Sample records for wave tank experiments

  1. Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow

    NASA Astrophysics Data System (ADS)

    Manheim, Marc E.; Lindner, John F.; Manz, Niklas

    We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.

  2. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  3. New Experiments on Wave Physics with a Simply Modified Ripple Tank

    ERIC Educational Resources Information Center

    Logiurato, Fabrizio

    2014-01-01

    The ripple tank is one of the physics education devices most appreciated by teachers and students. It allows one to visualize various phenomena related to wave physics in an effective and enthralling way. Usually this apparatus consists of a tank with a transparent bottom that is filled with a thin layer of water. A source of light illuminates the…

  4. Liquid spray experiments

    NASA Astrophysics Data System (ADS)

    Lapham, Gary; McHugh, John

    When waves on the ocean surface interact with a solid object, the result is often a complex pattern of spray. The solid object may be a coastal barrier such as a breakwater, or a ship or drilling rig. Another spray-related case is the presence of large industrial tanks of liquid, and often dangerous liquids, that exist around the world. Tens of thousands of such tanks are rapidly becoming obsolete. Recent experience has shown that when such tanks burst, the resulting spray may shoot several hundreds of meters from the tank. These tanks often have a wall or dam (barrier) surrounding them in an attempt to contain any leakage, catastrophic or otherwise. When the tank bursts it is akin to the dam-break problem. A wall of water rushes forth and impinges on the barrier creating spray. Previous experiments (McHugh and Watt, 1998) considered the related configuration of a solitary wave impinging on a vertical wall. The present experiments more closely model the bursting tank case, and treat the effect of the distance between the tank and barrier. Results show that there is a sweet spot where height and horizontal distance of spray droplets are maximized. This ideal distance between tank and barrier is constant when scaled by the initial tank depth.

  5. Rogue waves in a water tank: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  6. Experimental and theoretical modelling of sand-water-object interaction under nonlinear progressive waves

    NASA Astrophysics Data System (ADS)

    Testik, Firat Yener

    An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical objects was investigated. Different scour regimes were identified experimentally and explained theoretically. Proper physical parameterizations on the time evolution and equilibrium scour characteristics were proposed and verified experimentally.

  7. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  8. The damping of ocean surface waves by a monomolecular film measured by wave staffs and microwave radars

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Jones, W. L.; Lange, P. A.; Richter, K.

    1981-01-01

    Open ocean and wave tank experiments were carried out with the aim of studying the damping of capillary and gravity waves by a monomolecular film. These films of biogenic origin influence air-sea interaction processes and thereby affect the use of remote sensing techniques in oceanography. Measurement was carried out by wave staffs, by a coherent X band microwave scatterometer mounted on a sea-based platform, and by an incoherent K band microwave scatterometer carried by an aircraft under moderate wind conditions. A wave attenuation of about 40-60% is observed in the frequency range between 3.2 and 16 Hz. Tank experiments show that a direct influence of oleyl alcohol surface films on wave damping is confined to frequencies equal to or greater than 2 Hz; a further indirect effect of films on the damping of ocean waves in the frequency range between 0.12 and 0.7 Hz (by modifying the wind input and wave-wave interaction mechanisms) is also indicated

  9. Bedforms induced by solitary waves: laboratory studies on generation and migration rate

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico; Paola, Chris

    2017-04-01

    This study presents experiments on the formation of sandy bedforms, produced by surface solitary waves (SSWs) in shallow water conditions. The experiments were carried out in a 12.0 m long, 0.15 m wide and 0.5 m high flume, at Saint Anthony Falls Laboratory in Minneapolis. The tank is filled by fresh water and a removable gate, placed at the left hand-side of the tank, divides the flume in two regions: the lock region and the ambient fluid region. The standard lock-release method generates SSWs by producing a displacement between the free surfaces that are divided by the gate. Wave amplitude, wavelength, and celerity depend on the lock length and on the water level difference between the two regions. Natural sand particles (D50=0.64) are arranged on the bottom in order to form a horizontal flat layer with a thickness of 2 cm. A digital pressure gauge and a high-resolution acoustic velocimeter allowed us to measure, locally, both pressure and 3D water velocity induced on the bottom by each wave. Image analysis technique is then used to obtain the main wave features: amplitude, wavelength, and celerity. Dye is finally used as vertical tracer to mark the horizontal speed induced by the wave. For each experiment we generated 400 waves, having the same features and we analyzed their action on sand particles placed on the bottom. The stroke, induced by each wave, entails a shear stress on the sand particles, causing sediment transport in the direction of wave propagation. Immediately after the wave passage, a back flow occurs near the bottom. The horizontal pressure gradient and the velocity field induced by the wave cause the boundary layer separation and the consequent reverse flow. Depending on the wave features and on the water depth, the boundary shear stress induced by the reverse flow can exceed the critical value inducing the back motion of the sand particles. The experiments show that the particle back motion is localized at particular cross sections along the tank, where the wave steepening occur. For this reason, the pressure and velocity measures were collected in several cross sections along the tank. The propagation of consecutive waves with the same features induces the generation of erosion and accumulation zones, which slowly evolve in isometric bedforms.

  10. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  11. An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System

    NASA Astrophysics Data System (ADS)

    Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji

    2012-11-01

    The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.

  12. Study on ambient noise generated from breaking waves simulated by a wave maker in a tank

    NASA Astrophysics Data System (ADS)

    Wei, Ruey-Chang; Chan, Hsiang-Chih

    2002-11-01

    This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.

  13. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  14. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2013-09-30

    motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully

  15. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE PAGES

    Bacelli, Giorgio; Coe, Ryan; Patterson, David; ...

    2017-04-01

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  16. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacelli, Giorgio; Coe, Ryan; Patterson, David

    Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less

  17. Ginzburg-Landau equation as a heuristic model for generating rogue waves

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2016-04-01

    Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.

  18. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  19. Wind Generated Rogue Waves in an Annular Wave Flume.

    PubMed

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  20. Tidal-Induced Ocean Dynamics as Cause of Enceladus' Tiger Stripe Pattern

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2013-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. The periodic activity of the tiger stripe faults shows a strong correlation with tidal forcing. Jets emanating from specific fault lines seem to be triggered at those places of the faults where tidal-induced stresses are largest immediately following closest orbital approach with Saturn [e.g., Hurford et al., Nature, 447, 292-294, 2007]. Thus jet activity seems to be directly induced by tidal forcing. However, this does not explain the characteristic regular pattern of the stripes themselves. Here we explore the possibility that this pattern is formed and maintained by induced, tidally and rotationally driven, fluid motions in the ocean underneath the icy surface of the tiger-stripe region. The remarkable spatial regularity of Enceladus' SPT fault lines is reminiscent of that observed at the surface of confined density-stratified fluids by the action of induced internal gravity waves. Theoretical analysis, numerical simulations and laboratory water tank experiments all indicate that wave attractors - particular limit orbits to which waves are focused in a fluid basin - naturally emerge in gravitationally (radial salt concentration or temperature differences) or rotationally stratified confined fluids as a function of forcing periodicity and fluid basin geometry [Maas et al., Nature, 338, 557-561, 1997]. We have found that ocean dynamical wave attractors induced by tidal-effective forcing of Enceladus' SPT salty water basin can reproduce the general characteristics of the observed tiger stripe pattern and even offer the possibility of constraining the 3D-form of the salty water basin underlying Enceladus' SPT. Vertical cross section of one of the water tank experiments. The tank is uniformly stratified with salty water and harmonically shaken. Wave attractors impinge at the surface of the tank at A, B and C, which are places where an overlying plate experiences enhanced stress levels. Distances A-B and B-C are not the same due to a sloping floor of the fluid tank. The length of the tank is about 1.5 m. Numbers at the bottom indicate mm.

  1. Laboratory Study of Water Surface Roughness Generation by Wave-Current Interaction

    NASA Technical Reports Server (NTRS)

    Klinke, Jochen

    2000-01-01

    Within the framework of this project, the blocking of waves by inhomogeneous currents was studied. A laboratory experiment was conducted in collaboration with Steven R. Long at the linear wave tank of the NASA Air-Sea Interaction Facility, Wallops Island, VA during May 1999. Mechanically-generated waves were blocked approximately 3m upstream from the wave paddle by an opposing current. A false bottom was used to obtain a spatially varying flow field in the measurement section of the wave tank. We used an imaging slope gauge, which was mounted directly underneath the sloping section of the false tank bottom to observe the wave field. For a given current speed, the amplitude and the frequency of the waves was adjusted so that the blocking occurred within the observed footprint. Image sequences of up to 600 images at up 100 Hz sampling rate were recorded for an area of approximately 25cm x 25cm. Unlike previous measurements with wave wire gauges, the captured image sequences show the generation of the capillary waves at the blocking point and give detailed insight into the spatial and temporal evolution of the blocking process. The image data were used to study the wave-current interaction for currents from 5 to 25 cm/s and waves with frequencies between 1 and 3 Hz. First the images were calibrated with regard to size and slope. Then standard Fourier techniques as well the empirical mode decomposition method developed by Dr. Norden Huang and Dr. Steven R. Long were employed to quantify the wave number downshift from the gravity to the capillary regime.

  2. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    NASA Astrophysics Data System (ADS)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  3. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model’s Motions and Loads Measurement in Realistic Sea Waves

    PubMed Central

    Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe

    2017-01-01

    Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379

  4. Deck Wetness and Extreme Motions Experiments: An Investigation into Establishing Reliable Statistics for Rare Events

    DTIC Science & Technology

    1990-02-01

    CAlA WACe Mns. b. Amalgamated for all tank runs: (1) Significant wave height and mdal period of achieved wave condition. (2) Mean And .S mortions...experimental conditions. It is impossible to set sa jndtrd run lengths for all experimental conditions and so a method should be developed to analyse the

  5. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  6. Laboratory Studies of Sea-Ice-Wave Interactions

    NASA Astrophysics Data System (ADS)

    Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.

    2016-12-01

    A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).

  7. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  8. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    NASA Astrophysics Data System (ADS)

    Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.

    2012-11-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  9. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  10. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  11. Acceleration Measurements During Landing in Rough Water of a 1/7-Scale Dynamic Model of Grumman XJR2F-1 Amphibian - Langley Tank Model 212, TED No. NACA 2378

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Zeck, Howard

    1947-01-01

    Tests of a 1/7 size model of the Grumman XJR2F-1 amphibian were made in Langley tank no.1 to examine the landing behavior in rough water and to measure the normal and angular accelerations experienced by the model during these landings. All landings were made normal to the direction of wave advance, a condition assumed to produce the greatest accelerations. Wave heights of 4.4 and 8.0 inches (2.5 and 4.7 ft, full size) were used in the tests and the wave lengths were varied between 10 and 50 feet (70 and 350 ft, full size). Maximum normal accelerations of about 6.5g were obtained in 4.4 inch waves and 8.5g were obtained in 8.0 inch waves. A maximum angular acceleration corresponding to 16 radians per second per second, full size, was obtained in the higher waves. The data indicate that the airplane will experience its greatest accelerations when landing in waves of about 20 feet (140 ft, full size) in length.

  12. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions

    NASA Astrophysics Data System (ADS)

    Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.

    2008-05-01

    The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  14. The New Year Wave: Generation, Propagation, Kinematics and Dynamics - Registered in a Seakeeping Basin

    NASA Astrophysics Data System (ADS)

    Clauss, Günther; Klein, Marco

    2010-05-01

    In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. One of the famous real world registrations is the so called 'New Year wave,' recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the temporal and spatial development of the New Year Wave generated in a model basin. To simulate the recorded New Year wave in the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is used. The method is applied to generate scenarios with a single high wave superimposed to irregular seas. During the experimental optimization special emphasis is laid on the exact reproduction of the wave height, crest height, wave period, as well as the vertical and horizontal asymmetries of the New Year Wave. The fully automated optimization process is carried out in a small wave tank. At the beginning of the optimization process, the scaled real-sea measured sea state is transformed back to the position of the piston type wave generator by means of linear wave theory and by multiplication with the electrical and hydrodynamic transfer functions in the frequency domain. As a result a preliminary control signal for the wave generator is obtained. Due to nonlinear effects in the wave tank, the registration of the freak wave at the target position generated by this preliminary control signal deviates from the predefined target parameters. To improve the target wave in the tank only a short section of the control signal in time domain has to be adapted. For these temporally limited local changes in the control signal, the discrete wavelet transformation is introduced into the optimization process which samples the signal into several decomposition levels where each resulting coefficient describes the control signal in a specific time range and frequency bandwidth. To improve the control signal, the experimental optimization routine iterates until the target parameters are satisfied by applying the subplex optimization method. The resulting control signal in the small wave tank is then transferred to a large wave tank considering the electrical and hydrodynamic RAOs of the respective wave generator. The extreme sea state with the embedded New Year Wave obtained with this method is measured at different locations in the tank, in a range from 2163 m (full scale) ahead of to 1470 m behind the target position-520 registrations altogether. The focus lies on the detailed description of a possible evolution of the New Year Wave over a large area and time interval. The analysis of the registrations reveals freak waves occurring at three different positions in the wave tank and the observed freak waves are developing from a wave group of three waves, which travels with constant speed along the wave tank up to the target position. The group velocity, wave propagation, and the energy flux of this wave group are analyzed within this paper.

  15. Evaluating Crude Oil Chemical Dispersion Efficacy In A Flow-Through Wave Tank Under Regular Non-Breaking Wave And Breaking Wave Conditions

    EPA Science Inventory

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude ...

  16. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  17. Laboratory tests of short intense envelope solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, A.; Clauss, G. F.; Klein, M.; Onorato, M.

    2012-04-01

    Stability of short intense nonlinear wave groups propagating over deep water is tested in laboratory runs which are performed in the facility of the Technical University of Berlin. The strongly nonlinear simulation of quasi-steady nonlinear wave groups within the framework of the Euler equations is used to generate the surface elevation time series at a border of the water tank. Besides, the exact analytic solution of the nonlinear Schrodinger equation is used for this purpose. The time series is then transformed to a wave maker signal with use of a designed transfer algorithm. Wave group propagation along the tank was recorded by 4 distant gauges and by an array of 6 densely situated gauges. This setup allows to consider the wave evolution from 10 to 85 m from the wave maker, and to obtain the wave envelope shape directly from the instrumental data. In the experiments wave groups were characterized by the steepness values up to kAcr < 0.32 and kAtr < 0.24, where k is the mean wavenumber, Acr is the crest amplitude, and Atr is the trough amplitude; and the maximum local wave slope was up to 0.34. Wave breaking phenomenon was not observed in the experiments. Different mean wave numbers and wave groups of different intensities were considered. In some cases the wave groups exhibit noticeable radiation in the course of propagation, though the groups are not dispersed fully. The effect of finite water depth is found to be significant on the wave group stability. Intense wave groups have shorter time of adjustment, what in some sense may help them to manifest their individuality clearer. The experimental tests confirm recent numerical simulations of fully nonlinear equations, where very steep stable single and interacting nonlinear wave groups were reported [1-3]. The quasi-stationary wave groups observed in numerical and laboratory experiments are strongly nonlinear analogues of the nonlinear Schrodinger envelope solitons. The results emphasize the importance of long-living nonlinear wave groups in dynamics of intense sea waves. [1] V.E. Zakharov, A.I. Dyachenko, A.O. Prokofiev, Eur. J. Mech. B / Fluids 25, 677 (2006). [2] A.I. Dyachenko, V.E. Zakharov, JETP Lett. 88, 307 (2008). [3] A.V. Slunyaev, JETP 109, 676 (2009).

  18. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.; Savage, B.; Johnson, B.

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  19. On the early stages of wind wave under non-stationary wind conditions.

    NASA Astrophysics Data System (ADS)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2017-04-01

    Most efforts in the study of the generation and evolution of wind waves have been conducted under constant wind. The balance of the transfer of different properties has been studied mainly for situations where the wave has already reached the equilibrium with the constant wind conditions. The purpose of these experiments is to study the early stages of the generation of waves under non-stationary wind conditions and to determine a balance in the exchange at the air-water interface for non-equilibrium wind conditions. A total of 16 experiments with a characteristic acceleration and deceleration rate of wind speed were conducted in a large wind-wave facility of Institut Pythéas (Marseille-France). The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. The momentum fluxes were estimated from hot wire anemometry at station 7. Also, the free surface displacement was measured along the channel tank at 11 stations where resistance wires were installed, except at stations 1, 2, and 7 where capacitance wires were installed. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. During experiments the wind intensity was abruptly increased with a constant acceleration rate over time, reaching a constant maximum intensity of 13 m/s. This constant velocity remains some time until the intensity is again reduced suddenly. We observed that wind drag coefficient values are higher for the experiments that present the lower acceleration rate; some field data from previous studies is presented for reference (Large and Pond 1981; Ocampo-Torres et al. 2011; Smith 1980; Yelland and Taylor 1996). The empirical grow curves show that in the experiments with lower acceleration, the wave field is more developed, showing higher dimensional energy and lower dimensional peak frequency. In the evolution of the spectral wave energy, there is first high frequency energy saturation, followed by a downshift of the wave-spectral peak frequency. Under the same wind speed, these two processes are more developed when the acceleration is low. Therefore, the acceleration rate has a direct impact in controlling how the energy and momentum transfer take place from the wind to the wave field. This work represents a contribution of RugDiSMar Project (CONACYT 155793), and of project CONACYT CB-2015-01 255377.

  20. The Influence of Surface Gravity Waves on Marine Current Turbine Performance

    NASA Astrophysics Data System (ADS)

    Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.

    2013-12-01

    Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging

  1. iss051e034021

    NASA Image and Video Library

    2017-05-02

    iss051e034021 (May 2, 2017) --- Astronaut Thomas Pesquet, of the European Space Agency (ESA), participates in the Fluidics experiment inside the Columbus laboratory module developed by ESA. Fluidics is exploring how liquids behave in spacecraft tanks and wave turbulence phenomena that occurs at the surface of liquids.

  2. Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling.

    PubMed

    O'Laughlin, Casey M; Law, Brent A; Zions, Vanessa S; King, Thomas L; Robinson, Brian; Wu, Yongsheng

    2017-11-15

    The size and settling velocity of oil-mineral aggregates (OMAs) derived from diluted bitumen are primary constituents in predictive models for evaluating the potential fate of oil spilled in the aquatic environment. A series of low sediment concentration (15mg·L -1 ), colder water (<10°C) wave tank experiments designed to measure variability in these parameters in naturally-formed OMAs in response the presence or absence of chemical dispersant are discussed. Corresponding lab experiments revealed settling velocities of artificially formed OMAs on the order of 0.1-0.4mm·s -1 . High-resolution imagery of settling particles were analyzed for particle size, density and settling velocity. In situ formation of OMAs in the wave tank was unsuccessful. Possible effects of chemical dispersant on natural sediment flocculation, the size of suspended oil droplets and clearance rates of suspended particles are discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring.

    PubMed

    Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna

    2014-01-01

    In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.

  4. Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure

    NASA Astrophysics Data System (ADS)

    Zhou, W.

    2017-12-01

    In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc. were measured on a weekly basis to monitor the plant response. Differences among the various groups were analyzed using repeated measures ANOVA to check for significance (P < 0.05). The results can help inform eco-shoreline projects in terms of plant selection and transplantation timing optimization, etc.

  5. Two dimensional fully nonlinear numerical wave tank based on the BEM

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Pang, Yongjie; Li, Hongwei

    2012-12-01

    The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.

  6. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  7. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2009-05-01

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.

  8. Experimental Study of the Effect of the Initial Spectrum Width on the Statistics of Random Wave Groups

    NASA Astrophysics Data System (ADS)

    Shemer, L.; Sergeeva, A.

    2009-12-01

    The statistics of random water wave field determines the probability of appearance of extremely high (freak) waves. This probability is strongly related to the spectral wave field characteristics. Laboratory investigation of the spatial variation of the random wave-field statistics for various initial conditions is thus of substantial practical importance. Unidirectional nonlinear random wave groups are investigated experimentally in the 300 m long Large Wave Channel (GWK) in Hannover, Germany, which is the biggest facility of its kind in Europe. Numerous realizations of a wave field with the prescribed frequency power spectrum, yet randomly-distributed initial phases of each harmonic, were generated by a computer-controlled piston-type wavemaker. Several initial spectral shapes with identical dominant wave length but different width were considered. For each spectral shape, the total duration of sampling in all realizations was long enough to yield sufficient sample size for reliable statistics. Through all experiments, an effort had been made to retain the characteristic wave height value and thus the degree of nonlinearity of the wave field. Spatial evolution of numerous statistical wave field parameters (skewness, kurtosis and probability distributions) is studied using about 25 wave gauges distributed along the tank. It is found that, depending on the initial spectral shape, the frequency spectrum of the wave field may undergo significant modification in the course of its evolution along the tank; the values of all statistical wave parameters are strongly related to the local spectral width. A sample of the measured wave height probability functions (scaled by the variance of surface elevation) is plotted in Fig. 1 for the initially narrow rectangular spectrum. The results in Fig. 1 resemble findings obtained in [1] for the initial Gaussian spectral shape. The probability of large waves notably surpasses that predicted by the Rayleigh distribution and is the highest at the distance of about 100 m. Acknowledgement This study is carried out in the framework of the EC supported project "Transnational access to large-scale tests in the Large Wave Channel (GWK) of Forschungszentrum Küste (Contract HYDRALAB III - No. 022441). [1] L. Shemer and A. Sergeeva, J. Geophys. Res. Oceans 114, C01015 (2009). Figure 1. Variation along the tank of the measured wave height distribution for rectangular initial spectral shape, the carrier wave period T0=1.5 s.

  9. Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Choquette, M.; Duncan, J. H.

    2011-11-01

    The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.

  10. Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.

    2016-01-01

    Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.

  11. Experimental observation of standing interfacial waves induced by surface waves in muddy water

    NASA Astrophysics Data System (ADS)

    Maxeiner, Eric; Dalrymple, Robert A.

    2011-09-01

    A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

  12. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.

  13. Antitank Warfare Seminar Held in Washington, DC on 14-15 October 1976.

    DTIC Science & Technology

    1976-10-01

    missed, and the guy jumped out of the tank and waved at him. It was a Tiger ( tank ) and the guy, very shocked and frightened, popped open the hatch and...is not clear enough. Something about the Tiger - tank , opening of the hatch... and the guy waving at Rudel. The question directed to Col. Rudel by the

  14. EFFECTS OF CHEMICAL DISPERSANTS AND MINERAL FINES ON CRUDE OIL DISPERSION IN A WAVE TANK UNDER BREAKING WAVES

    EPA Science Inventory

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  15. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    NASA Astrophysics Data System (ADS)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  16. WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, Kelley; Michelen, Carlos; Bosma, Bret

    2016-08-01

    The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is amore » follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.« less

  17. Formation of Cyclic Steps due to the Surge-type Turbidity Currents in a Flume Experiment

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.

    2016-12-01

    Supercritical turbidity currents often form crescentic step-like wavy structures, which have been found at the submarine canyons, and deltaic environments. Field observations of turbidity currents and seabed topography on the Squamish delta in British Columbia, Canada revealed that cyclic steps formed by the surge-type turbidity currents (e.g., Hughes Clarke et al., 2012a; 2012b; 2014). The high-density portion of the flow, which affects the sea floor morphology, lasted only 30-60 seconds. The questions arise if we can reconstruct paleo-flow condition from the morphologic features of these steps. We don't know answers right now because there have been no experiments about the formative conditions of cyclic steps due to the "surge-type" turbidity currents. Here we did preliminary experiments on the formation of cyclic steps due to the multiple surge-type density currents, and compare the morphology of the steps with those of Squamish delta. First of all, we measured wave length and wave height of each step from profiles of each channels of Squamish delta from the elevation data and calculated the wave steepness. Wave steepness of active steps ranges about 0.05 to 0.15, which is relatively larger compare with those of other sediment waves. And in general, wave steepness is larger in the proximal region. The experiments had been performed at Osaka Institute of Technology. A flume, which is 7.0 m long, 0.3 m deep and 2 cm wide, was suspended in a larger tank, which is 7.6 m long, 1.2 m deep and 0.3 m wide, filled with water. The inner flume tilted at 7 degrees. Mixture of salt water (1.17 g/cm3) and plastic particles (1.5 g/cm3, 0.1-0.18 mm in diameter), whose weight ratio is 10:1, poured into the upstream end of the inner flume from head tank for 5 seconds. Discharge of the mixture was 240mL/s, thus for 5seconds 1200mL of mixture was released into the inner flume. We made 130 surges. As a result, four steps were formed ultimately, which were moving toward upstream direction. Wave steepness of the steps increases as number of runs increases, and reached to close to the value of Squamish. We did the other experiment for the continuous turbidity current. The conditions of the experiment were same as those of surge-type experiment except the duration of the run, which was 990 seconds, but it did not form cyclic steps.

