Propagating Through the South China Sea Basin
2016-03-01
internal tidal constituents are observed in both spectra, and the diurnal (D) and semidiurnal (SD) internal waves ’ energy are strong. The spectrum is...bandwidths were utilized during the frequency smoothing process to ensure the reliability of the spectra in the meso-, tidal and internal wave scale...mooring temperature sensors capture the internal waves ’ energy, and six high amplitude peaks are observed in the spectra in the internal tidal band
Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities
Zhang, Shao-Hui; Wang, Feng-Xia; Li, Jia-Jia; Peng, Hong-Dan; Yan, Jing-Hui; Pan, Ge-Bo
2017-01-01
Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave. PMID:29135928
NASA Astrophysics Data System (ADS)
Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro
2018-04-01
Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.
NASA Astrophysics Data System (ADS)
GE, J.; Dong, H.; Liu, H.; Luo, W.
2016-12-01
In the extreme sea conditions and deep-sea detection, the towed Overhauser marine magnetic sensor is easily affected by the magnetic noise associated with ocean waves. We demonstrate the reduction of the magnetic noise by Sage-Husa adaptive Kalman filter. Based on Weaver's model, we analyze the induced magnetic field variations associated with the different ocean depths, wave periods and amplitudes in details. Furthermore, we take advantage of the classic Kalman filter to reduce the magnetic noise and improve the signal to noise ratio of the magnetic anomaly data. In the practical marine magnetic surveys, the extreme sea conditions can change priori statistics of the noise, and may decrease the effect of Kalman filtering estimation. To solve this problem, an improved Sage-Husa adaptive filtering algorithm is used to reduce the dependence on the prior statistics. In addition, we implement a towed Overhauser marine magnetometer (Figure 1) to test the proposed method, and it consists of a towfish, an Overhauser total field sensor, a console, and other condition monitoring sensors. Over all, the comparisons of simulation experiments with and without the filter show that the power spectral density of the magnetic noise is reduced to 0.1 nT/Hz1/2@1Hz from 1 nT/Hz1/2@1Hz. The contrasts between the Sage-Husa filter and the classic Kalman filter (Figure 2) show the filtering accuracy and adaptive capacity are improved.
Develop an piezoelectric sensing based on SHM system for nuclear dry storage system
NASA Astrophysics Data System (ADS)
Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu
2016-04-01
In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
Acoustic waves in tilted fiber Bragg gratings for sensing applications
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo
2017-05-01
Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
Vergeynst, Lidewei L; Sause, Markus G R; Hamstad, Marvin A; Steppe, Kathy
2015-01-01
When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science.
NASA Astrophysics Data System (ADS)
Bowman, Daniel C.; Albert, Sarah A.
2018-06-01
A variety of Earth surface and atmospheric sources generate low-frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth's surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphone stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while travelling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves at 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Daniel C.; Albert, Sarah A.
We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less
Bowman, Daniel C.; Albert, Sarah A.
2018-02-22
We present that a variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth’s surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves in the 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Lastly, background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 seconds.« less
Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.
Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo
2003-06-01
A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.
Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene.
Xu, Rongqing; Wang, Di; Zhang, Hongchao; Xie, Na; Lu, Shan; Qu, Ke
2017-05-08
A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D) graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF) wrapped in flexible polydimethylsiloxane (PDMS). Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.
An Autonomous, Low Cost Platform for Seafloor Geodetic Observations
NASA Astrophysics Data System (ADS)
Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.
2015-12-01
The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce the costs of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Traditional ship-based methods of acquiring these measurements are often prohibitively expensive. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for the University of Hawaii Wave Glider which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider is able to interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of ocean bottom pressure and temperature data. The Wave Glider also functions as an integral part of the seafloor geodetic observing system, recording accurate sea surface elevations and barometric pressure; direct measurements of two of the primary sources of seafloor pressure change. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the results of our field tests and an assessment of our ability to determine cm-scale vertical seafloor motions by integrating our seafloor pressure measurements with the independent Wave Glider measurements of sea surface pressure and sea surface height. An overall summary of the performance and costs of making seafloor geodetic measurement with this system will be provided.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
NASA Astrophysics Data System (ADS)
Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.
2018-01-01
The fabrication and study of cladding modified intrinsic fiber optic urea biosensor has been reported in the present investigation. A simple cladding modification technique was used to construct the sensor by uncladding the small portion from optical fiber. Further bare core was decorated by supportive porous, chemically and optically sensitive matrix material polyaniline (PANI) as an active cladding for enzyme residency. Enzyme-urease (Urs) was cross-linked on the active cladding region via glutaraldehyde solution. Confirmation of the prepared PANI in proper form determined by ultraviolet-visible and Fourier transform infrared spectroscopic techniques. X-ray diffraction technique was employed for nature and compatibility examination of PANI. Sensor parameters such as sensitivity, selectivity, stability and lower detection limit have been analyzed by absorption variation study in evanescent wave field. The response of prepared sensor was studied towards urea in the wide concentration range 100 nM-100 mM and confirmed its lowest detection limit as 100 nM. The stability of sensor was found 28 days with little variation in response. The fabricated sensor has not shown any response towards interference species like glucose, ascorbic acid, L-alanine, L-arginine and their combination with urea solution and hence found selective for urea solution only.
NASA Astrophysics Data System (ADS)
Kathirvelan, J.; Vijayaraghavan, R.
2017-09-01
We report the fabrication and testing of a prototype ethylene sensing device for use in fruit ripening applications. A sensor based on infrared (IR) thermal emission was developed and used to detect the ethylene level released during the fruit ripening process. An IR thermal source tuned to the 10.6 μm wavelength was linked to a high-sensitivity silicon temperature detector. When introduced into the wave path between the IR source and temperature detector, ethylene absorbs the 10.6 μm IR waves and decreases the surface temperature of the detector. The output is then converted to an electrical signal (in mV), which gives a direct measurement of the ethylene level. Using this sensor, ethylene concentration measured from a fruit sample continuously decreased from 59 to 5 ppm during the natural ripening process. The sensor exhibited a sensitivity of 3.3 ± 0.2% (change in detector output (mV)/ppm × 100) and could measure concentrations as low as 5 ppm with rise and recovery times of 1 and 3 s, respectively. The system demonstrated good reproducibility. Devices employing this sensor system may be used for fruit ripening applications on site and in the field and for screening artificially ripened fruits, therefore contributing to ensure food safety.
NASA Astrophysics Data System (ADS)
Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo
2018-05-01
An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of the algorithm. It is shown that the algorithm produces promising results providing a foundation for further future development and optimization.
e-Science on Earthquake Disaster Mitigation by EUAsiaGrid
NASA Astrophysics Data System (ADS)
Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong
2010-05-01
Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the earthquake wave propagation to tsunami mitigation would be feasible once the user community support is in place.
Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images
NASA Astrophysics Data System (ADS)
Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing
2014-11-01
Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.