Sample records for wave study program

  1. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  2. Computer program for analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.

  3. Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-06-01

    To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.

  4. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.

  5. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    PubMed

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  7. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    NASA Astrophysics Data System (ADS)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  8. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  9. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  10. The Submillimeter-wave Rotational Spectra of Interstellar Molecules

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.

    2002-01-01

    We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.

  11. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    NASA Astrophysics Data System (ADS)

    Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.

    2017-05-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.

  12. Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Flood, W. A.; Brown, G. S.

    1975-01-01

    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.

  13. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  14. Minimal-resource computer program for automatic generation of ocean wave ray or crest diagrams in shoaling waters

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Lecroy, S. R.; Morris, W. D.

    1977-01-01

    A computer program for studying linear ocean wave refraction is described. The program features random-access modular bathymetry data storage. Three bottom topography approximation techniques are available in the program which provide varying degrees of bathymetry data smoothing. Refraction diagrams are generated automatically and can be displayed graphically in three forms: Ray patterns with specified uniform deepwater ray density, ray patterns with controlled nearshore ray density, or crest patterns constructed by using a cubic polynomial to approximate crest segments between adjacent rays.

  15. Waves in Space Plasmas (WISP)

    NASA Technical Reports Server (NTRS)

    Calvert, Wynne

    1994-01-01

    Activities under this project have included participation in the Waves in Space Plasmas (WISP) program, a study of the data processing requirements for WISP, and theoretical studies of radio sounding, ducting, and magnetoionic theory. An analysis of radio sounding in the magnetosphere was prepared.

  16. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  17. WaveAR: A software tool for calculating parameters for water waves with incident and reflected components

    NASA Astrophysics Data System (ADS)

    Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.

    2012-09-01

    The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.

  18. Waves and instability in the atmosphere of Mars: NASA planetary atmospheres program

    NASA Technical Reports Server (NTRS)

    Barnes, Jeffrey R.

    1990-01-01

    A broad range of phenomena were addressed by the study including the following: (1) polar warming; (2) forced stationary waves; (3) gravity waves; (4) transient baroclinic eddies; and (5) radiative-dynamical instabilities. A variety of numerical models have been employed in these studies, as well as analytical approaches. Some of the most significant results from this work are very briefly summarized.

  19. The Seasat commercial demonstration program

    NASA Technical Reports Server (NTRS)

    Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.

    1981-01-01

    The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.

  20. Comprehensive Condition Survey and Storm Waves, Circulation, and Sedimentation Study, Dana Point Harbor, California

    DTIC Science & Technology

    2011-07-01

    Tide on January 5, 2010 Figure 3-1 CMS-Wave Model Domain and Grid System Figure 3-2 CDIP 096 Wave and NOAA 9410660 Water Levels Figure 3-3 NDBC...Figure 3-10 Scatter plot of Observed CDIP and Hindcast Significant Wave Heights Figure 3-11 Comparison of Significant Wave Heights during the Month...obtained from the Coastal Data Information Program ( CDIP ) at Dana Point (Buoy 096) as well as the predicted tides at Newport Beach, CA (Station 9410580

  1. Steering of SH wave propagation in electrorheological elastomer with a structured meta-slab by tunable phase discontinuities

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Li, Yi; Cao, Liyun; Yang, Zhichun; Zhou, Xiaoling

    2017-09-01

    The generalized Snell's law (GSL) with phase discontinuity proposed based on the concept of a metasurface, which can be used to control arbitrarily the reflection and refraction of waves, attracts a growing attention in these years. The concept of abnormally deflecting the incident wave has been applied to the elastic field very recently. However, most of the studies on metasurfaces are based on passive materials, which restricts the frequency or the deflected angles always working in a single state. Here, we steer elastic SH wave propagation in an electrorheological (ER) elastomer with a structured meta-slab composed of geometrically periodic wave guides by exposing the slab to the programmed electric fields. The dependence of phase velocities of SH waves on the applied electric fields can make the phase shift under the form of a special function along the slab, which will control the refraction angles of the transmitted SH waves by the GSL. Accordingly we design the meta-slab theoretically and conduct corresponding numerical simulations. The results demonstrate that the structured meta-slab under the programmed external electric fields can deflect SH wave flexibly with tunable refraction angles and working frequencies, and can focus SH wave with tunable focal lengths. The present study will broaden the scope of applying adaptive materials to design metasurfaces with tunability.

  2. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.

  3. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  4. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  5. Image Segmentation Using Affine Wavelets

    DTIC Science & Technology

    1991-12-12

    accomplished by tile the matrixtoascii. c prograimi. TIl’ i’ rlage file is theim processed by the wave2 prograli which u ilizes MaIllat’s algo- 5-2 CLASS...1024 feet Figure 5.3. Frequency Content of Multiresolution Levels rithm. Details of the wave2 program can be found in the Appendix. One of the resulting...which comprise the wave2 program. 1. mainswave.c - The main driver program for wave. 2. loadimage.c - A routine to load the input image from an ascii

  6. Localized waves in three-component coupled nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2016-09-01

    We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).

  7. Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Bikramjeet

    2018-05-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.

  8. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  9. Redesigning a clinical mentoring program for improved outcomes in the clinical training of clerks

    PubMed Central

    Lin, Chia-Der; Lin, Blossom Yen-Ju; Lin, Cheng-Chieh; Lee, Cheng-Chun

    2015-01-01

    Introduction Mentorship has been noted as critical to medical students adapting to clinical training in the medical workplace. A lack of infrastructure in a mentoring program might deter relationship building between mentors and mentees. This study assessed the effect of a redesigned clinical mentoring program from the perspective of clerks. The objective was to assess the benefits of the redesigned program and identify potential improvements. Methods A redesigned clinical mentoring program was launched in a medical center according to previous theoretical and practical studies on clinical training workplaces, including the elements of mentor qualifications, positive and active enhancers for mentor–mentee relationship building, the timing of mentoring performance evaluation, and financial and professional incentives. A four-wave web survey was conducted, comprising one evaluation of the former mentoring program and three evaluations of the redesigned clinical mentoring program. Sixty-four fifth-year medical students in clerkships who responded to the first wave and to at least two of the three following waves were included in the study. A structured and validated questionnaire encompassing 15 items on mentor performance and the personal characteristics of the clerks was used. Mixed linear models were developed for repeated measurements and to adjust for personal characteristics. Results The results revealed that the redesigned mentoring program improved the mentors’ performance over time for most evaluated items regarding professional development and personal support provided to the mentees. Conclusions Our findings serve as an improved framework for the role of the institution and demonstrate how institutional policies, programs, and structures can shape a clinical mentoring program. We recommend the adoption of mentorship schemes for other cohorts of medical students and for different learning and training stages involved in becoming a physician. PMID:26384479

  10. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  11. Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission

    NASA Technical Reports Server (NTRS)

    Thanh, Phi Hung X.

    2004-01-01

    Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment. PFC2D is a program that allows the user to control the number of particle's characteristic, and the environment of the particle. With this I can run simulations that mimic the impulse test. This software uses a language called FISH, probably created by the creator of the software. This means that in order to model anything, one must use the command terminal instead of GUI's. I will also use this program to simulate the Moon/Mars simulate adhering to the fabric for the Dust Mitigation project. My goals for this summer are just to complete preliminary studies of the feasibility of the Shaking Fabric, learn the PFC-2D program, and to complete building and testing the wave propagation experiment.

  12. Understanding Leisure-related Program Effects by Using Process Data in the HealthWise South Africa Project.

    PubMed

    Caldwell, Linda L; Younker, Anita S; Wegner, Lisa; Patrick, Megan E; Vergnani, Tania; Smith, Edward A; Flisher, Alan J

    2008-01-01

    As the push for evidence-based programming gathers momentum, many human services programs and interventions are under increased scrutiny to justify their effectiveness across different conditions and populations. Government agencies and the public want to be assured that their resources are being put to good use on programs that are effective and efficient (Guskey, 2000). Thus, programs are increasingly based on theory and evaluated through randomized control trials using longitudinal data. Despite this progress, hypothesized outcomes are often not detected and/or their effect sizes are small (Gingiss, Roberts-Gray, Boerm, 2006). Moreover, findings may go against intuition or "gut feelings" on the part of project staff. Given the need to understand how program implementation issues relate to outcomes, this study focuses on whether process measures that focus on program implementation and fidelity can shed light on associated outcomes. In particular, we linked the process evaluation of the HealthWise motivation lesson with outcomes across four waves of data collection. We hypothesized that HealthWise would increase learners' intrinsic and identified forms of motivation, and decrease amotivation and extrinsic motivation. We did not hypothesize a direction of effects on introjected motivation due to its conceptual ambiguity. Data came from youth in four intervention schools (n = 902, 41.1%) and five control schools (n = 1291, 58.9%) who were participating in a multi-cohort, longitudinal study. The schools were in a township near Cape Town, South Africa. For each cohort, baseline data are collected on learners as they begin Grade 8. We currently have four waves of data collected on the first cohort, which is the focus of this paper. The mean age of the sample at Wave 3 was 15.0 years (SD = .86) and 51% of students were female. Results suggested that there was evidence of an overall program effect of the curriculum on amotivation regardless of fidelity of implementation. Compared to the control schools, all treatment school learners reported lower levels of amotivation in Wave 4 compared to Wave 3, as hypothesized. Using process evaluation data to monitor implementation fidelity, however, we also conclude that the school with better trained teachers who also reported higher levels of program fidelity had better outcomes than the other schools. We discuss the implications of linking process data with outcome data and associated methodological challenges in linking these data.

  13. Project Physics Programmed Instruction, Waves 2.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This is the second of two programmed instruction booklets on the topic of waves, developed by Harvard Project Physics. It covers the relationships among the frequency, period, wavelength, and speed of a periodic wave. For the first booklet in this series, see SE 015 552. (DT)

  14. Longitudinal impact of the project PATHS on adolescent risk behavior: what happened after five years?

    PubMed

    Shek, Daniel T L; Yu, Lu

    2012-01-01

    The present study investigated the longitudinal impact of the Project PATHS, a large-scale curriculum-based positive youth development program in Hong Kong, on the development of adolescents' risk behavior over a period of five years. Using a longitudinal randomized controlled design, eight waves of data were collected from 19 experimental schools in which students participated in the Project PATHS (N = 2,850 at Wave 8) and 24 control schools without joining the Project PATHS (N = 3,640 at Wave 8). At each wave, students responded to measures assessing their current risk behaviors, including delinquency, use of different types of drug, and their intentions of participating in risk behaviors in the future. Results demonstrated that adolescents receiving the program exhibited significantly slower increases in delinquent behaviors and substance use as compared to the control participants. During two years after the completion of the program, differences in youth risk behaviors in the two groups still existed. These results suggest that the Project PATHS has long-term effect in preventing adolescent problem behavior through promoting positive youth development.

  15. A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer

    NASA Technical Reports Server (NTRS)

    Pyle, L. D.; Wheat, S. R.

    1984-01-01

    Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.

  16. United States Air Force Summer Faculty Research Program for 1990. Program Management Report

    DTIC Science & Technology

    1991-06-05

    propagation characteristics were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 ... aluminum specimens during fatigue cycling. The experimental procedure involved excitation of Rayleigh waves on the surface of each specimen and...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective

  17. Study on ambient noise generated from breaking waves simulated by a wave maker in a tank

    NASA Astrophysics Data System (ADS)

    Wei, Ruey-Chang; Chan, Hsiang-Chih

    2002-11-01

    This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.

  18. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 2 (2010)-- Questionnaire. Technical Report 71A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2009 cohort Wave 2 (2010) data set.

  19. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 3 (2011)--Questionnaire. Technical Report 72A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2009 cohort Wave 3 (2011) data set.

  20. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 2 (2010)--Frequency Tables. Technical Report 71B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2009 cohort Wave 2 (2010) data set.

  1. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene.

    PubMed

    Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia

    2017-11-14

    High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.

  2. A computer program for the calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.; Bishop, A. R.

    1978-01-01

    The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.

  3. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    NASA Astrophysics Data System (ADS)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  4. Wave and Particle Interactions in the High and Low-Altitude Auroral Region During Rising Solar Activity

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.; Menietti, J. D.

    2003-01-01

    The project has resulted in four separate investigations, which are each in various stages of publication in the refereed scientific journals. The first investigation was of the generation of electrostatic electron cyclotron waves observed by the Polar spacecraft throughout the auroral regions, dayside cusp, and polar magnetosphere. We have since discovered that these waves are also present within the magnetopause and magnetosheath, which is one of the topics of a second study, entitled: 'Polar observations of plasma waves in and near the dayside magnetopause/magnetosheath.' A third study of plasma waves focussed on kilometric continuum (KC) emission. This work is reported in a paper entitled 'Near-source and Remote Observations of Kilometric Continuum Radiation From Multi-spacecraft Observations'.The final investigation of this program concerns the possible transverse heating of auroral ions by impulsive wave structures. We summarize that substantial transverse ion heating has already occurred at lower altitudes. Abstracts of the above four studies are included in the Appendix to this final report.

  5. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  6. Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    NASA Technical Reports Server (NTRS)

    Cavalleri, R. J.; Agnone, A. M.

    1972-01-01

    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.

  7. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  8. Path planning on cellular nonlinear network using active wave computing technique

    NASA Astrophysics Data System (ADS)

    Yeniçeri, Ramazan; Yalçın, Müstak E.

    2009-05-01

    This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.

  9. User's guide for a computer program for calculating the zero-lift wave drag of complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1983-01-01

    A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.

  10. Fundamental processes in the expansion, energization, and coupling of single- and multi-Ion plasmas in space: Laboratory simulation experiments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Bateman, T. T.

    1996-01-01

    We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.

  11. Performance predictions for an SSME configuration with an enlarged throat

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.

  12. Understanding Leisure-related Program Effects by Using Process Data in the HealthWise South Africa Project

    PubMed Central

    Caldwell, Linda L.; Younker, Anita S.; Wegner, Lisa; Patrick, Megan E.; Vergnani, Tania; Smith, Edward A.; Flisher, Alan J.

    2010-01-01

    Executive Summary As the push for evidence-based programming gathers momentum, many human services programs and interventions are under increased scrutiny to justify their effectiveness across different conditions and populations. Government agencies and the public want to be assured that their resources are being put to good use on programs that are effective and efficient (Guskey, 2000). Thus, programs are increasingly based on theory and evaluated through randomized control trials using longitudinal data. Despite this progress, hypothesized outcomes are often not detected and/or their effect sizes are small (Gingiss, Roberts-Gray, Boerm, 2006). Moreover, findings may go against intuition or “gut feelings” on the part of project staff. Given the need to understand how program implementation issues relate to outcomes, this study focuses on whether process measures that focus on program implementation and fidelity can shed light on associated outcomes. In particular, we linked the process evaluation of the HealthWise motivation lesson with outcomes across four waves of data collection. We hypothesized that HealthWise would increase learners’ intrinsic and identified forms of motivation, and decrease amotivation and extrinsic motivation. We did not hypothesize a direction of effects on introjected motivation due to its conceptual ambiguity. Data came from youth in four intervention schools (n = 902, 41.1%) and five control schools (n = 1291, 58.9%) who were participating in a multi-cohort, longitudinal study. The schools were in a township near Cape Town, South Africa. For each cohort, baseline data are collected on learners as they begin Grade 8. We currently have four waves of data collected on the first cohort, which is the focus of this paper. The mean age of the sample at Wave 3 was 15.0 years (SD = .86) and 51% of students were female. Results suggested that there was evidence of an overall program effect of the curriculum on amotivation regardless of fidelity of implementation. Compared to the control schools, all treatment school learners reported lower levels of amotivation in Wave 4 compared to Wave 3, as hypothesized. Using process evaluation data to monitor implementation fidelity, however, we also conclude that the school with better trained teachers who also reported higher levels of program fidelity had better outcomes than the other schools. We discuss the implications of linking process data with outcome data and associated methodological challenges in linking these data. PMID:20640186

  13. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  14. Sediment Transport Modeling and Application for Ocean Beach and San Francisco Bight, CA

    DTIC Science & Technology

    2011-01-01

    NDBC, http://www.ndbc.noaa.gov) and Coastal Data Information Program ( CDIP , http://cdip.ucsd.edu), respectively (Figures 3). Figure 5 shows wave...data at NDBC 46013 and CDIP 142 in January 2010. With passages of winter storms from south and southwest in the study area, the peak wave height and

  15. Longitudinal Surveys of Australian Youth (LSAY) 1998 Cohort: Wave 12 (2009)--Questionnaire. Technical Report 58A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 1998 cohort Wave 12 (2009) data set. [For the accompanying frequency tables, "Longitudinal Surveys…

  16. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  17. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  18. Barber/Cosmetologist Curriculum. Program Information.

    ERIC Educational Resources Information Center

    Moraine Park Technical Coll., Fond du Lac, WI.

    This guide provides the instructor with materials for a barber/cosmetologist program. Seventeen study guides are provided: anatomy and physiology; applied chemistry; chemical straightening/relaxing; chemical waving; electricity and light therapy; facial services; hair coloring and lightening (bleach); hair cutting; hair, skin, and nail disorders;…

  19. Hand-Held Calculator Algorithms for Coastal Engineering.

    DTIC Science & Technology

    1982-01-01

    and water depth at the structure toe, ds. The development of the equation is derived on the solution sheet included with program 104R. Algorithm uses...Limited Design Breaking Wave Height at Structure (AOS logic)... .... ....... ......... .54 6. 105R Wave Transmission - Fuchs’ Equation (RPN logic...58 105A Wave Transmission - Fuchs’ Equation (AOS logic). . . . 61 APPENDIX BLANK PROGRAM FORMS ........ ....................... ... 67 4

  20. Teaching Graphical Simulations of Fourier Series Expansion of Some Periodic Waves Using Spreadsheets

    ERIC Educational Resources Information Center

    Singh, Iqbal; Kaur, Bikramjeet

    2018-01-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…

  1. Millimeter Wave Radar Clutter Program

    DTIC Science & Technology

    1989-10-30

    conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic

  2. 77 FR 71477 - Reports, Forms, and Recordkeeping Requirements; Agency Information Collection Activity Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... waves. Over the program period, 24,000 drivers would be surveyed, 12,000 in each State. Estimated...-person to a licensed driver population 18 years and older, before and after three program waves. Over 3 waves (i.e., 6 measurement periods), 24,000 drivers would be surveyed in both States (12,000 in each...

  3. Develop and Test Coupled Physical Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM

    DTIC Science & Technology

    2013-09-30

    Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM W. Erick Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529...Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  4. Dynamic response of a riser under excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Lou, Min; Yu, Chenglong; Chen, Peng

    2015-12-01

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

  5. A program to calculate pulse transmission responses through transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  6. ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER, JOSEPH A.

    2005-11-30

    The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less

  7. ONR Ocean Wave Dynamics Workshop

    NASA Astrophysics Data System (ADS)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  8. Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

    NASA Astrophysics Data System (ADS)

    Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk

    2018-04-01

    Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.

  9. Longitudinal Surveys of Australian Youth (LSAY) 1998 Cohort: Wave 12 (2009)--Frequency Tables. Technical Report 58B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 1998 cohort Wave 12 (2009) data set. [For the accompanying questionnaire, "Longitudinal Surveys…

  10. Longitudinal Surveys of Australian Youth (LSAY): 2003 Cohort Wave 7 (2009)--Frequency Tables. Technical Report 57B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2003 cohort Wave 7 (2009) data set. [For the related questionnaire, see ED512164.

  11. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 3 (2011)--Frequency Tables. Technical Report 72B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2009 cohort Wave 3 (2011) data set. [For the related questionnaire, see ED536306.

  12. Longitudinal Surveys of Australian Youth (LSAY) 2003 Cohort: Wave 7 (2009)--Questionnaire. Technical Report 57A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2003 cohort Wave 7 (2009) data set. [For the related frequency tables, see ED512163.

  13. Evaluation of the influence of bottom roughness on parameters of wave flows in channels

    NASA Astrophysics Data System (ADS)

    Valov, A. O.; Degtyarev, V. V.; Fedorova, N. N.

    2018-03-01

    In this paper, a comparative analysis of the results of numerical and experimental studies of the parameters of displacement waves in trays of a rectangular cross-sectional shape with different bottom roughness is performed with the "instantaneous" elimination of the obstacle creating the initial level difference. The program ANSYS complex is used in work.

  14. Longitudinal Surveys of Australian Youth (LSAY): 2006 Cohort Wave 4 (2009)--Frequency Tables. Technical Report 56B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2006 cohort Wave 4 (2009) data set. [For the "Longitudinal Surveys of Australian Youth (LSAY):…

  15. Longitudinal Surveys of Australian Youth (LSAY): 2006 Cohort Wave 4 (2009)--Questionnaire. Technical Report 56A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2006 cohort Wave 4 (2009) data set. [For the "Longitudinal Surveys of Australian Youth (LSAY):…

  16. Longitudinal Surveys of Australian Youth (LSAY) 2006 Cohort: Wave 6 (2011)--Questionnaire. Technical Report 75A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This series of documents provides supporting information for the LSAY data set of the 2006 cohort at wave 6 (2011). The document presents the questionnaire for LSAY…

  17. Participation in the National School Lunch Program: Importance of School-Level and Neighborhood Contextual Factors

    ERIC Educational Resources Information Center

    Mirtcheva, Donka M.; Powell, Lisa M.

    2009-01-01

    Background: This study examined the effect of stigma (proxied by school-level peer participation), neighborhood food environment, and demographic characteristics on participation in the U.S. Department of Agriculture National School Lunch Program (NSLP). Methods: The 1997 and 2003 waves of the Child Development Supplement to the Panel Study of…

  18. Whose Banner Are We Waving? Exploring STEM Partnerships for Marginalized Urban Youth

    ERIC Educational Resources Information Center

    Ridgeway, Monica L.; Yerrick, Randy K.

    2018-01-01

    This case study examines after school programming in citizen science from the perspective of Critical Race Theory. During the course of enacting community outreach projects this data was used to examine the positioning of experts, student, and teachers within the program. This study explores the role of race and ethnicity, and the ways in which…

  19. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goalsmore » of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.« less

  20. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  1. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  2. Jupiter Data Analysis Program: Analysis of Voyager wideband plasma wave observations

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1983-01-01

    Voyager plasma wave wideband frames from the Jovian encounters are analyzed. The 511 frames which were analyzed were chosen on the basis of low-rate spectrum analyzer data from the plasma wave receiver. These frames were obtained in regions and during times of various types of plasma or radio wave activity as determined by the low-rate, low-resolution data and were processed in order to provide high resolution measurements of the plasma wave spectrum for use in the study of a number of outstanding problems. Chorus emissions at Jupiter were analyzed. The detailed temporal and spectral form of the very complex chorus emissions near L = 8 on the Voyager 1 inbound passage was compared to both terrestrial chorus emissions as well as to the theory which was developed to explain the terrestrial waves.

  3. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    PubMed

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  4. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.

  5. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    DTIC Science & Technology

    2017-06-30

    Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Flood and Storm Protection Division (HF), Coastal ...ER D C/ CH L TR -1 7- 11 Coastal Inlets Research Program An Optimized Combined Wave and Current Bottom Boundary Layer Model for...client/default. Coastal Inlets Research Program ERDC/CHL TR-17-11 June 2017 An Optimized Combined Wave and Current Bottom Boundary Layer Model

  6. BEEC: An event generator for simulating the Bc meson production at an e+e- collider

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Wu, Xing-Gang; Wang, Xian-You

    2013-12-01

    The Bc meson is a doubly heavy quark-antiquark bound state and carries flavors explicitly, which provides a fruitful laboratory for testing potential models and understanding the weak decay mechanisms for heavy flavors. In view of the prospects in Bc physics at the hadronic colliders such as Tevatron and LHC, Bc physics is attracting more and more attention. It has been shown that a high luminosity e+e- collider running around the Z0-peak is also helpful for studying the properties of Bc meson and has its own advantages. For this purpose, we write down an event generator for simulating Bc meson production through e+e- annihilation according to relevant publications. We name it BEEC, in which the color-singlet S-wave and P-wave (cb¯)-quarkonium states together with the color-octet S-wave (cb¯)-quarkonium states can be generated. BEEC can also be adopted to generate the similar charmonium and bottomonium states via the semi-exclusive channels e++e-→|(QQ¯)[n]>+Q+Q¯ with Q=b and c respectively. To increase the simulation efficiency, we simplify the amplitude as compact as possible by using the improved trace technology. BEEC is a Fortran program written in a PYTHIA-compatible format and is written in a modular structure, one may apply it to various situations or experimental environments conveniently by using the GNU C compiler make. A method to improve the efficiency of generating unweighted events within PYTHIA environment is proposed. Moreover, BEEC will generate a standard Les Houches Event data file that contains useful information of the meson and its accompanying partons, which can be conveniently imported into PYTHIA to do further hadronization and decay simulation. Catalogue identifier: AEQC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQC_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 114868 No. of bytes in distributed program, including test data, etc.: 963939 Distribution format: tar.gz Programming language: FORTRAN 77/90. Computer: Any computer with Fortran compiler, the program is tested with GNU Fortran compiler and Intel Fortran compiler. Operating system: UNIX, Linux and Windows. RAM: About 2.0 MB. Classification: 11.2. Nature of problem: Production of charmonium, (cb¯)-quarkonium and bottomonium via e+e- annihilation channel around the Z0 peak. Solution method: The production of heavy (QQ)-quarkonium (Q,Q‧=b,c) via e+e- annihilation are estimated by using the improved trace technology. The (QQ)-quarkonium in color-singlet 1S-wave state, 1P-wave state, and the color-octet 1S-wave states have been studied within the framework of non-relativistic QCD. The code with option can generate weighted and unweighted events conveniently, in particular, the unweighted events are generated by using an improved hit-and-miss approach so as to improve the generating efficiency. Restrictions: The generator is aimed at the production of double heavy quarkonium through e+e- annihilation at the Z0 peak. The considered processes are those that are associated with two heavy quark jets, which could provide sizable quarkonium events around the Z0 peak. Running time: It depends on which option one chooses to match PYTHIA when generating the heavy quarkonium events. Typically, for the production of the S-wave quarkonium states, if setting IDPP=2 (unweighted events), then it takes about 2 h on a 2.9 GHz AMD Athlon (tm) II×4 635 Processor machine to generate 105 events; if setting IDPP=3 (weighted events), it takes only ˜16 min to generate 105 events. For the production of the P-wave quarkonium states, the time will be almost one hundred times longer than the case of the S-wave quarkonium.

  7. Pick_sw: a program for interactive picking of S-wave data, version 2.00

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2002-01-01

    Program pick_sw is used to interactively pick travel times from S-wave data. It is assumed that the data are collected using 2 shots of opposite polarity at each shot location. The traces must be in either the SEG-2 format or the SU format. The program is written in the IDL and C programming languages, and the program is executed under the Windows operating system. (The program may also execute under other operating systems like UNIX if the C language functions are re-compiled).

  8. Summary Report of Defense Science Study Group 3, 1992-1993. Volume 1

    DTIC Science & Technology

    1994-12-01

    Briefings • Introduction to the DSSG program • DoD--especially DE.. , E , ARPA, R&D programs of the military services, etc. I The Intelligence Community ...1-2 D. Mentors and Advisors ................................................................ 1-2 E . Alumni...IV-159 iii E . Lateral Wave Modifications for Electromagnetic Propagation

  9. Firearm Anticipatory Guidance Training in Psychiatric Residency Programs

    ERIC Educational Resources Information Center

    Price, James H.; Thompson, Amy J.; Khubchandani, Jagdish; Mrdjenovich, Adam J.; Price, Joy A.