  18. Flowing Magnetized Plasma experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe

    2006-10-01

    Results from the Flowing Magnetized Plasma experiment at Los Alamos are summarized. Plasmas are produced using a modified coaxial plasma gun with a center electrode extending into a cylindrical vacuum tank with 0.75 m in radius and 4.5 m long. The basic diagnostics are Bdot probes for edge and internal magnetic field, Mach probes and Doppler spectroscopy for plasma flow in the axial and azimuthal directions, and Langmuir probes for plasma floating potential, electron density and temperature. We have found two different plasma flow patterns associated with distinct IV characteristics of the coaxial plasma gun, indicating axial flow is strongly correlated with the plasma ejection from the plasma gun. Global electromagnetic oscillations at frequencies below ion cyclotron frequency are observed, indicating that familiar waves at these frequencies, e.g. Alfven wave or drift wave, are strongly modified by the finite plasma beta. We eliminate the possibility of ion sound waves since the ion and electron temperatures are comparable, and therefore, ion sound waves are strongly Landau damped.

  19. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  20. Erosion of Earthen Levees by Wave Action

    NASA Astrophysics Data System (ADS)

    Ozeren, Y.; Wren, D. G.; Reba, M. L.

    2016-02-01

    Earthen levees of aquaculture and irrigation reservoirs in the United States often experience significant erosion due to wind-generated waves. Typically constructed using local soils, unprotected levees are subjected to rapid erosion and retreat due to wind generated waves and surface runoff. Only a limited amount of published work addresses the erosion rates for unprotected levees, and producers who rely on irrigation reservoirs need an economic basis for selecting a protection method for vulnerable levees. This, in turn, means that a relationship between wave energy and erosion of cohesive soils is needed. In this study, laboratory experiments were carried out in order to quantify wave induced levee erosion and retreat. A model erodible bank was packed using a soil consisting of approximately 14% sand, 73% silt, and 13% clay in a 20.6 m long 0.7 m wide and 1.2 m deep wave tank at the USDA-ARS, National Sedimentation Laboratory in Oxford MS. The geometry of the levee face was monitored by digital camera and the waves were measured by means of 6 capacitance wave staffs. Relationships were established between levee erosion, edge and retreat rates, and incident wave energy.

  1. Interfacial film formation: influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank.

    PubMed

    King, Thomas L; Clyburne, Jason A C; Lee, Kenneth; Robinson, Brian J

    2013-06-15

    Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  3. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  4. Mathematical model of snake-type multi-directional wave generation

    NASA Astrophysics Data System (ADS)

    Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan

    2018-01-01

    Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.

  5. Experimental observation of steady inertial wave turbulence in deep rotating flows

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Sharon, Eran

    2015-11-01

    We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.

  6. Wave Tank Studies On Formation And Transport Of OMA From The Chemically Dispersed Oil

    EPA Science Inventory

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on dispersion of oil, formation ...

  7. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  8. An Experimental Study of Droplets Produced by a Plunging Breakers

    NASA Astrophysics Data System (ADS)

    Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James

    2016-11-01

    In this study, the production of droplets by a mechanically generated plunging breaking water wave is investigated in a wave tank. The breaker, with an amplitude of 0.070 m, is generated repeatedly with a programmable wave maker by using a dispersively focused wave packet (average frequency 1.15 Hz). The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a cinematic digital in-line holographic system positioned at 30 locations along a horizontal plane that is 1 cm above the maximum wave crest height. This measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the breaking wave is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  9. Laboratory study of spectral waves over a muddy bottom

    NASA Astrophysics Data System (ADS)

    Maxeiner, E.; Dalrymple, R. A.

    2010-12-01

    The attenuation of water waves propagating over a muddy ocean floor has been studied extensively both analytically and experimentally over the past 30 years. Possible mechanisms for this include surface wave interactions with the bottom, surface wave interactions with waves formed at the water/mud interface (lutocline) and shear instability at the water/mud interface. Typically these studies have focused on monochromatic waves. Observations of wave attenuation in the field, however, are subject to a spectrum of wave frequencies and sizes. A few field studies (Sheremet and Stone, 2003; Elgar and Raubenheimer, 2008) have explored the possible effects that a wide spectrum of wave frequencies may have on wave damping mechanisms. In this study, the wave attenuation exhibited by a sea spectrum over a muddy bottom is studied experimentally in a laboratory for the first time. Using an 18 m-long wave tank at the Coastal Engineering Laboratory at Johns Hopkins University, a piston-style wave maker is used to create both monochromatic and spectral waves. A 10 m-long section of the tank floor incorporates a recessed layer of kaolinite clay which subsequently mixes with the overlying water in the presence of waves. Testing consists of three phases. First, a series of monochromatic wave trains are produced over a range of wave frequencies and in a range of water depths to assess the damping behavior with respect to a variety of parameters such as wave frequency, wave height and water depth. Damping is assessed by comparing wave height at various longitudinal locations in the tank. Second, “wave beats” are created by superimposing waves of two frequencies to create a longer envelope. Third, the wave maker is used to generate a representative random sea condition, based on the Pierson-Moskowitz sea spectrum. For this type of testing, damping is assessed by measuring wave energy flux over a period of time at various longitudinal locations in the tank. Spectral analysis is also performed at these locations to track changing spectral energy, as previous studies have hypothesized mechanisms of energy transfer between waves of different frequencies. This study is part of a Multidisciplinary University Research Initiative (MURI), which includes on computational, laboratory and field studies of wave damping in nearshore areas of the Gulf of Mexico along the coast of Louisiana.

  10. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.; Holmes, J. J.

    1977-01-01

    In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.

  11. Reviews Equipment: LabQuest 2 Equipment: Rubens' Tube Equipment: Ripple Strobe Tank Book: God and the Atom Book: Magnificent Principia, Exploring Isaac Newton's Masterpiece Book: Talking Science: Language, Learning, and Values Classroom Video: Maxwell's Equations Book: Exploring Quantum Physics Through Hands-on Projects Web Watch

    NASA Astrophysics Data System (ADS)

    2013-11-01

    WE RECOMMEND LabQuest 2 New logger now includes mobile data sharing Rubens' Tube Sturdy Rubens' tube ramps up the beat Ripple Strobe Tank Portable ripple tank makes waves in and out of the lab God and the Atom Expertly told story of the influence of atomism Maxwell's Equations Video stands the test of time Exploring Quantum Physics Through Hands-on Projects Mixture of theory and experiment hits the spot WORTH A LOOK Magnificent Principia, Exploring Isaac Newton's Masterpiece The tricky task of summarizing Newton's iconic work Talking Science: Language, Learning, and Values Interesting book tackles communication in the classroom WEB WATCH Interactive website plans a trip to Mars ... documentary peers into telescopes ... films consider the density of water

  12. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  13. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array.

    PubMed

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  14. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    NASA Astrophysics Data System (ADS)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  15. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    NASA Astrophysics Data System (ADS)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  16. An Experimental Study Comparing Droplet Production by a Strong Plunging and a Weak Spilling Breaking Water Waves

    NASA Astrophysics Data System (ADS)

    Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James

    2017-11-01

    In this study, the production of droplets by two mechanically generated breaking water waves is investigated in a wave tank. A strong plunging breaker and weak spilling breaker are generated repeatedly with a programmable wave maker by using two dispersively focused wave packets with the same wave maker motion profile shape (average frequency 1.15 Hz) and two overall amplitude factors. The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a high speed (650 Hz) cinematic digital in-line holographic system positioned at various locations along a horizontal plane that is 1 cm above the maximum wave crest height. The measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the two breaking waves is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  17. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  18. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.

  19. The influence of surface waves on tidal turbine performance characteristics

    NASA Astrophysics Data System (ADS)

    Van Benthem, M.; Luznik, L.; Flack, K.; Lust, E.

    2012-12-01

    Performance characteristics are presented for a 1/25th scale horizontal axis marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 x 105). The experiments were performed in the 116 m towing tank at the United States Naval Academy at two depths 0.8D and 1.6D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase.

  20. The Influence of surface waves on marine current turbine performance

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2012-11-01

    Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at a depth of 0.8D measured from the blade tip to the mean free surface. The performance characteristics without waves match expected results from blade-element-momentum theory. Results show that the average power coefficient is unaffected by the presence of waves, however, the phase averaged results indicate significant variation with wave phase. Work supported by ONR.

  1. The Effects of Wind and Surfactants on Mechanically Generated Spilling Breakers

    NASA Astrophysics Data System (ADS)

    Liu, X.; Diorio, J. D.; Duncan, J. H.

    2007-11-01

    The effects of both wind and surfactants on mechanically generated weakly spilling breakers are explored in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). A wave maker, which resides at the upwind end of the tank, is used to generate the breakers via a dispersive focusing method with a central wave packet frequency of 1.15 Hz. Low wind speeds (less than 3.0 m/s) are used to minimize the effect of short-wavelength wind-generated waves on the breakers. The profiles of the spilling breakers along the center plane of the tank are measured with an LIF technique that utilizes a high-speed digital movie camera. Measurements are performed with clean water and water mixed with various concentrations of Triton X-100, a soluble surfactant. It is found that the capillary waves/bulge patterns found in the initial stages of spilling breakers are dramatically affected by wind and surfactants. The size of bulge increases with the wind speed while the capillary waves are kept nearly the same. In the presence of surfactants and wind, both the amplitude and number of capillary waves are reduced and the slope of the front face of the wave increases.

  2. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  3. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  4. Attenuation of standing waves in a large water tank using arrays of large tethered encapsulated bubbles.

    PubMed

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2014-04-01

    The use of bubble resonance effects to attenuate low-frequency underwater sound was investigated experimentally in a large water tank. A compact electromechanical sound source was used to excite standing wave fields at frequencies ranging between 50 and 200 Hz in the tank. The source was then surrounded by a stationary array of tethered encapsulated air bubbles, and reduction in standing wave amplitude by as much as 26 dB was observed. The bubbles consisted of either thin-shelled latex balloons with approximately 5 cm radii or thicker-shelled vinyl boat fenders with 6.9 cm radii. The effects of changing the material and thickness of the bubble shells were found to be in qualitative agreement with predictions from Church's model for sound propagation in a liquid containing encapsulated bubbles [J. Acoust. Soc. Am. 97, 1510-1521 (1995)]. Although demonstrated here for low frequency noise abatement within a tank, which is useful for quieting acoustic test facilities and large tanks used for marine life husbandry, the eventual aim of this work is to use stationary arrays of large tethered encapsulated bubbles to abate low frequency underwater noise from anthropogenic sources in the marine environment.

  5. Sloshing response of a reactor tank with internals

    NASA Astrophysics Data System (ADS)

    Ma, D. C.; Gvildys, J.; Chang, Y. W.

    The sloshing response of a large reactor tank with in tank components is presented. It is indicated that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free surface but increases the dynamic pressure in the fluid.

  6. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  7. Localized wave pulses in the keyport experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D.H.; Lewis, D.K.

    1998-02-17

    Localized wave (LW) pulses were produced using a standard Navy array in the anechoic tank at Navy Underwater Weapons Center (NUWC) Keyport. The LW pulses used were the MPS pulse first derived by Ziolkowski, and a new type of pulse based on a superposition of Gaussian beam modes. This new type is motivated by a desire to make a comparison of the MPS pulse with another broad band pulse built from solutions to the wave equation. The superposed Gaussian pulse can be described by parameters which are analogous to those describing the MPS pulse. We compare the directivity patternsand themore » axial energy decay between the pulses. We find the behavior of the pulses to be similar so that the superposed Gaussian could be another candidate in the class of low diffractive pulses known as localized waves.« less

  8. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  9. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  10. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank

    NASA Astrophysics Data System (ADS)

    Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong

    2017-08-01

    A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.

  11. A laboratory investigation of mixing dynamics between biofuels and surface waters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Cotel, Aline

    2017-11-01

    Recently, production and usage of ethanol-blend fuels or biofuels have increased dramatically along with increasing risk of spilling into surface waters. Lack of understanding of the environmental impacts and absence of standard clean-up procedures make it crucial to study the mixing behavior between biofuels and water. Biofuels are represented by a solution of ethanol and glycol. A Plexiglas tank in conjunction with a wave generator is used to simulate the mixing of surface waters and biofuels under different natural conditions. In our previous experiments, two distinct mixing regimes were observed. One regime was driven by turbulence and the other by interfacial instabilities. However, under more realistic situations, without wind driven waves, only the first mixing regime was found. After one minute of rapid turbulent mixing, biofuels and water were fully mixed and no interface was formed. During the mixing process, chemical reactions happened simultaneously and influenced mixing dynamics. Current experiments are investigating the effect of waves on the mixing dynamics. Support from NSF CBET 1335878.

  12. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  13. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  14. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    PubMed

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.

  16. Acceleration Measurements During Landings of a 1/5.5-Size Dynamic Model of the Columbia XJL-1 Amphibian in Smooth Water and in Waves: Langley Tank Model 208M, TED No. NACA 2336

    NASA Technical Reports Server (NTRS)

    Clement, Eugene P.; Havens, Robert F.

    1947-01-01

    A 1/5.5-size powered dynamic model of the Columbia XJL-1 amphibian was landed in Langley tank no. 1 in smooth water and in oncoming waves of heights from 2.1 feet to 6.4 feet (full-size) and lengths from 50 feet to 264 feet (full-size). The motions and the vertical accelerations of the model were continuously recorded. The greatest vertical acceleration measured during the smooth-water landings was 3.1g. During landings in rough water the greatest vertical acceleration measured was 15.4g, for a landing in 6.4-foot by 165-foot waves. The impact accelerations increased with increase in wave height and, in general, decreased with increase in wave length. During the landings in waves the model bounced into the air at stalled attitudes at speeds below flying speed. The model trimmed up to the mechanical trim stop (20 deg) during landings in waves of heights greater than 2.0 feet. Solid water came over the bow and damaged the propeller during one landing in 6.4-foot waves. The vertical acceleration coefficients at first impact from the tank tests of a 1/5.5-size model were in fair agreement with data obtained at the Langley impact basin during tests of a 1/2-size model of the hull.

  17. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability

    DOE PAGES

    Roberts, M. S.; Jacobs, J. W.

    2015-12-07

    Rayleigh–Taylor instability experiments are performed using both immiscible and miscible incompressible liquid combinations having a relatively large Atwood number ofmore » $$A\\equiv ({\\it\\rho}_{2}-{\\it\\rho}_{1})/({\\it\\rho}_{2}+{\\it\\rho}_{1})=0.48$$. The liquid-filled tank is attached to a test sled that is accelerated downwards along a vertical rail system using a system of weights and pulleys producing approximately$1g$$net acceleration. The tank is backlit and images are digitally recorded using a high-speed video camera. The experiments are either initiated with forced initial perturbations or are left unforced. The forced experiments have an initial perturbation imposed by vertically oscillating the liquid-filled tank to produce Faraday waves at the interface. The unforced experiments rely on random interfacial fluctuations, resulting from background noise, to seed the instability. The main focus of this study is to determine the effects of forced initial perturbations and the effects of miscibility on the growth parameter,$${\\it\\alpha}$$. Measurements of the mixing-layer width,$$h$$, are acquired, from which$${\\it\\alpha}$$is determined. It is found that initial perturbations of the form used in this study do not affect measured$${\\it\\alpha}$$values. However, miscibility is observed to strongly affect$${\\it\\alpha}$$, resulting in a factor of two reduction in its value, a finding not previously observed in past experiments. In addition, all measured$${\\it\\alpha}$values are found to be smaller than those obtained in previous experimental studies.« less

  18. Development Of A Numerical Tow Tank With Wave Generation To Supplement Experimental Efforts

    DTIC Science & Technology

    2017-12-01

    vehicles CAD computer aided design CFD computational fluid dynamics FVM finite volume method IO information operations ISR intelligence, surveillance, and...deliver a product that I am truly proud of. xv THIS PAGE INTENTIONALLY LEFT BLANK xvi CHAPTER 1: Introduction 1.1 Importance of Tow Tank Testing Modern...wedge installation. 1 In 2016, NPS student Ensign Ryan Tran adapted an existing vertical plunging wedge wave maker design used at the U.S. Naval

  19. Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study

    NASA Astrophysics Data System (ADS)

    Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.

    2017-12-01

    Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the effective wave base. Bed thicknesses, grain-size data, sedimentary structures and fabrics measured in the rhythmically bedded, combined-flow turbidites of the Elkton Siltstone will be interpreted in the context of these experiments.

  20. Design of Buoys for Mounting Wind Turbines at Exposed Sites

    NASA Astrophysics Data System (ADS)

    Erdoğan, Beytullah; Çelıkkol, Barbaros; Swift, Robinson

    2018-04-01

    In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.

  1. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    NASA Astrophysics Data System (ADS)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  2. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    PubMed

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  3. Yi-Hsiang Yu | NREL

    Science.gov Websites

    Yi-Hsiang Yu's expertise is in marine energy system design and performance analysis, hydrodynamics , a wave-to-wire numerical model for design and analysis of wave energy conversion systems, wave tank the design load for wave energy systems. Yi-Hsiang is currently serving as the associate editor of the

  4. Wave loading on bridge decks : final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    This report covers the results of experimental and theoretical analyses of wave loading on bridge superstructures. A number of wave tank tests were performed on both slab and girder type spans with different water depths, span positions relative to t...

  5. A Marine Aerosol Reference Tank system as a breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2012-12-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  6. Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?

    NASA Astrophysics Data System (ADS)

    Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic

    2015-11-01

    The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.

  7. Self-similar Theory of Wind-driven Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.

    2015-12-01

    More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.

  8. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  9. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2010-09-01

    The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p<0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 degrees C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 degrees C), and under regular wave conditions at all temperatures (10-17 degrees C), with DDE<15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD < or = 200 microm), whereas ineffective dispersion produced large oil droplets (with VMD > or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  11. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  12. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  13. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  14. When static media promote active learning: annotated illustrations versus narrated animations in multimedia instruction.

    PubMed

    Mayer, Richard E; Hegarty, Mary; Mayer, Sarah; Campbell, Julie

    2005-12-01

    In 4 experiments, students received a lesson consisting of computer-based animation and narration or a lesson consisting of paper-based static diagrams and text. The lessons used the same words and graphics in the paper-based and computer-based versions to explain the process of lightning formation (Experiment 1), how a toilet tank works (Experiment 2), how ocean waves work (Experiment 3), and how a car's braking system works (Experiment 4). On subsequent retention and transfer tests, the paper group performed significantly better than the computer group on 4 of 8 comparisons, and there was no significant difference on the rest. These results support the static media hypothesis, in which static illustrations with printed text reduce extraneous processing and promote germane processing as compared with narrated animations.

  15. Levee Scour Protection for Storm Waves

    NASA Astrophysics Data System (ADS)

    Johnson, E.; Sustainable; Resiliency in Levee Scour Protection

    2011-12-01

    Earnest Johnson, Firat Y. Testik *, Nadarajah Ravichandran Civil Engineering, Clemson University, Clemson, SC, USA * Contact author ftestik@clemson.edu Levee failure due to scouring has been a prominent occurrence among intense storm surges and waves, giving rise to the implementation of various scour protection measures over the years. This study is to investigate the levee scour and to compare different scour protection measures on a model-levee system in a laboratory wave tank. The protection measures that are tested and compared for their effectiveness in this study include turf reinforcement mats, woven geotextiles, and core-locs. This is an ongoing research effort and experiments are currently being conducted with model levees constructed based upon the United States Army Corps of Engineers' levee design and construction guidelines under various simulated storm conditions. Parameters such as wave elevations, deformation time history of the floodwall, and the scour depth are measured in each test. The finding of this research will be translated to provide effective scour protection measures for robust levee designs.

  16. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  17. Evaluation of Composite-Hull Ships Operating in Arctic Ice

    DTIC Science & Technology

    2016-06-01

    controller. During the time of thesis submission, public works closed the NPS tow tank spaces for environmental characterization of asbestos , as shown...environmental characterization of asbestos shut down the Halligan Hall tow tank spaces. This prevented the researcher to fully assemble the wave generating

  18. Spectral mass gauging of unsettled liquid with acoustic waves

    NASA Astrophysics Data System (ADS)

    Feller, Jeffrey; Kashani, Ali; Khasin, Michael; Muratov, Cyrill; Osipov, Viatcheslav; Sharma, Surendra

    2017-12-01

    Propellant mass gauging is one of the key technologies required to enable the next step in NASA’s space exploration program. At present, there is no reliable method to accurately measure the amount of unsettled liquid propellant in a large-scale propellant tank in micro- or zero gravity. Recently we proposed a new approach to use sound waves to probe the resonance frequencies of the two-phase liquid-gas mixture and take advantage of the mathematical properties of the high frequency spectral asymptotics to determine the volume fraction of the tank filled with liquid. We report the current progress in exploring the feasibility of this approach in the case of large propellant tanks, both experimental and theoretical. Excitation and detection procedures using solenoids for excitation and both hydrophones and accelerometers for detection have been developed. A 3% uncertainty for mass-gauging was demonstrated for a 200-liter tank partially filled with liquid for various unsettled configurations, such as tilts and artificial ullages.

  19. From the paddle to the beach - A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations

    NASA Astrophysics Data System (ADS)

    Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.

    2012-01-01

    This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.

  20. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  1. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.

    1977-01-01

    The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.

  2. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  3. The Influence of depth and surface waves on marine current turbine performance

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa; van Benthem, Max; Walker, Jessica

    2013-11-01

    Performance characteristics are presented for a 1/25th scale marine current turbine operating in calm conditions and in the presence of intermediate and deep water waves. The two-bladed turbine has radius of 0.4 m and a maximum blade pitch of 17°. The hydrofoil is a NACA63-618 which was selected to be Reynolds number independent for lift in the operational range (ReC = 2 - 4 × 105) . The experiments were performed in the 116 m tow-tank at the United States Naval Academy at depths of 0.8D and 1.75D measured from the blade tip to the mean free surface. Overall average values for power and thrust coefficient were found to be insensitive to wave form and weakly sensitive to turbine depth. Waves yield a small increase in turbine performance which can be explained by Stokes drift. Variations on performance parameters are on the same order of magnitude as the average value especially near the mean free surface and in the presence of high energy waves. Office of Naval Research.

  4. Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations

    NASA Astrophysics Data System (ADS)

    Cienfuegos, R.; Duarte, L.; Hernandez, E.

    2008-12-01

    Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.

  5. Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.

  6. Toxicity of crude oil chemically dispersed in a wave tank to embryos of Atlantic herring (Clupea harengus).

    PubMed

    Greer, Colleen D; Hodson, Peter V; Li, Zhengkai; King, Thomas; Lee, Kenneth

    2012-06-01

    Tests of crude oil toxicity to fish are often chronic, exposing embryos from fertilization to hatch to oil solutions prepared using standard mixing procedures. However, during oil spills, fish are not often exposed for long periods and the dynamic nature of the ocean is not easily replicated in the lab. Our objective was to determine if brief exposures of Atlantic herring (Clupea harengus) embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil dispersed in a more realistic model system. Embryos were first exposed to chemically dispersed Alaska North Slope crude and Arabian light crude oil for 2.4 h to 14 d from fertilization to determine if exposure time affected toxicity. Toxicity increased with exposure time, but 2.4-h exposures at realistic concentrations of oil induced blue-sac disease and reduced the percentage of normal embryos at hatch; there was little difference in toxicity between the two oils. Secondly, oil was chemically dispersed in a wave tank to determine if the resultant oil solutions were as toxic to herring embryos as laboratory-derived dispersed oil using a single exposure period of 24 h. Samples taken 15 min postdispersion were more toxic than laboratory-prepared solutions, but samples taken at 5, 30, and 60 min postdispersion were less toxic. Overall, the laboratory- and wave tank-derived solutions of dispersed oil provided similar estimates of toxicity despite differences in the methods for preparing test solutions, suggesting that laboratory and wave tank data are a reliable basis for ecological risk assessments of spilled oil. Copyright © 2012 SETAC.

  7. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  8. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    NASA Astrophysics Data System (ADS)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  9. Recording Images Observed Using Ripple Tanks

    ERIC Educational Resources Information Center

    Auty, Geoff

    2018-01-01

    Diagrams and photographs (or computer simulations) should not replace effective observations of the wave properties that can be illustrated using a ripple tank, but they can provide support when discussing and revising what has been observed. This article explains and illustrates a route towards successful photography, which is much easier with…

  10. Liquid hydrogen slosh waves excited by constant reverse gravity acceleration of geyser initiation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.; Lee, C. C.