    2010-01-01

    Objective: Most suicides (60%) are committed with firearms, and most (80%) of individuals attempting suicide meet diagnostic criteria for mental illness. This study assessed the prevalence of firearm injury prevention training in psychiatric residency programs. Methods: A three-wave mail survey was sent to the directors of 179 psychiatric…

  10. Longitudinal Surveys of Australian Youth (LSAY) 2003 Cohort: Wave 9 (2011)--Frequency Tables. Technical Report 76B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This series of documents provides supporting information for the LSAY data set of the 2003 cohort at wave 9 (2011). This document presents the frequency tables for…

  11. Longitudinal Surveys of Australian Youth (LSAY) 2006 Cohort: Wave 6 (2011)--Frequency Tables. Technical Report 75B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This series of documents provides supporting information for the LSAY data set of the 2006 cohort at wave 6 (2011). This document presents the frequency tables for…

  12. Whistler wave generation by electron temperature anisotropy during asymmetric magnetic reconnection in space

    NASA Astrophysics Data System (ADS)

    Swerdlow, Josh; Yoo, Jongsoo; Kim, Eun-Hwa; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    Generation of whistler waves during asymmetric reconnection is studied by analyzing data from a MMS (Magnetospheric Multiscale) event. In particular, the possible role of electron temperature anisotropy in excitation of whistler waves on the magnetosphere side is discussed. The local electron distribution function is fitted into a sum of bi-Maxwellian distribution functions. Then, the dispersion relation solver, WHAMP (waves in homogeneous, anisotropic, multicomponent plasmas), is used to obtain the local dispersion relation and growth rate of the whistler waves. We compare the theoretical calculations with the measured dispersion relation. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  13. Magnon gap formation and charge density wave effect on thermoelectric properties in SmNiC2 compound

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Rhyee, Jong-Soo; Kwon, Yong Seung

    2013-03-01

    We studied the magnetic, electrical, and thermal properties of polycrystalline compound of SmNiC2. The electrical resistivity and magnetization measurement show the interplay between the charge density wave at TCDW = 157 K and the ferromagnetic ordering of Tc = 18 K. Below the ferromagnetic transition temperature, we observed the magnon gap formation of 4.3 ~ 4.4 meV by ρ(T) and Cp(T) measurements. The charge density wave is attributed to the increase of Seebeck coefficient resulting in the increase of power factor S2 σ . The thermoelectric figure-of-merit ZT significantly increases due to the increase of power factor at TCDW = 157 K. Here we argue that the competing interaction between electron-phonon and electron-magnon couplings exhibits the unconventional behavior of electrical and thermal properties. This research was supported by Basic Science Research Program (2011-0021335), Nano-Material Technology Development Program (2011-0030147), and Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

  14. BCVEGPY2.0: An upgraded version of the generator BCVEGPY with the addition of hadroproduction of the P-wave B states

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang

    2006-02-01

    The generator BCVEGPY is upgraded by improving some of its features and by adding the hadroproduction of the P-wave excited B states (denoted by BcJ,L=1∗ or by hB_c and χB_c). In order to make the generator more efficient, we manipulate the amplitude as compact as possible with special effort. The correctness of the program is tested by various checks. We denote it as BCVEGPY2.0. As for the added part of the P-wave production, only the dominant gluon-gluon fusion mechanism ( gg→BcJ,L=1∗+c¯+b) is taken into account. Moreover, in the program, not only the ability to compute the contributions from the color-singlet components ( to the P-wave production but also the ability to compute the contributions from the color-octet components ( are available. With BCVEGPY2.0 the contributions from the two 'color components' to the production of each of the P-wave states may be computed separately by an option, furthermore, besides individually the event samples of the S-wave and P-wave ( cb¯)-heavy-quarkonium in various correct (realistic) mixtures can be generated by relevant options too. Program summaryTitle of program: BCVEGPY Version: 2.0 (December, 2004) Catalogue identifier: ADWQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWQ Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Reference to original program: ADTJ (BCVEGPY1.0) Reference in CPC: Comput. Phys. Comm. 159 (2004) 192 Does the new version supersede the old program: yes Computer: Any computer with FORTRAN 77 or 90 compiler. The program has been tested on HP-SC45 Sigma-X parallel computer, Linux PCs and Windows PCs with Visual Fortran Operating systems: UNIX, Linux and Windows Programming language used: FORTRAN 77/90 Memory required to execute with typical data: About 2.0 MB No. of lines in distributed program, including test data, etc.: 124 297 No. of bytes in distributed program, including test data, etc.: 1 137 177 Distribution format: tar.g2 Nature of physical problem: Hadronic production of B meson itself and its excited states. Method of solution: The code with option can generate weighted and unweighted events. For jet hadronization, an interface to PYTHIA is provided. Reason for the new version: There are two reasons. One is to provide additional codes for the hadronic production of P-wave excited B states: the four via color-singlet P-wave state directly and the two via color-octet S-wave state accordingly. The other one is to decompose the color-flow factor for the amplitude by an approximate way, that is adopted in PYTHIA. Summary of Revisions: (1) The integration efficiency over the momentum fractions of the initial partons x and x are improved; (2) The amplitudes for the hadronic production of the color-singlet components corresponding to the four P-wave states, BcJ,L=1∗ or P1 and P3 ( J=0,1,2), are included; (3) The amplitudes for P-wave production via the two color-octet components |((S1)g> and |((S3)g> are included; (4) For comparison, the S-wave ( S1 and S3) hadronic production via the light quark-antiquark annihilation mechanism is also included; (5) For convenience, 24 data files to record the information of the generated events in one run are added; (6) An additional file, parameter.for, is added to set the initial values of the parameters; (7) Two new parameters 'IMIX' (IMIX = 0 or 1) and 'IMIXTYPE' (IMIXTYPE = 1, = 2 or = 3) are added to meet the needs of generating the events for simulating 'mixing' or 'separate' event samples for various B and its excited states correctly; (8) One switch, 'IVEGGRADE', is added to determine whether to use the existed importance sampling function to generate a more precise importance sampling function or not; (9) Two parameters, 'IOUTPDF' and 'IPDFNUM', are added to determine which type of PDFs to use; (10) The color-flow decomposition for the amplitudes is rewritten by an approximate way, that is adopted in PYTHIA. Restrictions on the complexity of the problem: The hadronic production of (cb¯)-quarkonium in S-wave and P-wave states via the mechanism of gluon-gluon fusion are given by the 'complete calculation' approach of the leading order QCD. The contributions from the other mechanisms for P-wave production which are small comparatively are not included. Typical running time: Generally speaking, it depends on which option is used to drive PYTHIA when generating the B events. Typically, for the hadronic production of the S-wave (cb¯)-quarkonium, if the PYTHIA parameter IDWTUP = 1, then it takes about 20 hours on a 1.8 GHz Intel P4-processor machine to generate 1000 events; however if IDWTUP = 3, to generate 10 6 events, it takes only about 40 minutes. For the hadronic production of the P-wave (cb¯)-quarkonium, the necessary time will be almost two times longer than the S-wave quarkonium production.

  15. Chemical kinetic modeling of propane oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.

    1977-01-01

    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.

  16. Implementation of a boundary element method to solve for the near field effects of an array of WECs

    NASA Astrophysics Data System (ADS)

    Oskamp, J. A.; Ozkan-Haller, H. T.

    2010-12-01

    When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.

  17. Prevalence of E/A wave fusion and A wave truncation in DDD pacemaker patients with complete AV block under nominal AV intervals.

    PubMed

    Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph

    2015-01-01

    Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.

  18. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    NASA Astrophysics Data System (ADS)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  19. Impact of Project P.A.T.H.S. on adolescent developmental outcomes in Hong Kong: findings based on seven waves of data.

    PubMed

    Shek, Daniel T L; Ma, Cecilia M S

    2012-01-18

    The present study examined the longitudinal impact of Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) on adolescent developmental outcomes in Hong Kong. Using a longitudinal randomized group design, seven waves of data were collected from 24 experimental schools (n=4049 at wave 1) in which students participated in the Tier 1 Program of Project P.A.T.H.S. and 24 control schools (n=3797 at wave 1). Results based on individual growth curve modeling generally showed that, relative to the control participants, participants in the experimental group had: (a) a higher level of positive development; (b) a lower level of substance abuse; and (c) a lower level of delinquent behavior. Participants who regarded the program to be beneficial also showed higher levels of positive development and lower levels of problem behavior than did the control school students. The present findings suggest that Project P.A.T.H.S. is effective in promoting positive development and preventing adolescent problem behavior in Chinese adolescents in Hong Kong.

  20. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  1. [Electromyography Analysis of Rapid Eye Movement Sleep Behavior Disorder].

    PubMed

    Nakano, Natsuko; Kinoshita, Fumiya; Takada, Hiroki; Nakayama, Meiho

    2018-01-01

    Polysomnography (PSG), which records physiological phenomena including brain waves, breathing status, and muscle tonus, is useful for the diagnosis of sleep disorders as a gold standard. However, measurement and analysis are complex for several specific sleep disorders, such as rapid eye movement (REM) sleep behavior disorder (RBD). Usually, brain waves during REM sleep indicate an awakening pattern under relaxed conditions of skeletal and antigravity muscles. However, these muscles are activated during REM sleep when patients suffer from RBD. These activated muscle movements during REM, so-called REM without atonia (RWA) recorded by PSG, may be related to a neurodegenerative disease such as Parkinson's disease. Thus, careful analysis of RWA is significant not only physically, but also clinically. Commonly, manual viewing measurement analysis of RWA is time-consuming. Therefore, quantitative studies on RWA are rarely reported. A software program, developed from Microsoft Office Excel ® , was used to semiautomatically analyze the RWA ratio extracted from PSG to compare with manual viewing measurement analysis. In addition, a quantitative muscle tonus study was carried out to evaluate the effect of medication on RBD patients. Using this new software program, we were able to analyze RWA on the same cases in approximately 15 min as compared with 60 min in the manual viewing measurement analysis. This software program can not only quantify RWA easily but also identify RWA waves for either phasic or tonic bursts. We consider that this software program will support physicians and scientists in their future research on RBD. We are planning to offer this software program for free to physicians and scientists.

  2. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  3. Gravitational Wave Astronomy: Opening a New Window on the Universe for Students, Educators and the Public

    NASA Astrophysics Data System (ADS)

    Cavaglia, Marco; Hendry, M.; Ingram, D.; Milde, S.; Pandian, S. R.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Ugolini, D.; Thacker, J.; Vallisneri, M.; Zermeno, A.

    2008-05-01

    The nascent field of gravitational wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the `ripples in spacetime' predicted by Einstein's general theory of relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae - and their discovery should help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of spacetime itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational wave detectors, built and run by the LIGO Scientific Collaboration, has been fully operational. These detectors are already among the most sensitive scientific instruments on the planet but in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational wave astronomy as a revolutionary, new observational field. In this poster we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009. These activities include: * programs at Science Centers and Observatory Visitor Centers * programs on gravitational wave astronomy for the classroom, across the K-12 spectrum * interdisciplinary events linking gravitational wave astronomy to music and the visual arts * research experiences for schools and citizens through the highly successful `Einstein@Home' program.

  4. Long-Term Effectiveness of a Multifactorial Fall and Fracture Prevention Program in Bavarian Nursing Homes: An Analysis Based on Health Insurance Claims Data.

    PubMed

    Schulz, Claudia; Lindlbauer, Ivonne; Rapp, Kilian; Becker, Clemens; König, Hans-Helmut

    2017-06-01

    Femoral fractures are frequently consequences of falls in nursing homes and are associated with considerable costs and unfavorable outcomes such as immobility and mortality. The purpose of this study was to examine the long-term effectiveness of a multifactorial fall and fracture prevention program in nursing homes in terms of reducing femoral fractures. Retrospective cohort study. Nursing homes. Health insurance claims data for 2005-2013 including 85,148 insurants of a sickness fund (Allgemeine Ortskrankenkasse Bayern), aged 65 years or older and living in 802 nursing homes in Bavaria, Germany. The fall prevention program was implemented stepwise in 4 time-lagged waves in almost 1,000 nursing homes in Bavaria, Germany, and was financially supported by a Bavarian statutory health insurance for the initial period of 3 years after implementation. The components of Bavarian Fall and Fracture Prevention Program were related to the staff (education), to the residents (progressive strength and balance training, medication, hip protectors), and suggested environmental adaptations as well as fall documentation and feedback on fall statistics. Data were used to create an unbalanced panel data set with observations per resident and quarterly period. We designed each wave to have 9 quarters (2.25 years) before implementation and 15 quarters (3.75 years) as follow-up period, respectively. Time trend-adjusted logistic generalized estimating equations were used to examine the impact of implementation of the fall prevention program on the likelihood of femoral fractures, controlling for resident and nursing home characteristics. The analysis took into account that the fall prevention program was implemented in 4 time-lagged waves. The implementation of the fall prevention program was not associated with a significant reduction in femoral fractures. Only a transient reduction of femoral fractures in the first wave was observed. Patient characteristics were positively associated with the likelihood of femoral fractures (P < .001); women compared to men [odds ratio (OR) = 0.877], age category 2 (OR = 1.486) and 3 (OR = 1.973) compared to category 1, care level 1 compared to 2 (OR = 0.897) and 3 (OR = 0.426), and a prior fracture (OR = 2.230) significantly increased the likelihood of a femoral fracture. There was no evidence for the long-term effectiveness of the fall prevention program in nursing homes. The restriction of the transient reduction to the first implementation wave may be explainable by a higher motivation of nursing homes starting first with the fall prevention program. Efforts should be directed to further identify factors that determine the long-term effectiveness of fall prevention programs in nursing homes. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  5. Radar Ocean Wave Spectrometer (ROWS) preprocessing program (PREROWS2.EXE). User's manual and program description

    NASA Technical Reports Server (NTRS)

    Vaughn, Charles R.

    1993-01-01

    This Technical Memorandum is a user's manual with additional program documentation for the computer program PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in 1990. PREROWS2.EXE is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying blocks of data from the original 8mm tape to a PC file.

  6. Physics of the Geospace Response to Powerful HF Radio Waves

    DTIC Science & Technology

    2012-10-31

    studies of the response of the Earth’s space plasma to high-power HF radio waves from the High-frequency Active Auroral Research Program ( HAARP ...of HF heating and explored to simulate artificial ducts. DMSP- HAARP experiments revealed that HF-created ion outflows and artificial density ducts...in the topside ionosphere appeared faster than predicted by the models, pointing to kinetic (suprathermal) effects. CHAMP/GRACE- HAARP experiments

  7. FD_BH: a program for simulating electromagnetic waves from a borehole antenna

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2002-01-01

    Program FD_BH is used to simulate the electromagnetic waves generated by an antenna in a borehole. The model representing the antenna may include metallic parts, a coaxial cable as a feed to the driving point, and resistive loading. The program is written in the C programming language, and the program has been tested on both the Windows and the UNIX operating systems. This Open-File Report describes • The contents and organization of the Zip file (section 2). • The program files, the installation of the program, the input files, and the execution of the program (section 3). • Address to which suggestions for improving the program may be sent (section 4).

  8. Data synthesis and display programs for wave distribution function analysis

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  9. Wave of the Future?: Integrating IR, Outcomes Assessment, Planning, Program Review, and Accreditation

    ERIC Educational Resources Information Center

    Leimer, Christina

    2010-01-01

    Integrating institutional research, outcomes assessment, program review, strategic planning, and accreditation can be a powerful means of creating a culture of evidence-based decision making and continuous improvement. This study examined how this "integrated" model is organized in practice, how such offices began, why this approach was chosen,…

  10. Global strength assessment in oblique waves of a large gas carrier ship, based on a non-linear iterative method

    NASA Astrophysics Data System (ADS)

    Domnisoru, L.; Modiga, A.; Gasparotti, C.

    2016-08-01

    At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.

  11. Laboratory Study of Wave Generation Near Dipolarization Fronts

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Enloe, C. L.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Malaspina, D.

    2017-12-01

    Experiments conducted in the Space Physics Simulation Chamber at the Naval Research Laboratory (NRL) create plasma equilibria that replicate those found in dipolarization fronts. These experiments were designed to study the dynamics of boundary layers, such as dipolarization fronts, and it was found that there are instabilities generated by highly inhomogeneous plasma flows. It has previously been shown that these highly inhomogeneous flows can generate waves in the lower hybrid frequency range. Analysis of satellite observations indicate that the sheared flows are a plausible explanation for the observed lower hybrid waves at dipolarization fronts since they can generate longer wavelengths compared to the electron gyroradius, which is consistent with observations. Recent experiments at NRL have demonstrated that these flows can also generate electromagnetic waves in the whistler band. These waves are large amplitude, bursty waves that exhibit frequency chirps similar to whistler mode chorus. Recent results from these experiments and comparisons to in situ observations will be presented. * Work supported by the Naval Research Laboratory Base Program and NASA Grant No. NNH17AE70I.

  12. Examining the Choice of Business Majors to Participate in a Short-Term Study Abroad Program Using the Gap Analysis Model

    ERIC Educational Resources Information Center

    Vera Lopez, Janet

    2013-01-01

    The Clark and Estes (2008) Gap Analysis Process Model (Gap Analysis) was used to examine the reasons 33% of freshmen students do not participate in the Burke School of Business, Business Abroad Experience (BAE) program at New Wave University (NWU). The purpose of this study was to understand the considerations students make in their…

  13. A research program to reduce interior noise in general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Peschier, T. D.; Andrews, D.; Henderson, T.

    1977-01-01

    The relevance of KU-FRL test results in predicting (theoretically or semi-empirically) interior noise levels in general aviation aircraft was studied. As a result of this study, it was decided to make a few additions to the program. These additions are: (1) to use three (instead of two) noise sources in the plane wave tube to evaluate the influence of excitation spectrum on panel response, (2) to use theoretical and experimental data obtained in the course of the project to develop more efficient noise reduction materials (or procedures to apply these), or to develop guidelines for the design of such materials for procedures, and (3) to use nonstructural materials in the collection of specimens to be tested in the KU-FRL plane wave tube.

  14. Use of an Atrial Lead with Very Short Tip-To-Ring Spacing Avoids Oversensing of Far-Field R-Wave

    PubMed Central

    Kolb, Christof; Nölker, Georg; Lennerz, Carsten; Jetter, Hansmartin; Semmler, Verena; Pürner, Klaus; Gutleben, Klaus-Jürgen; Reents, Tilko; Lang, Klaus; Lotze, Ulrich

    2012-01-01

    Objective The AVOID-FFS (Avoidance of Far-Field R-wave Sensing) study aimed to investigate whether an atrial lead with a very short tip-to-ring spacing without optimization of pacemaker settings shows equally low incidence of far-field R-wave sensing (FFS) when compared to a conventional atrial lead in combination with optimization of the programming. Methods Patients receiving a dual chamber pacemaker were randomly assigned to receive an atrial lead with a tip-to-ring spacing of 1.1 mm or a lead with a conventional tip-to-ring spacing of 10 mm. Postventricular atrial blanking (PVAB) was programmed to the shortest possible value of 60 ms in the study group, and to an individually determined optimized value in the control group. Atrial sensing threshold was programmed to 0.3 mV in both groups. False positive mode switch caused by FFS was evaluated at one and three months post implantation. Results A total of 204 patients (121 male; age 73±10 years) were included in the study. False positive mode switch caused by FFS was detected in one (1%) patient of the study group and two (2%) patients of the control group (p = 0.62). Conclusion The use of an atrial electrode with a very short tip-to-ring spacing avoids inappropriate mode switch caused by FFS without the need for individual PVAB optimization. Trial Registration ClinicalTrials.gov NCT00512915 PMID:22745661

  15. Use of an atrial lead with very short tip-to-ring spacing avoids oversensing of far-field R-wave.

    PubMed

    Kolb, Christof; Nölker, Georg; Lennerz, Carsten; Jetter, Hansmartin; Semmler, Verena; Pürner, Klaus; Gutleben, Klaus-Jürgen; Reents, Tilko; Lang, Klaus; Lotze, Ulrich

    2012-01-01

    The AVOID-FFS (Avoidance of Far-Field R-wave Sensing) study aimed to investigate whether an atrial lead with a very short tip-to-ring spacing without optimization of pacemaker settings shows equally low incidence of far-field R-wave sensing (FFS) when compared to a conventional atrial lead in combination with optimization of the programming. Patients receiving a dual chamber pacemaker were randomly assigned to receive an atrial lead with a tip-to-ring spacing of 1.1 mm or a lead with a conventional tip-to-ring spacing of 10 mm. Postventricular atrial blanking (PVAB) was programmed to the shortest possible value of 60 ms in the study group, and to an individually determined optimized value in the control group. Atrial sensing threshold was programmed to 0.3 mV in both groups. False positive mode switch caused by FFS was evaluated at one and three months post implantation. A total of 204 patients (121 male; age 73±10 years) were included in the study. False positive mode switch caused by FFS was detected in one (1%) patient of the study group and two (2%) patients of the control group (p = 0.62). The use of an atrial electrode with a very short tip-to-ring spacing avoids inappropriate mode switch caused by FFS without the need for individual PVAB optimization. ClinicalTrials.gov NCT00512915.

  16. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  17. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  18. 2D and 3D graphical representation of the propagation of electromagnetic waves at the interface with a material with general effective complex permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Diaz, A.; Ramos, J. G.; Friedman, J. S.

    2017-09-01

    We developed a web-based instructional and research tool that demonstrates the behavior of electromagnetic waves as they propagate through a homogenous medium and through an interface where the second medium can be characterized by an effective complex permittivity and permeability. Either p- or s-polarization wave components can be chosen and the graphical interface includes 2D wave and 3D component representations. The program enables the study of continuity of electromagnetic components, critical angle, Brewster angle, absorption and amplification, behavior of light in sub-unity and negative-index materials, Poynting vector and phase velocity behavior, and positive and negative Goos- Hänchen shifts.

  19. A Study of Surface Temperatures, Clouds and Net Radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1996-01-01

    This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.

  20. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  1. Numerical Modeling of Coastal Dredged Material Placement Study at Noyo Harbor, CA

    DTIC Science & Technology

    2013-07-01

    Information Program ( CDIP , http://cdip.ucsd.edu) Buoy 46213. NDBC Buoy 46014, located offshore Noyo Bay, collects non- directional wave spectral data...lists these NDBC, CDIP , and NOAA stations and their location information. Fig. 5: Monthly mean wave height at Buoys 46014, 46022, and 46213...primarily sand with small percentages of mixed gravel, silt and clay (Table 2). Table 1. NDBC, CDIP , and NOAA station locations Station Latitude

  2. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4

    DTIC Science & Technology

    2014-05-23

    study of Lamb wave interactions with holes and through thickness defects in thin metal plates . Distribution Code A: Approved for public release...Propagation in Composite Plates with Damages - Years 3-4 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA23861214005 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The objective of the proposed efforts: -Formulated Wavelet Spectral element for a healthy composite plates and used the formulated

  3. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  4. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 1 (2009)--Frequency Tables. Technical Report 70

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. Since 2003, the LSAY program has been integrated with the Programme for International Student Assessment (PISA) conducted by the Organisation for Economic…

  5. Predictors of HIV/AIDS Programming in African American Churches: Implications for HIV Prevention, Testing, and Care

    ERIC Educational Resources Information Center

    Stewart, Jennifer M.; Hanlon, Alexandra; Brawner, Bridgette M.

    2017-01-01

    Using data from the National Congregational Study, we examined predictors of having an HIV/AIDS program in predominately African American churches across the United States. We conducted regression analyses of Wave II data (N = 1,506) isolating the sample to churches with a predominately African American membership. The dependent variable asked…

  6. Evaluating the Effects of Child Savings Accounts Program Participation on Parental Well-Being

    ERIC Educational Resources Information Center

    Okech, David

    2012-01-01

    Objectives: Using baseline and second wave data, the study evaluated the impact of child savings accounts participation on parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling for…

  7. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  8. Users' manual for computer program for three-dimensional analysis of coupler-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1984-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.

  9. Prevention of adolescent problem behavior: longitudinal impact of the Project P.A.T.H.S. in Hong Kong.

    PubMed

    Shek, Daniel T L; Yu, Lu

    2011-03-07

    The present study attempts to examine the longitudinal impact of a curriculum-based positive youth development program, entitled the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes), on adolescent problem behavior in Hong Kong. Using a longitudinal randomized group design, six waves of data were collected from 19 experimental schools (n = 3,797 at Wave 1) in which students participated in the Project P.A.T.H.S. and 24 control schools (n = 4,049 at Wave 1). At each wave, students responded to questions asking about their current problem behaviors, including delinquency and use of different types of drugs, and their intentions of engaging in such behaviors in the future. Results based on individual growth curve modeling generally showed that the participants displayed lower levels of substance abuse and delinquent behavior than did the control students. Participants who regarded the program to be helpful also showed lower levels of problem behavior than did the control students. The present findings suggest that the Project P.A.T.H.S. is effective in preventing adolescent problem behavior in the junior secondary school years.

  10. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  11. Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW coupled-cavity traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ayers, W. R.; Harman, W. A.

    1973-01-01

    An analytical and experimental program to study design techniques and to utilize these techniques to optimize the performance of an X-band 4 kW, CW traveling wave tube ultimately intended for satellite-borne television broadcast transmitters is described. The design is based on the coupled-cavity slow-wave circuit with velocity resynchronization to maximize the conversion efficiency. The design incorporates a collector which is demountable from the tube. This was done to facilitate multistage depressed collector experiments employing a NASA designed axisymmetric, electrostatic collector for linear beam microwave tubes after shipment of the tubes to NASA.

  12. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  13. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  14. The Grand Banks ERS-1 SAR wave spectra validation experiment

    NASA Technical Reports Server (NTRS)

    Vachon, P. W.; Dobson, F. W.; Smith, S. D.; Anderson, R. J.; Buckley, J. R.; Allingham, M.; Vandemark, D.; Walsh, E. J.; Khandekar, M.; Lalbeharry, R.

    1993-01-01

    As part of the ERS-1 validation program, the ERS-1 Synthetic Aperture Radar (SAR) wave spectra validation experiment was carried out over the Grand Banks of Newfoundland (Canada) in Nov. 1991. The principal objective of the experiment was to obtain complete sets of wind and wave data from a variety of calibrated instruments to validate SAR measurements of ocean wave spectra. The field program activities are described and the rather complex wind and wave conditions which were observed are summarized. Spectral comparisons with ERS-1 SAR image spectra are provided. The ERS-1 SAR is shown to have measured swell and range traveling wind seas, but did not measure azimuth traveling wind seas at any time during the experiment. Results of velocity bunching forward mapping and new measurements of the relationship between wind stress and sea state are also shown.

  15. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  16. Random-access technique for modular bathymetry data storage in a continental shelf wave refraction program

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1974-01-01

    A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.

  17. The pediatric resident training on tobacco project: interim findings.

    PubMed

    Hymowitz, Norman; Schwab, Joseph; Haddock, Christopher Keith; Pyle, Sara; Meshberg, Sarah

    2006-02-01

    The Pediatric Residency Training on Tobacco Project is a four-year randomized prospective study of the efficacy of training pediatric residents to intervene on tobacco. At the start of the study (baseline), the pediatric residents uniformly agreed that environmental tobacco smoke (ETS) and tobacco use pose serious threats to the health of young people, and pediatricians should play a leadership role in the antismoking arena. However, very few went beyond advising patients and parents to modify their behavior by providing actual assistance, and many of them lacked necessary tobacco intervention skills and knowledge. We hypothesized that both standard training and special training programs would yield positive changes in intervention skills and activities, although the changes would be greater in residents exposed to the special training condition. In the present report, we present two-year outcome data from the resident tobacco surveys and objective structured clinical examinations (OSCEs) administered to independent waves of third-year residents in each experimental condition at baseline and year 2. Fifteen pediatric residency training programs in the New York/New Jersey metropolitan area were assigned randomly to special and standard training conditions (eight to special and seven to standard training). Resident tobacco surveys and OSCEs were administered to third-year residents at the start of the training programs (baseline) and at years 1 and 2 of the study. Comparisons between sequential waves of third-year residents with no (baseline) or two-year exposure to the training programs permitted assessment of changes in resident beliefs, intervention activities and intervention skills within each experimental condition. By year 2, the residents associated with each training condition benefited from the training program, but the annual surveys and OSCEs revealed more significant positive changes for waves of residents in the special training condition. Most important, third-year residents exposed to the special training condition for two years were more likely than comparable residents in the standard training condition to reveal significant increases in the degree to which they provided active assistance for modifying smoking and ETS. The two-year findings from the pediatric tobacco project are encouraging and suggest that the special training program is efficacious, although aspects of the program in need of improvement were identified.

  18. Users' manual for computer program for one-dimensional analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.; Connolly, D. J.

    1977-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. To analyze these methods, a flexible, large signal computer program for use on the IBM 360/67 time-sharing system has been developed. The present report is a users' manual for this program.

  19. Analysis of spacecraft data

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A software program for the production and analysis of data from the Dynamics Explorer-A (DE-A) satellite was maintained and modified and new software initiated. A capability was developed to process DE-A plasma-wave instrument mission analysis files on the Tektronic 4027 color CRT, for which two programs were written. The algorithm for the calibration lookup table for the plasma-wave instrument data was modified and verified, and a production program to generate color FR-80 spectrograms was written.

  20. Semiconductor millimeter wavelength electronics

    NASA Astrophysics Data System (ADS)

    Rosenbaum, F. J.

    1985-12-01

    This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.

  1. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  2. A Tobacco-Free Campus Ambassador Program and Policy Compliance

    ERIC Educational Resources Information Center

    Ickes, Melinda. J.; Rayens, Mary Kay; Wiggins, Amanda T.; Hahn, Ellen J.

    2015-01-01

    Objective: Assess impact and feasibility of a Tobacco-Free Ambassador Program on campus policy compliance. Participants: Trained Ambassadors made 253 visits to campus sites over 15 months to observe and/or approach violators. Methods: Policy violators were observed at 23 locations during Wave 1 (April-June 2012) and/or Wave 2 (April-June 2013).…

  3. Project Physics Programmed Instruction, Waves 1.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This programmed instruction booklet is an interim version of instructional materials being developed by Harvard Project Physics. It is the first of two booklets on the topic of waves and covers pulses, how pulses travel, and what happens when two pulses pass through the same region at the same time. For the second booklet in this series, see SE…

  4. Diffusion of Intervention Effects: The Impact of a Family-Based Substance Use Prevention Program on Friends of Participants.

    PubMed

    Rulison, Kelly L; Feinberg, Mark; Gest, Scott D; Osgood, D Wayne

    2015-10-01

    We tested whether effects of the Strengthening Families Program for Youth 10-14 (SFP10-14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Data are from 5,449 students (51% female; mean initial age = 12.3 years) in the PROmoting School-community-university Partnerships to Enhance Resilience community intervention trial (2001-2006) who did not participate in SFP10-14 (i.e., nonparticipants). At each of five waves, students identified up to seven friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10-14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Three years post-intervention, the odds of getting drunk (odds ratio = 1.4) and using cigarettes (odds ratio = 2.7) were higher among nonparticipants with zero SFP-attending friends compared with nonparticipants with three or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: nonparticipants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10-14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that nonparticipants spent with friends), changing friends' substance use attitudes, and then changing nonparticipants' own substance use attitudes. Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  5. Diffusion of Intervention Effects: The Impact of a Family-based Substance Use Prevention Program on Friends of Participants

    PubMed Central

    Rulison, Kelly L.; Feinberg, Mark; Gest, Scott D.; Osgood, D. Wayne

    2015-01-01

    Purpose We tested whether effects of the Strengthening Families Program for Youth 10–14 (SFP10–14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Methods Data are from 5,449 students (51% female; mean initial age=12.3 years) in the PROSPER community intervention trial (2001–2006) who did not participate in SFP10–14 (i.e., non-participants). At each of 5 waves, students identified up to 7 friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10–14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Results Three years post-intervention, the odds of getting drunk (OR=1.4) and using cigarettes (OR=2.7) were higher among non-participants with 0 SFP-attending friends compared to non-participants with 3 or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: non-participants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10–14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that non-participants spent with friends), changing friends’ substance use attitudes, and then changing non-participants’ own substance use attitudes. Conclusions Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. PMID:26210856

  6. Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1989-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.

  7. Application of computerized exercise ECG digitization. Interpretation in large clinical trials.

    PubMed

    Caralis, D G; Shaw, L; Bilgere, B; Younis, L; Stocke, K; Wiens, R D; Chaitman, B R

    1992-04-01

    The authors report on a semiautomated program that incorporates both visual identification of fiducial points and digital determination of the ST-segment at 60 ms and 80 ms from the J point, ST slope, changes in R wave, and baseline drift. The off-line program can enhance the accuracy of detecting electrocardiographic (ECG) changes, as well as reproducibility of the exercise and postexercise ECG, as a marker of myocardial ischemia. The analysis program is written in Microsoft QuickBASIC 2.0 for an IBM personal computer interfaced to a Summagraphics mm1201 microgrid II digitizer. The program consists of the following components: (1) alphanumeric data entry, (2) ECG wave form digitization, (2) calculation of test results, (4) physician overread, and (5) editor function for remeasurements. This computerized exercise ECG digitization-interpretation program is accurate and reproducible for the quantitative assessment of ST changes and requires minimal time allotment for physician overread. The program is suitable for analysis and interpretation of large volumes of exercise tests in multicenter clinical trials and is currently utilized in the TIMI II, TIMI III, and BARI studies sponsored by the National Institutes of Health.

  8. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  9. Evolution of Photon and Particle Spectra in Compact, Luminous Objects

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.; Caroff, Lawrence J.

    1995-01-01

    Physical conditions in the radiating plasma in the cores of radio-strong quasars and active galactic nuclei cannot be derived from observations until the effects of relativistic aberration are understood. This requires determining both the bulk flow speeds and any wave or signal speed in the parsec-scale nuclear jets. In this project we studied several aspects of such waves. We considered constraints on jet deceleration by mass pickup, and found that bolometric luminosities of the active nuclei cannot constrain core jet speeds usefully. We also simulated observations of ballistic, helical trajectories and helical waves moving directly outwards along the jet. We found that ballistic trajectories are not allowed by the data; the helical features seen are very likely to be helical waves. We believe these are waves propagating in the jet plasma. To this end, we studied waves propagating in relativistic pair plasma jets. In particular, we undertook a program whose goal was to determine the nature of waves which can propagate in relativistic pair plasmas, and how such waves propagating in streaming jet plasma would be observed by an external observer. We developed the possibility of using pulsars as test cases for our models; this takes advantage of new technology in pulsar observations, and the similarity of the physical conditions in the pulsar magnetosphere to the dense, relativistic pair plasmas which exist in radio-strong quasars.

  10. Youth Attitude Tracking Study II, Wave 15 - Fall 1984.

    DTIC Science & Technology

    1985-04-01

    key component of the Joint Market Research Program which contributes to policy formation and the development of recruiting marketing strategies . The...unrelated to advertising awareness for young males, but positive propensity females have higher aware- ness of advertising . * Majorities in each market group... advertising programs * Examine the potential effect of enlistment incentives on propensity to enlist Develop further the market segmentation analysis

  11. Excitation of Surface Electromagnetic Waves on Railroad Rail

    DOT National Transportation Integrated Search

    1978-03-31

    UMTA's Office of Rail Technology research programs aim to improve urban rail transportation systems safety. This rail-transit research study attempts to develop an onboard, separate and independent obstacle-detection system--Surface Electromagnetic W...

  12. Sensitivity of wave propagation in the LHRF to initial poloidal position in finite-aspect-ratio toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Larson, J. J.; Pinsker, R. I.; Bonoli, P. T.; Porkolab, M.

    2017-10-01

    The important effect of varying the initial poloidal wave-launching location to the core accessibility of lower hybrid slow waves in a torus of finite aspect ratio has been understood for many years. Since the qualitative properties of the wave propagation of the other branch in this regime, known as the `whistler', `helicon' or simply the `fast wave', are similar in some ways to those of the slow wave, we expect a dependence on launch position for this wave also. We study this problem for both slow and fast waves, first with simplified analytic models and then using the ray-tracing code GENRAY for realistic plasma equilibria. We assess the prospects of inside, top, bottom or conventional outside launch of waves on each of the two branches. Although the slow wave has been the focus of research for LHRF heating and current drive in the past, the fast wave will play a major role in burning plasmas beyond ITER where Te(0) = 10-20 keV. The stronger electron Landau damping of the slow wave will restrict the power deposition to the outer third of the plasma, while the fast wave's weaker damping allows the wave to penetrate to the hot plasma core before depositing its power. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698 and DE-FG02-91-ER54109.

  13. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1990-01-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  14. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Astrophysics Data System (ADS)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  15. The COMmunity of Practice And Safety Support (COMPASS) Total Worker Health™ study among home care workers: study protocol for a randomized controlled trial.

    PubMed

    Olson, Ryan; Elliot, Diane; Hess, Jennifer; Thompson, Sharon; Luther, Kristy; Wipfli, Brad; Wright, Robert; Buckmaster, Annie Mancini

    2014-10-27

    Home care workers are a high-risk group for injury and illness. Their unique work structure presents challenges to delivering a program to enhance their health and safety. No randomized controlled trials have assessed the impact of a Total Worker Health™ program designed for their needs. The COMPASS (COMmunity of Practice And Safety Support) study is a cluster randomized trial being implemented among Oregon's unionized home care workers. Partnering with the Oregon Home Care Commission allowed recruiting 10 pairs of home care worker groups with 8 participants per group (n = 160) for balanced randomization of groups to intervention and control conditions. Physiologic and survey evaluation of all participants will be at enrollment, 6 months and 12 months. Primary outcomes are to increase health promoting (for example, healthy nutrition and regular physical activity) and health protecting (that is, safety) behaviors. In addition to assessing outcomes adjusted for the hierarchical design, mediation analyses will be used to deconstruct and confirm the program's theoretical underpinnings and intervention processes. Intervention groups will participate in a series of monthly 2-hour meetings designed as ritualized, scripted peer-led sessions to increase knowledge, practice skills and build support for healthy actions. Self-monitoring and individual and team level goals are included to augment change. Because generalizability, reach and achieving dissemination are priorities, following initial wave findings, a second wave of COMPASS groups will be recruited and enrolled with tailoring of the program to align with existing Home Care Commission educational offerings. Outcomes, process and mediation of those tailored groups will be compared with the original wave's findings. The COMPASS trial will assess a novel program to enhance the safety and health of a vulnerable, rapidly expanding group of isolated caregivers, whose critical work allows independent living of frail seniors and the disabled. ClinicalTrials.gov identifier: NCT02113371, first registered 11 March 2014.

  16. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. Lastly, this study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.« less

  17. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. Lastly, this study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.« less

  18. Southwest Washington littoral drift restoration—Beach and nearshore morphological monitoring

    USGS Publications Warehouse

    Stevens, Andrew W.; Gelfenbaum, Guy; Ruggiero, Peter; Kaminsky, George M.

    2012-01-01

    A morphological monitoring program has documented the placement and initial dispersal of beach nourishment material (280,000 m3) placed between the Mouth of the Columbia River (MCR) North Jetty and North Head, at the southern end of the Long Beach Peninsula in southwestern Washington State. A total of 21 topographic surveys and 8 nearshore bathymetric surveys were performed between July 11, 2010, and November 4, 2011. During placement, southerly alongshore transport resulted in movement of nourishment material to the south towards the MCR North Jetty. Moderate wave conditions (significant wave height around 4 m) following the completion of the nourishment resulted in cross-shore sediment transport, with most of the nourishment material transported into the nearshore bars. The nourishment acted as a buffer to the more severe erosion, including dune overtopping and retreat, that was observed at the northern end of the study area throughout the winter. One year after placement of the nourishment, onshore transport and beach recovery were most pronounced within the permit area and to the south toward the MCR North Jetty. This suggests that there is some long-term benefit of the nourishment for reducing erosion rates locally, although the enhanced recovery also could be due to natural gradients in alongshore transport causing net movement of the sediment from north to south. Measurements made during the morphological monitoring program documented the seasonal movement and decay of nearshore sand bars. Low-energy conditions in late summer resulted in onshore bar migration early in the monitoring program. Moderate wave conditions in the autumn resulted in offshore movement of the middle bar and continued onshore migration of the outer bar. High-energy wave conditions early in the winter resulted in strong cross-shore transport and creation of a 3-bar system along portions of the coast. More southerly wave events occurred later in the winter and early spring and coincided with the complete loss of the outer bar and net loss of sediment from the study area. These data suggest that bar decay may be an important mechanism for exporting sediment from Benson Beach north to the Long Beach Peninsula. The measurements presented in this report represent one component of a broader monitoring program designed to track the movement of nourishment material on the beach and shoreface at this location, including continuous video monitoring (Argus), in situu measurements of hydrodynamics, and a physical tracer experiment. Field data from the monitoring program will be used to test numerical models of hydrodynamics and sediment transport and to improve the capability of numerical models to support regional sediment management.

  19. Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions and Other Studies

    DTIC Science & Technology

    2012-12-30

    the dip- slip or oblique mechanisms . Figure 30. Comparison of Mw (a) and depth (b) computed using srfgrd96 program (Herrmann, 2004...example it follows from Equations A5 and A7 that the Love wave amplitudes for the strike- slip focal mechanism are greater than those for a dip- slip ...These events ranged in size between 3.2 < Mw < 5.1 with the focal mechanisms (Herrmann, pers. comm. 2010) being predominantly strike- slip

  20. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  1. Wave Scattering in Heterogeneous Media using the Finite Element Method

    DTIC Science & Technology

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-12-1-4026 5c.  PROGRAM ELEMENT NUMBER 61102F 6...14.  ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a

  2. Physiological improvement with moderate exercise in type II diabetic neuropathy.

    PubMed

    Fisher, M A; Langbein, W E; Collins, E G; Williams, K; Corzine, L

    2007-01-01

    The objective of this study was to demonstrate improvement in nerve function with moderate exercise in patients with type II diabetic neuropathies. Fives subjects with type II diabetes mellitus and distal, predominantly sensory polyneuropathies were studied. The subjects completed an 8-week program of a supervised moderate exercise program (40-75% of maximal 02 uptake reserve) with a subsequent 16-week program of monitored similar exercise. The same experienced electrophysiologist performed the electrodiagnostic studies both before and after the 24-week exercise period. These studies monitored physiological changes (conduction velocities, response amplitudes) in motor and sensory fibers as well as F-wave latencies. The exercise program produced a documented increase in aerobic exercise capacity. Despite the small number of subjects studied and the relatively short exercise period, there was a statistically significant improvement in nearly all electrophysiological parameters evaluated post exercise including motor conduction velocities and amplitudes, sensory conduction velocities, and F-wave latencies. This improvement included a statistically significant improvement in absolute median motor evoked response amplitudes as well as the recording of sensory nerve action potentials not present prior to exercise. There were no adverse effects from the exercise. This study supports the hypothesis that exercise can be performed safely in patients with type II diabetic neuropathies and can produce improvement in their nerve function. This study also supports the hypothesis that ischemia may have a meaningful role in the pathogenesis of neuropathies in patients with type II diabetes mellitus.

  3. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  4. [P300 event-related potentials in stutterers pre and post treatment: a pilot study].

    PubMed

    Andrade, Claudia Regina Furquim de; Sassi, Fernanda Chiarion; Matas, Carla Gentile; Neves, Ivone Ferreira; Martins, Vanessa Oliveira

    2007-01-01

    P300 event-related potential has been used as an instrument to establish the diagnosis of several disorders as well as to assess therapeutic outcomes. to investigate the relationship between stuttering amelioration and cerebral activity. P300 event-related potentials were obtained in three adult males, all stutterers, aged 20 to 31 years, pre and post-treatment, verifying changes in wave amplitude and latency between waves. results indicate a significant positive correlation between the reduction in the percentage of stuttered syllables and the improvement in wave amplitude for the right ear. stutterers can exhibit different patterns of interhemispheric activity with a tonal P300 task after undergoing a fluency-enhancing program.

  5. Whose banner are we waving? Exploring STEM partnerships for marginalized urban youth

    NASA Astrophysics Data System (ADS)

    Ridgeway, Monica L.; Yerrick, Randy K.

    2018-03-01

    This case study examines after school programming in citizen science from the perspective of Critical Race Theory. During the course of enacting community outreach projects this data was used to examine the positioning of experts, student, and teachers within the program. This study explores the role of race and ethnicity, and the ways in which marginalization can manifest itself with black urban youth and teachers. Implications for partner selection and training are addressed.

  6. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  7. The French balloon and sounding rocket space program

    NASA Astrophysics Data System (ADS)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  8. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Mocken, Guido R.; Keitel, Christoph H.

    2008-06-01

    The main part of the code presented in this work represents an implementation of the split-operator method [J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10 (1976) 129-160; R. Heather, Comput. Phys. Comm. 63 (1991) 446] for calculating the time-evolution of Dirac wave functions. It allows to study the dynamics of electronic Dirac wave packets under the influence of any number of laser pulses and its interaction with any number of charged ion potentials. The initial wave function can be either a free Gaussian wave packet or an arbitrary discretized spinor function that is loaded from a file provided by the user. The latter option includes Dirac bound state wave functions. The code itself contains the necessary tools for constructing such wave functions for a single-electron ion. With the help of self-adaptive numerical grids, we are able to study the electron dynamics for various problems in 2+1 dimensions at high spatial and temporal resolutions that are otherwise unachievable. Along with the position and momentum space probability density distributions, various physical observables, such as the expectation values of position and momentum, can be recorded in a time-dependent way. The electromagnetic spectrum that is emitted by the evolving particle can also be calculated with this code. Finally, for planning and comparison purposes, both the time-evolution and the emission spectrum can also be treated in an entirely classical relativistic way. Besides the implementation of the above-mentioned algorithms, the program also contains a large C++ class library to model the geometric algebra representation of spinors that we use for representing the Dirac wave function. This is why the code is called "Dirac++". Program summaryProgram title: Dirac++ or (abbreviated) d++ Catalogue identifier: AEAS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 474 937 No. of bytes in distributed program, including test data, etc.: 4 128 347 Distribution format: tar.gz Programming language: C++ Computer: Any, but SMP systems are preferred Operating system: Linux and MacOS X are actively supported by the current version. Earlier versions were also tested successfully on IRIX and AIX Number of processors used: Generally unlimited, but best scaling with 2-4 processors for typical problems RAM: 160 Megabytes minimum for the examples given here Classification: 2.7 External routines: FFTW Library [3,4], Gnu Scientific Library [5], bzip2, bunzip2 Nature of problem: The relativistic time evolution of wave functions according to the Dirac equation is a challenging numerical task. Especially for an electron in the presence of high intensity laser beams and/or highly charged ions, this type of problem is of considerable interest to atomic physicists. Solution method: The code employs the split-operator method [1,2], combined with fast Fourier transforms (FFT) for calculating any occurring spatial derivatives, to solve the given problem. An autocorrelation spectral method [6] is provided to generate a bound state for use as the initial wave function of further dynamical studies. Restrictions: The code in its current form is restricted to problems in two spatial dimensions. Otherwise it is only limited by CPU time and memory that one can afford to spend on a particular problem. Unusual features: The code features dynamically adapting position and momentum space grids to keep execution time and memory requirements as small as possible. It employs an object-oriented approach, and it relies on a Clifford algebra class library to represent the mathematical objects of the Dirac formalism which we employ. Besides that it includes a feature (typically called "checkpointing") which allows the resumption of an interrupted calculation. Additional comments: Along with the program's source code, we provide several sample configuration files, a pre-calculated bound state wave function, and template files for the analysis of the results with both MatLab and Igor Pro. Running time: Running time ranges from a few minutes for simple tests up to several days, even weeks for real-world physical problems that require very large grids or very small time steps. References:J.A. Fleck, J.R. Morris, M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys. 10 (1976) 129-160. R. Heather, An asymptotic wavefunction splitting procedure for propagating spatially extended wavefunctions: Application to intense field photodissociation of H +2, Comput. Phys. Comm. 63 (1991) 446. M. Frigo, S.G. Johnson, FFTW: An adaptive software architecture for the FFT, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, IEEE, 1998, pp. 1381-1384. M. Frigo, S.G. Johnson, The design and implementation of FFTW3, in: Proceedings of the IEEE, vol. 93, IEEE, 2005, pp. 216-231. URL: http://www.fftw.org/. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, F. Rossi, GNU Scientific Library Reference Manual, second ed., Network Theory Limited, 2006. URL: http://www.gnu.org/software/gsl/. M.D. Feit, J.A. Fleck, A. Steiger, Solution of the Schrödinger equation by a spectral method, J. Comput. Phys. 47 (1982) 412-433.

  9. CMS-Wave: A Nearshore Spectral Wave Processes Model for Coastal Inlets and Navigation Projects

    DTIC Science & Technology

    2008-08-01

    Grays Harbor .......................................................101 Figure 84. Wind and wave data from NDBC 46029 and CDIP 036, 20-31 December...During the same time intervals, offshore wave information is available from a Coastal Data Information Program ( CDIP ) Buoy 036 (46°51.39’N, 124...size of 30 m × 30 m (Figure 83). Directional wave spectra from CDIP 036 served as the input, discretized in 30 frequency bins (0.04 to 0.33 Hz with

  10. Signal-to-Noise Ratio Requirements for Half-Wave and Full-Wave Nonlinear Detectors with Arbitrary Power Laws, Sampling Rates, Input Spectra, and Filter Characteristics

    DTIC Science & Technology

    1986-06-10

    system consisting of a sampler, a nonlinear rectifier, and a low-pass filter is evaluated generally , for arbitrary half-wave or full-wave v-th law...spectra, the possibility of using deliberate undersampling with no loss of performance is illustrated. The use of a half-wave rectifier generally ... some cases, significantly so. Programs for all procedures employed are presented so that investigation of additional cases or combinations of

  11. Preventing growth in amphetamine use: long-term effects of the Midwestern Prevention Project (MPP) from early adolescence to early adulthood.

    PubMed

    Riggs, Nathaniel R; Chou, Chih-Ping; Pentz, Mary Ann

    2009-10-01

    The aim of the current study was to examine the long-term effect of an early adolescent substance abuse prevention program on trajectories and initiation of amphetamine use into early adulthood. Eight middle schools were assigned randomly to a program or control condition. The randomized controlled trial followed participants through 15 waves of data, from ages 11-28 years. This longitudinal study design includes four separate periods of development from early adolescence to early adulthood. The intervention took place in middle schools. A total of 1002 adolescents from one large mid-western US city were the participants in the study. The intervention was a multi-component community-based program delivered in early adolescence with a primary emphasis on tobacco, alcohol and marijuana use. At each wave of data collection participants completed a self-report survey that included questions about life-time amphetamine use. Compared to a control group, participants in the Midwestern Prevention Project (MPP) intervention condition had reduced growth (slope) in amphetamine use in emerging adulthood, a lower amphetamine use intercept at the commencement of the early adulthood and delayed amphetamine use initiation. The pattern of results suggests that the program worked first to prevent amphetamine use, and then to maintain the preventive effect into adulthood. Study findings suggest that early adolescent substance use prevention programs that focus initially on the 'gateway' drugs have utility for long-term prevention of amphetamine use. © 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction.

  12. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  13. WAVE~Ripples for Change Obesity Two-Year Intervention in High School Soccer Players: Process Evaluation, Best Practices, and Youth Engagement.

    PubMed

    Meng, Yu; Wong, Siew Sun; Manore, Melinda M; Patton-López, Mēgan

    2018-06-01

    This paper reports the process data on program fidelity, best practices for intervention implementation, youth and coach engagement, and youth application of knowledge and skills for the two-year WAVE~Ripples for Change (WAVE) obesity prevention intervention program focused on healthy eating, physical activity, and life skills with high school (HS) soccer players aged 14⁻19 years. Internal (staff: n = 7; volunteers: n = 27) and external (youth: n = 100; coaches: n = 9) stakeholders were interviewed/ surveyed. Staff rated program fidelity as high (94%), as did volunteers (85%). Best practices included coach encouragement for athlete participation, use of on-line consent for enrollment, building relationships with HS staff to complete assessments, sending text reminders, and providing incentives. Study results showed an enrollment rate of 72%, completion of baseline assessments of 89⁻98%, attendance of sports nutrition lessons in Year 1 and Year 2 of 90% and 39%, respectively, and team-building workshop (TBW) attendance of 25⁻31%. Activities exceeding youth expectations (>90%) included, (1) activities with their soccer team; (2) the TBW-cooking; and (3) sports nutrition lessons. The obesity prevention skills most applied by youth were obtained from the TBW-gardening and harvesting (49%), the TBW-cooking (43%), and sports nutrition lessons (44%). Coaches also rated the sports nutrition lessons highly and reported increased awareness for hydration/fueling during sport by the athletes. Using sport teams/clubs to engage youth in obesity prevention is a feasible model for future study.

  14. Lawrence Livermore National Laboratory two-stage light-gas gun

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Nellis, W. J.; Trinor, R. J.

    1981-10-01

    The APS conference on shock waves in condensed matter was held at Menlo Park, Ca, USA on 23 June 1981. The diagnostics and experimental program of a facility used to study condensed matter at high pressures are described.

  15. On-line high-speed rail defect detection, phase III : research results.

    DOT National Transportation Integrated Search

    2005-10-01

    The Federal Railroad Administration (FRA) Office of Research and Developments Track and Structures Program sponsored a study for developing and testing a rail defect detection system based on ultrasonic guided waves and non-contact probing. Curren...

  16. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  17. Verification and Validation of the Coastal Modeling System. Report 2: CMS-Wave

    DTIC Science & Technology

    2011-12-01

    Figure 44. Offshore bathymetry showing NDBC and CDIP buoy locations. ........................................ 70 Figure 45. CMS-Wave modeling domain...the four measurement stations. During the same time intervals, offshore wave information was available from a Coastal Data Information Program ( CDIP ...were conducted with a grid of 236 × 398 cells with variable cell spacing of 30 to 200 m (see Figure 28). Directional wave spectra from CDIP 036 served

  18. Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Feng; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < {10}-20/\\sqrt{{Hz}} in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan. Supported by the National Key Research Program of China under Grant No. 2016YFA0302002, the National Science Foundation of China under Grant Nos. 11227803 and 91536221, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100

  19. Rejection of atrial sensing artifacts by a pacing lead with short tip-to-ring spacing.

    PubMed

    Nash, A; Fröhlig, G; Taborsky, M; Stammwitz, E; Maru, F; Bouwens, L H M; Celiker, C

    2005-01-01

    The ability of a new pacing lead design, with a 10 mm tip-to-ring spacing, to facilitate rejection of sensed far field R-waves and myopotentials was evaluated. Measurements were performed in 66 patients. The occurrence of far field R-wave sensing and myopotential sensing was determined by means of the surface ECG and the ECG markers provided by the pacemaker. At an atrial sensitivity of 0.25 mV and an atrial blanking of 50 ms far field R-wave sensing was observed in 12 patients (18.2%) and at an atrial sensitivity of 1.0 mV no far-field R-wave sensing was observed. Myopotentials were sensed in 3 patients. In all patients the measured P-wave amplitude was at least twice the estimated amplitude of the far field R-wave at an atrial blanking of 50 ms. The results from this study show that a small tip-to-ring spacing allows for programming of a high atrial sensitivity and short atrial blanking with an acceptably low risk for atrial artifact sensing.

  20. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  1. Accounting for the association of family conflict and heavy alcohol use among adolescent girls: the role of depressed mood.

    PubMed

    Chan, Gary C K; Kelly, Adrian B; Toumbourou, John W

    2013-05-01

    Heavy alcohol use increases dramatically at age 14, and there is emerging cross-sectional evidence that when girls experience family conflict at younger ages (11-13 years) the risk of alcohol use and misuse is high. This study evaluated the role of family conflict and subsequent depressed mood in predicting heavy alcohol use among adolescent girls. This was a three-wave longitudinal study with annual assessments (modal ages 12, 13, and 14 years). The participants (N = 886, 57% female) were from 12 metropolitan schools in Victoria, Australia, and participants completed questionnaires during school class time. The key measures were based on the Communities That Care Youth Survey and included family conflict (Wave 1), depressed mood (Wave 2), and heavy alcohol use (Wave 3). Control variables included school commitment, number of peers who consumed alcohol, whether parents were living together, and ethnic background. With all controls in the model, depressed mood at Wave 2 was predicted by family conflict at Wave 1. The interaction of family conflict with gender was significant, with girls showing a stronger association of family conflict and depressed mood. Depressed mood at Wave 2 predicted heavy alcohol use at Wave 3. Girls may be especially vulnerable to family conflict, and subsequent depressed mood increases the risk of heavy alcohol use. The results support the need for gender-sensitive family-oriented prevention programs delivered in late childhood and early adolescence.

  2. View of Soviet ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.; Showen, R.L.

    1990-10-01

    We have reviewed and provided a technical assessment of Soviet research of the past five to ten years in ionospheric modification by high-power radio waves. This review includes a comprehensive survey of Soviet published literature, conference proceedings, and direct discussions with the involved Soviet researchers. The current state of the art for Soviet research in this field is evaluated, identifying areas of potential breakthrough discoveries, and discussing implications of this work for emerging technologies and future applications. This assessment is divided into the categories of basic research, advanced research, and applications. Basic research is further subdivided into studies of themore » modified natural geophysical environment, nonlinear plasma physics, and polar geophysical studies. Advanced research topics include the generation of artificial ionization mirrors and high-power oblique propagation effects. A separate comparative assessment of Soviet theoretical work also is included in this analysis. Our evaluation of practical and potential applications of this research discusses the utility of ionospheric modification in creating disturbed radio wave propagation environments, and its role in current and future remote-sensing and telecommunications systems. This technical assessment does not include consideration of ionospheric modification by means other than high-power radio waves. The Soviet effort in ionospheric modification sustains theoretical and experimental research at activity levels considerably greater than that found in comparable programs in the West. Notable strengths of the Soviet program are its breadth of coverage, large numbers of scientific participation, theoretical creativity and insight, and its powerful radio wave transmitting facilities.« less

  3. Nonlinear water waves generated by impulsive motion of submerged obstacle

    NASA Astrophysics Data System (ADS)

    Makarenko, N.; Kostikov, V.

    2012-04-01

    The fully nonlinear problem on generation of unsteady water waves by impulsively moving obstacle is studied analytically. The method involves the reduction of basic Euler equations to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Exact model equations are derived in explicit form when the isolated obstacle is presented by totally submerged circular- or elliptic cylinder. Small-time asymptotic solution is constructed for the cylinder which starts moving with constant acceleration from rest. It is demonstrated that the leading-order solution terms describe several wave regimes such as the formation of non-stationary splash jets by vertical rising or vertical submersion of the obstacle, as well as the generation of diverging waves by horizontal- and combined motion of the obstacle under free surface. This work was supported by RFBR (grant No 10-01-00447) and by Research Program of the Russian Government (grant No 11.G34.31.0035).

  4. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  5. Vertical structure and characteristics of 23-60 day (zonal) oscillations over the tropical latitudes during the winter months of 1986 - Results of equatorial wave campaign-II

    NASA Technical Reports Server (NTRS)

    Raghavarao, R.; Suhasini, R.; Sridharan, R.; Krishnamurthy, B. V.; Nagpal, O. P.

    1990-01-01

    Results are presented of the equatorial wave campaign-II, a meteorological rocket study which was part of the Indian Middle Atmosphere Program. The equatorial wave campaign-II was conducted from Shar, India (13.7 deg N, 80.2 deg E) from January 15-February 28, 1986. By means of high altitude balloon and the RH-200 meteorological rocket, winds were measured from ground level up to 60 km altitude once each day during the 45-day period. The oscillation frequencies of the deviations in the east-west component of the winds from their mean at each 1-km height interval are obtained by the maximum entropy method. The phases and amplitudes of these frequencies are determined by use of the least squares method on the wind variation time series. Enhanced wave activity is shown to take place in the troposphere and lower mesosphere. The tropospheric waves observed suggest themselves to be Rossby waves of extratropical origin penetrating to tropical latitudes. The observed stratospheric/mesospheric waves appear to emanate from a source around the stratopause.

  6. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands

    NASA Astrophysics Data System (ADS)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.

    2001-06-01

    As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  7. SPIP: A computer program implementing the Interaction Picture method for simulation of light-wave propagation in optical fibre

    NASA Astrophysics Data System (ADS)

    Balac, Stéphane; Fernandez, Arnaud

    2016-02-01

    The computer program SPIP is aimed at solving the Generalized Non-Linear Schrödinger equation (GNLSE), involved in optics e.g. in the modelling of light-wave propagation in an optical fibre, by the Interaction Picture method, a new efficient alternative method to the Symmetric Split-Step method. In the SPIP program a dedicated costless adaptive step-size control based on the use of a 4th order embedded Runge-Kutta method is implemented in order to speed up the resolution.

  8. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.

    1977-01-01

    The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.

  9. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.

  10. Jumping into the deep-end: results from a pilot impact evaluation of a community-based aquatic exercise program.

    PubMed

    Barker, Anna L; Talevski, Jason; Morello, Renata T; Nolan, Genevieve A; De Silva, Renee D; Briggs, Andrew M

    2016-06-01

    This multi-center quasi-experimental pilot study aimed to evaluate changes in pain, joint stiffness, physical function, and quality of life over 12 weeks in adults with musculoskeletal conditions attending 'Waves' aquatic exercise classes. A total of 109 adults (mean age, 65.2 years; range, 24-93 years) with musculoskeletal conditions were recruited across 18 Australian community aquatic centers. The intervention is a peer-led, 45 min, weekly aquatic exercise class including aerobic, strength, flexibility, and balance exercises (n = 67). The study also included a control group of people not participating in Waves or other formal exercise (n = 42). Outcomes were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and EuroQoL five dimensions survey (EQ-5D) at baseline and 12 weeks. Satisfaction with Waves classes was also measured at 12 weeks. Eighty two participants (43 Waves and 39 control) completed the study protocol and were included in the analysis. High levels of satisfaction with classes were reported by Waves participants. Over 90 % of participants reported Waves classes were enjoyable and would recommend classes to others. Waves participants demonstrated improvements in WOMAC and EQ-5D scores however between-group differences did not reach statistical significance. Peer-led aquatic exercise classes appear to improve pain, joint stiffness, physical function and quality of life for people with musculoskeletal conditions. The diverse study sample is likely to have limited the power to detect significant changes in outcomes. Larger studies with an adequate follow-up period are needed to confirm effects.

  11. A shock wave capability for the improved Two-Dimensional Kinetics (TDK) computer program

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1984-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket engine performance prediction procedures. The purpose of this contract has been to improve the TDK computer program so that it can be applied to rocket engine designs of advanced type. In particular, future orbit transfer vehicles (OTV) will require rocket engines that operate at high expansion ratio, i.e., in excess of 200:1. Because only a limited length is available in the space shuttle bay, it is possible that OTV nozzles will be designed with both relatively short length and high expansion ratio. In this case, a shock wave may be present in the flow. The TDK computer program was modified to include the simulation of shock waves in the supersonic nozzle flow field. The shocks induced by the wall contour can produce strong perturbations of the flow, affecting downstream conditions which need to be considered for thrust chamber performance calculations.

  12. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    NASA Astrophysics Data System (ADS)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  13. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction.

    PubMed

    Harley, Mitchell D; Turner, Ian L; Kinsela, Michael A; Middleton, Jason H; Mumford, Peter J; Splinter, Kristen D; Phillips, Matthew S; Simmons, Joshua A; Hanslow, David J; Short, Andrew D

    2017-07-20

    Extratropical cyclones (ETCs) are the primary driver of large-scale episodic beach erosion along coastlines in temperate regions. However, key drivers of the magnitude and regional variability in rapid morphological changes caused by ETCs at the coast remain poorly understood. Here we analyze an unprecedented dataset of high-resolution regional-scale morphological response to an ETC that impacted southeast Australia, and evaluate the new observations within the context of an existing long-term coastal monitoring program. This ETC was characterized by moderate intensity (for this regional setting) deepwater wave heights, but an anomalous wave direction approximately 45 degrees more counter-clockwise than average. The magnitude of measured beach volume change was the largest in four decades at the long-term monitoring site and, at the regional scale, commensurate with that observed due to extreme North Atlantic hurricanes. Spatial variability in morphological response across the study region was predominantly controlled by alongshore gradients in storm wave energy flux and local coastline alignment relative to storm wave direction. We attribute the severity of coastal erosion observed due to this ETC primarily to its anomalous wave direction, and call for greater research on the impacts of changing storm wave directionality in addition to projected future changes in wave heights.