    1992-01-01

    The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank before main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing the optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet. In this study slosh wave excitation induced by the resettling flowfield during the course of liquid reorientation with the initiation of geyser for liquid-filled levels of 30, 50, 65, 70, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed. Slosh wave excitations will affect the fluid stress distribution exerted on the container wall and shift the fluid mass distribution inside the container, which imposes the time-dependent variations in the moment of inertia of the container. This information is important for the spacecraft control during the course of liquid reorientation.

  11. Wavelength selection and symmetry breaking in orbital wave ripples

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Perron, J. Taylor; Kao, Justin C. T.; Myrow, Paul M.

    2014-10-01

    Sand ripples formed by waves have a uniform wavelength while at equilibrium and develop defects while adjusting to changes in the flow. These patterns arise from the interaction of the flow with the bed topography, but the specific mechanisms have not been fully explained. We use numerical flow models and laboratory wave tank experiments to explore the origins of these patterns. The wavelength of "orbital" wave ripples (λ) is directly proportional to the oscillating flow's orbital diameter (d), with many experimental and field studies finding λ/d ≈ 0.65. We demonstrate a coupling that selects this ratio: the maximum length of the flow separation zone downstream of a ripple crest equals λ when λ/d ≈ 0.65. We show that this condition maximizes the growth rate of ripples. Ripples adjusting to changed flow conditions develop defects that break the bed's symmetry. When d is shortened sufficiently, two new incipient crests appear in every trough, but only one grows into a full-sized crest. Experiments have shown that the same side (right or left) wins in every trough. We find that this occurs because incipient secondary crests slow the flow and encourage the growth of crests on the next flank. Experiments have also shown that when d is lengthened, ripple crests become increasingly sinuous and eventually break up. We find that this occurs because crests migrate preferentially toward the nearest adjacent crest, amplifying any initial sinuosity. Our results reveal the mechanisms that form common wave ripple patterns and highlight interactions among unsteady flows, sediment transport, and bed topography.

  12. Wave Tank Studies of Phase Velocities of Short Wind Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  13. Numerical Investigation of Three-dimensional Instability of Standing Waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  14. Monitoring ice thickness and elastic properties from the measurement of leaky guided waves: A laboratory experiment.

    PubMed

    Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine

    2017-11-01

    The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.

  15. On the unsteady gravity-capillary wave pattern found behind a slow moving localized pressure distribution

    NASA Astrophysics Data System (ADS)

    Masnadi, N.; Duncan, J. H.

    2013-11-01

    The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.

  16. Preliminary Simulations of the Ullage Dynamics in Microgravity During the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  17. Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  18. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial condensation front exhibited large accelerations, with velocity varying from few tens of m/s up to 479 (±0.5) m/s, at distances of 1.5 (±0.3) cm and in times of 0.1 ms. This process preceded the appearance of the Ar front. Our first results suggest that the evaporation of moisture induced by compression waves associated with the air shock is able to accelerate particles (ca.100s microns in size) efficiently, at short distances. This process could have broader implications in active volcanic areas where shock waves are generated, for the damage that may follow.

  19. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer between the liquid and gas phases as the ejected droplets travel well into the warmer gas region.

  20. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2008-05-01

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.

  1. Surface Gravity Waves: Resonance in a Fish Tank

    ERIC Educational Resources Information Center

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  2. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  3. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  4. Winds, waves and shorelines from ancient martian seas

    NASA Astrophysics Data System (ADS)

    Banfield, Don; Donelan, Mark; Cavaleri, Luigi

    2015-04-01

    We consider under what environmental conditions water waves (and thus eventually shorelines) should be expected to be produced on hypothetical ancient martian seas and lakes. For winds and atmospheric pressures that are too small, no waves should be expected, and thus no shorelines. If the winds and atmospheric pressure are above some threshold, then waves can be formed, and shorelines are possible. We establish these criteria separating conditions under which waves will or will not form on an ancient martian open body of water. We consider not only atmospheric pressure and wind, but also temperature and salinity, but find these latter effects to be secondary. The normal criterion for the onset of water waves under terrestrial conditions is extended to recognize the greater atmospheric viscous boundary layer depth for low atmospheric pressures. We used terrestrial wave models to predict the wave environment expected for reasonable ranges of atmospheric pressure and wind for end-member cases of ocean salinity. These models were modified only to reflect the different fluids considered at Mars, the different martian surface gravity, and the varying atmospheric pressure, wind and fetch. The models were favorably validated against one another, and also against experiments conducted in a wave tank in a pressure controlled wind tunnel (NASA Ames MARSWIT). We conclude that if wave-cut shorelines can be confirmed on Mars, this can constrain the range of possible atmospheric pressures and wind speeds that could have existed when the open water was present on Mars.

  5. Experimental investigation on the hydrodynamic performance of a wave energy converter

    NASA Astrophysics Data System (ADS)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  6. The Harp probe - An in situ Bragg scattering sensor

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, E.; Huang, N. E.; Long, S. R.; Bliven, L. F.

    1984-01-01

    A wave sensor, consisting of parallel, evenly spaced capacitance wires, whose output is the sum of the water surface deflections at the wires, has been built and tested in a wave tank. The probe output simulates Bragg scattering of electromagnetic waves from a water surface with waves; it can be used to simulate electromagnetic probing of the sea surface by radar. The study establishes that the wave probe, called the 'Harp' for short, will simulate Bragg scattering and that it can also be used to study nonlinear wave processes.

  7. Assessment Of Chemical Dispersant Effectiveness In A Wave Tank Under Regular Non-Breaking And Breaking Wave Conditions

    EPA Science Inventory

    Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...

  8. Laboratory estimation of net trophic transfer efficiencies of PCB congeners to lake trout (Salvelinus namaycush) from its prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Rediske, Richard R.; O'Keefe, James P.; David, Solomon R.

    2014-01-01

    A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.

  9. Flow measurement around a model ship with propeller and rudder

    NASA Astrophysics Data System (ADS)

    van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.

    2006-04-01

    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.

  10. Dielectric supported radio-frequency cavities

    DOEpatents

    Yu, David U. L.; Lee, Terry G.

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  11. Ground testing on the nonvented fill method of orbital propellant transfer: Results of initial test series

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The results are presented of a series of no-vent fill experiments conducted on a 175 cu ft flightweight hydrogen tank. The experiments consisted of the nonvented fill of the tankage with liquid hydrogen using two different inlet systems (top spray, and bottom spray) at different tank initial conditions and inflow rates. Nine tests were completed of which six filled in excess of 94 percent. The experiments demonstrated a consistent and repeatable ability to fill the tank in excess of 94 percent using the nonvented fill technique. Ninety-four percent was established as the high level cutoff due to requirements for some tank ullage to prevent rapid tank pressure rise which occurs in a tank filled entirely with liquid. The best fill was terminated at 94 percent full with a tank internal pressure less than 26 psia. Although the baseline initial tank wall temperature criteria was that all portions of the tank wall be less than 40 R, fills were achieved with initial wall temperatures as high as 227 R.

  12. Turbulent flow through channels in a viscously deforming matrix

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Hewitt, Ian; Neufeld, Jerome

    2017-11-01

    Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.

  13. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  14. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    NASA Astrophysics Data System (ADS)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  15. Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.

  16. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossmann, Yvan, E-mail: yvan.dossmann@anu.edu.au; CNRM-GAME, UMR3589 METEO-FRANCE and CNRS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01; Laboratoire d’Aérologie, 14 avenue Edouard Belin, 31400 Toulouse

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in twomore » series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case.« less

  17. Internal waves and rectification in a linearly stratified fluid

    NASA Astrophysics Data System (ADS)

    Pérenne, Nicolas; Renouard, Dominique P.

    Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.

  18. Ultrasonic monitoring of spontaneous imbibition experiments: Acoustic signature of fluid migration

    NASA Astrophysics Data System (ADS)

    David, Christian; Barnes, Christophe; Desrues, Mathilde; Pimienta, Lucas; Sarout, Joël.; Dautriat, Jérémie

    2017-07-01

    Capillary rise experiments (spontaneous imbibition tests) were conducted in the laboratory with ultrasonic and X-ray monitoring on the Sherwood sandstone and the Majella grainstone. The aim was to provide a direct comparison between the variation in seismic attributes (amplitude, velocity, spectral content, and energy) and the actual fluid distribution in the rock. Two pairs of ultrasonic P wave sensors located at different heights on a cylindrical rock specimen recorded every 5 s the waveforms when capillary forces make water rise up into the rock from the bottom in contact with a water tank. Simultaneously, computerized tomography scan images of a vertical cross section were also recorded. Two important results were found. (i) The amplitude of the first P wave arrival is impacted by the upward moving fluid front before the P wave velocity is, while the fluid front has not yet reached the sensors level. In contrast, the P wave velocity decreases when the fluid front reaches the Fresnel clearance zone. The spectral analysis of the waveforms shows that the peak frequency amplitude is continuously decreasing without noticeable frequency shift. (ii) A methodology based on the calculation of the analytical signal and instantaneous phase was designed to decompose each waveform into discrete wavelets associated with direct or reflected waves. The energy carried by the wavelets is very sensitive to the fluid substitution process: the coda wavelets related to reflections on the bottom end face of the specimen are impacted as soon as imbibition starts and can be used as a precursor for the arriving fluid.

  19. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  20. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Rivalta, Eleonora; Woith, Heiko; Walter, Thomas R.

    2016-06-01

    Large earthquakes sometimes activate volcanoes both in the near field as well as in the far field. One possible explanation is that shaking may increase the mobility of the volcanic gases stored in magma reservoirs and conduits. Here experimentally and theoretically we investigate how sloshing, the oscillatory motion of fluids contained in a shaking tank, may affect the presence and stability of bubbles and foams, with important implications for magma conduits and reservoirs. We adopt this concept from engineering: severe earthquakes are known to induce sloshing and damage petroleum tanks. Sloshing occurs in a partially filled tank or a fully filled tank with density-stratified fluids. These conditions are met at open summit conduits or at sealed magma reservoirs where a bubbly magma layer overlays a newly injected denser magma layer. We conducted sloshing experiments by shaking a rectangular tank partially filled with liquids, bubbly fluids (foams) and fully filled with density-stratified fluids; i.e., a foam layer overlying a liquid layer. In experiments with foams, we find that foam collapse occurs for oscillations near the resonance frequency of the fluid layer. Low viscosity and large bubble size favor foam collapse during sloshing. In the layered case, the collapsed foam mixes with the underlying liquid layer. Based on scaling considerations, we constrain the conditions for the occurrence of foam collapse in natural magma reservoirs. We find that seismic waves with lower frequencies < 1 Hz, usually excited by large earthquakes, can resonate with magma reservoirs whose width is > 0.5 m. Strong ground motion > 0.1 m s- 1 can excite sloshing with sufficient amplitude to collapse a magma foam in an open conduit or a foam overlying basaltic magma in a closed magma reservoir. The gas released from the collapsed foam may infiltrate the rock or diffuse through pores, enhancing heat transfer, or may generate a gas slug to cause a magmatic eruption. The overturn in the magma reservoir provides new nucleation sites which may help to prepare a following/delayed eruption. Mt. Fuji erupted 49 days after the large Hoei earthquake (1707) both dacitic and basaltic magmas. The eruption might have been triggered by magma mixing through sloshing.

  1. A study of rain effects on radar scattering from water waves

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  2. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  3. Spatial patterns of cyanobacterial mat growth on sand ripples

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  4. Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum

    DTIC Science & Technology

    1988-03-01

    Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe

  5. GAS payload no. G-025: Study of liquid sloshing behaviour in microgravity

    NASA Technical Reports Server (NTRS)

    Gilbert, C. R.

    1986-01-01

    The Get Away Special (GAS) G-025, which flew on shuttle Mission 51-G, examined the behavior of a liquid in a tank under microgravity conditions. The experiment is representative of phenomena occurring in satellite tanks with liquid propellants. A reference fluid in a hemispherical model tank will be subjected to linear acceleration inputs of known levels and frequencies, and the dynamic response of the tank liquid system was recorded. Preliminary analysis of the flight data indicates that the experiment functioned perfectly. The results will validate and refine mathematical models describing the dynamic characteristics of tank-fluid systems. This will in turn support the development of future spacecraft tanks, in particular the design of propellant management devices for surface tension tanks.

  6. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  7. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The affect of various modeling parameters on the agreement obtained are assessed.

  8. High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.

    2007-01-01

    Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).

  9. Modeling of wave-coherent pressures in the turbulent boundary layer above water waves

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Yiannis ALEX.

    1988-01-01

    The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.

  10. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  11. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    NASA Astrophysics Data System (ADS)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.

  12. WaveSAX device: design optimization through scale modelling and a PTO strategical control system

    NASA Astrophysics Data System (ADS)

    Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto

    2017-04-01

    WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench simulating four wave conditions previously tested in the ocean tank at the ECN (Nantes, France). The results showed a satisfactory behaviour of the system and allowed to define the optimal velocity and torque conditions to maximize the PTO. REFERENCES 1. M. Peviani, 2015, 'WAVESAX device: conceptual design and perspectives', 8th European Seminar OWEMES 2015, Offshore Wind and other marine renewable Energies in Mediterranean and European Seas, Rome, Italy 2. B. Holmes, K. Nielsen, 2010, Guidelines for the Development & Testing of Wave Energy Systems, OES-IA Annex II Task 2.1, Report T02-2.1 3. G. Agate, A. Amicarelli, M. Peviani, 2014, 'Analisi fluidodinamica di un prototipo per la conversione di energia da moto ondoso: ottimizzazione della componente fissa e stime preliminari di potenza assorbita con la girante', RSE Ricerca di Sistema, Report 14001669 4. G. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015, 'Ottimizzazione del disegno di un dispositivo di generazione d'energia dal moto ondoso: simulazioni numeriche e studi in vasca di laboratorio idraulico, RSE Ricerca di Sistema, Report 15000671 5. A. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015. 'Optimization of the WaveSAX device: numerical modelling and ocean wave basin tests', VI International Conference on Computational Methods in Marine Engineering MARINE 2015, Rome, Italy 6. A. Danelli, M. Peviani, 2016. 'Performance evaluation of an innovative device to transform wave power into electric energy in ports and harbours". CORE 2nd International Conference on Offshore Renewable Energy; Glasgow, UK 7. M. Peviani, A. Danelli, G. Agate, F. Thiebaut, 2014, 'WAVETUBE RSE1, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework 8. M. Peviani, A. Danelli, G. Agate, S. Bourdier, 2015, WAVESAX RSE2, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework.

  13. FAST Model Calibration and Validation of the OC5-DeepCwind Floating Offshore Wind System Against Wave Tank Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  14. High Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank Spray-On-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, F.

    2006-01-01

    Space Shuttle Columbia s catastrophic failure, the separation of a piece of spray-on-foam insulation (SOFI) from the external tank (ET) in the Space Shuttle Discovery s flight in 2005 and crack detected in its ET foam prior to its successful launch in 2006 emphasize the need for effective nondestructive methods for inspecting the shuttle ET SOFI. Millimeter wave nondestructive testing methods have been considered as potential and effective inspection tools for evaluating the integrity of the SOFI. This paper presents recent results of an investigation for the purpose of detecting vertical cracks in SOFI panels using a focused millimeter wave (150 GHz) reflectometer. The presented images of the SOFI panels show the capability of this reflectometer for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation.

  15. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves.

    PubMed

    Li, Zhengkai; Kepkay, Paul; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2007-07-01

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the formation of oil-mineral-aggregates (OMAs) in natural seawater. Results of ultraviolet spectrofluorometry and gas chromatography flame ionized detection analysis indicated that dispersants and mineral fines, alone and in combination, enhanced the dispersion of oil into the water column. Measurements taken with a laser in situ scattering and transmissometer (LISST-100X) showed that the presence of mineral fines increased the total concentration of the suspended particles from 4 to 10microl l(-1), whereas the presence of dispersants decreased the particle size (mass mean diameter) of OMAs from 50 to 10microm. Observation with an epifluorescence microscope indicated that the presence of dispersants, mineral fines, or both in combination significantly increased the number of particles dispersed into the water.

  16. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  17. Research and Logistical Support for the Office of Naval Research Accelerated Research Initiative on Marine Microlayer Processes

    DTIC Science & Technology

    1991-12-13

    1962)] Broekmann et al. 11980111 Petermann [ 197/61, Oleophilic pollutant accumula- Hartung and Klinger 11970]" .. 7 tion Seba and Corcoran 11969...wave tanks by using different organic Petermann , and G. Hent schel, Artificial surface films in the sea chemical films, wave-wave interactions must be...Phys. Oceanogr., 8, 142-150, Petermann , I.. Der Einfluss der 6brflichenspannung wssnger Sys-!l1977. teme auf die Kinetik der Gasabsorption

  18. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less

  19. Spectral Mass Gauging of Unsettled Liquid with Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Feller, Jeffrey; Kashani, Ali; Khasin, Michael; Muratov, Cyrill; Osipov, Viatcheslav; Sharma, Surendra

    2018-01-01

    Propellant mass gauging is one of the key technologies required to enable the next step in NASA's space exploration program. At present, there is no reliable method to accurately measure the amount of unsettled liquid propellant of an unknown configuration in a propellant tank in micro- or zero gravity. We propose a new approach to use sound waves to probe the resonance frequencies of the two-phase liquid-gas mixture and take advantage of the mathematical properties of the high frequency spectral asymptotics to determine the volume fraction of the tank filled with liquid. We report the current progress in exploring the feasibility of this approach, both experimental and theoretical. Excitation and detection procedures using solenoids for excitation and both hydrophones and accelerometers for detection have been developed. A 3% uncertainty for mass-gauging was demonstrated for a 200-liter tank partially filled with water for various unsettled configurations, such as tilts and artificial ullages. A new theoretical formula for the counting function associated with axially symmetric modes was derived. Scaling analysis of the approach has been performed to predict an adequate performance for in-space applications.

  20. A Laboratory Study of a Water Surface in Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Liu, Xinan; Duncan, James

    2016-11-01

    The shape of a water surface in response to the impact of raindrops is studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface water tank. The tank is connected to a 2D translation stage to provide a small-radius horizontal circular or oval motion to the needles, thus avoiding repeated drop impacts at the same location under each needle. The drop diameter is about 2.6 mm and the height of the water tank above the water surface of the pool is varied from 1 m to 4.8 m to provide different impact velocities. The water surface features including stalks, crowns and ring waves are measured with a cinematic laser-induced- fluorescence (LIF) technique. It is found that the average stalk height is strongly correlated to the impact velocities of raindrops and the phase speeds of ring waves inside the rain field are different from that measured outside the rain field.

  1. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  2. The effect of environmental colour on the growth, metabolism, physiology and skin pigmentation of the carnivorous freshwater catfish Lophiosilurus alexandri.

    PubMed

    Costa, D C; Mattioli, C C; Silva, W S; Takata, R; Leme, F O P; Oliveira, A L; Luz, R K

    2017-03-01

    The growth, physiology and skin pigmentation of pacamã Lophiosilurus alexandri juveniles were evaluated in an experiment using different tank colours (white, yellow, green, blue, brown and black) over an 80 day period. The tank colours did not cause significant differences to final body mass, total length, survival rate, carcass composition (moisture, crude protein, ash, ether extract, calcium, phosphorus, energy), or to plasma protein, triglyceride and cholesterol values. Haematocrit values, however, were highest for fish kept in white tanks (ANOVA P < 0·05), while the greatest haemoglobin levels were recorded for fish kept in blue and brown tanks (P < 0·01). The concentrations of cortisol (P < 0·001) and glucose (P < 0·01) were the most in fish in the black tanks. Tank colour affected skin pigmentation significantly, with fish in white tanks having the highest values of L* (brightness) and the lowest values in blue and black tanks. L*, however, decreased in all treatments throughout the experiment. C* ab increased significantly over the course of the experiment in fish kept in white tanks. Similar increases of C* ab were recorded in the other treatments but to a lesser extent. The use of black tanks during the cultivation of L. alexandri caused stress and should be avoided. Cultivation in white and yellow tanks produced individuals with a pale skin colour, while cultivation in blue and black tanks resulted in juveniles with a darker and more pigmented skin. © 2016 The Fisheries Society of the British Isles.

  3. The Effect of Faraday Waves on Gas Transport

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Handler, R. A.

    1996-11-01

    The increase in the rate of gas transport at the onset of capillary wave formation is a frequently observed phenomenon. However, a causal relationship between the presence of capillary waves and enhanced gas transport has not been experimentally demonstrated. Here we present experimental results of CO2 transport rates across Faraday waves. The piston velocity versus wave slope data explicitly demonstrates an enhancement in gas transport due to these waves. The functional relationship between gas flux and wave slope is also obtained. The Faraday wave system permits investigation of capillary waves in the absence of the obfuscating effects of air turbulence, water turbulence, droplets and bubbles, all of which are present in wind/wave tank studies. Hence, our results are solely due to the effects of capillary wave action. Data for wave frequencies varying from 20Hz to 200Hz are presented.

  4. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  5. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  6. Rip current monitoring using GPS buoy system

    NASA Astrophysics Data System (ADS)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0024670)

  7. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  8. An Investigation of the Effects of Internal Waves on Sound Propagation in a Stratified Medium with a Sloping Bed

    NASA Astrophysics Data System (ADS)

    Deldar, H.; Bidokhti, A. A.; Chegini, V.

    2018-01-01

    Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.

  9. Seismic seiches

    USGS Publications Warehouse

    McGarr, Arthur; Gupta, Harsh K.

    2011-01-01

    Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.

  10. Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and Observations

    DTIC Science & Technology

    2008-09-30

    Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and...laboratory experimental techniques have greatly enhanced the ability to obtained detailed spatiotemporal data for internal waves in challenging regimes...a custom configured wave tank; and to integrate these results with data obtained from numerical simulations, theory and field studies. The principal

  11. Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.

    PubMed

    Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco

    2013-01-01

    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.

  12. Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test

    PubMed Central

    Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco

    2013-01-01

    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship. PMID:23405086

  13. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  14. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  15. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves

    NASA Astrophysics Data System (ADS)

    Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling

    2010-05-01

    A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.

  16. TH-CD-201-06: Experimental Characterization of Acoustic Signals Generated in Water Following Clinical Photon and Electron Beam Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickling, S; El Naqa, I

    Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less

  17. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 3 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 3 of 4.

  18. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 4 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 4 of 4.

  19. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 1 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 1 of 4.

  20. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 2 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 2 of 4.

  1. WaveAR: A software tool for calculating parameters for water waves with incident and reflected components

    NASA Astrophysics Data System (ADS)

    Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.

    2012-09-01

    The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.

  2. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  3. Underwater sympathetic detonation of pellet explosive

    NASA Astrophysics Data System (ADS)

    Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito

    2017-06-01

    The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.

  4. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    EPA Science Inventory

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  5. Development of Tsunami Numerical Model Considering the Disaster Debris such as Cars, Ships and Collapsed Buildings

    NASA Astrophysics Data System (ADS)

    Kozono, Y.; Takahashi, T.; Sakuraba, M.; Nojima, K.

    2016-12-01

    A lot of debris by tsunami, such as cars, ships and collapsed buildings were generated in the 2011 Tohoku tsunami. It is useful for rescue and recovery after tsunami disaster to predict the amount and final position of disaster debris. The transport form of disaster debris varies as drifting, rolling and sliding. These transport forms need to be considered comprehensively in tsunami simulation. In this study, we focused on the following three points. Firstly, the numerical model considering various transport forms of disaster debris was developed. The proposed numerical model was compared with the hydraulic experiment by Okubo et al. (2004) in order to verify transport on the bottom surface such as rolling and sliding. Secondly, a numerical experiment considering transporting on the bottom surface and drifting was studied. Finally, the numerical model was applied for Kesennuma city where serious damage occurred by the 2011 Tohoku tsunami. In this model, the influence of disaster debris was considered as tsunami flow energy loss. The hydraulic experiments conducted in a water tank which was 10 m long by 30 cm wide. The gate confined water in a storage tank, and acted as a wave generator. A slope was set at downstream section. The initial position of a block (width: 3.2 cm, density: 1.55 g/cm3) assuming the disaster debris was placed in front of the slope. The proposed numerical model simulated well the maximum transport distance and the final stop position of the block. In the second numerical experiment, the conditions were the same as the hydraulic experiment, except for the density of the block. The density was set to various values (from 0.30 to 4.20 g/cm3). This model was able to estimate various transport forms including drifting and sliding. In the numerical simulation of the 2011 Tohoku tsunami, the condition of buildings was modeled as follows: (i)the resistance on the bottom using Manning roughness coefficient (conventional method), and (ii)structure of buildings with collapsing and washing-away due to tsunami wave pressure. In this calculation, disaster debris of collapsed buildings, cars and ships was considered. As a result, the proposed model showed that it is necessary to take the disaster debris into account in order to predict tsunami inundation accurately.