  14. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.

    PubMed

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K

    2015-11-01

    The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.

  15. 78 FR 2279 - Notice of Proposed Information Collection for Public Comment: Neighborhood Stabilization Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ..., implementation, inputs and outcomes at the local level. This is the second wave of interviews for the same study... the proper performance of the functions of the agency, including whether the information will have...

  16. Parallelization of elliptic solver for solving 1D Boussinesq model

    NASA Astrophysics Data System (ADS)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  17. Wave Attenuation on Muddy Bottoms - A Multidisciplinary Field Study Offshore Cassino Beach, Southern Brazil

    DTIC Science & Technology

    2005-09-30

    Rio de Janeiro Ocean Engineering Program / COPPE CP 68508 - Centro de Tecnologia - C203 21945-970 Rio de Janeiro , Brazil Phone/fax...NAME(S) AND ADDRESS(ES) Federal University of Rio de Janeiro ,Ocean Engineering Program / COPPE, CP 68508 - Centro de Tecnologia - C203,21945-970 Rio ...activities of the project: From Brazilian Institutions: 1- Federal University of Rio de Janeiro (UFRJ) / Laboratory for

  18. The Uses and Effects of Video Viewing among Swedish Adolescents. An Ethnographic Study of Adolescent Video Users. Media Panel Report No. 31.

    ERIC Educational Resources Information Center

    Roe, Keith; Salomonsson, Karin

    This report is one in a series dealing with Swedish adolescents' uses of video based upon the Media Panel research program, a three-wave, longitudinal research program on video use conducted at the Department of Sociology, the University of Lund, and the Department for Information Techniques, the University College of Vaxjo, Sweden. Data were…

  19. An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves

    DTIC Science & Technology

    2006-11-02

    AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska

  20. Applications of the diffraction and interference of light and electronic waves

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Lanning, Robert

    2010-10-01

    As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.

  1. Structure and characteristics of heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Nicholls, J. A.; Sichel, M.; Kauffman, C. W.

    1983-09-01

    The emphasis of this research program centered around the structure of heterogeneous detonation waves, inasmuch as this had been found to be very important to the detonation characteristics of heterogeneous mixtures. On the experimental side, a vertical detonation tube was used wherein liquid fuel drops, all of one size, were generated at the top of the tube and allowed to fall vertically into the desired gaseous mixture. A strong blast wave was transmitted into the mixture through use of an auxiliary shock tube. The propagation of the resultant wave was monitored by pressure switches, pressure transducers, and photography. The low vapor pressure liquid fuel, decane (400 micrometer drop size) was used for most of the experiments. Attention was given to wave structure, wave velocity, and initiation energy. Three atmospheres (100% O2; 40% O2/60% N2; and air) and a number of equivalence ratios were investigated. Holographic pictures and streak photography were employed to study the drop shattering process and the structure of the front. Other experiments investigated the addition of the sensitizer, normal propyl nitrate (NPN), to the decane. The important aspect of vapor pressure was studied by heating the entire tube to various elevated temperatures and then noting the effect on detonability.

  2. Simulating electron wave dynamics in graphene superlattices exploiting parallel processing advantages

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel

    2018-01-01

    This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.

  3. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  4. Pressure vessel burst test program - Initial program paper

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.; Webb, Bobby L.

    1990-01-01

    The current status of a pressure vessel burst test program, aimed at the study of the blast waves and fragmentation characteristics of ruptured gas-filled pressure vessels, is reported. The program includes a series of test plans, each involving multiple bursts with burst pressures ranging to 7500 psig. The discussion covers the identification of concerns and hazards, application of the data generated, and a brief review of the current methods for assessing vessel safety and burst parameters. Attention is also given to pretest activities, including completed vessel and facility/instrumentation preparation and results of completed preliminary burst tests.

  5. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  6. Predictors and consequences of prescription drug misuse during middle school.

    PubMed

    Tucker, Joan S; Ewing, Brett A; Miles, Jeremy N V; Shih, Regina A; Pedersen, Eric R; D'Amico, Elizabeth J

    2015-11-01

    Non-medical prescription drug use (NMPDU) is a growing public health problem among adolescents. This is the first study to examine the correlates of early NMPDU initiation during middle school, and how early initiation is associated with four domains of functioning in high school (mental health, social, academic, and delinquency). Students initially in 6th-8th grades from 16 middle schools completed in-school surveys between 2008 and 2011 (Waves 1-5), and a web-based survey in 2013-2014 (Wave 6). We used discrete time survival analysis to assess predictors of initiation from Waves 1 to 5 based on students who provided NMPDU information at any of these waves (n=12,904), and regression analysis to examine high school outcomes associated with initiation based on a sample that was followed into high school, Wave 6 (n=2539). Low resistance self-efficacy, family substance use, low parental respect, and offers of other substances from peers were consistently associated with NMPDU initiation throughout middle school. Further, perceiving that more of one's peers engaged in other substance use was associated with initiation at Wave 1 only. By high school, those students who initiated NMPDU during middle school reported lower social functioning, and more suspensions and fighting, compared to students who did not initiate NMPDU during middle school. NMPDU initiation during middle school is associated with poorer social functioning and greater delinquency in high school. It is important for middle school prevention programs to address NMPDU. Such programs should focus on both family and peer influences, as well as strengthening resistance self-efficacy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. 77 FR 27854 - Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... hours. Frequency of Collection: There will be three survey waves at each of the five community sites. A telephone survey and bar survey will be conducted during each survey wave, with each respondent interviewed... three different points in time during the one-year program period. The telephone survey wave in each...

  8. AMPS data management requirements study. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.

  9. Middle Atmosphere Program. Handbook for MAP, volume 28

    NASA Technical Reports Server (NTRS)

    Liu, C. H. (Editor); Edwards, Belva (Editor)

    1989-01-01

    Extended abstracts from the fourth workshop on the technical and scientific aspects of MST (mesosphere stratosphere troposphere) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence; intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.

  10. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  11. Using Meditation in Addiction Counseling

    ERIC Educational Resources Information Center

    Young, Mark E.; DeLorenzi, Leigh de Armas; Cunningham, Laura

    2011-01-01

    Meditation has been studied as a way of reducing stress in counseling clients since the 1960s. Alcoholics Anonymous, Narcotics Anonymous, and new wave behavior therapies incorporate meditation techniques in their programs. This article identifies meditation's curative factors and limitations when using meditation in addiction settings.

  12. Microwave Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  13. WaveNet: A Web-Based Metocean Data Access, Processing, and Analysis Tool. Part 3 - CDIP Database

    DTIC Science & Technology

    2014-06-01

    and Analysis Tool; Part 3 – CDIP Database by Zeki Demirbilek, Lihwa Lin, and Derek Wilson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) describes coupling of the Coastal Data Information Program ( CDIP ) database to WaveNet, the first module of MetOcnDat (Meteorological...provides a step-by-step procedure to access, process, and analyze wave and wind data from the CDIP database. BACKGROUND: WaveNet addresses a basic

  14. Potential Regional Sediment Management (RSM) Projects in the Haleiwa Region, Oahu, Hawaii

    DTIC Science & Technology

    2014-05-01

    relic stream channels on wave -induced flow patterns. Wave breaking and energy dissipation over the reefs result in return currents (from nearshore to...long), (c) a stub breakwater (80 ft long), and (d) a wave absorber (140 ft long). The non-federal sponsor for the harbor is the State of Hawaii...Coastal Inlets Research Program (CIRP) Coastal Modeling System (CMS) numerical models CMS- Wave and CMS- Flow (Sanchez et al. 2011) were implemented to

  15. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  16. Long-Term Implications of Early Education and Care Programs for Australian Children

    ERIC Educational Resources Information Center

    Coley, Rebekah Levine; Lombardi, Caitlin McPherran; Sims, Jacqueline

    2015-01-01

    Using nationally representative data from the Longitudinal Study of Australian Children (LSAC; N = 5,107), this study assessed prospective connections between children's early education and care (EEC) experiences from infancy through preschool and their cognitive and behavioral functioning in 1st grade. Incorporating 6 waves of data, analyses…

  17. Organizational Support and Volunteering Benefits for Older Adults

    ERIC Educational Resources Information Center

    Tang, Fengyan; Choi, Eunhee; Morrow-Howell, Nancy

    2010-01-01

    Purpose: This study tested a theoretical model of volunteering benefits and examined the mechanism through which volunteering benefits older adults. Design and Methods: This is a 2-wave study of 253 older adult volunteers serving in 10 volunteer programs. Older volunteers completed the mailed surveys in 2005 and 2006. Structural equation modeling…

  18. Shatter cones formed in large-scale experimental explosion craters

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Davis, L. K.

    1977-01-01

    In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.

  19. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-12-16

    relationship of MSS to wind speed, and at times has shown a reversal of the Cox-Munk linear relationship. Furthermore, we observe measurable changes in...1985]. The variable speed allocation method has the effect of aliasing (cb) to slower waves, thereby increasing the exponent –m. Our analysis based ...RaDyO) program. The primary research goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic

  20. A computer program for estimating instream travel times and concentrations of a potential contaminant in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2006-01-01

    The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.

  1. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced wave periods were found to occur when the wave group speeds most closely matched the storm translation speeds, strongly suggesting that fetch trapping was an important mechanism for wave growth in Isabel.

  2. User Manual for Program SCOMOT Second Part of U.S.C.G. Ship Motion Program.

    DTIC Science & Technology

    1981-02-01

    wave angle, etc. - 52 - Entry 8 - Jl - First Index Number First index for motion calculation using coordinate points or moment and force calculations using...162.4 .6500 .5434 .2942 179.8 .6786 170.0 1.0258 161.8 1.4070 144.3 .7000 .4686 .1774 179.6 .5946 167.1 1.0292 154.8 1.2598 110.5 .7500 .4082 . 0786 ...SHIP MOTION PROGRAM 77.1 02/24/81 05.49.12 PAGE 52 SL-7 - NORMAL FULL LOAD DEPARTURE SPEED = 25.000 KNOTS REGULAR WAVE LATERAL BENDING MOMENT AT STATION

  3. Identification of seismic anomalies caused by gas saturation on the basis of theoretical P and PS wavefield in the Carpathian Foredeep, SE Poland

    NASA Astrophysics Data System (ADS)

    Pietsch, Kaja; Marzec, Paweł; Kobylarski, Marcin; Danek, Tomasz; Leśniak, Andrzej; Tatarata, Artur; Gruszczyk, Edward

    2007-06-01

    The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.

  4. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  5. Study Of Flow About A Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Owen, F. Kevin

    1989-01-01

    Noninvasive instrument verifies computer program predicting velocities. Laser velocimeter measurements confirm predictions of transonic flow field around tip of helicopter-rotor blade. Report discusses measurements, which yield high-resolution orthogonal velocity components of flow field at rotor-tip. Mach numbers from 0.85 to 0.95, and use of measurements in verifying ability of computer program ROT22 to predict transonic flow field, including occurrences, strengths, and locations of shock waves causing high drag and noise.

  6. Developmental Trajectories of Youth Character: A Five-Wave Longitudinal Study of Cub Scouts and Non-Scout Boys.

    PubMed

    Wang, Jun; Ferris, Kaitlyn A; Hershberg, Rachel M; Lerner, Richard M

    2015-12-01

    Youth development programs, such as the Boy Scouts of America, aim to develop positive attributes in youth (e.g., character virtues, prosocial behaviors, and positive civic actions), which are necessary for individuals and societies to flourish. However, few developmental studies have focused on how specific positive attributes develop through participation in programs such as the Boy Scouts of America. As part of the Character and Merit Project, this article examined the developmental trajectories of character and other positive attributes, which are of focal concern of the Boy Scouts of America and the developmental literature. Data were collected from 1398 Scouts (M = 8.59 years, SD = 1.29 years, Range 6.17-11.92 years) and 325 non-Scout boys (M = 9.06 years, SD = 1.43 years, Range 6.20-11.81 years) over five waves of testing across a two-and-half-year period. Latent growth-curve analyses of self-report survey data examined the developmental trajectories of the attributes. Older youth rated themselves lower than younger participants on helpfulness, reverence, thriftiness, and school performance. However, all youth had moderately high self-ratings on all the attributes. Across waves, Scouts' self-ratings increased significantly for cheerfulness, helpfulness, kindness, obedience, trustworthiness, and hopeful future expectations. Non-Scout boys' self-ratings showed no significant change for any attributes except for a significant decrease in religious reverence among non-Scout boys from religious institutions. We discuss implications for positive youth development and for the role of the Boy Scouts of America programming in character development.

  7. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  8. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    PubMed

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  9. Parameter identification of JONSWAP spectrum acquired by airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Pei, Hailong; Xu, Chengzhong

    2017-12-01

    In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.

  10. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  11. Plasma waves produced by the xenon ion beam experiment on the Porcupine sounding rocket

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M.

    1982-01-01

    The production of electrostatic ion cyclotron waves by a perpendicular ion beam in the F-region ionosphere is described. The ion beam experiment was part of the Porcupine program and produced electrostatic hydrogen cyclotron waves just above harmonics of the hydrogen cyclotron frequency. The plasma process may be thought of as a magnetized background ionosphere through which an unmagnetized beam is flowing. The dispersion equation for this hypothesis is constructed and solved. Preliminary solutions agree well with the observed plasma waves.

  12. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    NASA Astrophysics Data System (ADS)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  13. Project for millimeter and submillimeter-wave devices, and the experimental equipments

    NASA Astrophysics Data System (ADS)

    Hirose, Nobumitu; Kiyokawa, Masahiro; Matsui, Toshiaki

    1995-09-01

    A research and development program on millimeter and submillimeter wave devices is described. The facilities provided for this program are also described. In 1994, construction of the clean room was completed. Since then several machines and tools have been installed. We describe some results which have been obtained using these machines and tools. For example, a resist pattern with a 40 nm width on a 400 nm thick polymethylmethacrylate (PMMA) film was obtained.

  14. Water Waves Generated by a Slowly Moving Two-Dimensional Body. Part 2.

    DTIC Science & Technology

    1982-05-01

    Francis Ogilvie This research was carried out under the sPonsorship of the Naval Sea Systems Command General Hydromechanics Research (GHR) Program under...from Report) IS. SUPPLEMENTARY NOTES Sponsored by Naval Sea Systems Command General Hydromechanics Research Program, administered by the David W. Taylor...asymptotically ff 0 k . If the domain of x is - ’ x ’ + , tite only part of the d.;ymy ., t< expansion that represents waves comes fr m the iitemoqeneous

  15. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  16. Great landslide events in Italian artificial reservoirs

    NASA Astrophysics Data System (ADS)

    Panizzo, A.; de Girolamo, P.; di Risio, M.; Maistri, A.; Petaccia, A.

    2005-09-01

    The empirical formulations to forecast landslide generated water waves, recently defined in the framework of a research program funded by the Italian National Dam Office RID (Registro Italiano Dighe), are here used to study three real cases of subaerial landslides which fell down italian artificial reservoirs. It is well known that impulse water waves generated by landslides constitute a very dangerous menace for human communities living in the shoreline of the artificial basin or downstream the dam. In 1963, the menace became tragedy, when a 270 millions m3 landslide fell down the Vajont reservoir (Italy), generated an impulse wave which destroyed the city of Longarone, and killed 2000 people. The paper is aimed at presenting the very satisfactorily reproduction of the events at hand by using forecasting formulations.

  17. Funneled focusing of planar acoustic waves utilizing the metamaterial properties of an acoustic lens

    NASA Astrophysics Data System (ADS)

    Walker, E.; Reyes, D.; Rojas, M. M.; Krokhin, A.; Neogi, A.

    2014-02-01

    Metamaterial acoustic lenses are acoustic devices based on phononic crystal structures that take advantage of negative or near-zero indices of refraction. These unique properties arise due to either the antiparallel direction of the phase and group velocity or strongly anisotropic dispersion characteristics, usually above the first transmission band. In this study, we utilize an FDTD program to examine two phononic lenses that utilize anisotropic effects available in their second band to collimate and focus acoustic waves from a plane-wave source with a k00 wavevector. The phononic crystals consist of stainless steel rods arranged in a square lattice with water as the ambient material. Results show collimation and focusing in the second band for select frequencies, fc ± 0.005𝑓𝑐.

  18. Stress wave calculations in composite plates using the fast Fourier transform.

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  19. Evaluating Intervention Programs with a Pretest-Posttest Design: A Structural Equation Modeling Approach

    PubMed Central

    Alessandri, Guido; Zuffianò, Antonio; Perinelli, Enrico

    2017-01-01

    A common situation in the evaluation of intervention programs is the researcher's possibility to rely on two waves of data only (i.e., pretest and posttest), which profoundly impacts on his/her choice about the possible statistical analyses to be conducted. Indeed, the evaluation of intervention programs based on a pretest-posttest design has been usually carried out by using classic statistical tests, such as family-wise ANOVA analyses, which are strongly limited by exclusively analyzing the intervention effects at the group level. In this article, we showed how second order multiple group latent curve modeling (SO-MG-LCM) could represent a useful methodological tool to have a more realistic and informative assessment of intervention programs with two waves of data. We offered a practical step-by-step guide to properly implement this methodology, and we outlined the advantages of the LCM approach over classic ANOVA analyses. Furthermore, we also provided a real-data example by re-analyzing the implementation of the Young Prosocial Animation, a universal intervention program aimed at promoting prosociality among youth. In conclusion, albeit there are previous studies that pointed to the usefulness of MG-LCM to evaluate intervention programs (Muthén and Curran, 1997; Curran and Muthén, 1999), no previous study showed that it is possible to use this approach even in pretest-posttest (i.e., with only two time points) designs. Given the advantages of latent variable analyses in examining differences in interindividual and intraindividual changes (McArdle, 2009), the methodological and substantive implications of our proposed approach are discussed. PMID:28303110

  20. Evaluating Intervention Programs with a Pretest-Posttest Design: A Structural Equation Modeling Approach.

    PubMed

    Alessandri, Guido; Zuffianò, Antonio; Perinelli, Enrico

    2017-01-01

    A common situation in the evaluation of intervention programs is the researcher's possibility to rely on two waves of data only (i.e., pretest and posttest), which profoundly impacts on his/her choice about the possible statistical analyses to be conducted. Indeed, the evaluation of intervention programs based on a pretest-posttest design has been usually carried out by using classic statistical tests, such as family-wise ANOVA analyses, which are strongly limited by exclusively analyzing the intervention effects at the group level. In this article, we showed how second order multiple group latent curve modeling (SO-MG-LCM) could represent a useful methodological tool to have a more realistic and informative assessment of intervention programs with two waves of data. We offered a practical step-by-step guide to properly implement this methodology, and we outlined the advantages of the LCM approach over classic ANOVA analyses. Furthermore, we also provided a real-data example by re-analyzing the implementation of the Young Prosocial Animation, a universal intervention program aimed at promoting prosociality among youth. In conclusion, albeit there are previous studies that pointed to the usefulness of MG-LCM to evaluate intervention programs (Muthén and Curran, 1997; Curran and Muthén, 1999), no previous study showed that it is possible to use this approach even in pretest-posttest (i.e., with only two time points) designs. Given the advantages of latent variable analyses in examining differences in interindividual and intraindividual changes (McArdle, 2009), the methodological and substantive implications of our proposed approach are discussed.

  1. Evaluating Respondent-Driven Sampling as an Implementation Tool For Universal Coverage of Antiretroviral Studies among Men who have Sex with Men Living with HIV

    PubMed Central

    Baral, Stefan D.; Ketende, Sosthenes; Schwartz, Sheree; Orazulike, Ifeanyi; Ugoh, Kelechi; Peel, Sheila; Ake, Julie; Blattner, William; Charurat, Manhattan

    2015-01-01

    Introduction The TRUST model based on experimental and observational data posits that integration of HIV prevention and universal coverage of antiretroviral treatment (UCT) at a trusted community venue provides a framework for achieving effective reduction in HIV-related morbidity and mortality among men who have sex with men (MSM) living with HIV as well as reducing HIV incidence. The analyses presented here evaluate the utility of respondent-driven sampling (RDS) as an implementation tool for engaging MSM in the TRUST intervention. Methods The TRUST integrated prevention and treatment model was established at a trusted community center serving MSM in Abuja Nigeria. Five seeds have resulted in 3–26 waves of accrual between March, 2013 and August, 2014 with results presented here characterizing HIV burden and engagement in HIV care for 722 men across study recruitment waves. For analytic purposes, the waves were collapsed into five groups; four equally spaced (0–4, 5–9, 10–14, 15–19) and one ranging from the 20 to the 26th wave with significance assessed using Pearson’s chi-squared test. Results In earlier waves, MSM were more likely to have reported testing for HIV (82.9% in waves 0–4, 47.7% in waves 20–26, p<0.01). In addition, biologically-confirmed HIV prevalence decreased from an average of 59.1 to 42.9% (p<0.05) in later waves. In earlier waves, about 80% of participants correctly reported their HIV status as compared to less than 25% in the later waves (p<0.01). Lastly, participants reporting being on ART decreased from 50% to 22.2 % in later waves (p<0.01). Conclusions Implementation science studies focused on demonstrating impact of universal HIV-treatment programs among people living with HIV necessitate different accrual methods than those focused on preventing HIV acquisition. Here, RDS was shown to be an efficient method for reaching marginalized populations of MSM living with HIV in Nigeria and engaging them in universal HIV treatment services. PMID:25723974

  2. Evaluating respondent-driven sampling as an implementation tool for universal coverage of antiretroviral studies among men who have sex with men living with HIV.

    PubMed

    Baral, Stefan D; Ketende, Sosthenes; Schwartz, Sheree; Orazulike, Ifeanyi; Ugoh, Kelechi; Peel, Sheila A; Ake, Julie; Blattner, William; Charurat, Manhattan

    2015-03-01

    The TRUST model based on experimental and observational data posits that integration of HIV prevention and universal coverage of antiretroviral treatment at a trusted community venue provides a framework for achieving effective reduction in HIV-related morbidity and mortality among men who have sex with men (MSM) living with HIV, as well as reducing HIV incidence. The analyses presented here evaluate the utility of respondent-driven sampling as an implementation tool for engaging MSM in the TRUST intervention. The TRUST integrated prevention and treatment model was established at a trusted community center serving MSM in Abuja, Nigeria. Five seeds have resulted in 3-26 waves of accrual between March 2013 and August 2014, with results presented here characterizing HIV burden and engagement in HIV care for 722 men across study recruitment waves. For analytic purposes, the waves were collapsed into 5 groups: 4 equally spaced (0-4, 5-9, 10-14, and 15-19) and 1 ranging from the 20th to the 26th wave with significance assessed using Pearson χ2 test. In earlier waves, MSM were more likely to have reported testing for HIV (82.9% in waves 0-4, 47.7% in waves 20-26; P < 0.01). In addition, biologically confirmed HIV prevalence decreased from an average of 59.1% to 42.9% (P < 0.05) in later waves. In earlier waves, about 80% of participants correctly reported their HIV status as compared with less than 25% in the later waves (P < 0.01). Finally, participants reporting being on ART decreased from 50% to 22.2% in later waves (P < 0.01). Implementation science studies focused on demonstrating impact of universal HIV treatment programs among people living with HIV necessitate different accrual methods than those focused on preventing HIV acquisition. Here, respondent-driven sampling was shown to be an efficient method for reaching marginalized populations of MSM living with HIV in Nigeria, and engaging them in universal HIV treatment services.

  3. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  4. Experimental Studies of Radial Wave Thermoacoustic Engines. Navy Environmentally Safe Ships Program.

    DTIC Science & Technology

    1995-07-15

    4 B. Pressure and specific acoustic impedance differer.: hd equation. .... ................ 6...the engine, Arf Sr) the resonator cross-see:iona! area at r. Ap(r) the cross-sectional area of" a porn at r, V; >h :c .... ,Ar tk. resonator at r

  5. Family economic strengthening and mental health functioning of caregivers for AIDS-affected children in rural Uganda.

    PubMed

    Wang, Julia Shu-Huah; Ssewamala, Fred M; Han, Chang-Keun

    In sub-Saharan Africa, many extended families assume the role of caregivers for children orphaned by AIDS (AIDS-affected children). The economic and psychological stress ensued from caregiving duties often predispose caregivers to poor mental health outcomes. Yet, very few studies exist on effective interventions to support these caregivers. Using data from a randomized controlled trial called Suubi-Maka ( N = 346), this paper examines whether a family economic strengthening intervention among families caring for AIDS-affected children (ages 12-14) in Uganda would improve the primary caregivers' mental health functioning. The Suubi-Maka study comprised of a control condition ( n = 167) receiving usual care for AIDS-affected children, and a treatment condition ( n = 179) receiving a family economic strengthening intervention, including matched savings accounts, and financial planning and management training to incentivize families to save money for education and/or family-level income generating projects. This paper uses data from baseline/pre-intervention (wave 1) interviews with caregivers and 12-month post-intervention initiation (wave 2). The caregiver's mental health measure adapted from previous studies in sub- Saharan Africa had an internal consistency of .88 at wave 1 and .90 at wave 2. At baseline, the two study groups did not significantly differ on caregiver's mental health functioning. However, at 12-month follow-up, multiple regression analysis located significant differences between the two study groups on mental health functioning. Specifically, following the intervention, caregivers in the treatment condition reported positive improvements on their mental health functioning, especially in the symptom areas of obsession-compulsion, interpersonal sensitivity, hostility, and psychoticism. Findings point to a need for programs and policies aimed at supporting caregivers of AIDS-affected children to begin to consider incorporating family-level economic strengthening components in their usual care protocols, especially in low-resource countries of sub-Saharan Africa. Economic empowerment programming may help enhance the well-being of caregivers and their families.

  6. Family economic strengthening and mental health functioning of caregivers for AIDS-affected children in rural Uganda

    PubMed Central

    Wang, Julia Shu-Huah; Ssewamala, Fred M.; Han, Chang-Keun

    2015-01-01

    In sub-Saharan Africa, many extended families assume the role of caregivers for children orphaned by AIDS (AIDS-affected children). The economic and psychological stress ensued from caregiving duties often predispose caregivers to poor mental health outcomes. Yet, very few studies exist on effective interventions to support these caregivers. Using data from a randomized controlled trial called Suubi-Maka (N = 346), this paper examines whether a family economic strengthening intervention among families caring for AIDS-affected children (ages 12–14) in Uganda would improve the primary caregivers’ mental health functioning. The Suubi-Maka study comprised of a control condition (n = 167) receiving usual care for AIDS-affected children, and a treatment condition (n = 179) receiving a family economic strengthening intervention, including matched savings accounts, and financial planning and management training to incentivize families to save money for education and/or family-level income generating projects. This paper uses data from baseline/pre-intervention (wave 1) interviews with caregivers and 12-month post-intervention initiation (wave 2). The caregiver’s mental health measure adapted from previous studies in sub- Saharan Africa had an internal consistency of .88 at wave 1 and .90 at wave 2. At baseline, the two study groups did not significantly differ on caregiver’s mental health functioning. However, at 12-month follow-up, multiple regression analysis located significant differences between the two study groups on mental health functioning. Specifically, following the intervention, caregivers in the treatment condition reported positive improvements on their mental health functioning, especially in the symptom areas of obsession–compulsion, interpersonal sensitivity, hostility, and psychoticism. Findings point to a need for programs and policies aimed at supporting caregivers of AIDS-affected children to begin to consider incorporating family-level economic strengthening components in their usual care protocols, especially in low-resource countries of sub-Saharan Africa. Economic empowerment programming may help enhance the well-being of caregivers and their families. PMID:26246846

  7. P-wave dispersion and maximum duration are independently associated with insulin resistance in metabolic syndrome.

    PubMed

    Wang, Weiwei; Zhang, Feilong; Xhen, Jianhua; Chen, Xuehai; Fu, Fayuan; Tang, Mirong; Chen, Lianglong

    2014-07-01

    Metabolic syndrome (MS) is an important risk factor for atrial fibrillation. P-wave indices, including P-wave dispersion (PWD) and P-wave duration, can be used as non-invasive markers of heterogeneous atrial conduction. The aim of our study was to evaluate the relationship between P-wave indices and insulin resistance in patients with MS. Seventy-four patients with MS (44 men, 30 women) and 81 patients without MS (48 men, 33 women) were enrolled in the study. A diagnosis of MS was made as defined by the Adult Treatment Panel III of the National Cholesterol Education Program. Insulin resistance was estimated using the homeostasis model assessment (HOMA) index. P-wave maximum duration (Pmax) and P-wave minimum duration (Pmin) were calculated on a 12-lead electrocardiogram, and the difference between the Pmax and the Pmin was defined as PWD. Patients with MS had a longer PWD and a higher Pmax compared with patients without MS (PWD, 35.65±4.36 vs. 26.27±4.04, P<0.001; Pmax, 117.12±10.77 vs. 105.98±9.02, P<0.001), whereas no difference was found between Pmin values from MS patients and controls (81.47±9.54 vs. 79.70±8.76, P=0.231). Stepwise multivariate analysis revealed only the HOMA index to be an independent predictor of PWD (β=3.115, P<0.001) and Pmax (β=7.175, P<0.001). This study suggests that patients with MS have a prolonged PWD and Pmax. The increase in these parameters may be an indicator for identification of patients at an increased risk for atrial fibrillation. Copyright © 2014. Published by Elsevier Masson SAS.

  8. Toddlers in Early Head Start: A Portrait of 2-Year-Olds, Their Families, and the Programs Serving Them. Volume 1: Age 2 Report. OPRE Report 2015-10

    ERIC Educational Resources Information Center

    Vogel, Cheri A.; Caronongan, Pia; Thomas, Jaime; Bandel, Eileen; Xue, Yange; Henke, Juliette; Aikens, Nikki; Boller, Kimberly; Murphy, Lauren

    2015-01-01

    The Early Head Start Family and Child Experiences Survey (Baby FACES) is a descriptive study of Early Head Start programs designed to inform policy and practice at both national and local levels. Baby FACES follows two cohorts of children through their time in Early Head Start, starting in 2009, the first wave of data collection. The Newborn…

  9. Safer Sex Media Messages and Adolescent Sexual Behavior: 3-Year Follow-Up Results From Project iMPPACS

    PubMed Central

    Romer, Daniel; Valois, Robert F.; Vanable, Peter; Carey, Michael P.; Stanton, Bonita; Brown, Larry; DiClemente, Ralph; Salazar, Laura F.

    2013-01-01

    Objectives. We estimated the long-term (36-month) effects of Project iMPPACS, a multisite randomized controlled trial of mass media and small-group intervention for African American adolescents. Methods. We collected 6 waves of longitudinal data on program participants aged 14 to 17 years (n = 1139) in Providence, Rhode Island; Syracuse, New York; Columbia, South Carolina; and Macon, Georgia, 36 months (December 2009–December 2010) after the intervention began (August 2006–January 2008). Seemingly unrelated regressions at each wave estimated the effects of 3 types of mass media messages (the thematic mediators: selection, pleasure, and negotiation) on condom use intention and self-reported unprotected vaginal sex events. Results. All 3 mediators of behavior change that were introduced during the media intervention were sustained at the follow-up assessments at least 18 months after the intervention ended, with intention having the largest correlation. Unprotected vaginal sex increased with each wave of the study, although cities receiving media exposure had smaller increases. Conclusions. Project iMPPACS demonstrates that mass media influence delivered over an extended period, when adolescents were beginning to learn patterns of behavior associated with sex, persisted after the media program ended. PMID:23153149

  10. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  11. Safer sex media messages and adolescent sexual behavior: 3-year follow-up results from project iMPPACS.

    PubMed

    Hennessy, Michael; Romer, Daniel; Valois, Robert F; Vanable, Peter; Carey, Michael P; Stanton, Bonita; Brown, Larry; DiClemente, Ralph; Salazar, Laura F

    2013-01-01

    We estimated the long-term (36-month) effects of Project iMPPACS, a multisite randomized controlled trial of mass media and small-group intervention for African American adolescents. We collected 6 waves of longitudinal data on program participants aged 14 to 17 years (n = 1139) in Providence, Rhode Island; Syracuse, New York; Columbia, South Carolina; and Macon, Georgia, 36 months (December 2009-December 2010) after the intervention began (August 2006-January 2008). Seemingly unrelated regressions at each wave estimated the effects of 3 types of mass media messages (the thematic mediators: selection, pleasure, and negotiation) on condom use intention and self-reported unprotected vaginal sex events. All 3 mediators of behavior change that were introduced during the media intervention were sustained at the follow-up assessments at least 18 months after the intervention ended, with intention having the largest correlation. Unprotected vaginal sex increased with each wave of the study, although cities receiving media exposure had smaller increases. Project iMPPACS demonstrates that mass media influence delivered over an extended period, when adolescents were beginning to learn patterns of behavior associated with sex, persisted after the media program ended.

  12. The South Carolina Coastal Erosion Study: Integrated Circulation and Sediment Transport Studies. A Project Overview.

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Warner, J. C.; Work, P. A.; Hanes, D. M.; Haas, K. A.

    2004-12-01

    The South Carolina Coastal Erosion Study (SCCES) is a cooperative research program funded by the U.S. Geological Survey Coastal and Marine Geology Program and managed by the South Carolina Sea Grant Consortium. The main objective of the study is to understand the factors and processes that control coastal sediment movement along the northern part of the South Carolina coast while at the same time advance our basic understanding of circulation, wave propagation and sediment transport processes. Earlier geological framework studies carried out by the same program provided detailed data on bathymetry, bottom sediment thickness and grain size distribution. They identified an extensive (10km long, 2km wide) sand body deposit located in the inner shelf that has potential use for beach nourishment. The main objectives are to: (1) identify the role of wind-driven circulation in controlling regional sediment distribution on the SC shelf; (2) examine the hypothesis that the shoal is of the "fair-weather type" with bedload being the dominant sediment transport mode and the tidally-averaged flow being at different directions at the two flanks of the shoal; (3) investigate the possibility that the sediment source for the shoal is derived from the nearshore as the result of the convergence of the longshore sediment transport; and finally, (4) quantify the control that the shoal exerts on the nearshore conditions through changes on the wave energy propagation characteristics. Field measurements and numerical modeling techniques are utilized in this project. Two deployments of oceanographic and sediment transport systems took place for a period of 6 months (October 2003 to April 2004) measuring wind forcing, vertical distribution of currents, stratification, and wave spectral characteristics. Further, bed-flow interactions were measured at two locations, with instrumented tripods equipped with pairs of ADVs for measuring turbulence, PC-ADPs for measuring vertical current profiles in the near bed and OBS and ABS for measuring suspended sediment concentrations. The numerical modeling effort utilizes ROMS for 3-D coastal circulation, SWAN for wave propagation on the inner shelf, and SHORECIRC for circulation in the nearshore. As part of the nearshore component of this project a focused short-term surf zone experiment was also carried out.

  13. Spacecraft observations of man-made whistler-mode signals near the electron gyrofrequency

    NASA Technical Reports Server (NTRS)

    Dunckel, N.; Helliwell, R. A.

    1977-01-01

    The reported investigation extends the range of whistler-mode wave observations to a wave frequency/electron gyrofrequency ratio of about 0.9, where an abrupt cutoff is observed. This cutoff can be explained entirely in terms of accessibility and hence, if there is damping, it must be limited to normalized frequencies above 0.9. In connection with a study of the behavior of the signal intensity, ray tracings were carried out at 80 kHz. The ray-tracing calculations were carried out with the aid of a computer program written by Walter (1969) and modified by Angerami (1970).

  14. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  15. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  16. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project.

    PubMed

    D'Ippoliti, Daniela; Michelozzi, Paola; Marino, Claudia; de'Donato, Francesca; Menne, Bettina; Katsouyanni, Klea; Kirchmayer, Ursula; Analitis, Antonis; Medina-Ramón, Mercedes; Paldy, Anna; Atkinson, Richard; Kovats, Sari; Bisanti, Luigi; Schneider, Alexandra; Lefranc, Agnès; Iñiguez, Carmen; Perucci, Carlo A

    2010-07-16

    The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  17. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  18. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  19. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  20. A distorted-wave methodology for electron-ion impact excitation - Calculation for two-electron ions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    1977-01-01

    A distorted-wave program is being developed for calculating the excitation of few-electron ions by electron impact. It uses the exchange approximation to represent the exact initial-state wavefunction in the T-matrix expression for the excitation amplitude. The program has been implemented for excitation of the 2/1,3/(S,P) states of two-electron ions. Some of the astrophysical applications of these cross sections as well as the motivation and requirements of the calculational methodology are discussed.

  1. A computer program to evaluate optical systems

    NASA Technical Reports Server (NTRS)

    Innes, D.

    1972-01-01

    A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.

  2. Adjoint-Free Variational Data Assimilation into a Regional Wave Model

    DTIC Science & Technology

    2015-07-01

    Wave Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...developed by Oceanweather, Inc. using the methodology of Cardone et al. (1995, 1996). The winds were taken for the period 11–20 September 2011 and...International Arctic Research Center, NSF Grants 1107925 and 1203740. It was also supported by theOffice of Naval Research (Program Element 0602435N, pro

  3. Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990

    DTIC Science & Technology

    1989-10-01

    Electronics Assemble and Test A90-125 Guided-Wave TeO2 Optical Devices A90-126 Acceleration Sensing Module for Munition Safety Systems A90-127 Electromagnetic...package containing all drawings and process information, complete operating manuals. A90-125 Guided-Wave TeO2 Optical Devices OBJECTIVE: This exploratory...bandwidth and efficiency of these devices. PHASE I: Phase one would consist of the design of several breadboard TeO2 AO devices each having TBWP of

  4. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)

  5. Campus Work and Family Programs: Passing Trend or Wave of the Future?

    ERIC Educational Resources Information Center

    de Pietro, Leslie

    1995-01-01

    College and university employee assistance programs that address work and family issues are discussed. Components of such programs include child care resource and referral, parent education and support groups, elder care support and education, and management training. Issues in program creation and administration are highlighted. More programs in…

  6. Stressful Events and Other Predictors of Remission from Drug Dependence in the United States: Longitudinal Results from a National Survey

    PubMed Central

    McCabe, Sean Esteban; Cranford, James A.; Boyd, Carol J.

    2016-01-01

    This study examined stressful life events and other predictors associated with remission from DSM-IV drug dependence involving cannabis, cocaine, hallucinogens, heroin, inhalants, non-heroin opioids, sedatives, stimulants, tranquilizers, or other drugs. Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions were used to examine the prevalence and predictors of past-year remission status. Among U.S. adults with previous (i.e., prior-to-past-year) drug dependence (n = 921) at baseline (Wave 1), the prevalence of past-year remission status at Wave 1 was: abstinence (60.5%), asymptomatic drug use (18.8%), partial remission (7.1%), and still drug dependent (13.5%). Similarly, the prevalence of past-year remission status three years after baseline at Wave 2 was: abstinence (69.1%), asymptomatic drug use (15.5%), partial remission (8.4%), and still drug dependent (7.0%). Remission three years after baseline at Wave 2 was much more likely among formerly drug dependent U.S. adults who abstained from drug use at baseline (Wave 1) relative to those who reported asymptomatic drug use, partial remission, or remained drug dependent. Design-based weighted multinomial logistic regression analysis showed that relative to abstinence, past-year stressful events at baseline (Wave 1) predicted higher odds of partial remission and drug dependence at both Waves 1 and 2. This is the first national study to examine the potential role of stressful life events associated with remission from drug dependence. Although the majority of those who reported previous drug dependence transitioned to full remission, a sizeable percentage were either still drug dependent or in partial remission. Higher levels of stressful life events appear to create barriers for remission and should remain a focus for relapse prevention programs. PMID:27776676

  7. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  8. Pulsed Ejector Wave Propogation Test Program

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Slater, John W.; Paxson, Daniel E.

    2003-01-01

    The development of, and initial test data from, a nondetonating Pulse Detonation Engine (PDE) simulator tested in the NASA Glenn 1 x 1 foot Supersonic Wind Tunnel (SWT) is presented in this paper. The concept is a pulsed ejector driven by the simulated exhaust of a PDE. This pro- gram is applicable to a PDE entombed in a ramjet flowpath, i.e., a PDE combined-cycle propulsion system. The ejector primary flow is a pulsed, uiiderexpanded, supersonic nozzle simulating the supersonic waves ema- nating from a PDE, while the ejector secondary flow is the 1 x 1 foot SWT test section operated at subsonic Mach numbers. The objective is not to study the detonation details, but the wave physics including t,he start- ing vortices, the extent of propagation of the wave front, the reflection of the wave from the secondary flowpath walls, and the timing of these events of a pulsed ejector, and correlate these with Computational Fluid Dynamics (CFD) code predictions. Pulsed ejectors have been shown to result in a 3 to 1 improvement in LID (length-to-diameter) and a near 2 to 1 improvement in thrust augmentation over a steady ejector. This program will also explore the extent of upstream interactions between an inlet and large, periodically applied, backpressures to the inlet as would be present due to combustion tube detonations in a PDE. These interactions could result in inlet unstart or buzz for a supersonic mixed compression inlet. The design of the present experiment entailed the use of an 2-t diagram characteristics code to study the nozzle filling and purging timescales as well as a series of CFD analyses conducted using the WIND code. The WIND code is a general purpose CFD code for solution of the Reynolds averaged Navier-Stokes equations and can be applied to both steady state and time-accurate calculations. The first, proof-of-concept, test entry (spring 2001) pressure distributions shown here indicate the simulation concept was successful and therefore the experimental approach is sound.

  9. Involvement in Childrearing and Firm Control Parenting by Male Cohabiting Partners in Black Low-income Stepfamilies: Forecasting Adolescent Problem Behaviors

    PubMed Central

    Forehand, Rex; Parent, Justin; Golub, Andrew; Reid, Megan; Lafko, Nicole

    2018-01-01

    Cohabitation is a family structure that is rapidly increasing in the United States. The current longitudinal study examined the interplay of involvement in a youth’s daily activities and firm control parenting by male cohabiting partners (MCPs) on change in adolescents’ internalizing and externalizing problems. In a sample of 111 inner-city African American families, adolescents reported on involvement and parenting by MCPs at wave 1 and biological mothers reported on adolescent problem behaviors at waves 1 and 2. A significant interaction indicated that low involvement and low firm control by MCPs at wave 1 were associated with the highest level of internalizing problems at wave 2. An interaction did not emerge when externalizing problems served as the outcome. The findings indicate that male partners play an important role in parenting adolescents in cohabiting families and should be considered as potential participants in prevention and intervention programs. PMID:26007695

  10. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.

  11. Middle Atmosphere Program. Handbook for MAP, Volume 10

    NASA Technical Reports Server (NTRS)

    Taubenheim, J. (Editor)

    1984-01-01

    The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.

  12. From Binary Notation to Gravitational Waves: Rocket Science Made Easy

    NASA Technical Reports Server (NTRS)

    Fisher, Diane K.; Leon, Nancy J.; Cooper, Larry

    2001-01-01

    The Space Place is a NASA educational outreach program open to all NASA missions, studies, and instruments. It uses diverse media (web, print, displays, hands-on activities) to deliver high-quality products through a highly leveraged infrastructure. Additional information is contained in the original extended abstract.

  13. Students' Perceptions of a Program for Exploring Postsecondary Options

    ERIC Educational Resources Information Center

    Deemer, Sandra A.; Ostrowski, Melissa

    2010-01-01

    This paper focuses on findings from the first wave of a longitudinal study investigating high school students' perceptions and behaviors as they engage in a graduation project focused on exploring postsecondary options. Students (n=157) completed surveys regarding their achievement goals, sense of belongingness and career exploration endeavors. A…

  14. The NASA Physics of the Cosmos Program

    NASA Astrophysics Data System (ADS)

    Bock, Jamie

    2015-04-01

    The NASA Physics of the Cosmos program is a portfolio of space-based investigations for studying fundamental processes in the universe. Areas of focus include: probing the physical process of inflation associated with the birth of the universe, studying the nature of the dark energy that dominates the mass-energy of the modern universe, advancing new ways to observe the universe through gravitational-wave astronomy, studying the universe in X-rays and gamma rays to probe energetic astrophysical processes and to study the formation and behavior of black holes in strong gravity, and determining the energetic origins and history of cosmic rays. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis. Space offers unique advantages for these exciting investigations, and the program seeks to guide the development of future space missions through observations from current facilities, and by formulating new technologies and capabilities.

  15. Laboratory Observations of Dune Erosion

    NASA Astrophysics Data System (ADS)

    Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.

    2006-12-01

    Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.

  16. Restoring Opportunity for Dropouts: Reasons & Results.

    ERIC Educational Resources Information Center

    Crist, Kerry

    1991-01-01

    The 70001 Training & Employment Institute is currently designing a new dropout prevention program for public schools, the Work, Achievement, and Values in Education (WAVE) project. WAVE exercises will be competency based, helping demonstrate concrete learning gains and emphasizing experiential learning activities and sensitivity to local…

  17. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions even at normal incidence. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  18. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    PubMed Central

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-01-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions. PMID:22408596

  19. Turbulent Structure Under Short Fetch Wind Waves

    DTIC Science & Technology

    2015-12-01

    1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval

  20. Wave Evolution in River Mouths and Tidal Inlets

    DTIC Science & Technology

    2014-06-01

    Monterey Bay by a Datawell Buoy (blue) and three collocated WRD buoys (red). Also shown is the f −4 spectral roll off (black dashed). .............. 48...f −4 spectral roll off (black dashed) and the blocking frequency in regions B-E. .................................................... 53   Figure...Significant Wave Height Hz hertz IMU Inertial measurement unit JONSWAP Joint North Sea Wave Program km kilometer MCR Mouth of the Columbia River MEMS

  1. Analysis for the amplitude oscillatory movements of the ship in response to the incidence wave

    NASA Astrophysics Data System (ADS)

    Chiţu, M. G.; Zăgan, R.; Manea, E.

    2015-11-01

    Event of major accident navigation near offshore drilling rigs remains unacceptably high, known as the complications arising from the problematic of the general motions of the ship sailing under real sea. Dynamic positioning system is an effective instrument used on board of the ships operating in the extraction of oil and gas in the continental shelf of the seas and oceans, being essential that the personnel on board of the vessel can maintain position and operating point or imposed on a route with high precision. By the adoption of a strict safety in terms of handling and positioning of the vessel in the vicinity of the drilling platform, the risk of accidents can be reduced to a minimum. Possibilities in anticipation amplitudes of the oscillatory movements of the ships navigating in real sea, is a challenge for naval architects and OCTOPUS software is a tool used increasingly more in this respect, complementing navigational facilities offered by dynamic positioning systems. This paper presents a study on the amplitudes of the oscillations categories of supply vessels in severe hydro meteorological conditions of navigation. The study provides information on the RAO (Response Amplitude Operator) response operator of the ship, for the amplitude of the roll movements, in some incident wave systems, interpreted using the energy spectrum Jonswap and whose characteristics are known (significant height of the wave, wave period, pulsation of the wave). Ship responses are analyzed according to different positioning of the ship in relation to the wave front (incident angle ranging from 10 to 10 degree from 0 to 180), highlighting the value of the ship roll motion amplitude. For the study, was used, as a tool for modeling and simulation, the features offered by OCTOPUS software that allows the study of the computerized behavior of the ship on the waves, in the real conditions of navigation. Program library was used for both the vessel itself and navigation modeling environment, for regular waves as well for the irregular waves which was modeled using Jonswap energy spectrum.

  2. Toward using alpha and theta brain waves to quantify programmer expertise.

    PubMed

    Crk, Igor; Kluthe, Timothy

    2014-01-01

    Empirical studies of programming language learnability and usability have thus far depended on indirect measures of human cognitive performance, attempting to capture what is at its essence a purely cognitive exercise through various indicators of comprehension, such as the correctness of coding tasks or the time spent working out the meaning of code and producing acceptable solutions. Understanding program comprehension is essential to understanding the inherent complexity of programming languages, and ultimately, having a measure of mental effort based on direct observation of the brain at work will illuminate the nature of the work of programming. We provide evidence of direct observation of the cognitive effort associated with programming tasks, through a carefully constructed empirical study using a cross-section of undergraduate computer science students and an inexpensive, off-the-shelf brain-computer interface device. This study presents a link between expertise and programming language comprehension, draws conclusions about the observed indicators of cognitive effort using recent cognitive theories, and proposes directions for future work that is now possible.

  3. Diffraction of a plane wave by a three-dimensional corner

    NASA Technical Reports Server (NTRS)

    Ting, L.; Kung, F.

    1971-01-01

    By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.

  4. Linear sine wave profiling to machine instability targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Martinez, John Israel

    2016-08-01

    Specialized machining processes and programming have been developed to deliver thin tin and copper Richtmyer-Meshkov instability targets that have different amplitude perturbations across the face of one 4-in.-diameter target. Typical targets have anywhere from two to five different regions of sine waves that have different amplitudes varying from 4 to 200 μm across the face of the target. The puck is composed of multiple rings that are zero press fit together and diamond turned to create a flat platform with a tolerance of 2 μm for the shock experiment. A custom software program was written in Labview to write themore » point-to-point program for the diamond-turning profiler through the X-Y-Z movements to cut the pure planar straight sine wave geometry. As a result, the software is optimized to push the profile of the whole part into the face while eliminating any unneeded passes that do not cut any material.« less

  5. The NANOGrav Observing Program: High-precision Millisecond Pulsar Timing and the Search for Nanohertz Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Nice, David; NANOGrav

    2018-01-01

    The North American Observatory for Nanohertz Gravitational Waves (NANOGrav) collaboration is thirteen years into a program of long-term, high-precision millisecond pulsar timing, undertaken with the goal of detecting and characterization nanohertz gravitational waves (i.e., gravitational waves with periods of many years) by measuring their effect on observed pulse arrival times. Our primary instruments are the Arecibo Observatory, used to observe 37 pulsars with declinations between 0 and 39 degrees; and the Green Bank Telescope, used for 24 pulsars, of which 22 are outside the Arecibo range, and 2 are overlaps with the Arecibo source list. Additional observations are made with the VLA and (soon) CHIME.Most pulsars in our program are observed at intervals of three to four weeks, and seven are observed weekly. Observations of each pulsar are made over a wide range of radio frequencies at each epoch in order to measure and mitigate effects of the ionized interstellar medium on the pulse arrival times. Our targets are pulsars for which we can achieve timing precision of 1 microsecond or better in at each epoch; we achieve precision better than 100 nanoseconds in the best cases. Observing a large number of pulsars will allow for robust measurements of gravitational waves by analyzing correlations in the timing of pairs of pulsars depending on their separation on the sky. Our data are pooled with data from telescopes worldwide via the International Pulsar Timing Array (IPTA) collaboration, further increasing our sensitivity to gravitational waves.We release data at regular intervals. We will describe the NANOGrav 5-, 9- and 11-year data sets and give a status report on the NANOGrav 12.5-year data set.

  6. The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.

    2017-12-01

    New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.

  7. Optimal Control of a Surge-Mode WEC in Random Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertok, Allan; Ceberio, Olivier; Staby, Bill

    2016-08-30

    The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from anmore » array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.« less

  8. Initial Results from CASSIOPE/ePOP Satellite Overpasses above HAARP in 2014

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; James, H. G.; Yau, A. W.; Knudsen, D. J.

    2015-12-01

    The High Frequency Active Auroral Research Program (HAARP) facility was operated in conjunction with overpasses of the enhanced Polar Outflow Probe (ePOP) instruments on the Canadian CASSIOPE satellite. During these overpasses HAARP was operated in several different heating modes and regimes as diagnosed by the characteristics of Stimulated Electromagnetic Emissions (SEE) using ground-based receivers while simultaneously ePOP monitored in-situ HF and VLF signals, looked for ion and electron heating, and provided VHF and UHF signals for propagation effects studies. The e-POP suite of instruments and particularly the ePOP Radio Receiver Instrument (RRI) offer a unique combination diagnostics appropriate for studying the non-linear plasma effects generated high-power HF waves in the ionosphere. In this presentation, the initial results from ePOP observations from two separate 2014 measurement campaigns at HAARP (April 16 to April 29 and May 25 to June 9) will be discussed. Several innovative experiments were performed during the campaign. Experiments explored a wide range of ionospheric effects. These include: 1) Penetration of HF pump waves into the ionosphere via large and small scale irregularities, 2) effects of gyro-harmonic heating and artificial ionization layers, 3) effects of HAARP beam shape with O- and X-mode transmissions, 4) coupling of Lower Hybrid modes into Whistler waves, 5) D/E-region VLF generation in the ionosphere using VLF modulation of the HF pump 6) scattering of VHF and UHF signals and 7) scattering and non-linear modulation of a 9.5 MHz probe wave propagating through the region of the ionosphere modified by HAARP. This work supported by the Naval Research Laboratory Base Program.

  9. Large-amplitude ULF waves at high latitudes

    NASA Astrophysics Data System (ADS)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  10. Vlasov Simulation of the Effects of Collisions on the Damping of Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Banks, Jeff; Berger, Richard; Chapman, Thomas; Brunner, Stephan; Tran, T.

    2015-11-01

    Kinetic simulation of two dimensional plasma waves through direct discretization of the Vlasov equation may be particularly attractive for situations where minimal numerical fluctuation levels are desired, such as when measuring growth rates of plasma wave instabilities. In many cases collisional effects can be important to the evolution of plasma waves because they both set a minimum damping rate for plasma waves and can scatter particles out of resonance through pitch angle scattering. Here we present Vlasov simulations of evolving electron plasma waves (EPWs) in plasmas of varying collisionality. We consider first the effects of electron-ion pitch angle collisions on the frequency and damping, Landau and collisional, of small-amplitude EPWs for a range of collision rates. In addition, the wave phase velocities are extracted from the simulation results and compared with theory. For this study we use the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. We then discuss extensions of the collision operator to include thermalization. Discretization of these collision operators using 4th order accurate conservative finite-differencing will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 15-ERD-038.

  11. FFTFIL; a filtering program based on two-dimensional Fourier analysis of geophysical data

    USGS Publications Warehouse

    Hildenbrand, T.G.

    1983-01-01

    The filtering program 'fftfil' performs a variety of operations commonly required in geophysical studies of gravity, magnetic, and terrain data. Filtering operations are carried out in the wave number domain where the Fourier coefficients of the input data are multiplied by the response of the selected filter. Input grids can be large (2=number of rows or columns=1024) and are not required to have numbers of rows and columns equal to powers of two.

  12. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI

    DTIC Science & Technology

    2008-09-30

    Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea surface is assumed Gaussian and homogeneous, with spectral...of simulated sea surface elevation. Right panels: corresponding observed frequency-directional wave spectra (source: CDIP ). Upper panels: Typical

  14. Wave-Current Interaction in Coastal Inlets and River Mouths

    DTIC Science & Technology

    2013-09-30

    Astoria Canyon buoy operated by the Coastal Data Information Program ( CDIP , buoy # 46248). Three-dimensional current fields and bathymetry were...The model was initialized with wave measurements from CDIP buoy 46248 located at the tip of the Astoria Canyon, and uses modeled current fields

  15. Laboratory simulation of space plasma phenomena*

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  16. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  17. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  18. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  19. Advancing Quality Improvement in Public Health Departments Through a Statewide Training Program.

    PubMed

    Davis, Mary V; Cornett, Amanda; Mahanna, Elizabeth; See, Claire; Randolph, Greg

    2016-01-01

    To examine the effectiveness of an ongoing statewide public health quality improvement training program (PH QI 101) among 4 cohorts of training participants. We conducted a mixed-method evaluation of the PH QI 101 training program that included measures of participants' satisfaction, learning, behavior change, and participants' translation and spread to their organizations what was learned. Data analysis included descriptive quantitative statistics and qualitative reviews. The Mann-Whitney U test was used to examine changes in participants' confidence to conduct a QI project from pre- to posttraining and 6 months posttraining. Two hundred two staff members from 37 North Carolina local health departments. An 8-month experiential learning process in which participants learn to use QI methods by applying them to a specific project. More than 90% of participants reported satisfaction with the program. Median scores on perceived self-confidence to conduct a QI project significantly increased for all training waves. At least 85% of participants reported spreading QI tools to coworkers posttraining. Two-thirds of participants in 3 waves reported that the QI project conducted during the training was at the sustaining results stage. Most participants in 3 of the training waves reported initiating new QI projects at their health department following training. Facilitators to implementation included interest and support from managers and leaders. Lack of interest and competing priorities among other staff were key barriers to implementation. This program successfully trained 4 waves of public health professionals in QI tools and methods. Leader training and involvement was a key addition to the adapted model. This statewide approach may serve as a model to other states as they seek to achieve national accreditation standards.

  20. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  1. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    DTIC Science & Technology

    2007-12-01

    60 Figure 58. Wave climate recorded by CDIP Sta 121 at Ipan in October 2005...buoy installed by the Coastal Data Information Program ( CDIP ) of Scripps Institution of Oceanography provided data on the incident wave conditions. The...buoy ( CDIP Sta 121) is located in 200 m of water at 13.3542°N, 144.7883°E, approximately 2.4 km southeast of the instrumentation transect. The

  2. Joint Services Electronics Program. Appendix

    DTIC Science & Technology

    1992-11-01

    the accu- clude surface waves, creeping waves, multiple racy, convergence, and CPU times for the MM diffractions, shadowing effects , etc. A second ad...Method which is an approximation to the true current J Jn= A /m on the strip. The next section will discuss the - computation of the far zone...to the cavity (0 part of the incident plane wave captured by interior E•,. After a background discussion of the aperture at the open end is divided

  3. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  4. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  5. Low-current traveling wave tube for use in the microwave power module

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.

    1993-01-01

    The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.

  6. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  7. Approximation of wave action flux velocity in strongly sheared mean flows

    NASA Astrophysics Data System (ADS)

    Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei

    2017-08-01

    Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.

  8. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  9. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  10. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  11. Alternatively Certified Teachers: Efficacy Beliefs and Ideology

    ERIC Educational Resources Information Center

    Malow-Iroff, Micheline Susan; O'Connor, Evelyn A.; Bisland, Beverly Milner

    2004-01-01

    `The Teaching Fellows (TF) program in New York City was designed to attract individuals interested in an alternative certification program in teaching. The present investigation represents the first two waves of an ongoing investigation of TF in a graduate elementary education program. The TF begin the program during the summer by participating in…

  12. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  13. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  14. Optimizing an ELF/VLF Phased Array at HAARP

    NASA Astrophysics Data System (ADS)

    Fujimaru, S.; Moore, R. C.

    2013-12-01

    The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.

  15. Adolescent same-sex and both-sex romantic attractions and relationships: implications for smoking.

    PubMed

    Easton, Alyssa; Jackson, Kat; Mowery, Paul; Comeau, Dawn; Sell, Randall

    2008-03-01

    We examined cross-sectional and longitudinal associations between smoking and romantic attractions and relationships. We used data from the National Longitudinal Study of Adolescent Health to assess associations of smoking at Waves I and II with same-sex, both-sex, and opposite-sex romantic attractions or relationships as determined at Wave I. We used logistic regression to predict smoking at Wave II by sexual orientation. Both adolescent boys and adolescent girls with both-sex attractions or relationships were significantly more likely than those with opposite-sex attractions or relationships to be current smokers. Adolescent boys and girls with both-sex attractions or relationships who were nonsmokers at Wave I were more likely to be current smokers at Wave II than those with opposite-sex attractions or relationships. Our findings support previous research on smoking among youths who report same-sex or both-sex romantic attractions or relationships and demonstrate the increased risk bisexual youths have for smoking initiation and smoking prevalence. Tobacco use prevention programs targeting gay and bisexual youths are warranted, particularly among adolescent girls and boys who have had both-sex romantic attractions or relationships.

  16. Adolescent Same-Sex and Both-Sex Romantic Attractions and Relationships: Implications for Smoking

    PubMed Central

    Easton, Alyssa; Jackson, Kat; Mowery, Paul; Comeau, Dawn; Sell, Randall

    2008-01-01

    Objectives. We examined cross-sectional and longitudinal associations between smoking and romantic attractions and relationships. Methods. We used data from the National Longitudinal Study of Adolescent Health to assess associations of smoking at Waves I and II with same-sex, both-sex, and opposite-sex romantic attractions or relationships as determined at Wave I. We used logistic regression to predict smoking at Wave II by sexual orientation. Results. Both adolescent boys and adolescent girls with both-sex attractions or relationships were significantly more likely than those with opposite-sex attractions or relationships to be current smokers. Adolescent boys and girls with both-sex attractions or relationships who were nonsmokers at Wave I were more likely to be current smokers at Wave II than those with opposite-sex attractions or relationships. Conclusions. Our findings support previous research on smoking among youths who report same-sex or both-sex romantic attractions or relationships and demonstrate the increased risk bisexual youths have for smoking initiation and smoking prevalence. Tobacco use prevention programs targeting gay and bisexual youths are warranted, particularly among adolescent girls and boys who have had both-sex romantic attractions or relationships. PMID:18235075

  17. Investigating mesospheric mountain wave characteristics over New Zealand during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    McLaughlin, P.; Taylor, M. J.; Pautet, P. D.; Kaifler, B.; Smith, S. M.