  6. Sonic boom effect on fish: Observations

    NASA Technical Reports Server (NTRS)

    Wilkins, M. E.

    1972-01-01

    Motion pictures of fish in a small tank at the time a bullet traveling 1200 m/sec passes a few centimeters above indicate that fish sense the passage of the shock wave but suffer no ill effects. The pressure rise at the bow shock wave was 0.26 atm or 275 times that associated with a strong sonic boom, for example, from the proposed supersonic transport.

  7. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  8. Oceanic Gas Bubble Measurements Using an Acoustic Bubble Spectrometer

    NASA Astrophysics Data System (ADS)

    Wilson, S. J.; Baschek, B.; Deane, G.

    2008-12-01

    Gas bubble injection by breaking waves contributes significantly to the exchange of gases between atmosphere and ocean at high wind speeds. In this respect, CO2 is primarily important for the global ocean and climate, while O2 is especially relevant for ecosystems in the coastal ocean. For measuring oceanic gas bubble size distributions, a commercially available Dynaflow Acoustic Bubble Spectrometer (ABS) has been modified. Two hydrophones transmit and receive selected frequencies, measuring attenuation and absorption. Algorithms are then used to derive bubble size distributions. Tank test were carried out in order to test the instrument performance.The software algorithms were compared with Commander and Prosperetti's method (1989) of calculating sound speed ratio and attenuation for a known bubble distribution. Additional comparisons with micro-photography were carried out in the lab and will be continued during the SPACE '08 experiment in October 2008 at Martha's Vineyard Coastal Observatory. The measurements of gas bubbles will be compared to additional parameters, such as wind speed, wave height, white cap coverage, or dissolved gases.

  9. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  10. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  11. Wave impact on a deck or baffle

    NASA Astrophysics Data System (ADS)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  12. Rewinding the waves: tracking underwater signals to their source.

    PubMed

    Kadri, Usama; Crivelli, Davide; Parsons, Wade; Colbourne, Bruce; Ryan, Amanda

    2017-10-24

    Analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation's hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, reveal unique pressure signatures that could be associated with objects impacting at the sea surface, such as falling meteorites, or the missing Malaysian Aeroplane MH370. To examine the recorded signatures, we carried out experiments with spheres impacting at the surface of a water tank, where we observed almost identical pressure signature structures. While the pressure structure is unique to impacting objects, the evolution of the radiated acoustic waves carries information on the source. Employing acoustic-gravity wave theory we present an analytical inverse method to retrieve the impact time and location. The solution was validated using field observations of recent earthquakes, where we were able to calculate the eruption time and location to a satisfactory degree of accuracy. Moreover, numerical validations confirm an error below 0.02% for events at relatively large distances of over 1000 km. The method can be developed to calculate other essential properties such as impact duration and geometry. Besides impacting objects and earthquakes, the method could help in identifying the location of underwater explosions and landslides.

  13. Linear and nonlinear propagation of water wave groups

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.

    1992-01-01

    Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.

  14. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    PubMed Central

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  15. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    PubMed

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  16. TNFα- and IKKβ-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKγ and NF-κB activation

    PubMed Central

    Bonif, Marianne; Meuwis, Marie-Alice; Close, Pierre; Benoit, Valérie; Heyninck, Karen; Chapelle, Jean-Paul; Bours, Vincent; Merville, Marie-Paule; Piette, Jacques; Beyaert, Rudi; Chariot, Alain

    2005-01-01

    Pro-inflammatory cytokines trigger signalling cascades leading to NF-κB (nuclear factor-κB)-dependent gene expression through IKK [IκB (inhibitory κB) kinase]-dependent phosphorylation and subsequent degradation of the IκB proteins and via induced phosphorylation of p65. These signalling pathways rely on sequentially activated kinases which are assembled by essential and non-enzymatic scaffold proteins into functional complexes. Here, we show that the pro-inflammatory cytokine TNFα (tumour necrosis factor α) promotes TANK [TRAF (TNF receptor-associated factor) family member associated NF-κB activator] recruitment to the IKK complex via a newly characterized C-terminal zinc finger. Moreover, we show that TANK is phosphorylated by IKKβ upon TNFα stimulation and that this modification negatively regulates TANK binding to NEMO (NF-κB essential modulator). Interestingly, reduced TANK expression by RNA interference attenuates TNFα-mediated induction of a subset of NF-κB target genes through decreased p65 transactivation potential. Therefore the scaffold protein TANK is required for the cellular response to TNFα by connecting upstream signalling molecules to the IKKs and p65, and its subsequent IKKβ-mediated phosphorylation may be a mechanism to terminate the TANK-dependent wave of NF-κB activation. PMID:16336209

  17. The Zero Boil-Off Tank Experiment Ground Testing and Verification of Fluid and Thermal Performance

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad; Kahwaji, Michel; Kieckhafer, Alexander

    2016-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale International Space Station (ISS) experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the work that has been done to demonstrate that the ZBOT experiment is capable of performing the functions required to produce a meaningful and accurate results, prior to its launch to the International Space Station. Main systems discussed are expected to include the thermal control system, the optical imaging system, and the tank filling system.This work is sponsored by NASAs Human Exploration Mission Directorates Physical Sciences Research program.

  18. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  19. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  20. Richtmyer-Meshkov instability experiments of miscible and immiscible incompressible fluids

    NASA Astrophysics Data System (ADS)

    Krivets, Vitaliy; Holt, Brason; Mokler, Matthew; Jacobs, Jeffrey

    2017-11-01

    Experiments were conducted in a 3 m tall vertical drop tower setup. A flat interface separating two liquids of differing density is formed in the Plexiglas tank with the heavier fluid in the bottom and the lighter one on top. Two liquids pairs were utilized, one - miscible (isopropyl alcohol and a calcium nitrate water mixture) and the other immiscible (silicone oil with the same heavy liquid), both with Atwood near 0.2. The tank is mounted on a rail mounted sled at 2 m initial height where an initial perturbation is generated using vertical periodic motion with 10 Hz frequency and 1 mm displacement, thus producing 3D interfacial waves. An impulsive acceleration, with approximately 100g magnitude, is imparted to the sled by a rail mounted weight released and allowed to fall, impacting the sled from above. Both weight and sled then travel freely down the rails where they are smoothly decelerated at the bottom of drop tower by magnetic brakes. PLIF is used to visualize mixing process by seeding fluorescein in the bottom fluid and illuminating using laser diode from above forming thin vertical sheet. The resulting fluorescent image sequences are captured using a digital camera mounted to the sled operating at a 100 Hz framing rate. Comparisons of the measured growth of the mixing zone for both immiscible and miscible liquid combinations with theoretical models are presented.

  1. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave modes. Thus certain "benchmarks" have been created that can later be used as test cases for atmospheric numerical model validation. Both in the experiments and in the numerics multiple equilibrium states have been observed in the form of hysteretic behavior depending on the initial conditions. The precise quantification of these state and wave mode transitions may shed light to some aspects of the basic underlying dynamics of the baroclinic annulus configuration, still to be understood.

  2. Reasons to Improve: The Evolution of the U.S. Tank from 1945-1991

    DTIC Science & Technology

    2010-05-01

    comparable to German Panther and Tiger tanks in armor and firepower. The Korean War experience did two things. First, it ushered in the era of limited war...yards away.21 In July 1943, a Tiger tank near Gela, Sicily quickly destroyed four tanks and hit a fifth from G Company, 67th Armored Regiment.22 During...German adversary in the form of Panther and Tiger tanks retained a significant advantage over the U.S. Sherman tank because of its armored protection

  3. Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Castilla, R.

    2009-04-01

    Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.

  4. Design and development of Shuttle Get-Away-Special experiment G-0074. [off-load capability for a full-tank propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Orton, G. F.

    1984-01-01

    An experiment to investigate more versatile, lower cost surface tension propellant acquisition approaches for future satellite and spacecraft propellant tanks is designed to demonstrate a propellant off-load capability for a full-tank gallery surface tension device, such as that employed in the shuttle reaction control subsystem, and demonstrate a low-cost refillable trap concept that could be used in future orbit maneuver propulsion systems for multiple engine restarts. A Plexiglas test tank, movie camera and lights, auxiliary liquid accumulator, control electronics, battery pack, and associated valving and plumbing are used. The test liquid is Freon 113, dyed blue for color movie coverage. The fully loaded experiments weighs 106 pounds and is to be installed in a NASA five-cubic-foot flight canister. Vibration tests, acoustic tests, and high and low temperature tests were performed to quality the experiment for flight.

  5. Water-waves frequency upshift of the spectral mean due to wind forcing

    NASA Astrophysics Data System (ADS)

    Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert

    2017-04-01

    The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.

  6. Vented Tank Resupply Experiment--Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Martin, Timothy A.

    1997-01-01

    This paper reports the results of the Vented Tank Resupply Experiment (VTRE) which was flown as a payload on STS 77. VTRE looks at the ability of vane Propellant Management Devices (PMD) to separate liquid and gas in low gravity. VTRE used two clear 0.8 cubic foot tanks one spherical and one with a short barrel section and transferred Refrigerant 113 between them as well as venting it to space. Tests included retention of liquid during transfer, liquid free venting, and recovery of liquid into the PMD after thruster firing. Liquid was retained successfully at the highest flow rate tested (2.73 gpm). Liquid free vents were achieved for both tanks, although at a higher flow rate (0.1591 cfm) for the spherical tank than the other (0.0400 cfm). Recovery from a thruster firing which moved the liquid to the opposite end of the tank from the PMD was achieved in 30 seconds.

  7. The effect of traveling wave shapes in the maneuver control and efficiency of an underwater robot propelled by an undulating fin

    NASA Astrophysics Data System (ADS)

    Liu, Hanlin; Curet, Oscar

    2016-11-01

    Effective control of propulsive undulating fins has the potential to enhance the maneuverability and efficiency of underwater vehicles allowing them to navigate in more complex environments. Aquatic animals using this type of propulsion are able to perform complex maneuvers by sending different traveling waves along one or multiple elongated fins. Recent work has investigated the propulsive forces, the hydrodynamics and the efficiency of an undulating ribbon fin. However, it is still not understood how different traveling wave shapes along the fin can be used to control the hydrodynamic forces and torques to perform different maneuvers. In this work, we study the effect of traveling wave shapes on the hydrodynamic forces and torques, swimming speed, maneuver control and propulsive performance of an underwater vehicle propelled by an undulating fin. The underwater robot propels by actuating a fin that is composed of sixteen independent rays interconnected with a flexible membrane. The hull contains all the electronics, batteries, motors and sensors. The underwater vehicle was tested in a water tank-flume facility. In a series of experiments, we measured the motion of the vessel and the power consumption for different traveling wave patterns. In addition, we measured the flow around the fin using Particle Image Velocimetry. We present the results concerning the power distribution along the fin, propulsive efficiency, free-swimming speed and pitch control based on different fin kinematics. National Science Foundation under Grant No. 1420774.

  8. VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT (PSE), LOCATED IN STAIRWELL ADJACENT TO SP-SE ROOM, LEVEL -15’, LOOKING NORTH - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  10. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    PubMed

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  11. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yuli. D.; Mitkin, Vladimir V.

    2001-10-01

    Experimental investigations of fine and macroscopic structures of density and velocity disturbances generated by a towing cylinder or a vertical strip in a linearly stratified liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rainbow') characterised by a high spatial resolution. Profiles of fluid velocity are visualised by density markers — wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest, the density marker acts as a vertical linear source of internal oscillations which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large scale elements: upstream disturbances, attached internal waves and vortices. Solitary interfaces located inside the attached internal waves field have no features on their leading and trailing edges. A thickness of interfaces is defined by an appropriate diffusion coefficient and a buoyancy frequency. High gradient interfaces bound compact vortices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric structure of the longest waves (similar to the pattern of initial attached internal waves) is observed again. High gradient interfaces and lines of their intersections act as collectors of a dye coming from a compact source or from a coloured liquid volume inside the tank and separate coloured and clear areas.

  12. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  13. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).

  14. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Choiniere, Michael; Thiagarajan, Krish P.

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. Thismore » ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.« less

  15. Nonlinear dead water resistance at subcritical speed

    NASA Astrophysics Data System (ADS)

    Grue, John

    2015-08-01

    The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.

  16. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey

    2016-04-01

    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  17. Ambient Noise in the Sea

    DTIC Science & Technology

    1984-01-01

    the 14 to 222 Hz band. In a tank, the echolocation signals made by dolphins were found (167) to be directional, with peak energies above 100 kHz...17. Daniels, F. B., Mechanisms of Generation of Infrasound by Ocean Waves, JASA 24, 83, 1952. 18. Daniels, F. B., Generation of Infrasound by Ocean...in the Ocean by Surface Waves, J. Sound and Vibration 37, 185, 1974. 58. Hughes, B., Estimates of Underwater Sound (and Infrasound ) Produced by Non

  18. Tidal Channel Dynamics and Muddy Substrates: A Comparison between a Wave Dominated and a Tidal Dominated System

    DTIC Science & Technology

    2012-09-30

    standard linear wave theory. Suspended sediment concentration (SSC) was estimated using the backscatter signal of the ADCP and the turbidity value...measured by the OBS when present. The OBS turbidity signal was calibrated against SSC measured in a laboratory tank, using sediments collected on the...link the geotechnical properties of sediment substrates to the spatial and hydrodynamic characteristics of tidal channels • To develop new

  19. Exploring Marine Science through the University of Delaware's TIDE camp

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  20. Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Fu, Juan; Chen, Xiaoqian; Huang, Yiyong

    2013-12-01

    It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.

  1. Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool.

    PubMed

    Finneran, James J; Schlundt, Carolyn E

    2007-07-01

    Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.

  2. Alternative methods for flotation seat cushion use.

    DOT National Transportation Integrated Search

    1995-05-01

    Alternative methods of using flotation seat cushions for water crash survivors were identified at the Civil Aeromedical Institute (CAMI). These methods, tested in the CAMI survival tank and a theme park wave pool, were: 1) two people facing each othe...

  3. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  4. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  5. Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.; Lee, C. C.

    1991-01-01

    The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.

  6. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile.

    PubMed

    Lecysyn, Nicolas; Bony-Dandrieux, Aurélia; Aprin, Laurent; Heymes, Frédéric; Slangen, Pierre; Dusserre, Gilles; Munier, Laurent; Le Gallic, Christian

    2010-06-15

    This work is part of a project for evaluating catastrophic tank failures caused by impacts with a high-speed solid body. Previous studies on shock overpressure and drag events have provided analytical predictions, but they are not sufficient to explain ejection of liquid from the tank. This study focuses on the hydrodynamic behavior of the liquid after collision to explain subsequent ejection of liquid. The study is characterized by use of high-velocity projectiles and analysis of projectile dynamics in terms of energy loss to tank contents. New tests were performed at two projectile velocities (963 and 1255 m s(-1)) and over a range of viscosities (from 1 to 23.66 mPa s) of the target liquid. Based on data obtained from a high-speed video recorder, a phenomenological description is proposed for the evolution of intense pressure waves and cavitation in the target liquids. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Innovative optronics for the new PUMA tank

    NASA Astrophysics Data System (ADS)

    Fritze, J.; Münzberg, M.; Schlemmer, H.

    2010-04-01

    The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.

  8. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  9. Effect of film slicks on near-surface wind

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  10. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results.

    PubMed

    Calder, Stefan; O'Grady, Greg; Cheng, Leo K; Du, Peng

    2018-04-27

    Electrogastrography (EGG) is a non-invasive method for measuring gastric electrical activity. Recent simulation studies have attempted to extend the current clinical utility of the EGG, in particular by providing a theoretical framework for distinguishing specific gastric slow wave dysrhythmias. In this paper we implement an experimental setup called a 'torso-tank' with the aim of expanding and experimentally validating these previous simulations. The torso-tank was developed using an adult male torso phantom with 190 electrodes embedded throughout the torso. The gastric slow waves were reproduced using an artificial current source capable of producing 3D electrical fields. Multiple gastric dysrhythmias were reproduced based on high-resolution mapping data from cases of human gastric dysfunction (gastric re-entry, conduction blocks and ectopic pacemakers) in addition to normal test data. Each case was recorded and compared to the previously-presented simulated results. Qualitative and quantitative analyses were performed to define the accuracy showing [Formula: see text] 1.8% difference, [Formula: see text] 0.99 correlation, and [Formula: see text] 0.04 normalised RMS error between experimental and simulated findings. These results reaffirm previous findings and these methods in unison therefore present a promising morphological-based methodology for advancing the understanding and clinical applications of EGG.

  11. Comparison of bursting pressure results of LPG tank using experimental and finite element method.

    PubMed

    Aksoley, M Egemen; Ozcelik, Babur; Bican, Ismail

    2008-03-01

    In this study, the resistance of liquefied-petroleum gas (LPG) tanks produced from carbon steel sheet metal of different thicknesses has been investigated by bursting pressure experiments and non-linear Finite Element Method (FEM) method by increasing internal pressure values. The designs of LPG tanks produced from sheet metal to be used at the study have been realized by analytical calculations made taking into consideration of related standards. Bursting pressure tests have been performed that were inclined to decreasing the sheet thickness of LPG tanks used in industry. It has been shown that the LPG tanks can be produced in compliance with the standards when the sheet thickness is lowered from 3 to 2.8mm. The FEM results have displayed close values with the bursting results obtained from the experiments.

  12. Project Themis Supercritical Cold Flow Facility, Experiment Design and Modeling for the Study of Fluid Mixing

    DTIC Science & Technology

    2012-06-01

    AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi

  13. The Subscale Orbital Fluid Transfer Experiment

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry

    1989-01-01

    The Center for Advanced Spacecraft Propulsion (CASP) is a subcontractor to Boeing Aerospace Corporation to provide support for the concept definition and design of a subscale orbital fluid transfer experiment (SOFTE). SOFTE is an experiment that will look at the fluid mechanics of the process of transfer of a saturated fluid between two tanks. The experiment will be placed in two get away special (GAS) can containers; the tanks will be in one container and the power and electronics will be in a second container. Since GAS cans are being used, the experiment will be autonomous. The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, methods for accurately metering the amount of fluid transferred between the two tanks, possible test fluids, and materials for the elastomeric diaphragm.

  14. Cryogenic Tank Modeling for the Saturn AS-203 Experiment

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.

    2006-01-01

    A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.

  15. Calculation of periodic flows in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.

    2012-04-01

    Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and analyzed by methods of computational mathematics. Singular components of the solution affect the flow pattern of the inhomogeneous stratified fluid, not only near the source of the waves, but at a large distance. Analytical calculations of the structure of wave beams are matched with laboratory experiments. Some deviations at large distances from the source are formed due to the contribution of background wave field associated with seiches in the laboratory tank. In number of the experiments vortices with closed contours were observed on some distances from the disk. The work was supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059), experiments were performed on set up USU "HPC IPMec RAS".

  16. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake whitefish (Coregonus clupeaformis) from their food

    USGS Publications Warehouse

    Madenjian, C.P.; O'Connor, D.V.; Rediske, R.R.; O'Keefe, J. P.; Pothoven, S.A.

    2008-01-01

    Lake whitefish (Coregonus clupeaformis) were fed rainbow smelt (Osmerus mordax) in four laboratory tanks over a 133-d experiment. At the start of the experiment, 10 to 14 of the fish in each tank were sacrificed, and the concentrations of 40 polychlorinated biphenyl (PCB) congeners within these fish were determined. Polychlorinated biphenyl congener concentrations were also determined in the 15 lake whitefish remaining in each of the four tanks at the end of the experiment as well as in the rainbow smelt fed to the lake whitefish. Each lake whitefish was weighed at the start and the end of the experiment, and the amount of food eaten by the lake whitefish during the experiment was tracked. Using these measurements, net trophic transfer efficiency (??) from the rainbow smelt to the lake whitefish in each of the four tanks was calculated for each of the 40 PCB congeners. Results showed that ?? decreased exponentially as log KOW for the congeners increased from 6 to 8. Further, ?? averaged 0.70 for the tetrachloro congeners but averaged only 0.45 for the higher chlorinated congeners. ?? 2008 SETAC.

  17. Sediment Transport Dynamics and Bedform Evolution During Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Hu, H.; Parsons, D. R.; Ockelford, A.; Hardy, R. J.; Ashworth, P. J.; Best, J.

    2016-12-01

    Dunes are ubiquitous features in sand bed rivers and estuaries, and their formation, growth and kinematics play a dominant role in boundary flow structure, flow resistance and sediment transport processes. However, bedform evolution and dynamics during the rising/falling limb of a flood wave remain poorly understood. Herein, we report on a series of flume experiments, undertaken at the University of Hull's Total Environment Simulator flume/wave tank facility, with imposed flow variations and different hydrographs: i) a sudden (shock) change, ii) a fast flood wave and iii) a slow flood wave. Our analysis shows that, because of changes of sediment transport mechanisms with discharge, the sediment flux rather than bedform migration rate is a more appropriate parameter to relate to transport stage. This is particularly the case during bedload transport dominated periods at lower flow discharge, where a strong power law relationship was detected. In terms of varying processes across the hydrograph limbs, bedform evolution during the rising limb is dominated not only by bedform amalgamation but also by the washing out of smaller-scale bedforms. Furthermore, bedform growth is independent of the rising rate of the hydrograph limb, while evolution of bedform decay is affected by the rate of discharge decrease. This results in an anticlockwise hysteresis between transport stage and total flux was found in fast wave experiment, indicating a significant role of the change in sediment transport mechanisms on bedform evolution. Moreover, analysis on the variation of deformation fraction (F, ratio of the deformation flux to the total bed material flux) suggests that net degradation of the bed enhances bedform deformation and leads to a higher F ( 0.65). This work extends our knowledge on how dunes generate and develop under variable flows and has begun to explore how variations in transport stage can be coupled with the variation in sediment transport mechanisms, and/or sediment supply which can help improve the modelling of sediment transport processes.

  18. COLD-SAT: An orbital cryogenic hydrogen technology experiment

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  19. Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling.

    PubMed

    Renner, Florian; Saul, Vera V; Pagenstecher, Axel; Wittwer, Tobias; Schmitz, Michael Lienhard

    2011-02-01

    Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK-binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin-related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ɛ (IKKɛ) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKɛ and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7-dependent target genes, providing a molecular mechanism that allows the control of TANK function.

  20. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  1. Wind flow modulation due to variations of the water surface roughness

    NASA Astrophysics Data System (ADS)

    Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana

    2016-04-01

    Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).

  2. Simplified behaviors from increased heterogeneity: I. 2-D uranium transport experiments at the decimeter scale.

    PubMed

    Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D

    2013-05-01

    Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.

  3. Simplified behaviors from increased heterogeneity: I. 2-D uranium transport experiments at the decimeter scale

    NASA Astrophysics Data System (ADS)

    Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.

    2013-05-01

    Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.

  4. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2013-04-01

    Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.

  5. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  6. Ultrasound for non-invasive fluid droplet detection inside a sealed container

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Good, M. S.; Roy, S.; Luzi, F.

    2017-02-01

    Ultrasound has long been known to be capable of measuring water level. Zero-degree ultrasound transducers may be used to send an L-wave through the fluid and receive a reflected signal from the fluid/gas interface surface. The level of the fluid is proportional to the sound wave time of flight to traverse the water path. This approach may even be used from outside the fluid containment wall by sending the wave through the tank or pipe bottom. The approach, however, does not work well if there is only a thin layer of fluid consisting of one or two millimeters or even only a few droplets. Surface waves are also known to be sensitive to the presence or absence of fluid on a surface. A surface wave may be transmitted a significant distance by a transmitting transducer and then received by a similar transducer. If the surface along the wave path is wet with even a few droplets of fluid, the surface wave may be significantly attenuated. Generating and measuring such a surface wave from the opposite side of a tank or pipe containment wall and separating the near-wall surface wave from the far-wall surface wave, however, is more challenging. The feasibility of an approach for producing a surface wave on the opposite side of a steel plate to sense the presence or absence of fluid is discussed. This approach is supported by 2-D finite element modeling of the measurement configuration and by empirical demonstration of the technique's sensitivity. This technique was developed for measurement of a very small amount of fluid that may condense within a used nuclear fuel canister after it cools for several years. Early detection of fluid would provide advance warning of potential degradation to internal components in time for mitigation or management of the waste inside that container. Other potential applications include non-intrusive detection of trace liquids within any sealed container, within inaccessible plena of aircrafts or within other inaccessible complex welded skin structures.

  7. Resolving precipitation-induced water content profiles through inversion of dispersive GPR data

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Van Der Kruk, J.

    2015-12-01

    Ground-penetrating radar (GPR) has become a popular tool for monitoring hydrologic processes. When monitoring infiltration, the thin wetted zone that occurs near the ground surface at early times may act as a dispersive waveguide. This low-velocity layer traps the GPR waves, causing specific frequencies of the signal to travel at different phase velocities, confounding standard traveltime analysis. In a previous numerical study we demonstrated the potential of dispersion analysis for estimating the depth distribution of waveguide water contents. Here, we evaluate the effectiveness of the methodology when applying it to experimental time-lapse dispersive GPR data collected during a laboratory infiltration experiment in a relatively homogenous soil. A large sand-filled tank is equipped with an automated gantry to independently control the position of 1000 MHz source and receiver antennas. The system was programmed to repeatedly collect a common mid-point (CMP) profile at the center of the tank followed by two constant offset profiles (COP) in the x and y direction. Each collection was completed in 30 s and repeated 50 times during a 28 min experiment. Two minutes after the start of measurements, the surface of the sand was irrigated at a constant flux rate of 0.006 cm/sec for 23 minutes. Time-lapse COPs show increases in traveltime to reflectors in the tank associated with increasing water content, as well as the development of a wetting front reflection. From 4-10 min, the CMPs show a distinct shingling characteristic that is indicative of waveguide dispersion. Forward models where the waveguide is conceptualized as discrete layers and a piece-wise linear function were used to invert picked dispersion curves for waveguide properties. We show the results from both inversion approaches for multiple dispersive CMPs and show how the single layer model fails to represent the gradational nature of the wetting front.

  8. The Delta Box: a Table-top Glimpse Into Sequence Stratigraphy

    NASA Astrophysics Data System (ADS)

    Campbell, K. M.; Hickson, T.; Martin, J.; Paola, C.

    2006-12-01

    Physical models offer an effective means of providing greater understanding of surface processes and depositional products. At the National Center for Earth-surface Dynamics' research facility, St. Anthony Falls Laboratory; we have seen that in addition to being critically important to the advancement of surface process research, experiments are extremely effective tools for engaging students, especially undergraduates, in understanding these linkages. However, many colleges and universities cannot afford the space or time to support large research or teaching flumes, so we have devised an inexpensive table-top tank that can be used in teaching deltaic depositional processes and concepts of sequence stratigraphy. Our "Delta Box" measures approximately 1.2 by 0.6 meters and is built primarily of parts available at local hardware stores or lumberyards. A simple pond pump drives a water recirculation system, while a constant head tank constructed from PVC pipe regulates the rate of water flow into the flume. A sand/coal sediment mix, fed by hand into the tank, provides a very clear visual distinction between coarse and fine particles on a continental shelf and slope constructed of foam insulation. We have tested the box with a group of undergraduate faculty from around the United States at an "On the Cutting Edge" workshop, at which we were able to consistently build many classic deltaic features, as well as show delta progradation, the effects of waves on sediment transport and deposition, and the formation of sequence boundaries and the entire suite of key sequence stratigraphic features. A manual for building the box, as well as a short movie clip of the workshop participants experimenting with it, is available at http://www.nced.edu/SERC.html. Several of the participants are currently building additional boxes; we plan to post improved instructions and example exercises on the National Center for Earth-surface Dynamics website.

  9. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  10. Draining characteristics of hemispherically bottomed cylinders in a low-gravity environment

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1978-01-01

    An experimental investigation was conducted to study the phenomenon of vapor ingestion during the draining of a scale model, hemispherically bottomed cylindrical tank in a low-gravity environment. Where possible, experimental results are compared with previously obtained numerical predictions. It was observed that certain combinations of Weber and Bond number resulted in draining-induced axisymmetric slosh motion. The periods of the slosh waves were correlated with the square root of the draining parameter, the ratio (Weber number)/(Bond number plus one), as was the quantity of liquid remaining in the tank when vapor was ingested into the outlet line.

  11. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  12. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number.

  13. Lagrangian clustering detection of internal wave boluses

    NASA Astrophysics Data System (ADS)

    Allshouse, M.; Salvador Vieira, G.; Swinney, H. L.

    2016-02-01

    The shoaling of internal waves on a continental slope or shelf produces boluses that travel up the slope with the wave. The boluses are regions of trapped fluid that are transported along with the wave, unlike fluid in the bulk that is temporarily pertubed by a passing wave. Boluses have been observed to transport oxygen-depleted water and induce rapid changes in temperature (Walter et al, JGR, 2012), both of which have potential ramifications for marine biology. Several previous studies have investigated boluses in systems with two layers of different density (e.g., Helfrich, JFM, 1992, and Sutherland et al., JGR, 2013). We conduct laboratory and computational studies of bolus generation and material transport in continuously stratified fluids with a pycnocline, as in the oceans. Our laboratory experiments in a 4 m long tank are complemented by 2-dimensional direct numerical simulations of the Navier-Stokes equations. Efforts have been made to identify boluses with Eularian measures in the past, but a Lagrangian perspective is necessary to objectively identify the bolus over its lifespan. Here we use a Lagrangian based coherent structure method relying on trajectory clustering using the fuzzy c-means approach (Froyland and Padberg-Gehle, Chaos, 2015). The objective detection of a bolus enables examination of the volume, distance traveled, and increased available potential energy of a bolus, as a function of the stratification, wave properties, and the angle of the sloping topography. The decay of a bolus through turbulent mixing is investigated by locating where the Richardson number drops below ¼, where velocity shear overcomes the tendency of a stratified fluid to remain stratified. (supported by ONR MURI grant N000141110701)

  14. Experimental evaluation of LPG tank explosion hazards.

    PubMed

    Stawczyk, Jan

    2003-01-31

    Liquefied-pressure gases (LPG) are transported and stored in the liquid phase in closed tanks under sufficiently high pressure. In the case of an accident, an abrupt tank unsealing may release enormous quantity of evaporating gas and energy that has a destructive effect on the tank and its surroundings. In this paper, experiments with explosions of small LPG tanks are described. The data acquisition equipment applied in the tests provided a chance to learn dynamics of the process and determine hazard factors. The tests enabled a determination of temperature and pressure at which tanks containing LPG disrupt. The results enable a reconstruction of consecutive phases of the explosion and identification of hazards resulting from damage of the tanks. An explanation of the tank unsealing process with fluid parameters above critical point is given.

  15. Numerical modeling of zero-offset laboratory data in a strong topographic environment: results for a spectral-element method and a discretized Kirchhoff integral method

    NASA Astrophysics Data System (ADS)

    Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.

    2014-08-01

    Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.

  16. Vented Tank Resupply Experiment Demonstrated Vane Propellant Management Device for Fluid Transfer

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1998-01-01

    The Vented Tank Resupply Experiment (VTRE) flown on STS-77 confirmed the design approaches presently used in the development of vane-type propellant management devices (PMD) for use in resupply and tank-venting situations, and it provided the first practical demonstration of an autonomous fluid transfer system. All the objectives were achieved. Transfers were more stable than drop tower testing indicated. Liquid was retained successfully at the highest flow rate tested (2.73 gal/min), demonstrating that rapid fills could be achieved. Liquid-free vents were achieved for two different tanks, although the flow rate was higher for the spherical tank (0.1591 cu ft/min) than for the tank with a short barrel section (0.0400 cu ft/min). Recovery from a thruster firing, which moved the liquid to the opposite end of the tank from the PMD, was achieved in 30 sec, showing that liquid rewicked more quickly into the PMD after thruster firing than pretest projections had predicted. In addition, researchers obtained great insights into the PMD behavior from the video footage provided, and discovered new considerations for future PMD designs that would not have been seen without this flight test.

  17. Ice/frost detection using millimeter wave radiometry. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Newton, J. M.; Davis, A. R.; Foster, M. L.

    1981-01-01

    A series of ice detection tests was performed on the shuttle external tank (ET) and on ET target samples using a 35/95 GHz instrumentation radiometer. Ice was formed using liquid nitrogen and water spray inside a test enclosure containing ET spray on foam insulation samples. During cryogenic fueling operations prior to the shuttle orbiter engine firing tests, ice was formed with freon and water over a one meter square section of the ET LOX tank. Data analysis was performed on the ice signatures, collected by the radiometer, using Georgia Tech computing facilities. Data analysis technique developed include: ice signature images of scanned ET target; pixel temperature contour plots; time correlation of target data with ice present versus no ice formation; and ice signature radiometric temperature statistical data, i.e., mean, variance, and standard deviation.

  18. Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset

    NASA Astrophysics Data System (ADS)

    Seiffert, Betsy R.; Ducrozet, Guillaume; Bonnefoy, Félicien

    2017-11-01

    This study investigates a wave-breaking onset criteria to be implemented in the non-linear potential flow solver HOS-NWT. The model is a computationally efficient, open source code, which solves for the free surface in a numerical wave tank using the High-Order Spectral (HOS) method. The goal of this study is to determine the best method to identify the onset of random single and multiple breaking waves over a large domain at the exact time they occur. To identify breaking waves, a breaking onset criteria based on the ratio of local energy flux velocity to the local crest velocity, introduced by Barthelemy et al. (2017) is selected. The breaking parameter is uniquely applied in the numerical model in that calculations of the breaking onset criteria ratio are not made only at the location of the wave crest, but at every point in the domain and at every time step. This allows the model to calculate the onset of a breaking wave the moment it happens, and without knowing anything about the wave a priori. The application of the breaking criteria at every point in the domain and at every time step requires the phase velocity to be calculated instantaneously everywhere in the domain and at every time step. This is achieved by calculating the instantaneous phase velocity using the Hilbert transform and dispersion relation. A comparison between more traditional crest-tracking techniques shows the calculation of phase velocity using Hilbert transform at the location of the breaking wave crest provides a good approximation of crest velocity. The ability of the selected wave breaking criteria to predict single and multiple breaking events in two dimensions is validated by a series of large-scale experiments. Breaking waves are generated by energy focusing and modulational instability methods, with a wide range of primary frequencies. Steep irregular waves which lead to breaking waves, and irregular waves with an energy focusing wave superimposed are also generated. This set of waves provides a wide range of breaking-wave strengths, types and scales for validation of the model. A comparison of calculations made using HOS-NWT with experimental measurements show that the model is successful at predicting the occurrence of wave breaking, as well as accurately calculating breaking onset time and location. Although the current study is limited to a unidirectional wave field, the success of the wave-breaking model presented provides the basis for application of the model in a multidirectional wave field. By including wave breaking onset with the addition of an appropriate energy dissipation model into HOS-NWT, we can increase the application range of the model, as well as decrease the occurrence of numerical instabilities that are associated with breaking waves in a potential flow solver. An accurate description of the wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures and the general physics of ocean waves, for example.

  19. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  20. Material Inspection Using THz and Thermal Wave

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun; Li, Yanhong; Zhang, X.-C.

    2007-03-01

    Terahertz (THz) and thermal wave imaging technologies are complementary inspection modalities for use in non-contact and non-destructive evaluation. Both of them are applied in order to evaluate damages on a variety of composite samples. We will also report the test of a large number of insulation foam panels used in NASA's External Fuel Tank through pulse and CW terahertz systems. The study of defects using the two techniques in selected materials, including metal plates, carbon fibers, glass fibers, carbon silicon composites, etc is also shown.

  1. An experimental study of microwave scattering from rain- and wind-roughened seas

    NASA Technical Reports Server (NTRS)

    Bliven, L. F.; Giovanangeli, J.-P.

    1993-01-01

    This paper investigates radar cross-section (RCS) characteristics of rain- and wind-roughened sea-surfaces. We conducted experiments in laboratory wind-wave tanks using artificial rain. The study includes light rain rates, light wind speeds, and combinations of these. A 36 Ghz scatterometer was operated at 30 deg incidence angle and with vertical polarization. RCS data were obtained not only with the scatterometer pointing up-wind but also as a function of azimuthal angle. We use a scatterometer rain and wind model SRWM-1, which relates the total average RCS in storms to the sum of the average RCS due to rain plus the average RCS due to wind. Implications of the study for operational monitoring of wind in rainy oceanic areas by satellite-borne instruments is discussed.

  2. N-body scattering. I. The algebraic structure of transition amplitude and integral equations (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pao, C.K.

    1975-05-01

    An assessment of wave energy as a source of electrical power in the United Kingdom is reported. British Hovercraft Corporation has conducted some tank tests for Wavepower Limited, studying various simple float systems. It aims to develop a wave-power device that is simple, cheap, made up of small mass- produced units, can be installed in sections, and can be easily maintained. A chain of floats, hinged together, with waves traveling down the chain, was investigated. Pumps on the hinges absorb power from the relative rotation of adjacent floats. A wave-power device could also serve as an effective breakwater. Direct generationmore » of electricity is a feasible application of wave power. The system is compared with a rocking boom concept. Wave energy could be used in conjunction with thermal stations to provide sufficient capacity when wave power is low. Wave power has a high availability when compared with wind power. (MCW)« less

  3. Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans.

    PubMed

    Resmeriță, Ana-Maria; Coroaba, Adina; Darie, Raluca; Doroftei, Florica; Spiridon, Iuliana; Simionescu, Bogdan C; Navard, Patrick

    2018-02-01

    A sea water wave tank fitted in an artificial UV light weathering chamber was built to study the behaviour of polypropylene (PP) injected pieces in close ocean-like conditions. In air, the same pieces sees a degradation in the bulk with a decrease of mechanical properties, a little change of crystal properties and nearly no change of surface chemistry. Weathering in the sea water wave tank shows only a surface changes, with no effect on crystals or mechanical properties with loss of small pieces of matter in the sub-micron range and a change of surface chemistry. This suggests an erosion dispersion mechanism. Such mechanism could explain why no particle smaller than about one millimeter is found when collecting plastic debris at sea: there are much smaller, eroded from plastic surfaces by a mechano-chemical process similar to the erosion mechanism found in the dispersion of agglomerate under flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rough-water Landings of a 0.1-Size Powered Dynamic Model of the XP5Y-1 Flying Boat with Two Types of Afterbody - Langley Tank Model 228 (TED No. NACA DE309)

    NASA Technical Reports Server (NTRS)

    Garrison, Charlie C.

    1949-01-01

    A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.

  5. CRITICAL EXPERIMENT TANK (CET) REACTOR HAZARDS SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becar, N.J.; Kunze, J.F.; Pincock, G..D.

    1961-03-31

    The Critical Experiment Tank (CET) reactor assembly, the associated systems, and the Low Power Test Facility in which the reactor is to be operated are described. An evaluation and summary of the hazards associated with the operation of the CET reactor in the LPTF at the ldsho Test Station are also presented. (auth)

  6. Liquid Motion Experiment Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato David J.; Dalton, Penni J.; Dodge, Franklin T.; Green, Steve

    1998-01-01

    The Liquid Motion Experiment (LME), designed to study the effects of liquid motion in rotating tanks, was flown on STS 84. LME was essentially a spin table that created a realistic nutation motion of scale-model tanks containing liquid. TWo spherical and two cylindrical transparent tanks were tested simultaneously, and three sets of such tanks were employed to vary liquid viscosity, fill level, and propellant management device (PMD) design. All the tanks were approximately 4.5 inches diameter. The primary test measurements were the radial and tangential torques exerted on the tanks by the liquid. Resonant frequencies and damping of the liquid oscillations were determined by sine sweep tests. For a given tank shape, the resonant frequency depended on fill level. For the cylindrical tanks, the resonances had somewhat different frequencies for the tangential axis (0.55 to 0.75 times spin rate) and the radial axis (0.73 to 0.78 times spin rate), and the tangential axis resonance agreed more closely with available analytical models. For the spherical tanks, the resonant frequencies were between 0.74 to 0.77 times the spin rate and were the same for the tangential and radial axes. The damping coefficients varied from about I% to 3% of critical, depending on tank shape, fill level, and liquid viscosity. 'Me viscous energy dissipation rates of the liquid oscillations were determined from sine dwell tests. The LME energy dissipation rates varied from 0.3 to 0.5 times the estimates obtained from scaling previous ground tests and spacecraft flight data. The PNDs sometimes enhanced the resonances and energy dissipation rates and sometimes decreased them, which points out the need to understand better the effects of PMD on liquid motion as a function of PMD and tank design.

  7. STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and Applications

    NASA Astrophysics Data System (ADS)

    Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.

    2016-02-01

    Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.

  8. The Threat of the Premium Tank: The Product and Process of the Soviet Experience

    DTIC Science & Technology

    1992-06-05

    one of the Soviet Army’s most significant developments in land warfare remains. The demonstrated capability to develop, produce, and field innovative ...T-34, it clearly did not display the innovations and advanced capabilities that would bring Soviet post-war heavy tanks and the modern premium tank on...antitank warfare caused by the historically demonstrated capability to develop, produce, and field innovative and high technology tanks must be prevented

  9. Detail view of the Fluid Acquisition and Resupply Equipment experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-09-019 (2 - 9 Dec 1992) --- A medium close-up view of part of the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Featured in the mid-deck FARE setup is fluid activity in one of two 12.5-inch spherical tanks made of transparent acrylic. Pictured is the receiver tank. The other tank, out of frame below, is for supplying fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.

  10. Presenting the Rain-Sea Interaction Facility

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Elfouhaily, Tonas M.

    1993-01-01

    The new Rain-Sea Interaction Facility (RSIF) was established at GSFC/WFF and the first finds are presented. The unique feature of this laboratory is the ability to systematically study microwave scattering from a water surface roughened by artificial rain, for which the droplets are at terminal velocity. The fundamental instruments and systems (e.g., the rain simulator, scatterometers, and surface elevation probes) were installed and evaluated during these first experiments - so the majority of the data were obtained with the rain simulator at 1 m above the water tank. From these initial experiments, three new models were proposed: the square-root function for NCS vs. R, the log Gaussian model for ring-wave elevation frequency spectrum, and the Erland probability density distribution for back scattered power. Rain rate is the main input for these models, although the coefficients may be dependent upon other factors (drop-size distribution, fall velocity, radar configuration, etc.). The facility is functional and we foresee collaborative studies with investigators who are engaged in measuring and modeling rain-sea interaction processes.

  11. KSC-2009-4138

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Fiery columns propel space shuttle Endeavour into space from NASA Kennedy Space Center's Launch Pad 39A on the STS-127 mission. Liftoff was on-time at 6:03 p.m. EDT. Below the main engine nozzles are the blue mach diamonds, a formation of shock waves in the exhaust plume of an aerospace propulsion system. This was the sixth launch attempt for the STS-127 mission. The launch was scrubbed on June 13 and June 17 when a hydrogen gas leak occurred during tanking due to a misaligned Ground Umbilical Carrier Plate. The mission was postponed July 11, 12 and 13 due to weather conditions near the Shuttle Landing Facility at Kennedy that violated rules for launching, and lightning issues. Endeavour will deliver the Japanese Experiment Module's Exposed Facility and the Experiment Logistics Module-Exposed Section in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. Photo credit: NASA/Mike Gayle, Rusty Backer

  12. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  13. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. H.

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.

  14. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  15. Construction strength analysis of landing craft tank conversion to passenger ship using finite element method

    NASA Astrophysics Data System (ADS)

    Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu

    2018-03-01

    This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.

  16. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less

  17. The dynamical simulation of transient three-dimensional cryogenic liquid sloshing oscillations under low-gravity and microgravity

    NASA Astrophysics Data System (ADS)

    Chi, Yong Mann

    A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical evolution of sloshing dynamics excited by fluid stress forces, fluid stress moments, and the arm of fluid moment exerted on the dewar container, is considered. This excitation was driven by the combined gravity gradient and gravity jitter acceleration inside the tank during the draining process and closing the tank outlet. The time evolution of the liquid-vapor interface profiles and the bubble mass center fluctuation, as well as liquid mass center and fluctuations of angular momentum caused by slosh wave excitations with 0.1 rpm in a reduced gravity, are also investigated and simulated. Force, angular momentum, and torque vector time histories and Power Spectral Density (PSD) are also plotted and discussed. The results of this investigation may be applied to determine the magnitude and nature of control forces and torques needed to minimize influence of slosh on the dynamics of liquid fueled vehicles in near earth orbit. Results show that induced fluid forces (or angular momentum) exerted on the container wall along x and y-axes, which are non-existent at the beginning, are introduced by the slosh waves excited by asymmetric gravity gradient and the gravity jitter acceleration.

  18. Cotterillia bromelicola nov. gen., nov. spec., a gonostomatid ciliate (Ciliophora, Hypotricha) from tank bromeliads (Bromeliaceae) with de novo originating dorsal kineties.

    PubMed

    Foissner, Wilhelm; Stoeck, Thorsten

    2011-01-01

    Cotterillia bromelicola nov. gen., nov. spec. was discovered in the tanks of the Mexican bromeliad Tillandsia heterophylla. Its morphology, ontogenesis, and 18S rDNA were studied with standard methods. Cotterillia has many cirral rows on both sides of the body. Uniquely, and thus used to diagnose the new genus Cotterillia, it has dorsal kineties originating de novo, producing neokinetal waves where the parental dorsal kineties reorganize to "combined rows", consisting of dorsal bristles anteriorly and of cirri posteriorly. Thus, up to four generations of bristles and cirri occur on the dorsal body surface. Cotterillia bromelicola has a gonostomatid body and adoral zone of membranelles, while the dense ciliature and the neokinetal waves resemble kahliellid hypotrichs. However, the de novo origin of anlage 1 and the molecular analyses show convincingly that Cotterillia belongs to the GonostomatidaeSmall and Lynn, 1985, for which an improved diagnosis is provided. Thus, neokinetal waves originated several times independently. The molecular differences between Trachelostyla, Gonostomum, and Cotterillia are small (≤ 5%) compared to their distinct morphologies and ontogeneses, suggesting that the 18S rDNA underestimates generic diversity. Our study emphasizes the need of combined morphological, ontogenetic, and molecular investigations to unravel the complex phylogeny and evolution of hypotrich ciliates. Published by Elsevier GmbH.

  19. Cotterillia bromelicola nov. gen., nov. spec., a gonostomatid ciliate (Ciliophora, Hypotricha) from tank bromeliads (Bromeliaceae) with de novo originating dorsal kineties

    PubMed Central

    Foissner, Wilhelm; Stoeck, Thorsten

    2012-01-01

    Cotterillia bromelicola nov. gen., nov. spec. was discovered in the tanks of the Mexican bromeliad Tillandsia heterophylla. Its morphology, ontogenesis, and 18S rDNA were studied with standard methods. Cotterillia has many cirral rows on both sides of the body. Uniquely, and thus used to diagnose the new genus Cotterillia, it has dorsal kineties originating de novo, producing neokinetal waves where the parental dorsal kineties reorganize to “combined rows”, consisting of dorsal bristles anteriorly and of cirri posteriorly. Thus, up to four generations of bristles and cirri occur on the dorsal body surface. Cotterillia bromelicola has a gonostomatid body and adoral zone of membranelles, while the dense ciliature and the neokinetal waves resemble kahliellid hypotrichs. However, the de novo origin of anlage 1 and the molecular analyses show convincingly that Cotterillia belongs to the Gonostomatidae Small and Lynn, 1985, for which an improved diagnosis is provided. Thus, neokinetal waves originated several times independently. The molecular differences between Trachelostyla, Gonostomum, and Cotterillia are small (≤5%) compared to their distinct morphologies and ontogeneses, suggesting that the 18S rDNA underestimates generic diversity. Our study emphasizes the need of combined morphological, ontogenetic, and molecular investigations to unravel the complex phylogeny and evolution of hypotrich ciliates. PMID:20971620

  20. Wave energy extraction by coupled resonant absorbers.

    PubMed

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  1. High-Resolution Millimeter Wave Detection of Vertical Cracks in the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the Space Shuttle Discovery's flight in 2005 and recently a crack was detected in its ET foam prior to its successful launch. Millimeter wave nondestructive testing methods have been considered as potential effective inspection tools for evaluating the integrity of the SOFI. Recently, in a specific investigation into the potential of these methods for detecting vertical cracks in SOFI was explored using a focused millimeter wave reflectometer at 150 GHz. The results showed the capability of these methods for detecting tight vertical cracks (also as a function of crack opening dimension) in exposed SOFI panels and while covered by a piece of SOFI ramp simulating a more realistic and challenging situation. Some crack-like anomalies were also detected in a blind SOFI panel. This paper presents the background for these techniques as well as representative images of the vertical crack in the SOFI panel, crack-like anomalies in the blind panel and a discussion of the practical attributes of these inspection methods.

  2. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  3. An apparatus to estimate the hydrodynamic coefficients of autonomous underwater vehicles using water tunnel testing.