    2017-12-01

    The Deep Propagating Gravity Wave Experiment, "DEEPWAVE" was an international measurement and modelling program designed to characterize and predict the generation and propagation of a broad range of atmospheric gravity waves (GWs) with measurements extending from the ground to 100 km altitude. An analysis of 2 months of GW image data obtained during 2014 in New Zealand by a ground-based Advanced Mesospheric Temperature Mapper (AMTM) identified 19 events with clear signatures of orographic forcing. This is by far the largest occurrence of MW activity ever recorded at MLT heights. The observed events were quasi-stationary, exhibited a variety of horizontal wavelengths and lasted for > 1 hour. One prior study has reported such waves in the mesosphere over the Andes Mountain Range. We utilize data obtained by a collection of ground-based instrumentation operated at NIWA Lauder Station, NZ [45.0°S] to perform a detailed investigation of the generation and propagation of mountain waves into the upper mesosphere and to quantify their impact on this region using their measured momentum fluxes (MF). Instruments included an AMTM, a Rayleigh Lidar and an all-sky imager. The results focus on the derived MFs, comparing and contrasting their magnitudes and variability under different forcing conditions.

  18. Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks

    NASA Astrophysics Data System (ADS)

    Harris, S. P.; Pinsker, R. I.; Porkolab, M.

    2014-10-01

    Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.

  19. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  20. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  1. Determination of Shear Wave Velocity Structure in the Rio Grande Rift Through Receiver Function and Surface Wave Analysis. Appendix B

    DTIC Science & Technology

    1991-08-01

    source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am. 67, 1029-1050, 1977. Langston, C. A., Structure under Mount Rainier ...the 106 petrologic processes taking place within the rift. APPENDIX LIST OF COMPUTER PROGRAMS USED IN THESIS. 107 I 108 PROGRAM: RAY3D AUTHOR: Dr. T.J...Lab. Rep., LA-8676-T, 218 pp., 1981. Baldridge, W. S., Petrology an,3 petrogenesis of Plio- Pleistocene basaltic rocks from the central Rio Grand

  2. Watching the Clock Tick: Factors Associated with TANF Accumulation

    ERIC Educational Resources Information Center

    Seefeldt, Kristin S.; Orzol, Sean M.

    2005-01-01

    The 1996 welfare reform made extended welfare stays more difficult. One of the most notable provisions was the 60-month lifetime limit on cash benefits through the Temporary Assistance to Needy Families (TANF) program. This study investigated the personal characteristics associated with accumulating more months on TANF. Using four waves of data…

  3. NASA communications technology research and development

    NASA Technical Reports Server (NTRS)

    Durham, A. F.; Stankiewicz, N.

    1979-01-01

    The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.

  4. Cutting efficiency of instruments with different movements: a comparative study.

    PubMed

    Tocci, Luigi; Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca

    2015-01-01

    The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments.

  5. Cutting Efficiency of Instruments with Different Movements: a Comparative Study

    PubMed Central

    Plotino, Gianluca; Al-Sudani, Dina; Rubini, Alessio Giansiracusa; Sannino, Gianpaolo; Piasecki, Lucila; Putortì, Ermanno; Testarelli, Luca; Gambarini, Gianluca

    2015-01-01

    ABSTRACT Objectives The aim of the present study was to evaluate the cutting efficiency of two new reciprocating instruments, Twisted File Adaptive and WaveOne Primary. Material and Methods 10 new Twisted File Adaptive (TF Adaptive) (SybronEndo, Glendora, CA, USA) and 10 new WaveOne Primary files (Dentsply Maillefer, Ballaigues, Switzerland) were activated using a torque-controlled motor, respectively TFA motor (SybronEndo, Glendora, CA, USA) and Silver motor (VDW, Munich, Germany). The device used for the cutting test consisted on a mainframe to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Mean and standard deviations of each group were calculated and data were statistically analyzed with one-way ANOVA and Bonferroni t test (P < 0.05). Results TF Adaptive displayed significantly greater maximum penetration depth than WaveOne Primary (P < 0.05). In fact, TF Adaptive instruments (Group 1) cut the Plexiglas block to a mean depth of 8.7 (SD 0.5) mm, while WaveOne Primary instruments cut the Plexiglas block to a mean depth of 6.4 (SD 0.3) mm. Conclusions Twisted File Adaptive instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. PMID:25937877

  6. AMPS data management requirements study, appendix 1. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flow charts and display formats for the simulation of five experiments are given. The experiments are: (1) electromagnetic wave transmission; (2) passive observations of ambient plasma; (3) ionospheric measurements with subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustical gravity waves in the sodium layer using lasers. A detailed explanation of the simulation procedure, definition of variables, and an explanation of how the experimenter makes display choices is also presented. A functional description is included on each flow chart and the assumptions and definitions of terms and scope of the flow charts and displays are presented.

  7. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  8. Design on an Enhanced Interactive Satellite Communications System Analysis Program

    DTIC Science & Technology

    1991-09-01

    openStack message is sent from the stack up the hierarchy to HyperCard. When the stack opens, the first card in the stack is displayed and an openCard... openStack global orbitPage,groundPage.commPage,beginmuRe,c.dBker2d.d2r,we global earth-e.NoiseTIV.Losses put false into orbitPage put false into groundPage...menultem 2 of menu "Options" to D end openStack function FreqToWave freq global c put c)(freq* 109) into wave return wave end FreqToWave function log

  9. Studying Petrophysical and Geomechanical Properties of Utica Point-Pleasant Shale and its Variations Across the Northern Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.

    2017-12-01

    Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.

  10. Hurricane Wave Topography and Directional Wave Spectra in Near Real-Time

    DTIC Science & Technology

    2005-09-30

    Develop and/or modify the real - time operating system and analysis techniques and programs of the NASA Scanning Radar Altimeter (SRA) to process the...Wayne Wright is responsible for the real - time operating system of the SRA and making whatever modifications are required to enable near real-time

  11. In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI

    DTIC Science & Technology

    2007-09-30

    directional spectra extracted from the Coastal Data Information Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea...frequency-directional wave spectra (source: CDIP ). Upper panels: Typical summer-time South swell in the presence of a light North-West wind sea

  12. Entrepreneurship: The College as a Business Enterprise

    ERIC Educational Resources Information Center

    Cejda, Brent D.; Jolley, Michael R.

    2014-01-01

    This chapter explores the concept of entrepreneurial waves, with a special focus on the "third wave" of entrepreneurial ventures: alternative means of funding programs and services in light of continued reductions in public financial support and as an approach to building strong and sustainable relationships with external constituencies.…

  13. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  14. On the use of wave parameterizations and a storm impact scaling model in National Weather Service Coastal Flood and decision support operations

    USGS Publications Warehouse

    Mignone, Anthony; Stockdon, H.; Willis, M.; Cannon, J.W.; Thompson, R.

    2012-01-01

    National Weather Service (NWS) Weather Forecast Offices (WFO) are responsible for issuing coastal flood watches, warnings, advisories, and local statements to alert decision makers and the general public when rising water levels may lead to coastal impacts such as inundation, erosion, and wave battery. Both extratropical and tropical cyclones can generate the prerequisite rise in water level to set the stage for a coastal impact event. Forecasters use a variety of tools including computer model guidance and local studies to help predict the potential severity of coastal flooding. However, a key missing component has been the incorporation of the effects of waves in the prediction of total water level and the associated coastal impacts. Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.

  15. Coordinated Ground-Based and AIM Satellite Measurements of Mesospheric and Stratospheric Waves over South America

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Zhao, Y.; Pautet, P. D.; Carstens, J. N.; Pugmire, J. R.; Smith, S. M.; Liu, A. Z.; Vargas, F.; Swenson, G. R.; Randall, C. E.; Bailey, S. M.; Russell, J. M., III

    2016-12-01

    To date, the primary research goals of the Aeronomy of Ice in the Mesosphere (AIM) satellite have focussed on investigating the occurrence, properties and dynamics of high-latitude Polar Mesospheric Clouds (PMC). With the evolution of the AIM orbit beta angle the opportunity now exists to make measurements outside the PMC region covering mid-low and equatorial latitudes. As part of the extended AIM mission science program, the AIM platform in conjunction with auxiliary ground-based measurements will be used to better understand upper atmospheric dynamics and vertical coupling due to gravity waves. Over the next 2 years AIM will take advantage of a new imaging capability of the on-board large-field CIPS UV imager to capture new data on the characteristics and spatial extents of stratospheric gravity waves near the 50 km level and their variation with latitude and season. In this study we report on initial coordinated ground-based measurements with the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile ( 30°S) and nearby El Leoncito Observatory, Argentina, high in the Andes Mountains, where regular remote-sensing measurements are made using meteor radar, mesospheric airglow imagers, temperature mappers and an Na wind-temperature lidar (on a campaign basis). First coordinated measurements were made during the winter period in June 2016. AIM daytime overpasses have been analysed to search for and characterize extensive stratospheric wave events, as well as long-lived "Mountain Waves" over South America. Subsequent night-time ground-based measurements have been used to quantify wave characteristics in the mesopause region ( 80-100 km) to investigate vertical coupling. These measurements are continuing and it is planned to extend the new AIM stratospheric gravity wave data set for similar studies from a number of well-instrumented ground sites around the world.

  16. RoMi: Refraction Microtremor Using Rotational Seismometers

    NASA Astrophysics Data System (ADS)

    Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.

    2013-12-01

    We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  18. Novel Tiltmeter for Monitoring Angle Shift In Incident Waves

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting 559   NOVEL TILTMETER FOR MONITORING ANGLE SHIFT IN INCIDENT WAVES S... Tiltmeter For Monitoring Angle Shift In Incident Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...up, any angle change of the incident beam ’θ results in a change of the intensity transmission of the resonator.     A NOVEL ANGLE TILTMETER

  19. Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves (Preprint)

    DTIC Science & Technology

    2012-03-01

    AFRL-RX-WP-TP-2012-0278 LOAD-DIFFERENTIAL IMAGING FOR DETECTION AND LOCALIZATION OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) X. Chen...OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...Jan 2012. Preprint journal article to be submitted to NDT & E. This document contains color. 14. ABSTRACT Fatigue cracks are common and

  20. Project GEOS-C. [designed to measure the topography of ocean surface and the sea state

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oceanographic-geodetic satellite, designated Geodynamics Experimental Ocean Satellite-C (GEOS-C), an earth-orbiting spacecraft designed to measure precisely the topography of the ocean surface and the sea state (wave height, wave period, wave propagation direction) is described. Launch operations, spacecraft description, and mission objectives are included along with a brief flight history of the NASA satellite geodesy program. Principal investigations to be performed by the GEOS-C mission are discussed.

  1. Predictors of Sexual Debut Among Young Adolescents in Nairobi’s Informal Settlements

    PubMed Central

    Marston, Milly; Beguy, Donatien; Kabiru, Caroline; Cleland, John

    2014-01-01

    CONTEXT There is a need to better understand the various social, psychosocial and behavioral factors associated with sexual activity among young adolescents in various settings in Sub-Saharan Africa. METHODS Data were drawn from Wave 1 (2007–2008) and Wave 2 (2009) of the Transition to Adulthood study, which collected information about key markers of the transition to adulthood and social, demographic and psychosocial characteristics of male and female youth living in two informal settlements in Nairobi, Kenya. Logistic regression analyses were used to examine variables associated with experience of sexual debut by Wave 2 among youth who were aged 12–16 and sexually inexperienced at Wave 1. RESULTS Of the 1,754 youth in the sample, 92 experienced sexual debut between survey waves. For both males and females, sexual debut was positively associated with having permanently dropped out of school (odds ratios, 6.9 and 21.8, respectively), having never attended school (8.6 and 39.4) and having experienced severe family dysfunction (2.8 and 5.7, respectively). Lack of parental supervision was a predictor of sexual debut among males only (10.1), whereas low aspiration was a predictor among females only (10.4). Surprisingly, young women, as well as men, who did not have high self-esteem were less likely than those who did to initiate first sex between waves (0.4 and 0.3). CONCLUSIONS Study findings underscore the importance of family dysfunction, parental supervision, civic participation and self-esteem in driving sexual behavior in this age group. Further studies are warranted to elucidate how these factors can be addressed in prevention programs for young adolescents. PMID:23584465

  2. Analysis of Site Effect in the Izmit Basin of Turkey by Wave Propagation Simulation Using the Spectral Element Method: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, K.; Kocaoglu, A. H.

    2013-12-01

    Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.

  3. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  4. Waves in Motion

    NASA Astrophysics Data System (ADS)

    McGourty, L.; Rideout, K.

    2005-12-01

    "Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.

  5. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain

    NASA Astrophysics Data System (ADS)

    Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoglu, Mustafa; Sevgi, Levent

    2011-12-01

    A MATLAB-based one-way and two-way split-step parabolic equation software tool (PETOOL) has been developed with a user-friendly graphical user interface (GUI) for the analysis and visualization of radio-wave propagation over variable terrain and through homogeneous and inhomogeneous atmosphere. The tool has a unique feature over existing one-way parabolic equation (PE)-based codes, because it utilizes the two-way split-step parabolic equation (SSPE) approach with wide-angle propagator, which is a recursive forward-backward algorithm to incorporate both forward and backward waves into the solution in the presence of variable terrain. First, the formulation of the classical one-way SSPE and the relatively-novel two-way SSPE is presented, with particular emphasis on their capabilities and the limitations. Next, the structure and the GUI capabilities of the PETOOL software tool are discussed in detail. The calibration of PETOOL is performed and demonstrated via analytical comparisons and/or representative canonical tests performed against the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD). The tool can be used for research and/or educational purposes to investigate the effects of a variety of user-defined terrain and range-dependent refractivity profiles in electromagnetic wave propagation. Program summaryProgram title: PETOOL (Parabolic Equation Toolbox) Catalogue identifier: AEJS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 143 349 No. of bytes in distributed program, including test data, etc.: 23 280 251 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) 2010a. Partial Differential Toolbox and Curve Fitting Toolbox required Computer: PC Operating system: Windows XP and Vista Classification: 10 Nature of problem: Simulation of radio-wave propagation over variable terrain on the Earth's surface, and through homogeneous and inhomogeneous atmosphere. Solution method: The program implements one-way and two-way Split-Step Parabolic Equation (SSPE) algorithm, with wide-angle propagator. The SSPE is, in general, an initial-value problem starting from a reference range (typically from an antenna), and marching out in range by obtaining the field along the vertical direction at each range step, through the use of step-by-step Fourier transformations. The two-way algorithm incorporates the backward-propagating waves into the standard one-way SSPE by utilizing an iterative forward-backward scheme for modeling multipath effects over a staircase-approximated terrain. Unusual features: This is the first software package implementing a recursive forward-backward SSPE algorithm to account for the multipath effects during radio-wave propagation, and enabling the user to easily analyze and visualize the results of the two-way propagation with GUI capabilities. Running time: Problem dependent. Typically, it is about 1.5 ms (for conducting ground) and 4 ms (for lossy ground) per range step for a vertical field profile of vector length 1500, on Intel Core 2 Duo 1.6 GHz with 2 GB RAM under Windows Vista.

  6. Joint Services Electronics Program

    NASA Astrophysics Data System (ADS)

    Tinkham, Michael

    1989-07-01

    Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.

  7. Teaching Cardiac Electrophysiology Modeling to Undergraduate Students: Laboratory Exercises and GPU Programming for the Study of Arrhythmias and Spiral Wave Dynamics

    ERIC Educational Resources Information Center

    Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H.

    2011-01-01

    As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, R. D.; Rajnak, K.; Renard, P.

    This is a set of three Fortran IV programs, RCN29, HFMOD7, and RCN229, based on the Herman--Skillman and Charlotte Froese Fischer programs, with extensive modifications and additions. The programs compute self-consistent-field radial wave functions and the various radial integrals involved in the computation of atomic energy levels and spectra.

  9. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    NASA Astrophysics Data System (ADS)

    Hosseini, Mahmood; Salek, Shamila; Moradi, Masoud

    2008-07-01

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3.

  10. A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Cho, Min Hyung; Cai, Wei

    2010-12-01

    A Wideband Fast Multipole Method (FMM) for the 2D Helmholtz equation is presented. It can evaluate the interactions between N particles governed by the fundamental solution of 2D complex Helmholtz equation in a fast manner for a wide range of complex wave number k, which was not easy with the original FMM due to the instability of the diagonalized conversion operator. This paper includes the description of theoretical backgrounds, the FMM algorithm, software structures, and some test runs. Program summaryProgram title: 2D-WFMM Catalogue identifier: AEHI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4636 No. of bytes in distributed program, including test data, etc.: 82 582 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Any operating system with gcc version 4.2 or newer Has the code been vectorized or parallelized?: Multi-core processors with shared memory RAM: Depending on the number of particles N and the wave number k Classification: 4.8, 4.12 External routines: OpenMP ( http://openmp.org/wp/) Nature of problem: Evaluate interaction between N particles governed by the fundamental solution of 2D Helmholtz equation with complex k. Solution method: Multilevel Fast Multipole Algorithm in a hierarchical quad-tree structure with cutoff level which combines low frequency method and high frequency method. Running time: Depending on the number of particles N, wave number k, and number of cores in CPU. CPU time increases as N log N.

  11. TIM, a ray-tracing program for METATOY research and its dissemination

    NASA Astrophysics Data System (ADS)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  12. Investigation of atmospheric waves on Neptune

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1994-01-01

    This document constitutes the final report for grant NAGW-2442 of the Neptune Data Analysis Program, which supported research concerning atmospheric dynamics on Neptune. Professor Von R. Eshleman was the principal investigator. David P. Hinson was a Co-Investigator. The grant covered the period 1 March 1991 through 31 August 1994, including a six month no-cost extension. Funding from this grant resulted in publication of one journal article and one book chapter as well as presentation of results at two conferences and in numerous seminars. A complete bibliography is given below. A copy of the journal article is attached along with abstracts from the book chapter and the conference presentations. With support from this grant we extended our analysis and interpretation of the Voyager Project. This research contributed to an improvement in our basic understanding of atmospheric dynamics on Neptune. The highlight was the discovery and characterization of inertio-gravity waves in the troposphere and stratosphere. Results include measures of basic wave properties, such as amplitudes and vertical wavelengths, as well as estimates of the effect of the waves on the photochemistry and momentum balance of the stratosphere. This investigation also yielded a better understanding of the potential of radio occultation experiments for studies of atmospheric waves. At the same time we developed new methods of data analysis for exploiting these capabilities. These are currently being applied to radio occultation data obtained with the Magellan spacecraft to study waves in the atmosphere of Venus. Future planetary missions, such as Mars Global Surveyor and Cassini, will benefit from these accomplishments.

  13. Statistical modeling of interannual shoreline change driven by North Atlantic climate variability spanning 2000-2014 in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Robinet, A.; Castelle, B.; Idier, D.; Le Cozannet, G.; Déqué, M.; Charles, E.

    2016-12-01

    Modeling studies addressing daily to interannual coastal evolution typically relate shoreline change with waves, currents and sediment transport through complex processes and feedbacks. For wave-dominated environments, the main driver (waves) is controlled by the regional atmospheric circulation. Here a simple weather regime-driven shoreline model is developed for a 15-year shoreline dataset (2000-2014) collected at Truc Vert beach, Bay of Biscay, SW France. In all, 16 weather regimes (four per season) are considered. The centroids and occurrences are computed using the ERA-40 and ERA-Interim reanalyses, applying k-means and EOF methods to the anomalies of the 500-hPa geopotential height over the North Atlantic Basin. The weather regime-driven shoreline model explains 70% of the observed interannual shoreline variability. The application of a proven wave-driven equilibrium shoreline model to the same period shows that both models have similar skills at the interannual scale. Relation between the weather regimes and the wave climate in the Bay of Biscay is investigated and the primary weather regimes impacting shoreline change are identified. For instance, the winter zonal regime characterized by a strengthening of the pressure gradient between the Iceland low and the Azores high is associated with high-energy wave conditions and is found to drive an increase in the shoreline erosion rate. The study demonstrates the predictability of interannual shoreline change from a limited number of weather regimes, which opens new perspectives for shoreline change modeling and encourages long-term shoreline monitoring programs.

  14. Installing the Future. Fiber Optics Program Readies Students for Lucrative Jobs.

    ERIC Educational Resources Information Center

    Serrano, Kenneth M.

    1995-01-01

    A fiber optics program at Somerset County Technical Institute (SCTI) prepares college students and trades workers for telecommunication's new wave of installation. The program was born of a partnership among an electricians' union, AT&T, and SCTI to meet the expected need for fiber optic technicians. (JOW)

  15. A national assessment of colleges and university school health education methods courses.

    PubMed

    Fisher, Christine M; Price, James H; Telljohann, Susan K; Dake, Joseph A

    2015-04-01

    Across the United States, school health education programs provide a wide variety of knowledge and skills to their students. There are currently no guidelines for school health methods courses. Using a 2-wave mailing followed by a third wave e-mail reminder, a final population of 226 university school health methods instructors at school health preparation programs were surveyed. A total of 138 completed surveys (61%) were returned. The topics taught in school health education methods courses emphasized the most included aligning objectives, instruction, and assessment (79%); development of lesson plans (73%); teaching methods that engage learners (72%); and application of the National Health Education Standards and performance indicators (69%). The content taught and how the instructors assessed their students differed statistically by 1 or more of the following: whether they had a health education degree, had experience teaching in the public schools, and if their program was accredited. This study provides information regarding what school health methods instructors across the United States are teaching in their classes. Using this information as a baseline can serve as a guide for preservice faculty teaching a school health methods course. © 2015, American School Health Association.

  16. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  17. Accelerating wave propagation modeling in the frequency domain using Python

    NASA Astrophysics Data System (ADS)

    Jo, Sang Hoon; Park, Min Jun; Ha, Wan Soo

    2017-04-01

    Python is a dynamic programming language adopted in many science and engineering areas. We used Python to simulate wave propagation in the frequency domain. We used the Pardiso matrix solver to solve the impedance matrix of the wave equation. Numerical examples shows that Python with numpy consumes longer time to construct the impedance matrix using the finite element method when compared with Fortran; however we could reduce the time significantly to be comparable to that of Fortran using a simple Numba decorator.

  18. Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Leland Timothy

    2003-06-01

    The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.

  19. Hydrodynamic instabilities at an oblique interface: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.

  20. Impact of the Project P.A.T.H.S. in the junior secondary school years: objective outcome evaluation based on eight waves of longitudinal data.

    PubMed

    Shek, Daniel T L; Ma, Cecilia M S

    2012-01-01

    To assess the effectiveness of the Tier 1 Program of the Project P.A.T.H.S., a randomized group trial with eight waves of data collected was carried out. At the fifth year of data collection, 19 experimental schools (n = 2, 662 students) and 24 control schools (n = 3, 272 students) participated in the study. Analyses based on individual growth curve modeling showed that participants in the experimental schools displayed better positive youth development than did participants in the control schools in terms of different indicators derived from the Chinese Positive Youth Development Scale, including moral competence and behavioral competence and cognitive behavioral competencies. Significant results were also found when examining the trajectories of psychological development among control and experimental participants who perceived the program to be beneficial. Findings based on longitudinal objective outcome evaluation strongly suggest that the Project P.A.T.H.S. is effective in promoting positive development in Hong Kong secondary school students.

  1. Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan

    2005-01-01

    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure of the hydrogen-like ions, however, the underlying 'mathematics' is not always that easy to deal with. Apart from the well-known level structure of these ions as obtained from either the Schrödinger or Dirac equation, namely, a great deal of other properties are often needed. These properties are related to the interaction of bound electron(s) with external particles and fields and, hence, require to evaluate transition amplitudes, including wavefunctions and (transition) operators of quite different complexity. Although various special functions, such as the Laguerre polynomials, spherical harmonics, Whittaker functions, or the hypergeometric functions of various kinds can be used in most cases in order to express these amplitudes in a concise form, their derivation is time consuming and prone for making errors. In addition to their complexity, moreover, there exist a large number of mathematical relations among these functions which are difficult to remember in detail and which have often hampered quantitative studies in the past. Method of solution: A set of MAPLE procedures is developed which provides both the nonrelativistic and relativistic (analytical) solutions of the 'hydrogen atom model' and which facilitates the symbolic evaluation of various transition amplitudes. Restrictions onto the complexity of the problem: Over the past decades, a large number of representations have been worked out for the hydrogenic wave and Green's functions, using different variables and coordinates [2]. From these, the position-space representation in spherical coordinates is certainly of most practical interest and has been used as the basis of the present implementation. No attempt has been made by us so far to provide the wave and Green's functions also in momentum space, for which the relativistic momentum functions would have to be constructed numerically. Although the DIRAC program supports both symbolic and numerical computations, the latter one are based on MAPLE's standard software floating-point algorithms and on the (attempted) precision as defined by the global Digits variable. Although the default number, Digits = 10, appears sufficient for many computations, it often leads to a rather dramatic loss in the accuracy of the relativistic wave functions and integrals, mainly owing to MAPLE's imprecise internal evaluation of the corresponding special functions. Therefore, in order to avoid such computational difficulties, the Digits variable is set to 20 whenever the DIRAC program is (re-)loaded. Unusual features of the program: The DIRAC program has been designed for interactive work which, apart from the standard solutions and integrals of the hydrogen atom, also support the use of (approximate) semirelativistic wave functions for both, the bound- and continuum-states of the electron. To provide a fast and accurate access to a number of radial integrals which arise frequently in applications, the analytical expressions for these integrals have been implemented for the one-particle operators r, e, d/dr, j(kr) as well as for the (so-called) two-particle Slater integrals which are needed to describe the Coulomb repulsion among the electrons. Further procedures of the DIRAC program concern, for instance, the conversion of the physical results between different unit systems or for different sets of quantum numbers. A brief description of all procedures as available in the present version of the DIRAC program is given in the user manual Dirac-commands.pdf which is distributed together with the code. Typical running time: Although the program replies promptly on most requests, the running time also depends on the particular task. References: [1] Maple is a registered trademark of Waterloo Maple Inc. [2] H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin, 1957. [3] J. Eichler and W. Meyerhof, Relativistic Atomic Collisions, Academic Press, New York, 1995.

  2. Gravity wave life cycle (GW-LCYCLE): Initial results from a coordinated field program to trace gravity waves from the troposphere to the MLT-region

    NASA Astrophysics Data System (ADS)

    Rapp, Markus

    Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were conducted during five intensive observations periods, IOPs, where during two IOPs strong mountain wave generation was observed. In this paper we present an overview of the initial preliminary results of this first GW-LCYCLE campaign contrasting results from selected IOPs with and without strong mountain wave generation. We will discuss in how far observed tropospheric and lower stratospheric wave signatures can be reconciled with regional modelling and whether simultaneously observed mesospheric waves can be attributed to dedicated GW sources in the troposphere using GW ray tracing as well as high-resolution idealized modelling.

  3. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  4. [Comprehensive testing system for cardiorespiratory interaction research].

    PubMed

    Zhang, Zhengbo; Wang, Buqing; Wang, Weidong; Zheng, Jiewen; Liu, Hongyun; Li, Kaiyuan; Sun, Congcong; Wang, Guojing

    2013-04-01

    To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.

  5. Water pulsejet research. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, P.R.; Brown, R.G.; Brown, J.P.

    1979-04-01

    The steam water pulsejet (SWPJ) - a modern derivative of the Piot-McHugh putt-putt toy boat - is discussed. Studies have revealed that, like its air-breathing relatives, one type of SWPJ is a type of wave engine. This report first reviews the background literature and then summarizes recent improvements in our understanding of the engine's operation. An appendix attempts to show the various physical processes of the wave engine version in a quantifiable way. At low temperatures, the ideal cycle efficiency of this version is almost identical with the Carnot limit, diverging above a ..delta..T approx. = 150/sup 0/F. Maximum idealmore » cycle efficiency occurs in the 500/sup 0/-600/sup 0/F range, and is 30%-40%. In addition to the two wave engines (simple wave engine, and a wave engine with a water trap), the boundary layer boiler was developed which may but need not involve wave effects and the Piot-cycle. In the latter engine, some water is flashed rapidly to steam in a separate (but connected) compartment and reaches high pressure before the water column (because of its inertia) has moved appreciably. Ideal efficiencies for this cycle can be of the order of 10%-20%. Although a great deal of knowledge was gained, the present program was unsuccessful in applying the newly discovered cycles to build reliable and efficient solar powered pumps.« less

  6. Wave Engine Technology Development

    DTIC Science & Technology

    1984-01-01

    were the usual minor but time consuming problems of converting a program to run on a new computer with a new operating system and Fortran compiler...Exit Port. - - I _ _- i - - ~ = _ _ o71 - .. (I 00 kfC ) C: 4 03 \\. ft~ d) Ix- 3:- 0r i lzz 𔃾 14- Wave Field 81 and the associated port printouts are

  7. Suggested Courseware for the Non-Calculus Physics Student: Simple Harmonic Motion, Wave Motion, and Sound.

    ERIC Educational Resources Information Center

    Grable-Wallace, Lisa; And Others

    1989-01-01

    Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)

  8. Repetitively Pulsed Backward-Wave Oscillator Investigations

    DTIC Science & Technology

    1994-03-31

    Sinus-6 High Power BWO Experiments and Theory .................. 6 A . B W O physics .............................................................. 6...B. Experiments with high power output of BWO .............................. 8 Section III. Long Pulse Vacuum BWO Experiments...UNM) has completed its initial phase of research on repetitively pulsed high power backward-wave oscillators (BWOs). The aggressive program that we had

  9. Lake St. Clair: Storm Wave and Water Level Modeling

    DTIC Science & Technology

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  10. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  11. Reporting Multiple-Group Mean and Covariance Structure across Occasions with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Okech, David

    2012-01-01

    Objectives: Using baseline and second wave data, the study evaluated the measurement and structural properties of parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling mean and…

  12. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  13. Life After Welfare Reform: Low-Income Single Parent Families, Pre- and Post-TANF.

    ERIC Educational Resources Information Center

    Peterson, Janice; Song, Xue; Jones-DeWeever, Avis

    This study used data from the first and last waves of the 1996 U.S. Census Bureau's Survey of Income and Program Participation to compare the characteristics and wellbeing of low-income, single parent families before and after passage of the Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA), noting the characteristics and…

  14. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  15. Properties of internal solitary waves in a symmetric three-layer fluid

    NASA Astrophysics Data System (ADS)

    Vladykina, E. A.; Polukhina, O. E.; Kurkin, A. A.

    2009-04-01

    Though all the natural media have smooth density stratifications (with the exception of special cases such as sea surface, inversion layer in the atmosphere), the scales of density variations can be different, and some of them can be considered as very sharp. Therefore for the description of internal wave propagation and interaction in the ocean and atmosphere the n-layer models are often used. In these models density profile is usually approximated by a piecewise-constant function. The advantage of the layered models is the finite number of parameters and relatively simple solutions of linear and weakly nonlinear problems. Layered models are also very popular in the laboratory experiments with stratified fluid. In this study we consider symmetric, continuously stratified, smoothed three-layer fluid bounded by rigid horizontal surface and bottom. Three-layer stratification is proved to be a proper approximation of sea water density profile in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because in the symmetric case it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, that are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. The goal of our study is to determine the properties of localized stationary internal gravity waveforms (solitary waves) in this symmetric three-layer fluid. The investigation is carried out in the framework of improved mathematical model describing the transformation of internal wave fields generated by an initial disturbance. The model is based on the program complex for the numerical simulation of the two-dimensional (vertical plane) fully nonlinear Euler equations for incompressible stratified fluid under the Boussinesq approximation. Initial disturbances of both polarities evolve into stationary, solitary-like waves of corresponding polarity, for which we found the amplitude-width, amplitude-velocity, mass-amplitude, and energy-amplitude relations. Small-amplitude impulses to a good approximation can be described by the modified Korteweg-de Vries equation, but larger waves tend to become wide, and absolute value of their amplitude is bounded by the upper limit. Authors thank prof. K.G. Lamb for the opportunity to use the program code for numerical simulations of Euler equations. The research was supported by RFBR (09-05-00447, 09-05-00204) and by President of RF (MD-3024.2008.5 for young doctors of science).

  16. Propagation of a radio-frequency pulsed signal over the Earth. The JOLLY programs

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Detch, J. L.; Malik, J.

    1983-07-01

    The interpretation of observed radioflash/electromagnetic pulse (emp) observed signals from nuclear detonations in terms of theoretical models or extrapolation to signals expected at military systems involves correction for ground-wave propagation effects. For most applications, previously developed programs have been adequate. There have been problems when these techniques have been tried for situations in the near tangent regime where a considerable concern exists. It has been found that the problem of predicting propagation response functions in the near tangent regime has been the inconsistent derivation of the equations. Resolution of this problem has evolved into a program to better predict ground-wave propagation. The description of the method and detailed description of the programs are described for both propagation over realistic earth and sea-water paths. Results can be given in terms of amplitude and phase as a function of the frequency or as amplitude versus time, the usual Green's or resolution function.

  17. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  18. A study of the stress wave factor technique for evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  19. Using Empowering Processes to Create Empowered Outcomes through the Family Development Credential Program: An Empirical Study of Change in Human Service Workers

    ERIC Educational Resources Information Center

    Hewitt, Nicole M.

    2010-01-01

    This study employed a quasi-experimental non-equivalent control group design with pretest and posttest. Two waves of data were collected from a non-random sample of 180 human service professionals in Western and Central Pennsylvania using two research instruments: the Social Work Empowerment Scale and the Conditions of Work Effectiveness-II Scale.…

  20. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies are available on the Seismic Sound Lab (LDEO) website. Here, we will present a subset of the methods an overview of the aims of the program.

  1. Shock drift acceleration in the presence of waves

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  2. Partners in Physics with Colorado School of Mines' Society of Physics Students

    NASA Astrophysics Data System (ADS)

    Moore, Shirley; Stilwell, Matthew; Boerner, Zach

    2011-04-01

    The Colorado School of Mines (CSM) Society of Physics Students (SPS) revitalized in 2008 and has since blown up with outreach activity, incorporating all age levels into our programs. In Spring 2010, CSM SPS launched a new program called Partners in Physics. Students from Golden High School came to CSM where they had a college-level lesson on standing waves and their applications. These students then joined volunteers from CSM in teaching local elementary school students about standing waves beginning with a science show. The CSM and high school students then helped the children to build make-and-take demonstrations incorporating waves. This year, rockets are the theme for Partners in Physics and we began with demonstrations with local middle school students. In Spring 2011, CSM SPS will be teaching elementary school students about projectile motion and model rockets along with these middle school students. Colorado School of Mines Department of Physics

  3. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  4. Engaging the public in the nascent era of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Hendry, Martin A.

    2015-08-01

    Within the next few years a global network of ground-based laser interferometers will become fully operational. These ultra-sensitive instruments are confidently expected to directly detect gravitational waves from astrophysical sources before the end of the decade. In anticipation of opening this entirely new window on the Universe, the LIGO (Laser Interferometer Gravitational Wave Observatory) Scientific Collaboration has recently developed a substantive program of education and public outreach activities that includes exhibitions, documentary films, social media and interactive games - as well as more traditional modes of science communication such as schools and public lectures.As the gravitational wave 'detection era' unfolds over the next decade, it will present exciting challenges for future public engagement by the LIGO Scientific Collaboration and by other gravitational-wave astronomy collaborations around the world. Perhaps the most interesting opportunities will be in the area of citizen science, building upon the infrastructure already being developed through e.g. the LIGO Open Science Center (see arXiv:1410.4839) and the remarkable success of the Einstein@Home project (www.einsteinathome.org).In this presentation I will give an overview of the LSC education and public outreach program, highlighting its goals, major successes and future strategy - particularly in relation to the release of future LIGO and other gravitational wave datasets to the scientific community and to the public, and the opportunities this will present for directly engaging citizen scientists in this exciting new field of observational astronomy.

  5. Impurity bound states in d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica

    Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.

  6. Make Waves: Read! 1998 Summer Library Program Manual. Bulletin No. 98107.

    ERIC Educational Resources Information Center

    Roeber, Jane A., Ed.

    This manual is designed to help individual libraries in Wisconsin plan and implement their summer library programs. The manual is divided into six sections. Section 1 covers planning and promoting programs, and includes reproducible promotional materials, sample letters to parents, and sample media materials. Section 2 provides decorating and…

  7. Development of a GPU-Accelerated 3-D Full-Wave Code for Electromagnetic Wave Propagation in a Cold Plasma

    NASA Astrophysics Data System (ADS)

    Woodbury, D.; Kubota, S.; Johnson, I.

    2014-10-01

    Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.

  8. Void collapse under distributed dynamic loading near material interfaces

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2012-11-01

    Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.

  9. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  10. Observations with the ROWS instrument during the Grand Banks calibration/validation experiments

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Chapron, B.

    1994-01-01

    As part of a global program to validate the ocean surface sensors on board ERS-1, a joint experiment on the Grand Banks of Newfoundland was carried out in Nov. 1991. The principal objective was to provide a field validation of ERS-1 Synthetic Aperture Radar (SAR) measurement of ocean surface structure. The NASA-P3 aircraft measurements made during this experiment provide independent measurements of the ocean surface along the validation swath. The Radar Ocean Wave Spectrometer (ROWS) is a radar sensor designed to measure direction of the long wave components using spectral analysis of the tilt induced radar backscatter modulation. This technique greatly differs from SAR and thus, provides a unique set of measurements for use in evaluating SAR performance. Also, an altimeter channel in the ROWS gives simultaneous information on the surface wave height and radar mean square slope parameter. The sets of geophysical parameters (wind speed, significant wave height, directional spectrum) are used to study the SAR's ability to accurately measure ocean gravity waves. The known distortion imposed on the true directional spectrum by the SAR imaging mechanism is discussed in light of the direct comparisons between ERS-1 SAR, airborne Canadian Center for Remote Sensing (CCRS) SAR, and ROWS spectra and the use of the nonlinear ocean SAR transform.

  11. Parenting programs during adolescence: Outcomes from universal and targeted interventions offered in real-world settings.

    PubMed

    Alfredsson, Elin K; Thorvaldsson, Valgeir; Axberg, Ulf; Broberg, Anders G

    2018-04-26

    The aim of this naturalistic study was to explore short and long-term outcomes of five different group-based parenting programs offered to parents of 10 to 17-year-olds. Three hundred and fifteen parents (277 mothers and 38 fathers) who had enrolled in a parenting program (universal: Active Parenting, COPE; Connect; targeted: COMET; Leadership training for parents of teenagers [LFT]) answered questionnaires at three measurement waves (baseline, post-measurement, and one-year follow-up). The questions concerned parenting style, parental mental health, family climate and adolescent mental health. Results revealed small to moderate changes in almost all outcome variables and in all parenting programs. Overall, parents in COMET reported the largest short and long-term changes. No substantial differences in change were seen between the other programs. The results support the general effectiveness of parenting programs for parents of adolescents. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  12. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    PubMed Central

    2010-01-01

    Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet. Trial Registration Clinical Trials.gov Identifier: NCT01083082 PMID:20459634

  13. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  14. Turbulence and Biological Productivity at Dongsha Reef in the S. China Sea.

    NASA Astrophysics Data System (ADS)

    St Laurent, L.

    2016-02-01

    The combination of the Kuroshio Current, strong tides, topography, and stratification make the South China Sea one of the most energetic energy cascade environments in the global ocean. Internal waves generated in the Luzon Strait emit into the South China Sea as solitons, and propagate until they dissipate along the continental shelves of China and Vietnam. The abrupt conversion of solitons to nonlinear wave trains occurs as the waves pass onto the Dongsha Plateau. The Dongsha Reef at the center of the Plateau is directly in the path of the incoming waves. A measurement program during 2015 documented the energetic turbulence that results as internal waves collide with the Reef. Glider based measurements of microstructure and optical properties showed that turbulent mixing and transport are correlated to biological productivity. It is speculated that the existence of the Reef itself is the result of the breaking internal waves, which moderate the temperature and nutrient levels.

  15. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  16. Prospective Associations Among Assets and Successful Transition to Early Adulthood

    PubMed Central

    Vesely, Sara K.; Aspy, Cheryl B.; Tolma, Eleni L.

    2015-01-01

    Objectives. We investigated prospective associations among assets (e.g., family communication), which research has shown to protect youths from risk behavior, and successful transition to early adulthood (STEA). Methods. We included participants (n = 651) aged 18 years and older at study wave 5 (2007–2008) of the Youth Asset Study, in the Oklahoma City, Oklahoma, metro area, in the analyses. We categorized 14 assets into individual-, family-, or community-level groups. We included asset groups assessed at wave 1 (2003–2004) in linear regression analyses to predict STEA 4 years later at wave 5. Results. Individual- and community-level assets significantly (P < .05) predicted STEA 4 years later and the associations were generally linear, indicating that the more assets participants possessed the better the STEA outcome. There was a gender interaction for family-level assets suggesting that family-level assets were significant predictors of STEA for males but not for females. Conclusions. Public health programming should focus on community- and family-level youth assets as well as individual-level youth assets to promote positive health outcomes in early adulthood. PMID:25393188

  17. Manipulation of quantum evolution

    NASA Technical Reports Server (NTRS)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  18. Ethnic Art Falling Out of Favor?

    ERIC Educational Resources Information Center

    Miranda, Maria Eugenia

    2011-01-01

    During the multiculturalist wave that started in the 1950s, traditional ethnic art flowed in from across the globe. Today, that wave has receded as contemporary art has gained momentum. The trend toward contemporary art became more palpable in the 1990s. Baby Boomers had been exposed to ethnic art through programs like the Peace Corps. However, as…

  19. Forecasting Ocean Waves: Comparing a Physics-Based Model with Statistical Models

    DTIC Science & Technology

    2011-01-01

    m) 46029 (135 m) 46211 (38 m) ( CDIP -036) 42039 (307 m) 42040 (165 m) 42007 (14 m) Boundary forcing from NCEP WW3 ENP 15′×15′ resolution SWAN CNW-G1...wave energy. Acronyms and abbreviations CenGOOS Central Gulf Ocean Observing System CDIP Coastal Data Information Program CNW Coastal Northwest SWAN

  20. WaveNet: A Web-Based Metocean Data Access, Processing and Analysis Tool. Part 4 - GLOS/GLCFS Database

    DTIC Science & Technology

    2014-06-01

    and Coastal Data Information Program ( CDIP ). This User’s Guide includes step-by-step instructions for accessing the GLOS/GLCFS database via WaveNet...access, processing and analysis tool; part 3 – CDIP database. ERDC/CHL CHETN-xx-14. Vicksburg, MS: U.S. Army Engineer Research and Development Center

  1. WaveNet: A Web-Based Metocean Data Access, Processing and Analysis Tool; Part 5 - WW3 Database

    DTIC Science & Technology

    2015-02-01

    Program ( CDIP ); and Part 4 for the Great Lakes Observing System/Coastal Forecasting System (GLOS/GLCFS). Using step-by-step instructions, this Part 5...Demirbilek, Z., L. Lin, and D. Wilson. 2014a. WaveNet: A web-based metocean data access, processing, and analysis tool; part 3– CDIP database

  2. Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation

    DTIC Science & Technology

    2017-10-17

    Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF

  3. Introduction to Fourier Optics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2007-01-01

    Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…

  4. [The results of the combined application of extracorporeal shock-wave therapy and radon baths during the rehabilitative treatment of the patients presenting with gonarthrosis].

    PubMed

    Razumov, A N; Puriga, A O; Yurova, O V

    2015-01-01

    Osteoarthritis (OA) is one of the leading diseases of the musculoskeletal system and the main cause of arthritic joint damage. The objective of the present study was to evaluate the effectiveness of the combined application of radon baths and shock-wave therapy in the patients suffering from knee OA. The study involved 75 patients at the age of 35 to 62 years with the confirmed diagnosis of stage II and III gonarthrosis; they were divided into 3 groups. The patients of the main group received the combined treatment including extracorporeal shock-wave therapy and radon baths The patients comprising the group of comparison were given the course of radon therapy alone while those in the control group were offered the standard treatment including physiotherapy, magnetic therapy, and NSAIDs. The study has demonstrated the high effectiveness of the combined application of the radon baths and extracorporeal shock-wave therapy for the rehabilitation of the patients with deforming arthrosis of the knee that was apparent from the substantial decrease of pain syndrome, the increase of the range of motions in the knee joints, and the overall improvement of the quality of life. These beneficial changes persisted for a period of up to 6 months. The results of the present study give reason to recommend the proposed method of the remedial treatment for the wide practical application as a component in the framework of the medical rehabilitation programs.

  5. Results of an independent evaluation of Project ALERT delivered in schools by Cooperative Extension.

    PubMed

    St Pierre, Tena L; Osgood, D Wayne; Mincemoyer, Claudia C; Kaltreider, D Lynne; Kauh, Tina J

    2005-12-01

    Reported are results of an independent effectiveness study of the Project ALERT drug prevention program implemented in eight Pennsylvania middle schools by outside program leaders employed by Cooperative Extension. In this randomized, 2-cohort longitudinal evaluation, 1,649 seventh-grade students completed a pretest and four waves of posttests over the 2-year program and 1-year follow-up. Project ALERT's effectiveness was tested through a 3-level hierarchical linear model. Analyses failed to yield any positive effects for substance use or mediators for use in the adult or teen-assisted delivery of the curriculum. An extensive set of additional analyses detected no differential program effects by student risk level, gender, school, or level of implementation quality. Potential explanations for outcomes relative to Project ALERT's original effectiveness trial are discussed, as well as implications for future research, including the need to conduct independent effectiveness studies of previously validated programs in a variety of contexts.

  6. Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Kim, K.; Yamashita, T.

    2003-12-01

    Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have been made the parallel codes by SPMD methods. The wave-current interface model was developed by defining the wave breaking stresses. And we developed the coupling program to collect and distribute the exchanging data with the parallel system. Every models and coupler are executed at same time, and they calculate own jobs and pass data with organic system. MPMD method programming was performed to couple the models. The coupler and each models united by the separated group, and they calculated by the group unit. Also they passed message when exchanging data by global unit. The data are exchanged every 60-second model time that is the least common multiple time of the atmosphere model, the wave model and the ocean model. The model was applied to the storm surge simulation in the Yatsushiro Sea, in which we could not simulated the observed maximum surge height with the numerical model that did not include the wave breaking stress. It is confirmed that the simulation which includes the wave breaking stress effects can produce the observed maximum height, 450 cm, at Matsuai.

  7. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  8. Plantar fascia-specific stretching versus radial shock-wave therapy as initial treatment of plantar fasciopathy.

    PubMed

    Rompe, Jan D; Cacchio, Angelo; Weil, Lowell; Furia, John P; Haist, Joachim; Reiners, Volker; Schmitz, Christoph; Maffulli, Nicola

    2010-11-03

    Whether plantar fascia-specific stretching or shock-wave therapy is effective as an initial treatment for proximal plantar fasciopathy remains unclear. The aim of this study was to test the null hypothesis of no difference in the effectiveness of these two forms of treatment for patients who had unilateral plantar fasciopathy for a maximum duration of six weeks and which had not been treated previously. One hundred and two patients with acute plantar fasciopathy were randomly assigned to perform an eight-week plantar fascia-specific stretching program (Group I, n = 54) or to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group II, n = 48). All patients completed the seven-item pain subscale of the validated Foot Function Index and a patient-relevant outcome questionnaire. Patients were evaluated at baseline and at two, four, and fifteen months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first few steps of walking in the morning) on this index, and satisfaction with treatment. No difference in mean age, sex, weight, or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with plantar fascia-specific stretching than for those managed with shock-wave therapy (p < 0.001), as well as individually for item 2 (p = 0.002). Thirty-five patients (65%) in Group I versus fourteen patients (29%) in Group II were satisfied with the treatment (p < 0.001). These findings persisted at four months. At fifteen months after baseline, no significant between-group difference was measured. A program of manual stretching exercises specific to the plantar fascia is superior to repetitive low-energy radial shock-wave therapy for the treatment of acute symptoms of proximal plantar fasciopathy.

  9. Submillimeter-Wave Cloud Ice Radiometry

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1999-01-01

    Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and spacecraft validation missions. This program has already extended the initial millimeter-wave modeling studies to submillimeter-wavelengths and has improved the realism of the cloud scattering models. Additionally a proof-of-concept airborne submillimeter-wave radiometer was constructed and fielded. It measured a radiometric signal from cirrus confirming the basic technical feasibility of this technique. This program is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory. Additional information is contained in the original.

  10. Nonlinear Scattering of VLF Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  11. Progress on the development of FullWave, a Hot and Cold Plasma Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, J. Andrew; Svidzinski, Vladimir; Zhao, Liangji; Kim, Jin-Soo

    2017-10-01

    FullWave is being developed at FAR-TECH, Inc. to simulate RF waves in hot inhomogeneous magnetized plasmas without making small orbit approximations. FullWave is based on a meshless formulation in configuration space on non-uniform clouds of computational points (CCP) adapted to better resolve plasma resonances, antenna structures and complex boundaries. The linear frequency domain wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. The details of FullWave and some preliminary results will be presented, including: 1) a monitor function based on analytic solutions of the cold-plasma dispersion relation; 2) an adaptive CCP based on the monitor function; 3) construction of the finite differences for approximation of derivatives on adaptive CCP; 4) results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach for ECRH, ICRH and Lower Hybrid range of frequencies. Work is supported by the U.S. DOE SBIR program.

  12. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-12-31

    and annealing, using deep level transient spectroscopy (DLTS), and the effects of co-implantation on 4l the activation of amphoteric dopants and...theriithe study of optical quantum effects with emphasis on nonlinear optical phenomena. For example, a significant accomplishment write-up describes...Millimeter-Wave Array Components Tatsuo Itoh A number of novel solid state devices such as metal semiconductor field effect transistors (MESFET

  13. Implementing the KiVa Antibullying Program: Recognition of Stable Victims

    ERIC Educational Resources Information Center

    Haataja, Anne; Sainio, Miia; Turtonen, Mira; Salmivalli, Christina

    2016-01-01

    Teachers do not always recognise students who are victimised by their peers. In this study, we examined the recognition of stable victims in 76 schools beginning to implement the KiVa antibullying programme. We focused on 348 victims (9-15 years) who reported victimisation at the pretest and still at wave 2, after five months of programme…

  14. Dollars for Scholars: Postsecondary Costs and Financing, 1990-1991. Current Population Reports, Household Economic Studies.

    ERIC Educational Resources Information Center

    Sutterlin, Rebecca; Kominski, Robert A.

    1994-01-01

    This report looks at the individuals who were enrolled in postsecondary school during the 1990-1991 school year and the costs and financing of their education. Using data from the Wave 5 component of the 1990 Survey of Income and Program Participation (SIPP), the report examines patterns of school enrollment, education costs, financial aid, and…

  15. Hubble’s Global View of Jupiter During the Juno Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Cosentino, Richard; Tollefson, Joshua; Johnson, Perianne

    2017-10-01

    With two observing programs designed for mapping clouds and hazes in Jupiter's atmosphere during the Juno mission, the Hubble Space Telescope is acquiring an unprecedented set of global maps for study. The Outer Planet Atmospheres Legacy program (OPAL, PI: Simon) and the Wide Field Coverage for Juno program (WFCJ, PI: Wong) are designed to enable frequent multi-wavelength global mapping of Jupiter, with many maps timed specifically for Juno’s perijove passes. Filters span wavelengths from 212 to 894 nm. Besides offering global views for Juno observation context, they also reveal a wealth of information about interesting atmospheric dynamical features. We will summarize the latest findings from these global mapping programs, including changes in the Great Red Spot, zonal wind profile analysis, and persistent cyclone-generated waves in the North Equatorial Belt.

  16. Uric Acid Level Has a J-Shaped Association with Arterial Stiffness in Korean Postmenopausal Women.

    PubMed

    Lee, Hyungbin; Jung, Young-Hyo; Kwon, Yu-Jin; Park, Byoungjin

    2017-11-01

    Uric acid has been reported to function both as an oxidant or antioxidant depending on the context. A previous study in the Korean population reported a positive linear association between serum uric acid level and arterial stiffness in men, but little is known about how serum uric acid level is related to the risk of increased arterial stiffness in Korean postmenopausal women. We performed a cross-sectional study of 293 subjects who participated in a health examination program run by the health promotion center of Gangnam Severance Hospital between October 2007 and July 2010. High brachial-ankle pulse wave velocity was defined as a brachial-ankle pulse wave velocity of more than 1,450 cm/s. The odds ratios (ORs) for high brachial-ankle pulse wave velocity were calculated using multivariate logistic regression analysis across uric acid quartiles after adjusting for other indicators of cardiovascular risk. The 293 postmenopausal women were divided into quartiles according to uric acid level. The mean brachial-ankle pulse wave velocity values of each quartile were as follows: Q1, 1,474 cm/s; Q2, 1,375 cm/s; Q3, 1,422 cm/s; Q4, 1,528 cm/s. The second quartile was designated as the control group based on mean brachial-ankle pulse wave velocity value. Multivariate adjusted ORs (95% confidence intervals) for brachial-ankle pulse wave velocity across the uric acid quartiles were 2.642 (Q1, 1.095-6.3373), 1.00, 4.305 (Q3, 1.798-10.307), and 4.375 (Q4, 1.923-9.949), after adjusting for confounding variables. Serum uric acid level has a J-shaped association with arterial stiffness in Korean postmenopausal women.

  17. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  18. Producibility consideration for millimeter-wave transceivers

    NASA Astrophysics Data System (ADS)

    Seashore, Charles R.

    1995-10-01

    Considerable progress has been made in the development and demonstration of millimeter wave MMIC technology up to frequencies approaching 100 GHz. The recently completed multiyear, ARPA-sponsored, MIMIC program provided a considerable amount of funding and government-contractor team energy to advance the state-of-art with a number of important GaAs-based transceiver building blocks. Unfortuanely, producibility of millimeter wave MMIC transceiver modules has not been similarly addressed to provide a truly low cost, marketable product. This paper considers the module producibility problem and its various technological implications.

  19. Manufacturing Methods and Technology (MANTECH) Program. Quality Control and Nondestructive Evaluation Techniques for Composites. Part VI. Acoustic Emission - A State-of-the-Art Review.

    DTIC Science & Technology

    1983-05-01

    SALPE Technical Conference Series, Volume 4. Society for the Advancement of Material and Process Engineering, Azusa, California. 1972. conference held...dispersion of the stress waves, and scattering from "obstacles" encountered in the line of travel of the wave. Geometric spreading is the loss in signal...amplitude due to the fact that, as the wave travels away from the point AE source in a two- I or three-dimensional medium, the total area of material

  20. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  1. MIMIC For Millimeter Wave Integrated Circuit Radars

    NASA Astrophysics Data System (ADS)

    Seashore, C. R.

    1987-09-01

    A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.

  2. Millimeter Wave Spectrum of Nitromethane

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.

    2016-06-01

    A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.

  3. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    NASA Astrophysics Data System (ADS)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  4. Shallow-depth location and geometry of the Piedmont Reverse splay of the Hayward Fault, Oakland, California

    USGS Publications Warehouse

    Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.

    2017-04-18

    The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of seismic methods to infer the fault location, dip, and the National Earthquake Hazards Reduction Program (NEHRP) site classification along the seismic profile. Our seismic study is a smaller part of a larger study of the PRF by Trench and others (2016).

  5. A Multiyear Assessment of Public Response to a Statewide Drug Take-Back and Disposal Campaign, 2010 to 2012

    ERIC Educational Resources Information Center

    Yanovitzky, Itzhak

    2017-01-01

    This study is the first to analyze public response to a drug take-back program, the American Medicine Chest Challenge, in a single state over a period of 3 years (2010-2012). The study utilized a three-wave repeated cross-sectional design and an annual phone survey conducted with a representative sample of adults (N = 906 in 2010, N = 907 in 2011,…

  6. Comparison of numerical results and multicavity purge and rim seal data with extensions to dynamics

    NASA Astrophysics Data System (ADS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-05-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  7. Comparison of Numerical Results and Multicavity Purge and Rim Seal Data with Extensions to Dynamics

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-01-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  8. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    NASA Astrophysics Data System (ADS)

    Bochner, Brett

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  9. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    NASA Astrophysics Data System (ADS)

    Bochner, Brett

    1998-12-01

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  10. 76 FR 77554 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Growing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... applicants to Project GATE were randomly assigned to either a program group or a control group. The project... telephone survey of participants and control group members was conducted to collect three waves of data at... program group or a control group. Members of the program group are eligible to receive GATE II services...

  11. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  12. Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2016-10-01

    We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV Δω /2. In contrast, at higher temperatures, the mz = 2 wave is more unstable. The instability threshold is reduced from the cold fluid prediction as the plasma temperature is increased, which is in qualitative agreement with Vlasov simulations, but is not yet understood theoretically. Supported by DOE/HEDLP Grant DE-SC0008693 and DOE Fusion Energy Science Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

  13. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic energy, and produce X-rays, microwaves and a shock wave that heats the solar surface. Kosovichev and Zharkova developed a theory that predicts the nature and magnitude of the shock waves that this beam of energetic electrons should create when they slam down into the solar atmosphere. Although their theory directed them to the right area to search for the seismic waves, the waves that they found were 10 times stronger than they had predicted. "They were so strong that you can see them in the raw data," Kosovichev says. The solar seismic waves appear to be compression waves like the "P" waves generated by an earthquake. They travel throughout the Sun's interior. In fact, the waves should recombine on the opposite side of the Sun from the location of the flare to create a faint duplicate of the original ripple pattern, Kosovichev predicts. Now that they know how to find them, the SOHO scientists say that the seismic waves generated by solar flares should allow them to verify independently some of the conditions in the solar interior that they have inferred from studying the pattern of waves that are continually ruffling the Sun's surface. SOHO is part of the International Solar-Terrestrial Physics (ISTP) program, a global effort to observe and understand our star and its effects on our environment. The ISTP mission includes more than 20 satellites, coupled with with ground-based observatories and modeling centers, that allow scientists to study the Sun, the Earth, and the space between them in unprecedented detail. ISTP is a joint program of NASA, ESA, Japan's Institute for Astronautical Science, and Russia's Space Research Institute. Still images of the solar quake can be found at the following internet address: FTP://PAO.GSFC.NASA.GOV/newsmedia/QUAKE/ For further information, please contact : ESA Public Relations Division Tel:+33(0)1.53.69.71.55 Fax: +33(0)1.53.69.76.90 3

  14. Participation in the Apollo passive seismic experiment

    NASA Technical Reports Server (NTRS)

    Press, F.; Toksoez, M. N.; Dainty, A.

    1972-01-01

    Computer programs which were written to read digital tapes containing lunar seismic data were studied. Interpreting very early parts of the lunar seismogram as seismic body-wave phases enabled the determination of the structure of the outer part of the moon in the Fra Mauro region. The crust in the Fra Mauro region is 60 to 65 km-thick, overlaying a high velocity mantle. The crust is further divided into an upper part, 25 km thick, apparently made of material similar to the surficial basalts, and a lower part of seemingly different composition, possibly an anorthositic gabbro. The generation of the exceedingly long reverberating wave-train observed in lunar seismogram was also studied. This is believed to be due to an intense scattering layer with very high quality coefficient overlying a more homogeneous elastic medium. Titles and abstracts of related published papers are included.

  15. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  16. Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm

    NASA Astrophysics Data System (ADS)

    Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.

    2017-12-01

    Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.

  17. SRI PUFF 8 Computer Program for One-Dimensional Stress Wave Propagation

    DTIC Science & Technology

    1980-03-01

    raial product. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Tfhen Data Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING...EDITION OF I NOV 6S (S OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATIOK OF THIS PAGE (When Data Entered) UNCLASSIFIED SECURITY CLASSIFICATION OF THIS...aspects of wave propagation calculations. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGEfWhen Data Entered) FOREWORD This volume constitutes a

  18. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    1996-01-01

    The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.

  19. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  20. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  1. Investigations of the internal wave characteristics and saturation degree in the Earth's atmosphere by using radiosonde measurements of wind and temperature and their applications to the RO wave studies

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) affect the structure and circulation of the Earth’s atmosphere by transporting energy and momentum upward from lower atmosphere. Observations of the temperature and wind velocity fluctuations in the middle atmosphere have shown that wave amplitudes grow with increasing altitude, however, no quickly enough in order to correspond to amplitude growth due to exponential decrease of density in the absence of energy dissipation. The theory of saturated IGWs explains such rate of the wave amplitude growth in the following way: any wave amplitude in excess of the threshold value will lead to instability and the production of turbulence that acts to prevent further growth of the wave amplitude. The mechanisms that contribute most to the dissipation and saturation of the dominant IGW motions in the atmosphere are thought to be the dynamical (shear) and convective instability. For high-frequency waves, the threshold amplitude required to achieve shear instability is virtually identical to that required for convective instability. But for low-frequency IGWs, the shear instability threshold falls well below that necessary for convective instability. The knowledge of actual and threshold wave amplitudes is important when the effect of IGWs on the background atmosphere is to be assessed. The internal wave saturation assumption plays the key role for radio occultation (RO) investigations of IGWs in planetary atmospheres [Gubenko et al., 2008, 2011, 2012], therefore a radiosonde study of wave saturation processes in the Earth’s atmosphere is actual task. The results of determination of the actual and threshold amplitudes, saturation degree and other characteristics for identified IGWs in the Earth’s atmosphere found from high-resolution radiosonde measurements SPARC (http://www.sparc.sunysb.edu/) of horizontal wind and temperature are presented. The usefulness of these observations in conjunction with RO studies of IGWs is discussed. The work was carried out under partial support of the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  2. Predictors of HIV/AIDS Programming in African American Churches: Implications for Prevention, Testing and Care

    PubMed Central

    Stewart, Jennifer M.; Hanlon, Alexandra; Brawner, Bridgette M.