    PubMed

    Nouri, N M; Mostafapour, K; Bahadori, R

    2016-06-01

    Hydrodynamic coefficients or hydrodynamic derivatives of autonomous underwater vehicles (AUVs) play an important role in their development and maneuverability. The most popular way of estimating their coefficients is to implement captive model tests such as straight line tests and planar motion mechanism (PMM) tests in the towing tanks. This paper aims to develop an apparatus based on planar experiments of water tunnel in order to estimate hydrodynamic derivatives due to AUVs' acceleration and velocity. The capability of implementing straight line tests and PMM ones using mechanical oscillators located in the downstream flow of the model is considered in the design procedure of the system. The hydrodynamic derivatives that resulted from the acceleration and velocity of the AUV model were estimated using the apparatus that we developed. Static and dynamics test results were compared for the similar derivatives. The findings showed that the system provided the basis for conducting static tests, i.e., straight-line and dynamic tests that included pure pitch and pure heave. By conducting such tests in a water tunnel, we were able to eliminate errors related to the time limitation of the tests and the effects of surface waves in the towing tank on AUVs with applications in the deep sea.

  4. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  5. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  6. Internally insulated thermal storage system development program

    NASA Astrophysics Data System (ADS)

    Scott, O. L.

    1980-03-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  7. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  8. Low gravity reorientation in a scale-model Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Masica, W. J.; Lacovic, R. F.

    1973-01-01

    An experiment was conducted to investigate the process of liquid reorientation from one end of a scale-model Centaur liquid-hydrogen tank to the other end by means of low-level accelerations. Prior to reorientation, the liquid was stabilized at the top of the tank at a Bond number of 15. Tanks both with and without ring baffles and with tank radii of 5.5 and 7.0 centimeters were used in the study. Reorientation acceleration values were varied to obtain Bond numbers of 200 and 450. Liquid fill levels of 20 and 70 percent were used. From the data in this study, relations were developed to estimate reorientation event times in unbaffled tanks through the point of final liquid clearing from the top of the tank. The insertion of ring baffles drastically changed the reorientation flow profiles but resulted in only minor differences in the times of tank-top uncovering and liquid collection.

  9. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    PubMed

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  10. Modeling of impulsive propellant reorientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Patag, Alfredo E.; Chato, David J.

    1988-01-01

    The impulsive propellant reorientation process is modeled using the (Energy Calculations for Liquid Propellants in a Space Environment (ECLIPSE) code. A brief description of the process and the computational model is presented. Code validation is documented via comparison to experimentally derived data for small scale tanks. Predictions of reorientation performance are presented for two tanks designed for use in flight experiments and for a proposed full scale OTV tank. A new dimensionless parameter is developed to correlate reorientation performance in geometrically similar tanks. Its success is demonstrated.

  11. OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank) test series 77: Global Oil Recovery Skimmer, Veegarm Skimming Arm, Kebab 600, Wylie Skimmer and the Skim-Pak Cluster. Final report Jan 80-Jun 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borst, M.

    1984-03-01

    This report covers the performance testing of five oil spill recovery devices at the Oil and Hazardous Materials Simulated Environmental Test Tank in Leonardo, New Jersey. The GOR Skimmer was tow tested in harbor chops, regular waves, and calm water at tow speeds through 2 knots to determine the effectiveness of modifications made to the device since it was last tested. The performance was consistently lower after the modifications in all conditions. The Hydrovac Veegarm was the most exhaustively tested skimmer in this program.

  12. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less

  13. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    EPA Science Inventory

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  14. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).

  15. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  16. The use of a numerical method to justify the criteria for the maximum settlement of the tank foundation

    NASA Astrophysics Data System (ADS)

    Tarasenko, Alexander; Chepur, Petr; Gruchenkova, Alesya

    2017-11-01

    The article examines the problem of assessing the permissible values of uneven settlement for a vertical steel tank base and foundation. A numerical experiment was performed using a finite element model of the tank. The model took into account the geometric shape of the structure and its additional stiffening elements that affect the stress-strain state of the tank. An equation was obtained that allowed determining the maximum possible deformation of the bottom outer contour during uneven settlement. Depending on the length of the uneven settlement zone, the values of the permissible settlement of the tank base were determined. The article proposes new values of the maximum permissible tank settlement with additional stiffening elements.

  17. Experimental study of foam-insulated liquified-gas tanks

    NASA Technical Reports Server (NTRS)

    Reynolds, Thaine W; Weiss, Solomon

    1957-01-01

    Experiments with liquid nitrogen and liquid hydrogen is styrofoam-insulated tanks have indicated good agreement between measured and calculated heat-leak rates when the insulation was formed from a single block of material. In a large tank installation where the insulation was applied in sections without sealing the joints, the measured heat leak was about 2 and 1/2 times the calculated value.

  18. On the Impact Between a Water Free Surface and a Rigid Structure

    NASA Astrophysics Data System (ADS)

    Wang, An

    In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3 cm below the mean water level, a ''flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.

  19. A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions

    ERIC Educational Resources Information Center

    Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s

    2014-01-01

    A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…

  20. The subscale orbital fluid transfer experiment

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry

    1995-01-01

    The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, examination of methods for accurately metering the amount of liquid transferred between the two tanks, examination of possible test fluids, and consideration of the materials to use for the elastomeric diaphragm. The objective of the visual observation is to locate the fluid-vapor interfaces and, if possible, quantify the amount of vapor and the area of the interface. It is proposed to use video cameras to view the overall process in each tank and to place borescopes or other devices through the tank walls to obtain detailed, undistorted views inside the tanks of critical portions of the transfer process. Further work will continue to find an economical means for providing this detailed view, which clearly would increase the data obtained from the experiment.

  1. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake trout (Salvelinus namaycush) from its prey

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Rediske, Richard R.; O’Keefe, James P.

    2012-01-01

    Lake trout (Salvelinus namaycush) were fed bloater (Coregonus hoyi) in eight laboratory tanks over a 135-d experiment. At the start of the experiment, four to nine fish in each tank were sacrificed, and the concentrations of 75 polychlorinated biphenyl (PCB) congeners within these fish were determined. Polychlorinated biphenyl congener concentrations were also determined in the 10 lake trout remaining in each of the eight tanks at the end of the experiment as well as in the bloater fed to the lake trout. Each lake trout was weighed at the start and the end of the experiment, and the amount of food eaten by the lake trout was recorded. Using these measurements, net trophic transfer efficiency (γ) from the bloater to the lake trout in each of the eight tanks was calculated for each of the 75 congeners. Results showed that γ did not vary significantly with the degree of chlorination of the PCB congeners, and γ averaged 0.66 across all congeners. However,γ did show a slight, but significant, decrease as logKOW increased from 6.0 to 8.2. Activity level of the lake trout did not have a significant effect on γ.

  2. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  3. Comparison of Focused and Near-Field Imaging of Spray on Foam Insulation (SOFI) at Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.

    2007-01-01

    Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.

  4. Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system

    NASA Astrophysics Data System (ADS)

    Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao

    2013-03-01

    The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.

  5. Comparison of β Values in Rocks Deduced From the Elastoacoustic Effect and From 3-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Dangelo, R.; Winkler, K. W.; Johnson, D. L.

    2002-12-01

    We measure the changes in the speeds of sound in Berea, wet and dry, due to the application of non-isotropic stresses (elastoacoustic effect). From these measurements we deduce values of the 3rd order elastic constants, A,B,C. We insonify these same samples, immersed in a water tank, with well-characterized acoustic signals having frequency content f1 = 1.05 MHz and f2 = 0.95 MHz. The nonlinear properties of the samples generate a difference frequency component at Δ f = 100 kHz whose amplitude we measure (3-wave mixing). We analyze the combined effects of diffraction, attenuation, and nonlinearity on these difference frequency signals by means of the KZK equation, suitably modified to account for the actual frequency dependence of the attenuation in these samples. The attenuation of the higher frequency nonlinear signals, f1+f_2, 2f1, 2f2, precludes our ability to measure them. The values of β deduced from the 3-wave mixing measurements are in the hundreds whereas the values of β implied by the values of A,B,C are in the thousands. The same experiments on lucite yield β values consistent with each other: β ≈ 6. In lucite we are easily able to measure the higher frequency nonlinear signals. The high attenuation in rocks precludes their measurement at these frequencies.

  6. Oscillating-grid experiments in water and superfluid helium

    NASA Astrophysics Data System (ADS)

    Honey, Rose E.; Hershberger, Robert; Donnelly, Russell J.; Bolster, Diogo

    2014-05-01

    Passing a fluid through a grid is a well-known mechanism used to study the properties of turbulence. Oscillating a horizontal grid vertically in a tank has also been used extensively and is considered to be a source of almost homogenous isotropic turbulence. When the oscillating grid is turned on a turbulent flow is induced. A front translates into the experimental tank, behind which the flow is highly turbulent. Long predicted that the growth of such a front would grow diffusively as the square root of time (i.e., d ˜√t ) and Dickinson and Long presented experimental evidence for the diffusive result at a low mesh Reynolds number of 555. This paper revisits these experiments and attempts a set of two models for the advancing front in both square and round tanks. We do not observe significant differences between runs in square and round tanks. The experiments in water reach mesh Reynolds numbers of order 30000. Using some data from superfluid helium experiments we are able to explore mesh Reynolds numbers to about 43000. We find the power law for the advancing front decreases weakly with the mesh Reynolds number. Using a very long tank we find that the turbulent front stops completely at a certain depth and attempt a simple explanation for that behavior. We study the propagation of the turbulent front into tubes of different diameters inserted into the main tank. We show that these tubes exclude wavelengths much larger than the tube diameter. We explore the variation of the position of the steady-state boundary H on tube diameter D and find that H =cD with c ˜2. We suggest this may be explained by saturation of the energy-containing length scale ℓe. We also report on the effect of plugging up just one hole of the grid. Finally, we recall some earlier oscillating grid experiments in superfluid 4He in the light of the present results.

  7. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  8. Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory

    DOE PAGES

    Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.

    2016-02-15

    Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less

  9. Survival of Salmonella adelaide and fecal coliforms in coarse sands of the swan costal plain, Western Australia.

    PubMed Central

    Parker, W F; Mee, B J

    1982-01-01

    The survival of Salmonella adelaide and fecal coliforms in two coarse sands influenced by two sources of septic tank effluent was studied. The experiments were conducted in conditions that reflected the soil environment beneath functioning septic tank systems. Significant differences in survival were found with different effluent sources. In one experiment the survival of S. adelaide was similar to that of fecal coliforms; in the other it was not. The nonuniform, multiphasic nature of survival curves was variability observed in these experiments suggests that the application of such survival data for establishing management criteria for septic tank systems--by, for example, the use of soil moisture characteristic curves to give estimates of movement in the soil--is inappropriate. PMID:7103482

  10. Potential Follow on Experiments for the Zero Boil Off Tank Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David; Kassemi, Mohammad

    2014-01-01

    Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions; It is identified by NASA as an area with greatest potential for cost saving; This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks; We propose to use the ISS lab to generate & collect archival scientific data:, raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM), develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs

  11. Assessment of performing an MST strike in Tank 21H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, Michael R.

    2014-09-29

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tankmore » size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.« less

  12. Non-condensable gas effects in ROSA/AP600 small-break LOCA experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Hideo; Kukita, Yutaka; Shaw, R.A.

    1996-06-01

    Integral experiments simulating the postulated accidents in the Westinghouse AP600 reactor have been conducted using the ROSA-V Large Scale Test Facility (LSTF). These experiments allowed the N{sub 2} gas for the pressurization of accumulator tanks to enter the primary system after the depletion of the tank water inventory. The gas migrated into the Passive Residual Heat Removal (PRHR) system heat exchanger tubes and into the Core Makeup Tanks (CMTs), and influenced the performance of these components which are unique to the AP600 reactor. Specifically, the PRHR was disabled soon after the N{sub 2} gas discharge in most of the experiments,more » although the core decay power was removed well by the steam discharge through the Automatic Depressurization System (ADS) after the PRHR was disabled. The N{sub 2} gas ingress into the CMTs occurred in the experiments with relatively large breaks ({ge} 2 inch in equivalent diameter), and contributed to a smooth draindown of the CMT inventory into the primary system.« less

  13. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  14. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  15. Researchers Demonstrate Liquid Transfer Equipment for Apollo 14 Test

    NASA Image and Video Library

    1970-12-21

    Two researchers at the National Aeronautics and Space Administration (NASA) Lewis Research Center demonstrate the test equipment they devised to study the transfer of liquid in microgravity onboard the Apollo 14 mission. The test was an early step in developing the ability to transfer liquids from a tanker vehicle to spacecraft in space. Researchers needed to know the tank’s outflow characteristics, the fluid’s behavior when entering new tank, and the effects of accelerations. Others had performed some calculations and analytical studies, but no one had examined the complete transfer from one tank to another in microgravity. The early calculations concluded that the transfer process was impossible without devices to control the liquid and gas. This investigation specifically sought to demonstrate the effectiveness of two different surface-tension baffle designs. The experiment was an entirely closed system with two baffled-tanks. The researchers also built a similar device without the baffles. The experiment was carried onboard the Apollo 14 spacecraft and conducted during the coast period on the way to the moon. The two surface tension baffle designs in the separate tanks were shown to be effective both as supply tanks and as receiver tanks. The liquid transferred within two percent of the design value with ingesting gas. The unbaffled tanks ingested gas after only 12-percent of the fluid had transferred.

  16. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  17. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.

  18. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  19. Ohmsett test of NOFI Vee-Sweep and NOFI 600S oilboom. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, M.J.

    1993-10-01

    A NOFI Vee-Sweep and a NOFI 600S Oilboom, both manufactured by NOFI TROMSO A/S of Norway, were tested at the Ohmsett test tank in Leonardo, NJ. The V-Shaped Sweep is an oil boom designed for use with a skimmer at the apex of the V-Shaped configuration. Oil is funneled back to the skimmer by the converging sides of the V and concentrated for more efficient skimming. The 60 meter length of the sweep is doubled over to form the V and held in this shape by cross netting at the bottom of the skirt. The bottom netting is claimed tomore » help stabilize the oil in the sweep. The sweep was towed with a 700mm skirt depth and mouth opening of 16 meters. The mouth opening was reduced from the designed 19.8 meters to fit in the tow tank without causing excess blockage. The limiting towing speeds of the sweep were determined with and without oil present, in calm water and in small waves. The sweep's ability to conform to waves was also determined. Towing forces were measured. Limited data on oil loss rates were obtained. Testing confirmed the manufacturer's claim that the sweep can be towed at 1.0 and 1.4 knots with oil in calm water, based on the first loss of oil. The critical tow speed was found to be 3.4 to 3.6 knots in calm water. Oil booms, Tow tank testing.« less

  20. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.

    PubMed

    Trudel, Ken; Belore, Randy C; Mullin, Joseph V; Guarino, Alan

    2010-09-01

    This study determined the limiting oil viscosity for chemical dispersion of oil spills under simulated sea conditions in the large outdoor wave tank at the US National Oil Spill Response Test Facility in New Jersey. Dispersant effectiveness tests were completed using crude oils with viscosities ranging from 67 to 40,100 cP at test temperature. Tests produced an effectiveness-viscosity curve with three phases when oil was treated with Corexit 9500 at a dispersant-to-oil ratio of 1:20. The oil viscosity that limited chemical dispersion under simulated at-sea conditions was in the range of 18,690 cP to 33,400 cP. Visual observations and measurements of oil concentrations and droplet size distributions in the water under treated and control slicks correlated well with direct measurements of effectiveness. The dispersant effectiveness versus oil viscosity relationship under simulated at sea conditions at Ohmsett was most similar to those from similar tests made using the Institut Francais du Pétrole and Exxon Dispersant Effectiveness (EXDET) test methods. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Retainment of the antimicrobial agent triclosan in a septic tank.

    PubMed

    Kirjanova, Ala; Rimeika, Mindaugas; Vollertsen, Jes; Nielsen, Asbjørn Haaning

    2014-01-01

    Laboratory experiments were conducted to investigate the fate of the antimicrobial agent triclosan (TCS) in a conventional septic tank. The main mechanism of TCS removal from wastewater was identified to be rapid TCS sorption to suspended particles followed by settling of these particles to the bottom of the septic tank. Sorption to particles was completed within minutes while the settling took several days. Therefore, in a septic tank the removal of TCS from wastewater is mainly determined by the removal of suspended particles by sedimentation. Over 5 days of hydraulic residence time the initial dissolved TCS concentration of 100 μg L(-1) was reduced by 87 ± 8%. During the first 24 hours, 66-86% of all removed TCS was retained, whereas during the remainder of the experiment a slight but steady decrease in TCS concentration was observed. This was most likely caused by TCS diffusion and its subsequent sorption onto the septic sludge.

  2. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  3. Simulation of large scale motions and small scale structures in planetary atmospheres and oceans: From laboratory to space experiments on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe

    2014-05-01

    Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683

  4. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    NASA Technical Reports Server (NTRS)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-01-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  5. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, E.F.; You, Y.; Roesler, D.J.

    This paper proposes a new model for three-phase transformers with three legs with and without tank under DC bias based on electric and magnetic circuit theory. For the calculation of the nonsinusoidal no-load currents, a combination of time and frequency domains is used. The analysis shows that (1) asymmetric three-phase transformers with three legs generate magnetizing currents with triplen harmonics not being of the zero-sequence type. (2) The wave shapes of the three magnetizing currents of (asymmetric) transformers are dependent on the phase sequence. (3) The magnetic history of transformer magnetization -- due to residual magnetization and hysteresis of themore » tank -- cannot be ignored if a DC bias is present and the magnetic influence of the tank is relatively strong, e.g., for oil-cooled transformers. (4) Symmetric three-phase transformers with three legs generate no-load currents without triplen harmonics. (5) The effects of DC bias currents (e.g., reactive power demand, harmonic distortion) can be suppressed employing symmetric three-phase transformers with three legs including tank. Measurements corroborate computational results; thus this nonlinear model is valid and accurate.« less

  6. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushedmore » grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.« less

  7. Crewmembers in the middeck with the FARE experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-04-018 (2-9 Dec 1992) --- Astronauts Guion S. Bluford (left) and Michael R. U. (Rich) Clifford monitor the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Clearly visible in the mid-deck FARE setup is one of two 12.5-inch spherical tanks made of transparent acrylic, one to supply and one to receive fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.

  8. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  9. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  10. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  11. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most importantly, the amount of water loosed in the event. The simulated water movement excited by the seismic acceleration was visually similar to the video clip mentioned before. From the simulation results, we observed that the water was mainly leaked at the corner of the water tank with a nonlinear curve of the free-surface. This phenomenon can't be found in the conventional studies with acceleration in a sole direction. We also studied the effect from a porous body placed on the lower part of the tank. Detailed results and discussion will be presented in the full paper. Keywords Sloshing, Splash3D, LES, Breaking waves, VOF, spent fuel pool, Nuclear power plant

  12. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    NASA Astrophysics Data System (ADS)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  13. Sources of and Remedies for Removing Unwanted Reflections in Millimeter Wave Images of Complex SOFI-Covered Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2007-01-01

    In the recent years, continuous-wave near-field and lens-focused millimeter wave imaging systems have been effectively used to demonstrate their utility for producing high-resolution images of metallic structures covered with spay on foam insulation (SOFI) such as the Space Shuttle external fuel tank. However, for some specific structures a certain interference -pattern may be superimposed on the produced images. There are methods by which the influence of this unwanted interference can be reduced, such as the incorporation of an incidence .angle and the proper use of signal polarization. This paper presents the basics of this problem and describes the use of the methods for reducing this unwanted influence through specific examples.

  14. Fluid Acquisition and Resupply Experiment (FARE-I) flight results

    NASA Astrophysics Data System (ADS)

    Dominick, Sam M.; Driscoll, Susan L.

    1993-06-01

    The Fluid Acquisition and Resupply Experiment, (FARE) is a Shuttle middeck-mounted experiment to demonstrate techniques for handling liquids in zero gravity for operations such as refueling spacecraft in orbit. The first flight took place on STS 53 launched December 2, 1992. Eight tests were performed during the mission and the experiment achieved 100 percent mission success. The second flight will be on STS 57, scheduled for launch in June 1993. The objective of FARE I was to demonstrate techniques for controlling the position of the liquid and gas within a tank during refilling and to better understand the operation of screen-type surface tension devices used to drain tanks in zero gravity. Tests were performed to demonstrate tank refilling, low gravity propellant slosh, and expulsion efficiency of the screen device. Expulsion efficiencies of 97 percent - 98 percent were demonstrated under a variety of flowrates and accelerations. Final fill levels of 60 percent to 80 percent were achieved during the vented fill tests.

  15. Development of instructional manual encouraging student active learning for high school teaching on fluid mechanics through Torricelli's tank experiment

    NASA Astrophysics Data System (ADS)

    Apiwan, Suttinee; Puttharugsa, Chokchai; Khemmani, Supitch

    2018-01-01

    The purposes of this research were to help students to perform Physics laboratory by themselves and to provide guidelines for high school teacher to develop active learning on fluid mechanics by using Torricelli's tank experiment. The research was conducted as follows: 1) constructed an appropriate Torricelli's tank experiment for high school teaching and investigated the condition for maximum water falling distance. As a consequence, it was found that the distance of the falling water measured from the experiment was shorter than that obtained from the theory of ideal fluid because of the energy loss during a flow, 2) developed instructional manual for high school teaching that encourages active learning by using problem based learning (PBL) approach, which is consistent with the trend of teaching and learning in 21st century. The content validity of our instructional manual using Index of Item-objective Congruence (IOC) as evaluated by three experts was over 0.67. The manual developed was therefore qualified for classroom practice.

  16. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics. Final report, 1987-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opalka, K.O.

    1989-08-01

    The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.

  17. NDE Imaging of Time Differential Terahertz Waves

    NASA Technical Reports Server (NTRS)

    Trinh, Long B.

    2008-01-01

    Natural voids are present in the vicinity of a conathane interface that bonds two different foam materials. These voids are out of focus with the terahertz imaging system and multiple optical reflections also make it difficult to determine their depths. However, waves passing through the top foam article at normal incidence are partially reflected at the denser conathane layer prior to total reflection at the tank s wall. Reflections embedded in the oscillating noise segment prior to the main signals can be extracted with dual applications of filtering and time derivative. Void's depth is computed from direct path's time of flight.

  18. Observation of Noise Correlated by the Hawking Effect in a Water Tank.

    PubMed

    Euvé, L-P; Michel, F; Parentani, R; Philbin, T G; Rousseaux, G

    2016-09-16

    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number F_{max}≈0.85 reached above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.

  19. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were retrieved using conditional averaging with phase like in [5]. Basing on these data we then retrieve the pressure field and find the air-sea interaction parameters. Peculiarity of these experiments was the presence of noticeable modulation of the waves, so we describe peculiarities of the pressure distribution over a wave-train. This work was supported by the Russian Foundation of Basic Research (project codes 16-05-00839, 16-55-52025, 15-35-20953), President Grant for young scientists MK-2041.2017.5, Russian Science Foundation (Agreements 14-17-00667, 15-17-20009) and FP7 Collaborative Project No. 612610. References 1. Saveliev I., et. al. (2011) J. Phys. Oceanogr. 41. 1328-1344. 2. Grare, L., et. al. (2013) J. Fluid Mech., 722, 5-50. 3. van Oudheusden B.W. (2013) Meas. Sci. Technol. 24. 032001 (32pp) 4. Reul N., et.al. (1999) Phys. Fluids. 11. 1959-1961. 5. Troitskaya Yu., et. al.(2011). J. Phys. Oceanogr., 41, 1421-1454

  20. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels with the tank. Figure 1 is as sequence of images showing the development of the instability from the initial sinusoidal disturbance far into the nonlinear regime which is characterized by the appearance of mushroom structures resulting from the coalescence of baroclinic vorticity produced by the impulsive acceleration. At later times in this sequence the vortex cores are observed to become unstable showing the beginnings of the transition to turbulence in this flow. The amplitude of the growing disturbance after the impulsive acceleration is measured and found to agree well with theoretical predictions. The effects of Reynolds number (based on circulation) on the development of the vortices and the transition to turbulence are also determined.

  1. Experiment on Finite Amplitude Sound Propagation in a Fluid with a Strong Sound Speed Gradient

    NASA Astrophysics Data System (ADS)

    Hobæk, H.; Voll, A.˚.; Fardal, R.; Calise, L.