    2017-01-01

    Using data from the National Congregational Study, we examined predictors of having a HIV/AIDS program in predominately African American churches across the United States. We conducted regression analyses of Wave II data (N = 1,506) isolating the sample to churches with a predominately African American membership. The dependent variable asked whether or not the congregation currently had any program focused on HIV or AIDS. Independent variables included several variables from the individual, organizational, and social levels. Our study revealed that region, clergy age, congregant disclosure of HIV-positive status, permitting cohabiting couples to be members, sponsorship or participation in programs targeted to physical health issues and having a designated person or committee to address health-focused programs significantly increased the likelihood of African American churches having a HIV/AIDS program. A paucity of nationally representative research focuses on the social, organizational and individual level predictors of having HIV/AIDS programs in African American churches. Determining the characteristics of churches with HIV/AIDS programming at multiple levels is a critical and necessary approach with significant implications for partnering with African American churches in HIV initiatives. PMID:27540035

  3. Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.

  4. Vs30 mapping at selected sites within the Greater Accra Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina

    2018-06-01

    A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.

  5. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.

    2016-07-01

    Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.

  6. A Study on distinguishing seismic waves caused by natural earthquakes and underground nuclear explosion within North Korean Context

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.

    2017-12-01

    Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.

  7. Transatmospheric vehicle research

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Research was conducted into the alternatives to the supersonic combustion ramjet (scramjet) engine for hypersonic flight. A new engine concept, the Oblique Detonation Wave Engine (ODWE) was proposed and explored analytically and experimentally. Codes were developed which can couple the fluid dynamics of supersonic flow with strong shock waves, with the finite rate chemistry necessary to model the detonation process. An additional study was conducted which compared the performance of a hypersonic vehicle powered by a scramjet or an ODWE. Engineering models of the overall performances of the two engines are included. This information was fed into a trajectory program which optimized the flight path to orbit. A third code calculated the vehicle size, weight, and aerodynamic characteristics. The experimental work was carried out in the Ames 20MW arc-jet wind tunnel, focusing on mixing and combustion of fuel injected into a supersonic airstream. Several injector designs were evaluated by sampling the stream behind the injectors and analyzing the mixture with an on-line mass spectrometer. In addition, an attempt was made to create a standing oblique detonation wave in the wind tunnel using hydrogen fuel. It appeared that the conditions in the test chamber were marginal for the generation of oblique detonation waves.

  8. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  9. Proceedings of the DARPA/AFWAL Review of Progress in Quantitative Nondestructive Evaluation, held 14-18 July 1980, Scripps Institution of Oceanography, La Jolla, California.

    DTIC Science & Technology

    1981-09-01

    them presumably as plan proceeds. A work package description is in- an adjunct in ongoing failure studies . It would cluded for each block on the...Furthermore, the two limiting cases in the unit theoreti-al and laboratory results, lhe most amplitude study are the square wave and the ex - important reason is...of Denver Research Institute ...................................................... 87 STUDY PROGRAM FOR ENCAPSULATION MATERIALS INTERFACE FOR LOW-COST

  10. The Soviet contributions towards MAP/WINE

    NASA Technical Reports Server (NTRS)

    Rapoport, Z. TA.; Kazimirovsky, E. S.

    1989-01-01

    In the winter of 1983 to 1984, the research institutes of the Soviet Union took an active part in the accomplishment of the project Winter in Northern Europe (MAP/WINE) of the Middle Atmosphere Program. Different methods were used to measure temperature, direction and velocity of wind, turbulence, electron concentration in the lower ionosphere, and radio wave absorption. The study of the stratopheric warmings and the related changes in the mesosphere and lower ionosphere was considered of special importance. The analysis of the obtained data has shown, in particular, that during the stratospheric warmings the western wind in winter time becomes weaker and even reverses. At the same time period the electron concentration and the radio wave absorption in the lower ionosphere are often reduced. It is also observed that the high absorption zones move from west to east. These results confirm the concept about the role of the cyclonic circumpolar vortex in the transport of the auroral air to temperate latitudes and about the appearance of conditions for the winter anomalous radio wave absorption.

  11. Long-term effects of adolescent marijuana use prevention on adult mental health services utilization: the midwestern prevention project.

    PubMed

    Riggs, Nathaniel R; Pentz, Mary Ann

    2009-01-01

    Evaluated were effects of a drug abuse(1) prevention program, previously shown to prevent marijuana use in adolescence, on adulthood mental health service use. Analyses were conducted on 961 6th (41%) and 7th (59%) grade participants randomly assigned to intervention or control groups at baseline in 1984. These participants were followed-up through 2003 representing 15 waves of data collection. Eighty-five percent of participants were Caucasian and 56% were female. The hypothesis was that direct program effects on early adulthood mental health service use would be mediated by program effects on high school marijuana use trajectories. Structural equation models, imputing for missing data, demonstrated that MPP (Midwestern Prevention Project) program effects on mental health were mediated by the marijuana use growth curve intercept. Findings support the role of early adolescent drug use prevention programs in impacting later mental health problems. The study's limitations are noted.

  12. Geotail MCA plasma wave data analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Roger R.

    NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.

  13. Geotail MCA plasma wave data analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1994-01-01

    NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.

  14. Preliminary work about the reproduction of sonic boom signals for perception studies

    NASA Astrophysics Data System (ADS)

    Epain, N.; Herzog, P.; Rabau, G.; Friot, E.

    2006-05-01

    As part of a French research program, a sound restitution cabin was designed for investigating the annoyance of sonic boom signals. The first goal was to reproduce the boom spectrum and temporal waveform: this required linear generation of high pressure levels at infrasonic frequencies (110 SPL dB around 3 Hz), and response equalization over the full frequency range (1 Hz-20 kHz). At this stage the pressure inside the cabin was almost uniform around the listener, emulating an outdoor situation. A psychoacoustic study was then conducted which confirmed that the loudness (related to annoyance) of N-waves is roughly governed by the peak pressure, the rise/fall time, and the wave duration. A longer-term goal is to reproduce other aspects of an indoor situation including rattle noise, ground vibrations, and a more realistic spatial repartition of pressure. This latter point has been addressed through an Active Noise Control study aiming at monitoring the low-frequency acoustic pressure on a surface enclosing a listener. Frequency and time-domain numerical simulations of boom reproduction via ANC are given, including a sensitivity study of the coupling between a listener's head and the incident boom wave which combine into the effective sound-field to be reproduced.

  15. Impact of nearest-neighbor repulsion on superconducting pairing in 2D extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Hahner, U. R.; Maier, T. A.; Schulthess, T. C.

    Using dynamical cluster approximation (DCA) with an continuous-time QMC solver for the two-dimensional extended Hubbard model, we studied the impact of nearest-neighbor Coulomb repulsion V on d-wave superconducting pairing dynamics. By solving Bethe-Salpeter equation for particle-particle superconducting channel, we focused on the evolution of leading d-wave eigenvalue with V and the momentum and frequency dependence of the corresponding eigenfunction. The comparison with the evolution of both spin and charge susceptibilities versus V is presented showing the competition between spin and charge fluctuations. This research received generous support from the MARVEL NCCR and used resources of the Swiss National Supercomputing Center, as well as (INCITE) program in Oak Ridge Leadership Computing Facility.

  16. A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briscoe, William John; Strakovsky, Igor I.; Workman, Ronald L.

    The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilitiesmore » and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental γ - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of π0, η, 2π0, π0η, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to the future by participation in preparations for the coming JLab 12 GeV Upgrade. GW students are involved in tests of the detectors proposed to be used with CLAS12, i.e., for the CentralTime-of-Flight Barrel (CTOF). WJB is heavily involved in the MUSE quest at PSI to solve the Proton Radius Puzzle.« less

  17. The Challenge of Environmental Education.

    ERIC Educational Resources Information Center

    Stapp, William B.

    The third wave of conservation--a movement directed at improving the quality of our total environment and developing an environmentally literate, responsive, and responsible citizenry--is highlighted in this speech, serving as the basis and need for developing environmental education programs. Identifying and developing educational programs that…

  18. Full wave description of VLF wave penetration through the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    2010-05-01

    Of the many problems in whistler study, wave propagation through the ionosphere is among the most important, and the most difficult at the same time. Both satellite and ground-based investigations of VLF waves include considerations of this problem, and it has been in the focus of research since the beginning of whistler study (Budden [1985]; Helliwell [1965]). The difficulty in considering VLF wave passage through the ionosphere is, after all, due to fast variation of the lower ionosphere parameters as compared to typical VLF wave number. This makes irrelevant the consideration in the framework of geometrical optics, which, along with a smooth variations of parameters, is always based on a particular dispersion relation. Although the full wave analysis in the framework of cold plasma approximation does not require slow variations of plasma parameters, and does not assume any particular wave mode, the fact that the wave of a given frequency belongs to different modes in various regions makes numerical solution of the field equations not simple. More specifically, as is well known (e.g. Ginzburg and Rukhadze [1972]), in a cold magnetized plasma, there are, in general, two wave modes related to a given frequency. Both modes, however, do not necessarily correspond to propagating waves. In particular, in the frequency range related to whistler waves, the other mode is evanescent, i.e. it has a negative value of N2 (the refractive index squared). It means that one of solutions of the relevant differential equations is exponentially growing, which makes a straightforward numerical approach to these equations despairing. This well known difficulty in the problem under discussion is usually identified as numerical swamping (Budden [1985]). Resolving the problem of numerical swamping becomes, in fact, a key point in numerical study of wave passage through the ionosphere. As it is typical of work based on numerical simulations, its essential part remains virtually hidden. Then, every researcher, in order to get quantitative characteristics of the process, such as transmission and reflection coefficients, needs to go through the whole problem. That is why the number of publications dealing with VLF wave transmission through the ionosphere does not run short. In this work, we develop a new approach to the problem, such that its intrinsic difficulty is resolved analytically, while numerical calculations are reduced to stable equations solvable with the help of a routine program. Using this approach, the field of VLF wave incident on the ionosphere from above is calculated as a function of height, and reflection coefficients for different frequencies and angles of incidence are obtained. In particular, for small angles of incidence, for which incident waves reach the ground, the reflection coefficient appears to be an oscillating function of frequency. Another goal of the work is to present all equations and related formulae in an undisguised form, in order that the problem may be solved in a straightforward way, once the ionospheric plasma parameters are given. References Budden, K.G. (1985), The Propagation of Radio Waves, Cambridge Univ. Press, Cambridge, U.K. Ginzburg, V.L., and Rukhadze, A.A. (1972), Waves in Magnetoactive Plasma. In Handbuch der Physik (ed. S. Flügge). Vol. 49, Part IV, p. 395, Springer Verlag, Berlin. Helliwell, R. A. (1965), Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, California.

  19. Feasibility of Wave Energy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hodgson, P.

    2014-12-01

    Kinetic energy produced by the movement of ocean waves can be harnessed by wave energy converter equipment such as wave turbines to power onshore electricity generators, creating a valuable source of renewable energy. This experiment measures the potential of wave energy in Hoi Ha Wan Marine Park, Hong Kong using a data buoy programmed to send data through wireless internet every five minutes. Wave power (known as 'wave energy flux') is proportional to wave energy periodicity and to the square of wave height, and can be calculated using the equation: P = 0.5 kW/(m3)(s) x Hs2 x Tp P = wave energy flux (wave energy per unit of wave crest length in kW/m) Hs = significant wave height (m) Tp = wave period (seconds) Acoustic Doppler Current Profilers (ADCPs), or ultrasonic sensors, were installed on the seabed at three monitoring locations to measure Significant Wave Heights (Hs), Significant Wave Periods (Tp) and Significant Wave Direction (Wd). Over a twelve month monitoring period, Significant Wave Heights ranged from 0 ~ 8.63m. Yearly averages were 1.051m. Significant Wave Period ranged from 0 ~ 14.9s. Yearly averages were 6.846s. The maximum wave energy amount recorded was 487.824 kW/m. These results implied that electricity sufficient to power a small marine research center could be supplied by a generator running at 30% efficiency or greater. A wave piston driven generator prototype was designed that could meet output objectives without using complex hydraulics, expensive mechanical linkages, or heavy floating buoys that might have an adverse impact on marine life. The result was a design comprising a water piston connected by an air pipe to a rotary turbine powered generator. A specially designed air valve allowed oscillating bidirectional airflow generated in the piston to be converted into unidirectional flow through the turbine, minimizing kinetic energy loss. A 35cm wave with a one second period could generate 139.430W of electricity, with an efficiency of 37.6%.

  20. Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.; Kunkee, D. B.; Jackson, D. M.; Adelberg, L. K.

    1992-01-01

    Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design.

  1. Behavioral and electrophysiological auditory processing measures in traumatic brain injury after acoustically controlled auditory training: a long-term study

    PubMed Central

    Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro

    2015-01-01

    ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270

  2. On the observations of unique low latitude whistler-triggered VLF/ELF emissions

    NASA Astrophysics Data System (ADS)

    Altaf, M.; Singh, K. K.; Singh, A. K.; Lalmani

    A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26‧ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.

  3. Adolescent romantic relationships and change in smoking status.

    PubMed

    Kennedy, David P; Tucker, Joan S; Pollard, Michael S; Go, Myong-Hyun; Green, Harold D

    2011-04-01

    Although smoking rates have decreased, smoking among adolescents continues to be a problem. Previous research has shown the importance of peer influences on adolescent smoking behavior but has mostly neglected the impact of adolescent romantic relationships. This study examines the influence of romantic relationships with smokers and non-smokers on smoking initiation and cessation over a one-year period using data from the National Longitudinal Study of Adolescent Health (Add Health). For initial non-smokers, we examined whether the total length of time in romantic relationships with smokers and non-smokers at Wave I, as well as amount of exposure to smoking through romantic partners, predicted smoking initiation at Wave II. Among initial regular smokers, we examined whether these same relationship characteristics predicted smoking cessation at Wave II. These analyses were conducted separately for respondents in any type of romantic relationship, as well as just those respondents in close romantic relationships. Results indicated that, for close romantic relationships, cessation was more likely among smokers with more time in relationships with non-smoking partners. Greater exposure to smoking through romantic partners at Wave I significantly decreased the likelihood of cessation among initial smokers and increased the likelihood of initiation among initial non-smokers. For all relationships, greater exposure to smoking through romantic partners at Wave I significantly reduced the likelihood of cessation. These associations held when controlling for best friend smoking, as well as demographic factors and school-level smoking, suggesting that peer-based smoking programs aimed at adolescents should incorporate a focus on romantic relationships. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Joint Services Electronics Program.

    DTIC Science & Technology

    1983-09-30

    environment. The research is under three interrelated heads: (1) algebraic Methodologies for Control Systems design , both linear and non -linear, (2) robust...properties of the device. After study of these experimental results, we plan to design a millimeter- wave version of the Gunn device. This will...appropriate dose discretization level for an adju- stable width beam. 2) Experimental Device Fabrication In a collaborative effort with the IC design group

  5. Middle Atmosphere Program. Handbook for MAP. Volume 14: URSI/SCOSTEP Workshop on Technical Aspects of MST Radar

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1984-01-01

    Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.

  6. How Does ICT Use Influence Students' Achievements in Math and Science over Time? Evidence from PISA 2000 to 2012

    ERIC Educational Resources Information Center

    Zhang, Danhui; Liu, Luman

    2016-01-01

    This study aims to investigate the impacts of information and communication technology (ICT) use on students' math and science achievements, with a special focus on examining the trends of these relationships over the past decade. Data from all five waves of the Program for International Student Assessment (PISA) from 2000 to 2012 were used.…

  7. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    ERIC Educational Resources Information Center

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  8. Naval Research Reviews. Volume 39, Number 3,

    DTIC Science & Technology

    1987-01-01

    remote sensing, ice and waves, acoustics, and MIZEX East Research Area. biology . Operations benefitted greatly from SAR imagery, downlinked daily. in near...the carried out coordinated programs in oceanography . edd\\ Norwsegian Satellite Telemelr\\ Station under D).A. Horn. studies. biology and meteorology...processes are the principal generators of " ambient noise in the Arctic MIZ. 20 . % Biology Acknowledgements In MIZEX 87, growth rates and the standing

  9. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  10. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less

  11. Strong Shock Propagating Over A Random Bed of Spherical Particles

    NASA Astrophysics Data System (ADS)

    Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S.; Thakur, Siddharth

    2017-11-01

    The study of shock interaction with particles has been largely motivated because of its wide-ranging applications. The complex interaction between the compressible flow features, such as shock wave and expansion fan, and the dispersed phase makes this multi-phase flow very difficult to predict and control. In this talk we will be presenting results on fully resolved inviscid simulations of shock interaction with random bed of particles. One of the fascinating observations from these simulations are the flow field fluctuations due to the presence of randomly distributed particles. Rigorous averaging (Favre averaging) of the governing equations results in Reynolds stress like term, which can be classified as pseudo turbulence in this case. We have computed this ``Reynolds stress'' term along with individual fluctuations and the turbulent kinetic energy. Average pressure was also computed to characterize the strength of the transmitted and the reflected waves. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program.

  12. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner

    PubMed Central

    Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508

  13. An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.; Eng, W. P.

    1984-01-01

    A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.

  14. Variational principles for dissipative waves

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Ruiz, D. E.

    2016-10-01

    Variational methods are a powerful tool in plasma theory. However, their applications are typically restricted to conservative systems or require doubling of variables, which often contradicts the purpose of the variational approach altogether. We show that these restrictions can be relaxed for some classes of dynamical systems that are of practical interest in plasma physics, particularly including dissipative plasma waves. Applications will be discussed to calculating dispersion relations and modulational dynamics of individual plasma waves and wave ensembles. The work was supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  15. EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    1994-01-01

    New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.

  16. Geotail MCA Plasma Wave Investigation Data Analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1997-01-01

    The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the significant problems of sun-earth connections. Plasma waves are involved in the energization and de-energization of plasma and energetic particles via numerous wave-particle interaction processes. Plasma waves in many instances are the source for the heating or cooling of the particles. They can cause particle precipitation by scattering particles into the loss cone. They move particles across boundaries in mass and energy dependent ways. Identifying the waves and the instabilities which produce them are thus crucial for understanding the plasma processes. Wave-particle interaction processes are especially important at various boundaries between the different regions of geospace including the bow shock, magnetopause, and interfaces in the geomagnetic tail between the magnetosheath, lobe, plasmasheet, boundary layers, and neutral sheet. In addition to identifying the characteristics of the instabilities and generation mechanisms encountered, plasma wave measurement are used in conjunction with other fields and particle measurements to identify the region of space the spacecraft is in or the boundary that is being crosed.

  17. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  18. Quantum-classical correspondence for the inverted oscillator

    NASA Astrophysics Data System (ADS)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  19. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  20. Nearshore Coastal Dynamics on a Sea-Breeze Dominated Micro-Tidal Beach (NCSAL)

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, A.; Puleo, J. A.; Ruiz de Alegría-Arzaburu, A.; Figlus, J.; Mendoza, T.; Pintado-Patino, J. C.; Pieterse, A.; Chardon-Maldonado, P.; DiCosmo, N. R.; Wellman, N.; Garcia-Nava, H.; Palemón-Arcos, L.; Roberts, T.; López-González, J.; Bravo, M.; Ojeda, E.; Medellín, G.; Appendini, C. M.; Figueroa, B.; González-Leija, M.; Enriquez, C.; Pedrozo-Acuña, A.; Salles, P.

    2014-12-01

    A comprehensive field experiment devoted to the study of coastal processes on a micro-tidal beach was conducted from March 30th to April 12th 2014 in Sisal, Yucatán México. Wave conditions in the study area are controlled by local (i.e., sea-breezes) and meso-scale (i.e., Nortes) meteorological events. Simultaneous measurements of waves, tides, winds, currents, sediment transport, runup, and beach morphology were obtained in this experiment. Very dense nearshore instrumentation arrays allow us the study of the cross-/along- shore variability of surf/swash zone dynamics during different forcing conditions. Strong sea-breeze wind events produced a diurnal cycle with a maximum wind speed of 14 m/s. The persistent sea-breeze system forces small-amplitude (Hs<1 m) short-period (Tp<4 s) NE waves approaching with a high incidence wave angle. These wave conditions drive westward alongshore currents of up to 0.6 m/s in the inner surf zone and hence produce an active sediment transport in the swash zone. On the other hand, the more energetic (Hs>1 m) Norte event, lasting 48 hours, reached the coast on April 8th generating a long-period swell (Tp>10 s) arriving from the NNW. This event induced an eastward net sediment transport across a wide surf zone. However, long-term observations of sand impoundment at a groin located near the study area suggests that the net sediment transport in the northern Yucatan peninsula is controlled by sea-breeze events and hence swash zone dynamics play an important role in the net sediment budget of this region. A comparative study of surf and swash zone dynamics during both sea-breeze and Norte events will be presented. The Institute of Engineering of UNAM, throughout an International Collaborative Project with the University of Delaware, and CONACYT (CB-167692) provided financial support. The first author acknowledges ONR Global for providing financial support throughout the Visiting Scientist Program.

  1. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  2. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  4. Middle Atmosphere Program. Handbook for MAP, volume 27

    NASA Technical Reports Server (NTRS)

    Edwards, Belva (Editor)

    1989-01-01

    The proceedings are presented from the MAP program of July 1988. It is intended to be a quick synopsis of the symposium. General topics include: New International Equatorial Observatory; Dynamics of the Middle Atmosphere in Winter (DYNAMICS); Global Budget of Stratospheric Trace Constituents (GLOBUS); Gravity Waves and Turbulence in the Middle Atmosphere Program (GRATMAP); Middle Atmosphere Electrodynamics (MAE); Winter in Northern Europe (WINE); Atmospheric Tides Middle Atmosphere Program (ATMAP); and many others.

  5. FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.

  6. The automatic extraction of pitch perturbation using microcomputers: some methodological considerations.

    PubMed

    Deem, J F; Manning, W H; Knack, J V; Matesich, J S

    1989-09-01

    A program for the automatic extraction of jitter (PAEJ) was developed for the clinical measurement of pitch perturbations using a microcomputer. The program currently includes 12 implementations of an algorithm for marking the boundary criteria for a fundamental period of vocal fold vibration. The relative sensitivity of these extraction procedures for identifying the pitch period was compared using sine waves. Data obtained to date provide information for each procedure concerning the effects of waveform peakedness and slope, sample duration in cycles, noise level of the analysis system with both direct and tape recorded input, and the influence of interpolation. Zero crossing extraction procedures provided lower jitter values regardless of sine wave frequency or sample duration. The procedures making use of positive- or negative-going zero crossings with interpolation provided the lowest measures of jitter with the sine wave stimuli. Pilot data obtained with normal-speaking adults indicated that jitter measures varied as a function of the speaker, vowel, and sample duration.

  7. Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin

    Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).

  8. Stochastic Optimization for Unit Commitment-A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qipeng P.; Wang, Jianhui; Liu, Andrew L.

    2015-07-01

    Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave ismore » focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications.« less

  9. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  10. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  11. Evidence at Mesospheric Altitude of Deeply Propagating Atmospheric Gravity Waves Created by Orographic Forcing over the Auckland Islands (50.5ºS) During the Deepwave Project

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.

    2014-12-01

    The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.

  12. Mediating mechanisms of a military Web-based alcohol intervention.

    PubMed

    Williams, Jason; Herman-Stahl, Mindy; Calvin, Sara L; Pemberton, Michael; Bradshaw, Michael

    2009-03-01

    This study explored the mediating mechanisms of two Web-based alcohol interventions in a sample of active duty United States military personnel. Personnel were recruited from eight bases and received the Drinker's Check-Up (N=1483), Alcohol Savvy (N=688), or served as controls (N=919). The interventions drew on motivational interviewing and social learning theory and targeted multiple mediators including social norms, perceived risks and benefits, readiness to change, and coping strategies. Baseline data were collected prior to the intervention and follow-up data on alcohol consumption were gathered 1 month and 6 months after program completion. Two mediation models were examined: (1) a longitudinal two-wave model with outcomes and mediators assessed concurrently at the 1-month follow-up; and (2) a three-wave model in which the causal chain was fully lagged. Results indicated strong support for the role of perceived descriptive norms in transmitting the effects of the Drinker's Check-Up, with consistent mediation across the majority of alcohol outcome measures for both the concurrent and fully lagged mediation models. These results suggest that web-based interventions that are effective in lowering perceived norms about the frequency and quantity of drinking may be a viable strategy for reducing alcohol consumption in military populations. The results did not support program mediation by the other targeted variables, indicating the need for future research on the effective components of alcohol interventions. The mediation models also suggest reasons why program effects were not found for some outcomes or were different across programs.

  13. Treatment Readiness as a Determinant of Treatment Participation in a Prison-Based Rehabilitation Program: An Exploratory Study.

    PubMed

    Bosma, Anouk Q; Kunst, Maarten J J; Dirkzwager, Anja J E; Nieuwbeerta, Paul

    2017-06-01

    The current study had three aims. First, it measured treatment readiness among offenders who entered the Prevention of Recidivism program. This is a prison-based rehabilitation program in the Netherlands that aims to lower re-offending rates among offenders with a prison sentence of at least for months and that is carried out during the final months of incarceration. Second, the study evaluated whether treatment readiness was associated with treatment participation. Third, the study examined whether treatment readiness measured with a validated instrument predicted treatment participation above and beyond a clinical assessment of treatment readiness, currently used as a criterion to include offenders in rehabilitation programs. To address these aims, data were used from the fourth wave of a research project studying the effects of imprisonment on the life of detainees in the Netherlands. Results indicated that treatment readiness as measured with a validated instrument was a significant predictor of treatment participation. Also, the current study showed that treatment readiness measured with a validated instrument improved the prediction of treatment participation above and beyond a clinical assessment of treatment readiness. Outcomes were discussed in light of study limitations and implications.

  14. Two Years of Relationship-Focused Mentoring for First Nations, Métis, and Inuit Adolescents: Promoting Positive Mental Health.

    PubMed

    Crooks, Claire V; Exner-Cortens, Deinera; Burm, Sarah; Lapointe, Alicia; Chiodo, Debbie

    2017-04-01

    First Nations, Métis, and Inuit (FNMI) youth are disproportionately affected by a range of negative health outcomes including poor emotional and psychosocial well-being. At the same time, there is increasing awareness of culturally-specific protective factors for these youth, such as cultural connectedness and identity. This article reports the findings of a mixed-methods, exploratory longitudinal study on the effects of a culturally-relevant school-based mentoring program for FNMI youth that focuses on promoting mental well-being and the development of cultural identity. Participants included a cohort of FNMI adolescents whom we tracked across the transition from elementary to secondary school. We utilized data from annual surveys (n = 105) and a subset of youth whom we interviewed (n = 28). Quantitative analyses compared youth who participated in 1 or 2 years of mentoring programs with those who did not participate. At Wave 3, the 2-year mentoring group demonstrated better mental health and improved cultural identity, accounting for Wave 1 functioning. These results were maintained when sex and school climate were accounted for in the models. Sex did not emerge as a significant moderator; however, post hoc analyses with simple slopes indicated that the mentoring program benefited girls more than boys for both outcomes. Interview data were coded and themed through a multi-phase process, and revealed that the mentoring program helped participants develop their intrapersonal and interpersonal skills, and enhanced their cultural and healthy relationships knowledge base. Collectively, the quantitative and qualitative components of this study identify multiple years of culturally-relevant mentoring as a promising approach for promoting well-being among FNMI youth.

  15. Mapping Coastal Flood Zones for the National Flood Insurance Program

    NASA Astrophysics Data System (ADS)

    Carlton, D.; Cook, C. L.; Weber, J.

    2004-12-01

    The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both agencies and by FEMA. The results of the pilot study will help FEMA determine when tsunamis should be considered in mapping coastal hazards, how to predict their impact, how they should be mapped and possibly the construction standards for zones mapped as having a 1 percent or greater chance of suffering a tsunami.

  16. Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-09-01

    Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.

  17. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  18. ECG Wave-Maven: An Internet-based Electrocardiography Self-Assessment Program for Students and Clinicians.

    PubMed

    McClennen, Seth; Nathanson, Larry A; Safran, Charles; Goldberger, Ary L

    2003-12-01

    To create a multimedia internet-based ECG teaching tool, with the ability to rapidly incorporate new clinical cases. We created ECG Wave-Maven ( http://ecg.bidmc.harvard.edu ), a novel teaching tool with a direct link to an institution-wide clinical repository. We analyzed usage data from the web between December, 2000 and May 2002. In 17 months, there have been 4105 distinct uses of the program. A majority of users are physicians or medical students (2605, 63%), and almost half report use as an educational tool. The internet offers an opportunity to provide easily-expandable, open access resources for ECG pedagogy which may be used to complement traditional methods of instruction.

  19. POLECAT: Preparatory and modelling studies

    NASA Astrophysics Data System (ADS)

    Peter, T.; Müller, R.; Pawson, S.; Volkert, H.

    1995-02-01

    “POLECAT” is the acronym for a mission to polar stratospheric clouds, lee waves, chemistry, aerosols and transport. It constitutes a lead project of the German ozone research program sponsored by the Federal Ministry of Education and Research (BMBF). It focusses on the investigation of polar stratospheric clouds (PSCs) in the northern hemisphere with special emphasis on mesoscale effects, in particular lee waves, and their effects on polar stratospheric chemistry. The project comprises two phases. Phase 1 will support laboratory studies on PSC microphysics and heterogeneous chemistry, modelling studies on all scales, and selected field experiments concerning particle measurements as well as characterization of the direct chemical products of heterogeneous reactions. Phase 2 will cover a mission of the high-altitude aircraft Strato-2C, used for flights along streamlines across orographically perturbed regions for direct investigation of PSC effects. This paper presents some preparatory work for the upcoming project and, hence, concentrates on modelling studies including the planning strategies for the future aircraft missions.

  20. Consumption of pornographic materials in early adolescents in Hong Kong.

    PubMed

    Ma, Cecilia M S; Shek, Daniel T L

    2013-06-01

    The purpose of this study was to examine longitudinal changes in pornography consumption and related psychosocial correlates (ie, positive youth development qualities and family function) among Hong Kong early adolescents. In this study, adolescent consumption of pornographic materials was examined in 3 waves of longitudinal data. A total of 3,325 Secondary 1 students (Grade 7) from 28 schools participated in the study at Wave 1. The mean age of the participants was 12.6 years old (SD = .74). Results showed that the internet was the most common medium for consuming pornography materials. Boys consumed more pornographic materials than did girls. Findings showed that family functioning and positive youth development were negatively associated with consumption of pornographic materials over time. This study highlights the importance of developing adolescents' competencies and establishing an atmosphere that reduces the use of pornographic materials among adolescents. It sheds light on designing early prevention programs on pornography consumption for young people in Hong Kong. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

Top