    2006-05-01

    A closed tank of dimensions 0.5 × 0.5 × 2.7 m3, filled with a mixture of ethanol and water to produce an almost linear sound speed profile with a gradient near 450 (m/s)/m, served the purpose for investigating shocked sound wave propagation in a stratified environment. As the sound speed profile evolved by diffusion a number of different measurements were taken, both in areas with caustics, shadow zones, along the main beam and along the bottom. After about one year, part of the fluid was re-mixed to obtain a pronounced sound speed maximum some 20 cm above the bottom. The high intensity sound was produced by a plane circular piston type sound source with near-field length 45 cm and half power angle 0.8° at 1.1 MHz, placed near one end of the tank. Its tilt angle and depth could be varied. A 0.5 mm diameter PVDF needle hydrophone (Precision Acoustics) mapped the sound field in a vertical slice in the range 0.9 - 2.4 m, remotely controlled by a PC. We present results from measurements in a shadow zone and along the bottom. The latter, in particular, displays unexpected amplitude variations. The project was funded by the European Commission, contract number G4RD-CT-2000-00398.

  2. Potential use of an ultrasound antifouling technology as a ballast water treatment system

    NASA Astrophysics Data System (ADS)

    Estévez-Calvar, Noelia; Gambardella, Chiara; Miraglia, Francesco; Pavanello, Giovanni; Greco, Giuliano; Faimali, Marco; Garaventa, Francesca

    2018-03-01

    The aim of this study was to investigate, at a laboratory scale, the potentialities of an ultrasound-based treatment initially designed to eliminate fouling, as a ballast water treatment system. Therefore, early life stages of three different zooplanktonic species (Amphibalanus amphitrite, Brachionus plicatilis and Artemia salina) were exposed to ultrasound waves (20-22 kHz). The experimental set up included static assays with variations of time exposure (30 s, 60 s and 30 s on/60 s off/30 s on), material of tanks (stainless steel, galvanized steel and plastic) and position of the ultrasound source. Results showed that the treatment efficacy increased from 30 to 60 s and no differences were registered between 60 s-continuous exposure and pulse exposure. The highest efficacy was observed in Experiment I (metal-to-metal contact assay) with a mortality value of 93-95% for B. plicatilis and A. salina. It consisted of organisms located inside stainless steel tubes that were located in direct contact with the ultrasound source and treated for 60 s. Further, we found that, generally, A. amphitrite and B. plicatilis were the most resistant species to the ultrasound treatment whereas A. salina was the most sensitive. We further discuss that US may unlikely be used for commercial vessels, but may be used to treat ballast water in smaller ballast tanks as on board of mega yachts.

  3. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    the analysis of data collected during the VHF acoustics test con- ducted in a wave tank at the Scripps Institution of Oceanography in October 2015...Institution of Oceanography , the co-PI on these exper- iments, undertook the design and fabrication of a new mounting mechanism to eliminate this mounting

  4. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  5. KSC-2009-4136

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – A fish-eye view of space shuttle Endeavour as it lifts off NASA Kennedy Space Center's Launch Pad 39A into the cloud-washed sky on the STS-127 mission. At the bottom, underneath the main engine nozzles are the blue mach diamonds. The mach diamonds are a formation of shock waves in the exhaust plume of an aerospace propulsion system. Liftoff was on-time at 6:03 p.m. EDT. This was the sixth launch attempt for the STS-127 mission. The launch was scrubbed on June 13 and June 17 when a hydrogen gas leak occurred during tanking due to a misaligned Ground Umbilical Carrier Plate. The mission was postponed July 11, 12 and 13 due to weather conditions near the Shuttle Landing Facility at Kennedy that violated rules for launching, and lightning issues. Endeavour will deliver the Japanese Experiment Module's Exposed Facility and the Experiment Logistics Module-Exposed Section in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. Photo credit: NASA/Tony Gray, Tom Farrar

  6. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  7. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  8. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less

  9. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at Mach 3

    NASA Technical Reports Server (NTRS)

    Brosh, A.; Kussoy, M. I.

    1983-01-01

    An experimental study of the flow caused by a planar shock wave impinging obliquely on a cylinder is presented. The complex three dimensional shock wave and boundary layer interaction occurring in practical problems, such as the shock wave impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft were investigated. A data base for numerical computations of complex flows was also investigated. The experimental techniques included pressure measurements and oil flow patterns on the surface of the cylinder, and shadowgraphs and total and static pressure surveys on the leeward and windward planes of symmetry. The complete data is presented in tabular form. The results reveal a highly complex flow field with two separation zones, regions of high crossflow, and multiple reflected shocks and expansion fans.

  10. Numerical simulation of wave-current interaction using the SPH method

    NASA Astrophysics Data System (ADS)

    He, Ming; Gao, Xi-feng; Xu, Wan-hai

    2018-05-01

    In this paper, the smoothed particle hydrodynamics (SPH) method is used to build a numerical wave-current tank (NWCT). The wave is generated by using a piston-type wave generator and is absorbed by using a sponge layer. The uniform current field is generated by simultaneously imposing the directional velocity and hydrostatic pressure in both inflow and outflow regions set below the NWCT. Particle cyclic boundaries are also implemented for recycling the Lagrangian fluid particles. Furthermore, to shorten the time to reach a steady state, a temporary rigid-lid treatment for the water surface is proposed. It turns out to be very effective for weakening the undesired oscillatory flow at the beginning stage of the current generation. The calculated water surface elevation and horizontal-velocity profile are validated against the available experimental data. Satisfactory agreements are obtained, demonstrating the good capability of the NWCT.

  11. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  12. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  13. Automatic alkaloid removal system.

    PubMed

    Yahaya, Muhammad Rizuwan; Hj Razali, Mohd Hudzari; Abu Bakar, Che Abdullah; Ismail, Wan Ishak Wan; Muda, Wan Musa Wan; Mat, Nashriyah; Zakaria, Abd

    2014-01-01

    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user.

  14. Comparative hydraulics of two fishery research circular tanks and recommendations for control of experimental bias

    USGS Publications Warehouse

    Odeh, M.; Schrock, R.M.; Gannam, A.

    2003-01-01

    Hydraulic characteristics inside two research circular tanks (1.5-m and 1.2-m diameter) with the same volume of water were studied to understand how they might affect experimental bias by influencing the behavior and development of juvenile fish. Water velocities inside each tank were documented extensively and flow behavior studied. Surface inflow to the 1.5-m tank created a highly turbulent and aerated surface, and produced unevenly distributed velocities within the tank. A low-flow velocity, or "dead" zone, persisted just upstream of the surface inflow. A single submerged nozzle in the 1.2-m tank created uniform flow and did not cause undue turbulence or introduce air. Flow behavior in the 1.5-m tank is believed to have negatively affected the feeding behavior and physiological development of a group of juvenile fall chinook salmon, Oncorhynchus tshawytscha. A new inflow nozzle design provided comparable flow behavior regardless of tank size and water depth. Maintaining similar hydraulic conditions inside tanks used for various biological purposes, including fish research, would minimize experimental bias caused by differences in flow behavior. Other sources of experimental bias are discussed and recommendations given for reporting and control of experimental conditions in fishery research tank experiments.

  15. Influence of surface gravity waves on near wake development behind a towed model horizontal axis marine current turbine

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Flack, Karen; Lust, Ethan

    2016-11-01

    2D PIV measurements in the near wake flow field (x/D<2) are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. All measurements were obtained in the USNA 380 ft tow tank with turbine towed at a constant carriage speed (Utow = 1.68 m/s), at the nominal tip speed ratio (TSR) of 7 and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. Near wake mapping is accomplished by "tiling" phase locked individual 2D PIV fields of view (nominally 30x30 cm2) with approximately 5 cm overlap. The discussion will focus on the downstream evolution of coherent tip vortices shed by the rotor blades and their vertical/horizontal displacements by the wave induced fluctuations. This observed phenomena ultimately results in significantly increased downstream wake expansion in comparison with the same conditions without waves. Office of Naval Research.

  16. Mechanism for detecting NAPL using electrical resistivity imaging.

    PubMed

    Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark

    2017-10-01

    The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  18. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    PubMed

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  19. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  20. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  1. Experimental Results for an Acoustic Driver for MTF

    NASA Astrophysics Data System (ADS)

    Laberge, Michel

    2009-06-01

    General Fusion is planning to form an FRC or spheromak of 1017 cm-3, 100 eV, 40 cm diameter by merging two spheromaks with reverse or co-helicity. This target will be further compressed in a 3 m diameter tank filled with liquid PbLi with the plasma in the center. The tank is surrounded with pneumatically powered impact pistons that will send a convergent shock wave in the liquid to compress the plasma to 1020 cm-3, 10 keV, 4 cm diameter for 7 μs. General Fusion has built a 500 kJ, 80 μs, 6 GW pneumatic impact piston capable of developing 2 GPa (300 kpsi). In this paper we will present the performances achieved to date.

  2. Overview of High-Resolution Nondestructive Inspection of the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI) and Acreage Heat tiles using Focused, Synthetic and Holographical Millimeter Wave Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.

  3. The Enlarged N.A.C.A. Tank, and Some of Its Work

    NASA Technical Reports Server (NTRS)

    Truscott, Starr

    1939-01-01

    The most conspicuous of the features of the enlarged N.A.C.A. tank are derived directly from those of the original tank and owe their present form not only to the reasons for their first use but also to the experience obtained with them. As in the original tank, there are: 1) A basin of great length (new 2,880 feet); 2) Rails made of structural H beams, without machining; 3) A towing carriage of very high speed (now 80 mph maximum); 4) Rubber tires on all the wheels, pneumatic on the running wheels and solid on the guide wheels.

  4. Analyses of internal tides generation and propagation over a Gaussian ridge in laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem

    2010-05-01

    Internal tides are suggested to play a major role in the sustaining of the global oceanic circulation [1][5]. Although the exact origin of the energy conversions occurring in stratified fluids is questioned [2], it is clear that the diapycnal energy transfers provided by the energy cascade of internal gravity waves generated at tidal frequencies in regions of steep bathymetry is strongly linked to the general circulation energy balance. Therefore a precise quantification of the energy supply by internal waves is a crucial step in forecasting climate, since it improves our understanding of the underlying physical processes. We focus on an academic case of internal waves generated over an oceanic ridge in a linearly stratified fluid. In order to accurately quantify the diapycnal energy transfers caused by internal waves dynamics, we adopt a complementary approach involving both laboratory and numerical experiments. The laboratory experiments are conducted in a 4m long tank of the CNRM-GAME fluid mechanics laboratory, well known for its large stratified water flume (e.g. Knigge et al [3]). The horizontal oscillation at precisely controlled frequency of a Gaussian ridge immersed in a linearly stratified fluid generates internal gravity waves. The ridge of e-folding width 3.6 cm is 10 cm high and spans 50 cm. We use PIV and Synthetic Schlieren measurement techniques, to retrieve the high resolution velocity and stratification anomaly fields in the 2D vertical plane across the ridge. These experiments allow us to get access to real and exhaustive measurements of a wide range of internal waves regimes by varying the precisely controlled experimental parameters. To complete this work, we carry out some direct numerical simulations with the same parameters (forcing amplitude and frequency, initial stratification, boundary conditions) as the laboratory experiments. The model used is a non-hydrostatic version of the numerical model Symphonie [4]. Our purpose is not only to test the dynamics and energetics of the numerical model, but also to advance the analysis based on combined wavelet and empirical orthogonal function. In particular, we focus on the study of the transient regime of internal wave generation near the ridge. Our analyses of the experimental fields show that, for fixed background stratification and topography, the evolution of the stratification anomaly strongly depends on the forcing frequency. The duration of the transient regime, as well as the amplitude reached in the stationary state vary significantly with the parameter ω/N (where ω is the forcing frequency, and N is the background Brunt-Väisälä frequency). We also observe that, for particular forcing frequencies, for which the ridge slope matches the critical slope of the first harmonic mode, internal waves are excited both at the fundamental and the first harmonic frequency. Associated energy transfers are finally evaluated both experimentally and numerically, enabling us to highlight the similarities and discrepancies between the laboratory experiments and the numerical simulations. References [1] Munk W. and C. Wunsch (1998): Abyssal recipes II: energetics of tidal and wind mixing Deep-Sea Res. 45, 1977-2010 [2] Tailleux R. (2009): On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy, J. Fluid Mech. 638, 339-382 [3] Knigge C., D. Etling, A. Paci and O. Eiff (2010): Laboratory experiments on mountain-induced rotors, Quarterly Journal of the Royal Meteorological Society, in press. [4] Auclair F., C. Estournel, J. Floor, C. N'Guyen and P. Marsaleix, (2009): A non-hydrostatic, energy conserving algorithm for regional ocean modelling. Under revision. [5] Wunsch, C. & R. Ferrari (2004): Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36:281-314.

  5. Computational Modeling of Magnetically Actuated Propellant Orientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.

    1996-01-01

    Unlike terrestrial applications where gravity positions liquid at the "bottom" of the tank, the location of liquid propellant in spacecraft tanks is uncertain unless specific actions are taken or special features are built into the tank. Some mission events require knowledge of liquid position prior to a particular action: liquid must be positioned over the tank outlet prior to starting the main engines and must be moved away from the tank vent before vapor can be released overboard to reduce pressure. It may also be desirable to positively position liquid to improve propulsion system performance: moving liquid away from the tank walls will dramatically decrease the rate of heat transfer to the propellant, suppressing the boil-off rate, thereby reducing overall mission propellant requirements. The process of moving propellant to a desired position is referred to as propellant orientation or reorientation. Propulsive reorientation relies on small auxiliary thrusters to accelerate the tank. The inertia of the liquid causes it to collect in the aft-end of the tank if the acceleration is forward. Liquid Acquisition Devices (LAD's) rely on surface tension to hold the liquid within special geometries, (i.e. vanes, wire-mesh channels, start-baskets), to positively position propellants. Both of these technologies add significant weight and complexity to the spacecraft and can be limiting systems for long duration missions. The subject of the present research is an alternate technique for positively positioning liquid within spacecraft propellant tanks: magnetic fields. LOX is paramagnetic (attracted toward a magnet) and LH2 is diamagnetic (repelled from a magnet). Order-of-magnitude analyses, performed in the 1960's to determine required magnet size, concluded that the magnets would be prohibitively massive and this option has remained dormant during the intervening years. Recent advances in high-temperature superconducting materials hold the promise of electromagnets with sufficient performance to support cryogenic propellant management tasks. In late 1992, NASA MSFC began a new investigation in this technology commencing with the design of the Magnetically-Actuated Propellant Orientation (MAPO) experiment. A mixture of ferrofluid and water is used to simulate the paramagnetic properties of LOX and the experiment is being flown on the KC-135 aircraft to provide a reduced gravity environment. The influence of a 0.4 Tesla ring magnet on flow into and out of a subscale Plexiglas tank is being recorded on video tape. The most efficient approach to evaluating the feasibility of MAPO is to compliment the experimental program with development of a computational tool to model the process of interest. The goal of the present research is to develop such a tool. Once confidence in its fidelity is established by comparison to data from the MAPO experiment, it can be used to assist in the design of future experiments and to study the parameter space of the process. Ultimately, it is hoped that the computational model can serve as a design tool for full-scale spacecraft applications.

  6. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  7. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150-1000 μm). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.« less

  8. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    PubMed

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet waters (average: 0.32 m -1 and 22 µm -1 , respectively). This reduction in the absorption of the dissolved organic matter appears to be mediated by the POM consumption by holothurians. The experiments confirmed the results observed in the time-series. The a 325 and S 275-295 values were significantly lower in the treatment with holothurians than in the treatment without holothurians indicating a reduction in the concentration of chromophoric organic compounds, particularly of low molecular weight. Consequently, sea cucumbers appear to improve water transparency in aquaculture tanks. The underlying mechanism of this improvement might be related to the POM consumption by holothurians, which reduces the concentration of CDOM derived from POM disaggregation or to the direct assimilation of dissolved compounds of low molecular weight as chromophoric amino acids.

  9. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    PubMed Central

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S.; Álvarez, Pedro A.

    2018-01-01

    Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian) only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and –holothurians (−H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325) and spectral slopes from 275 to 295 nm (S275−295) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively) than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively), the former being similar to those found in the inlet waters (average: 0.32 m−1 and 22 µm−1, respectively). This reduction in the absorption of the dissolved organic matter appears to be mediated by the POM consumption by holothurians. The experiments confirmed the results observed in the time-series. The a325 and S275−295 values were significantly lower in the treatment with holothurians than in the treatment without holothurians indicating a reduction in the concentration of chromophoric organic compounds, particularly of low molecular weight. Discussion Consequently, sea cucumbers appear to improve water transparency in aquaculture tanks. The underlying mechanism of this improvement might be related to the POM consumption by holothurians, which reduces the concentration of CDOM derived from POM disaggregation or to the direct assimilation of dissolved compounds of low molecular weight as chromophoric amino acids. PMID:29423348

  10. Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials

    NASA Astrophysics Data System (ADS)

    Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla

    2017-05-01

    The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.

  11. Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales

    PubMed Central

    Negrete, Alejandro; Kotin, Robert M.

    2007-01-01

    The conventional methods for producing recombinant adeno-associated virus (rAAV) rely on transient transfection of adherent mammalian cells. To gain acceptance and achieve current good manufacturing process (cGMP) compliance, clinical grade rAAV production process should have the following qualities: simplicity, consistency, cost effectiveness, and scalability. Currently, the only viable method for producing rAAV in large-scale, e.g.≥1016 particles per production run, utilizes Baculovirus Expression Vectors (BEVs) and insect cells suspension cultures. The previously described rAAV production in 40 L culture using a stirred tank bioreactor requires special conditions for implementation and operation not available in all laboratories. Alternatives to producing rAAV in stirred-tank bioreactors are single-use, disposable bioreactors, e.g. Wave™. The disposable bags are purchased pre-sterilized thereby eliminating the need for end-user sterilization and also avoiding cleaning steps between production runs thus facilitating the production process. In this study, rAAV production in stirred tank and Wave™ bioreactors was compared. The working volumes were 10 L and 40 L for the stirred tank bioreactors and 5 L and 20 L for the Wave™ bioreactors. Comparable yields of rAAV, ~2e+13 particles per liter of cell culture were obtained in all volumes and configurations. These results demonstrate that producing rAAV in large scale using BEVs is reproducible, scalable, and independent of the bioreactor configuration. Keywords: adeno-associated vectors; large-scale production; stirred tank bioreactor; wave bioreactor; gene therapy. PMID:17606302

  12. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    EPA Science Inventory

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  13. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in contrast to the thin ocean/thick ice sheet model as anticipated in Fig. 12 of Porco et al. (2014), our lab experiments suggest that attractors are generated most efficiently at aspect ratio O(1), implying that distance between stripes might actually approximately directly represent local ocean depth in a thin ice sheet/thick ocean setting.

  14. Differential Draining of Parallel-Fed Propellant Tanks in Morpheus and Apollo Flight

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Guardado, Hector; Hernandez, Humberto; Desai, Pooja

    2015-01-01

    Parallel-fed propellant tanks are an advantageous configuration for many spacecraft. Parallel-fed tanks allow the center of gravity (cg) to be maintained over the engine(s), as opposed to serial-fed propellant tanks which result in a cg shift as propellants are drained from tank one tank first opposite another. Parallel-fed tanks also allow for tank isolation if that is needed. Parallel tanks and feed systems have been used in several past vehicles including the Apollo Lunar Module. The design of the feedsystem connecting the parallel tank is critical to maintain balance in the propellant tanks. The design must account for and minimize the effect of manufacturing variations that could cause delta-p or mass flowrate differences, which would lead to propellant imbalance. Other sources of differential draining will be discussed. Fortunately, physics provides some self-correcting behaviors that tend to equalize any initial imbalance. The question concerning whether or not active control of propellant in each tank is required or can be avoided or not is also important to answer. In order to provide data on parallel-fed tanks and differential draining in flight for cryogenic propellants (as well as any other fluid), a vertical test bed (flying lander) for terrestrial use was employed. The Morpheus vertical test bed is a parallel-fed propellant tank system that uses passive design to keep the propellant tanks balanced. The system is operated in blow down. The Morpheus vehicle was instrumented with a capacitance level sensor in each propellant tank in order to measure the draining of propellants in over 34 tethered and 12 free flights. Morpheus did experience an approximately 20 lb/m imbalance in one pair of tanks. The cause of this imbalance will be discussed. This paper discusses the analysis, design, flight simulation vehicle dynamic modeling, and flight test of the Morpheus parallel-fed propellant. The Apollo LEM data is also examined in this summary report of the flight data.

  15. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  16. Microgravity

    NASA Image and Video Library

    2004-04-15

    Some of the earliest concerns about fluid behavior in microgravity was the management of propellants in spacecraft tanks as they orbited the Earth. On the ground, gravity pulls a fluid to a bottom of a tank (ig, left). In orbit, fluid behavior depends on surface tension, viscosity, wetting effects with the container wall, and other factors. In some cases, a propellant can wet a tank and leave a large gas bubbles in the center (ug, right). Similar probelms can affect much smaller experiments using fluids in small spaces. Photo credit: NASA/Glenn Research Center.

  17. A Computational Investigation for Determining the Natural Frequencies and Damping Effects of Diaphragm-Implemented Spacecraft Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Lenahen, Brian; Bernier, Adrien; Gangadharan, Sathya; Sudermann, James; Marsell, Brandon

    2012-01-01

    Spin-stabilization maneuvers are typically performed by spacecraft entering low-earth orbit to maintain attitude stability. These maneuvers induce periodic fluid movement inside the spacecraft's propellant tank known as fuel slosh, which is responsible for creating forces and moments on the sidewalls of the propellant tank. These forces and moments adversely affect spin-stabilization and risk jeopardizing the mission of the spacecraft. Therefore, propellant tanks are designed with propellant management devices (PMD's) such as barnes or diaphragms which work to counteract the forces and moments associated with fuel slosh. However, despite the presence of PMD's, the threat of spin-stabilization interference still exists should the propellant tank be excited at its natural frequency. When the fluid is excited at its natural frequency, the forces and moments acting on the propellant tank are amplified and may result in destabilizing the spacecraft. Thus, a computational analysis is conducted concerning diaphragm-implemented propellant tanks excited at their natural frequencies. Using multi-disciplinary computational fluid dynamics (CFD) software, computational models are developed to reflect potential scenarios that spacecraft propellant tanks could experience. By simulating the propellant tank under a wide array of parameters and variables including fill-level, gravity and diaphragm material and shape, a better understanding is gained as to how these parameters individually and collectively affect liquid propellant tanks and ultimately, spacecraft attitude dynamics.

  18. Microgravity experiment study on the vane type surface tension tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Duan, Li; Rui, Wei

    Having advantages of low cost, convenience and high level of microgravity, the drop tower has become a significant microgravity experiment facility. National Microgravity Laboratory/CAS(NMLC) drop tower has 3.5s effective microgravity time, meanwhile the level of microgravity can reach 10 (-5) g. And the impact acceleration is less than 15g in the recovery period. The microgravity experiments have been conducted on the scaling model of vane type surface tension tank in NMLC’s drop tower. The efficiency of Propellant Management Devices (PMDs) was studied, which focus on the effects of Propellant Management Devices (PMDs), numbers of PMDs, contact angle, and liquid viscosity on the flow rate. The experimental results shown that the numbers of PMDs have little or no effect on the flow rate while the liquid is sufficient. The experiments about the influence of different charging ratio have been carried out while tank is placed positively and reversely, and we find the charging ratio has less effect on the capillary flow rate when the charging ratio is greater than 2%.

  19. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  20. Developments in the safe design of LNG tanks

    NASA Astrophysics Data System (ADS)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  1. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    PubMed

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-03-01

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.

  2. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    NASA Astrophysics Data System (ADS)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  3. Acoustic streaming jets: A scaling and dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botton, V., E-mail: valery.botton@insa-lyon.fr; Henry, D.; Millet, S.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  4. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution nearshore multibeam sonar survey. Water surface elevation is recorded using twin-wire resistance type wave probes along a shore-normal bathymetry transect as the waves shoal. Variations in significant wave height and maximum elevation are presented for both regular and irregular bathymetry and for a number of typical North Atlantic sea states. These results are significant for calibration of numerical wave propagation models over irregular bathymetry and for those seeking to understand the magnitude of nearshore extreme wave events. References [1] Met Éireann, 2014, Winter 2013/2014: Monthly Weather Bulletin, December issue, p. 1-5. http://www.met.ie/climate-ireland/weather-events/winterstorms13_14.pdf. [2] Cox, R. et. al., 2016, Movement of boulders and megagravel by storm waves Vol. 18, EGU2016-10535, 2016 EGU General Assembly 2016

  5. Predict-share-observe-explain learning activity for the Torricelli's tank experiment

    NASA Astrophysics Data System (ADS)

    Panich, Charunya; Puttharugsa, Chokchai; Khemmani, Supitch

    2018-01-01

    The purpose of this research was to study the students' scientific concept and achievement on fluid mechanics before and after the predict-share-observe-explain (PSOE) learning activity for the Torricelli's tank experiment. The 24 participants, who were selected by purposive sampling, were students at grade 12 at Nannakorn School, Nan province. A one group pre-test/post-test design was employed in the study. The research instruments were 1) the lesson plans using the PSOE learning activity and 2) two-tier multiple choice question and subjective tests. The results indicated that students had better scientific concept about Torricelli's tank experiment and the post-test mean score was significantly higher than the pre-test mean score at a 0.05 level of significance. Moreover, the students had retention of knowledge after the PSOE learning activity for 4 weeks at a 0.05 level of significance. The study showed that the PSOE learning activity is suitable for developing students' scientific concept and achievement.

  6. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  7. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    PubMed

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  8. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less

  9. In a sea of sticky molasses: The physics of the Boston Molasses Flood

    NASA Astrophysics Data System (ADS)

    Sharp, Nicole; Kennedy, Jordan; Rubinstein, Shmuel

    2016-11-01

    On January 15th, 1919, shortly after 12:40 pm local time, a giant storage tank collapsed in Boston's crowded North End, releasing more than 8.7 million liters of molasses. Contemporary accounts estimated the initial wave was 7.6 meters tall and moved at more than 15 m/s. In moments, molasses engulfed the Commercial Street area, flattening buildings, damaging the elevated train, killing 21 people, and injuring 150 more. Molasses is a viscoelastic fluid 1.5 times as dense as water with a viscosity roughly 4000 times greater. This talk will explore the physics of the Boston Molasses Flood, including the effects of temperature fluctuations and molasses rheology on events leading up to the tank's collapse and their impact on subsequent rescue efforts.

  10. Cyclic steps due to the surge-type turbidity currents in flume experiments: effect of surge duration on the topography of steps

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamano, Junpei; Miyai, Masatomo; Hughes Clarke, John; Izumi, Norihiro

    2017-04-01

    Field observations of turbidity currents and seabed topography on the Squamish delta in British Columbia, Canada revealed that cyclic steps formed by the surge-type turbidity currents (e.g., Hughes Clarke et al., 2014). The high-density portion of the flow, which affects the sea floor morphology, lasted only 30-60 seconds. We are doing flume experiments aiming to investigate the relationship between the condition of surges and topography of resultant steps. In this presentation, we are going to discuss about the effect of surge duration on the topography of steps. The experiments have been performed at Osaka Institute of Technology. A flume, which is 7.0 m long, 0.3 m deep and 2 cm wide, was suspended in a larger tank, which is 7.6 m long, 1.2 m deep and 0.3 m wide, filled with water. The inner flume tilted at 7 degrees. As a source of turbidity currents, mixture of salt water (1.17 g/cm^3) and plastic particles (1.3 g/cm^3, 0.1-0.18 mm in diameter) was prepared. The concentration of the sediments was 6.1 weight % (5.5 volume %) in the head tank. This mixture of salt water and plastic particles poured into the upstream end of the inner flume from head tank for 3 seconds or 7 seconds. 140 surges were made respectively. Discharge of the currents were fluctuated but range from 306 to 870 mL for 3s-surge, and from 1134 to 2030 mL for 7s-surge. As a result, five or six steps were formed respectively. At the case of 3s-surge, steps located at upstream portion of the flume moved vigorously toward upstream direction, whereas steps at downstream portion of the flume moved toward upstream direction at the case of 7s-surge. The wavelengths and wave heights of the steps by 3s-surge are larger than those of 7s-surge at the upstream portion of the flume, but the size of steps of 3s-surge are smaller than those of 7s-surge at the downstream portion of the flume. In this condition of slope and concentration, the longer surge duration, i.e. larger discharge of the current transports the sediment further and makes the steps larger and active at the further location from the source of the currents.

  11. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    PubMed

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P < 0.05). A higher pH was found in the aerated tanks at the end of this phase (7.7 vs. 7.0 in the aerated and control tanks, respectively, P < 0.05). CH 4 emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P < 0.05). These differences in NH 3 and CH 4 emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  12. Psychotherapeutic Treatment in Combination with Relaxation in a Flotation Tank: Effects on "Burn-Out Syndrome"

    ERIC Educational Resources Information Center

    Kjellgren, Anette; Buhrkall, Hanne; Norlander, Torsten

    2010-01-01

    The focus of this study was to investigate experiences gained from treatment combining relaxation in flotation tank with psychotherapy for sufferers from "burn-out syndrome". Six people participated in a ten week program. They were all interviewed; the data were analyzed using the Empirical Phenomenological Psychological method. Five…

  13. D-day on board a tank landing ship: meat, cheese and blood transfusion.

    PubMed

    Demetriades, A K; Gavalas, M C; Ryan, J

    2008-03-01

    Tank Landing Ships were used as evacuation station hospitals during D-Day of World War Two. This historical vignette describes how difficulties were overcome in blood transfusion and trauma surgery aboard these ships. Their place in the evacuation chain is discussed in relation to previous experiences in military medicine.

  14. Management of Contaminants Stored in Low Permeability Zones - A State of the Science Review

    DTIC Science & Technology

    2013-10-01

    Tank  3:     Permanganate  ...................................................................................................  193...Treatment options explored include steady water flushing (control), enhance water flushing, flushing permanganate , a dechlorinating culture (KB1...Remediation Tank Experiments (OoM: Order of Magnitude. PV: Pore Volume) 2. Enhanced flushing (79 PVs after loading) 3. Permanganate (45 PVs

  15. Ground Wave Emergency Network Final Operational Capability. Environmental Assessment for Northeastern Nevada Relay Node. Site No. RN 8W922NV

    DTIC Science & Technology

    1993-04-16

    enhancing system availability and ensuring that vital communications will be maintained. 1-1 c~o~ - MCDRMIT. NEADA.OREGN & DAHO 197 Ný 1-2, 2.0 ALTERNATIVES...detected, an explosion inside the shelter would be extremely unlikely due 2-7 to the high flash point of diesel fuel. If a tank at the GWEN station

  16. Smooth-Water Landing Stability and Rough-Water Landing and Take-Off Behavior of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    NASA Technical Reports Server (NTRS)

    McKann, Robert F.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.

  17. Rough-Water Tests of Models of the Vosper and Plum Planing Boats

    NASA Technical Reports Server (NTRS)

    Chambliss, Derrill B.; Blanchard, Ulysse J.

    1950-01-01

    Models of two types of high-speed surface craft were tested in Langley tank no. 1 to obtain rough-water data for an evaluation by the David Taylor .Model Basin of the relative merits of the designs. Time-history records were obtained of trim, rise, and normal acceleration at two points in the hulls for various speeds and two sizes of waves.

  18. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  19. The Ocean`s Thermohaline Circulation in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    This demonstration develops intuition about density stratification, a concept critical to understanding the ocean`s thermohaline circulation. In addition, students learn how temperature and salinity affect density, how these characteristics may be density-compensating, and students gain practice in graphing and interpreting vertical profiles and temperature-salinity (T-S) diagrams. The demonstration requires a rectangular fish tank (5-10 gallons) with a plexiglass partition, preparation of three colored ''water masses'' representing surface water (warm and fresh), ''mystery'' Mediterranean Water (warm and salty), and North Atlantic Deep Water (NADW; cold and salty), a kitchen sponge, and a temperature and salinity probe. Density may be computed using an Equation of State calculator (e.g. online version at http://fermi.jhuapl.edu/denscalc.html). The larger side of the fish tank is filled halfway with NADW, then surface water is layered on top by carefully pouring it on a floating sponge. A student volunteer measures the temperature and salinity of the two water masses, while another computes the densities. Students draw vertical profiles and T-S diagrams representing the temperature, salinity, and density of the water column. The properties of the ''mystery'' water are measured and students predict what will happen when the water is poured on the opposite side of the partition and is allowed to overflow into the layered water. If the density gradients are sufficiently large, a beautiful internal wave develops as the mystery water overflows the sill and becomes intermediate Mediterranean Water. If time permits, having a student blow on the surface illustrates the limited influence of ''wind'' with depth; an internal wave may by forced by depressing the thermocline with a large, flat spoon; and pouring extra NADW on the sponge floating at the surface may illustrate deep convection.

  20. Acoustic-based proton range verification in heterogeneous tissue: simulation studies

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen

    2018-01-01

    Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2×  lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to  ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.

  1. Study of polytropic exponent based on high pressure switching expansion reduction

    NASA Astrophysics Data System (ADS)

    Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng

    2011-10-01

    Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).

  2. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  3. Colloid Microthruster Feed System Development for Fine Pointing and Drag-Free Control of Multi-Year Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Ziemer, John; Mueller, J.; Spence, D.; Hruby, V.

    2014-01-01

    A new Colloid Microthruster feed system, including a propellant tank and redundant Microvalves, is being developed for fine pointing and drag-free operations of multi-year astronomical observatories under the PCOS SAT program. Almost all Gravitational Wave Observatory (GWO) concepts require microthrusters to maintain a drag-free environment for the inertial sensor instrument to meet the mission science objectives. The current state-of-the-art microthruster in the US is the Busek Colloid Micro-Newton Thruster (CMNT) originally developed under the New Millennium Program for the Space Technology 7 (ST7) and ESA's LISA Pathfinder (LPF) technology demonstration mission. The ST7 CMNT design includes a bellows propellant storage tank that is sized to provide up to 90 days of maximum thrust (30 µN). The new propellant tank is based on a blow-down, metal-diaphragm spherical tank design with enough capacity for a 5-year GWO mission. The new feed system will also include the third generation of Busek’s Microvalve, currently being developed under a NASA Phase II SBIR. The Microvalve is responsible for the picoliter per second control of the propellant from the tank to the thruster head, demanding parts with micron-level tolerances, critical alignments, and challenging acceptance test protocols. This microthruster system could also be considered for replacement of reaction wheels for slewing and fine pointing of other astronomical observatories, including Exo-Planet Observatory concepts. The goal of the PCOS SAT effort is to raise the new system to TRL 5 with performance and environmental testing within the next two years.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1962-11-16

    The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast quantity of water in a near-space environment marked the first purely scientific large-scale experiment.

  5. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  6. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  7. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  8. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  9. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  10. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    PubMed Central

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-01-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891

  11. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2015-09-01

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  12. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    PubMed

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  13. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.

  14. Bulk tank milk surveillance as a measure to detect Coxiella burnetii shedding dairy goat herds in the Netherlands between 2009 and 2014.

    PubMed

    Van den Brom, R; Santman-Berends, I; Luttikholt, S; Moll, L; Van Engelen, E; Vellema, P

    2015-06-01

    In the period from 2005 to 2009, Coxiella burnetii was a cause of abortion waves at 28 dairy goat farms and 2 dairy sheep farms in the Netherlands. Two years after the first abortion waves, a large human Q fever outbreak started mainly in the same region, and aborting small ruminants were regarded as most probable source. To distinguish between infected and noninfected herds, a surveillance program started in October 2009, based on PCR testing of bulk tank milk (BTM) samples, which had never been described before. The aim of this study was to analyze the effectiveness of this surveillance program and to evaluate both the effect of culling of pregnant dairy goats on positive farms and of vaccination on BTM results. Bulk tank milk samples were tested for C. burnetii DNA using a real-time PCR, and results were analyzed in relation to vaccination, culling, and notifiable (officially reported to government) C. burnetii abortion records. In spring and autumn, BTM samples were also tested for antibodies using an ELISA, and results were evaluated in relation to the compulsory vaccination campaign. Between October 2009 and April 2014, 1,660 (5.6%) out of 29,875 BTM samples from 401 dairy goat farms tested positive for C. burnetii DNA. The percentage of positive samples dropped from 20.5% in 2009 to 0.3% in 2014. In a multivariable model, significantly higher odds of being PCR positive in the BTM surveillance program were found in farms of which all pregnant dairy goats were culled. Additionally, the risk for C. burnetii BTM PCR positivity significantly decreased after multiple vaccinations. Bulk tank milk ELISA results were significantly higher after vaccination than before. The ELISA results were higher after multiple vaccinations compared with a single vaccination, and ELISA results on officially declared infected farms were significantly higher compared with noninfected farms. In conclusion, BTM surveillance is an effective and useful tool to detect C. burnetii shedding dairy goat herds and to monitor a Q fever outbreak, and thus the effect of implemented measures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Li, Cheng; Rule, Ana M.; Katz, Joseph; Koehler, Kirsten

    2018-04-01

    Crude oil spill incidents occur frequently causing a verity of occupational, ecological and environmental problems. Dispersants are applied to enhance the dispersion rate of crude oil slicks into the water column. In this study, the aerosol size distribution from 10 nm to 20 μm, total particle-bound aromatic hydrocarbons (pPAH) and volatile organic compounds (VOCs) are measured in a 6 x 0.3 x 0.6 m tank as plunging breaking waves entrain oil slicks. The experiments are performed for seawater with slicks of crude oil, crude oil-dispersant mixture and dispersant only. The measurements investigate the effects of wave energy and slick properties on the temporal evolution of the emissions. The total number concentrations of particles originating from the oil-dispersant mixture are 1-2 orders of magnitude higher than those of crude oil across the entire nano-scale range, reaching 100x for 20 nm particles. Conversely, the differences in concentration are small in the micron range. The average concentrations of pPAH are variable but similar (150-270 ng/m3). The VOC concentrations for crude oil-dispersant mixtures are 2-3 times lower than those of crude oil, presumably due to the surfactant effect on mass diffusion. The drastic increase in ultrafine particle concentrations may raise concerns about effects of inhalation by cleanup workers and downstream communities though VOC emissions reduce. Findings through this study provide insight into how the spray of dispersant may change the ratio of airborne particulate matter and VOC emissions from seawater due to natural processes.

  16. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  17. Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2012-06-01

    Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The effects of droplet characteristics on the surface features in a rain field

    NASA Astrophysics Data System (ADS)

    Liu, R.; Brown, H.; Liu, X.; Duncan, J. H.

    2013-11-01

    The characteristics of the shape of a water surface in response to the impact of simulated raindrops are studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. A rain generator consisting of an open-surface water tank with an array of 22-gauge hypodermic needles (typical needle-to-needle spacing of about L0 = 3 . 5 cm) attached to holes in the tank bottom is mounted 2 m above the water pool. The tank is connected to a 2D translation stage to provide a small-radius (

  19. Support to X-33/Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.

  20. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock

    DTIC Science & Technology

    2017-03-27

    the project, and was based on CB&I’s experience at DoD sites, a literature review, and by discussions with site contractors , regulators, and DoD...to collection in the holding tank ( HT -1) for characterization and proper disposal. The use of GAC and diversion to the holding tank was only employed

  1. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  2. The motions of hinged-barge systems in regular seas

    NASA Astrophysics Data System (ADS)

    Kraemer, David Robert Burke

    Harnessing the oceans' vast, clean, and renewable energy to do useful work is a tempting prospect. For over a century, wave-energy conversion devices have been proposed, but none has emerged as a clearly practical and economical solution. One promising system is the McCabe Wave Pump (MWP), an articulated-barge system consisting of three barges hinged together with a large horizontal plate attached below the central barge. Water pumps are driven by the relative pitching motions of the barges excited by ocean waves. This high-pressure water can be used to produce potable water or electricity. A simulation of the motions of a generic hinged-barge system is developed. The equations of motion are developed so that the nonlinear interactions between the barges are included. The simulation is general so that it can be used to study other hinged-barge systems, such as causeway ferry systems or floating airports. The simulation is used to predict the motions of a scale model that was studied in wave-tank experiments. In the experimental study, it was observed that the plate attached to the central barge acted as a pendulum. It was also observed that the phases of the pitching motions of the barges was such that the motions were enhanced by the pendulum effect at all of the wave periods studied. Hence, the increased angular displacements produced greater relative pitching motions which would lead to higher volume rates of pumped water in the operational system. The numerical simulations are found to predict the pendulum effect. In addition, the theory predicted that the after barge motions were significantly less than those of the forward barge, as was observed in the experimental study. The good agreement between the two data sets gives confidence in the ability of the theory to predict the performance of the MWP prototype. The motions of the MWP prototype in regular ocean waves are predicted by the simulation, and its performance is calculated. By modifying the length of the system to be compatible with the wavelength for maximum pitching excitation, the power output of the system is shown to increase by more than 150%.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Kathryn L.; Sturchio, Neil C.

    This project, renewal of a previous EMSP project of the same title, is in its first year of funding at the University of Illinois at Chicago. The purpose is to continue investigating rates and mechanisms of reactions between primary sediment minerals found in the Hanford subsurface and leaked waste tank solutions. The goals are to understand processes that result in (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that canmore » drive redox reactions affecting dissolved contaminant mobility. A post-doctoral scientist, Dr. Sherry Samson, has been hired and two masters of science students are beginning to conduct experimental research. One research project that is underway is focused on measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms. The first set of experiments is being conduced at room temperature. Subsequent experiments will examine the role of temperature because tank solutions in many cases were near boiling when leakage is thought to have occurred and temperature gradients have been observed beneath the SX and BX tank farms. The dissolution experiments are being conducted in stirred-flow kinetic reactors using powdered labradorite feldspar from Pueblo Park, New Mexico.« less

  4. Simplified behaviors from increased heterogeneity: II. 3-D uranium transport at the decimeter scale and intertank comparisons.

    PubMed

    Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D

    2013-05-01

    Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-04-01

    A novel, non-invasive imaging technique that determines 2D maps of water content in unsaturated porous media is presented. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage / imbibition experiment in a 2D flow tank with inner dimensions of 40 cm x 14 cm x 6 cm (L x W x D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using numerical simulations with a state-of-the-art computational code that solves the Richards. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Application examples to a larger flow tank with various boundary conditions are finally presented to illustrate the potential of the methodology.

  6. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  7. Geoacoustic inversion with two source-receiver arrays in shallow water.

    PubMed

    Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc

    2010-08-01

    A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.

  8. Remediation of AMD using natural and waste material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basir, Nur Athirah Mohamad; Yaacob, Wan Zuhairi Wan

    2014-09-03

    Acid Mine Drainage (AMD) is highly acidic, sulphate rich and frequently carries a high transition metal and heavy metal burden. These AMD's eventually migrate into streams and rivers and impact negatively on the quality of these water bodies. So it is dire necessary to treat this AMD. Various materials such as ladle furnace slag (LFS), bentonite, zeolite, active carbon and kaolinite are currently available to remove heavy metals from contaminated water. All these materials are capable to rise up the pH value and adsorb heavy metals. The process is divided into two stages; screening test and tank experiment. Screening testmore » is conduct by using Batch Equilibrium Test (BET), X-Ray Fluorescene (XRF) identification also Scanning Electron Microscopic (SEM) characteristic. The results showed that all the concentration of heavy metal are decreasing extremely and pH value rise up except for kaolinite. From screening test only ladle furnace slag, bentonite, zeolite and active carbon are chosen for the tank experiment. Tank experiment design with 18cm (H) X 15cm (L) X 15cm (H) was made by silica glass. All these treatment materials were stirred in the tank for 30 days. Initial pH for all tanks is 2.4 and after 30 days is changing into 6.11, 3.91, 2.98 and 2.71 for LFS, bentonite, active carbon as well as zeolite respectively. LFS is the best material for absorption of Zn, Mn and Cu in the synthetic solution. Meanwhile, bentonite is the best absorbent for Ni, Fe and Cd. The conclusion shows that LFS might have big potentials to control AMD pollution base on neutralize pH resulting in a great improvement in the quality of the water.« less

  9. Remediation of AMD using natural and waste material

    NASA Astrophysics Data System (ADS)

    Basir, Nur Athirah Mohamad; Yaacob, Wan Zuhairi Wan

    2014-09-01

    Acid Mine Drainage (AMD) is highly acidic, sulphate rich and frequently carries a high transition metal and heavy metal burden. These AMD's eventually migrate into streams and rivers and impact negatively on the quality of these water bodies. So it is dire necessary to treat this AMD. Various materials such as ladle furnace slag (LFS), bentonite, zeolite, active carbon and kaolinite are currently available to remove heavy metals from contaminated water. All these materials are capable to rise up the pH value and adsorb heavy metals. The process is divided into two stages; screening test and tank experiment. Screening test is conduct by using Batch Equilibrium Test (BET), X-Ray Fluorescene (XRF) identification also Scanning Electron Microscopic (SEM) characteristic. The results showed that all the concentration of heavy metal are decreasing extremely and pH value rise up except for kaolinite. From screening test only ladle furnace slag, bentonite, zeolite and active carbon are chosen for the tank experiment. Tank experiment design with 18cm (H) X 15cm (L) X 15cm (H) was made by silica glass. All these treatment materials were stirred in the tank for 30 days. Initial pH for all tanks is 2.4 and after 30 days is changing into 6.11, 3.91, 2.98 and 2.71 for LFS, bentonite, active carbon as well as zeolite respectively. LFS is the best material for absorption of Zn, Mn and Cu in the synthetic solution. Meanwhile, bentonite is the best absorbent for Ni, Fe and Cd. The conclusion shows that LFS might have big potentials to control AMD pollution base on neutralize pH resulting in a great improvement in the quality of the water.

  10. Penetration of E. coli and F2 bacteriophage into fish tissues.

    PubMed

    Fattal, B; Dotan, A; Tchorsh, Y; Parpari, L; Shuval, H I

    1988-01-01

    Throughout the world, fish thrive in rivers, lakes and seawater polluted with wastewater. Furthermore, in some countries, wastewater-enriched fishponds are used for fish cultivation. One of the major constraints in using wastewater for aquaculture is the possible contamination of the fish by enteric pathogens (bacteria and viruses), which may penetrate and accumulate in fish tissue, and constitute a potential public health hazard, especially in countries in which raw fish are consumed. In order to evaluate the infection of fish cultivated in wastewater, controlled experiments were performed to study the penetration of bacteria and bacteriophage inoculated into water tanks in which the fish were maintained. Twenty to thirty Tilapia hybrids (Sarotherodon aureus x S. niloticus), of 100 gr average weight and some 20 cm long were introduced into a 1 m3 plastic tank, containing about 500 l tap water at a temperature of 20 degrees C. High protein fish feed was added at a rate of about 1% of body weight per day. Four experiments were performed using an inoculum of an E. coli strain resistant to streptomycin and nalidixic acid. One hour after inoculation, bacterial concentration was 10(5)-10(6)/ml tank water. Four experiments were carried out with F2 male-specific bacteriophage 10(3)-10(5)/ml tank water. In each experiment two fish were sacrificed at zero time (prior to introduction of inocula), and 1, 5, 24, 48 and 72 or more hours after inoculation. Water samples were withdrawn at the same intervals. The level of microorganisms was tested in the following tissues: digestive tract, skin, spleen, liver and muscle. E. coli assays were performed using the membrane filtration technique; phages were assayed, using E. coli host cells in a plaque assay. The results of the experiments indicate that notwithstanding the high E. coli concentration in the tank water, its level in the edible tissue (muscle) was low, and in no instance higher than the acceptable standard of 400 cfu/gr (International Commission for Food Specification, 1974). The maximum concentration of F2 phage detected in muscle tissue was 350 pfu/gr. There is no standard for virus concentration in edible tissue.

  11. Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.

    2007-01-01

    This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.

  12. Contrasting suspended covers reveal the impact of an artificial monolayer on heat transfer processes at the interfacial boundary layer.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N

    2015-01-01

    The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This 'dual property' may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.

  13. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  15. Science& Technology Review June 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    This month's issue has the following articles: (1) Livermore's Three-Pronged Strategy for High-Performance Computing, Commentary by Dona Crawford; (2) Riding the Waves of Supercomputing Technology--Livermore's Computation Directorate is exploiting multiple technologies to ensure high-performance, cost-effective computing; (3) Chromosome 19 and Lawrence Livermore Form a Long-Lasting Bond--Lawrence Livermore biomedical scientists have played an important role in the Human Genome Project through their long-term research on chromosome 19; (4) A New Way to Measure the Mass of Stars--For the first time, scientists have determined the mass of a star in isolation from other celestial bodies; and (5) Flexibly Fueled Storage Tank Bringsmore » Hydrogen-Powered Cars Closer to Reality--Livermore's cryogenic hydrogen fuel storage tank for passenger cars of the future can accommodate three forms of hydrogen fuel separately or in combination.« less

  16. Oscillatory erosion and transport flume with superimposed unidirectional flow

    DOEpatents

    Jepsen, Richard A.; Roberts, Jesse D.

    2004-01-20

    A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.

  17. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    PubMed Central

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  18. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  19. Methods for the Calculation of Settling Tanks for Batch Experiments; METODOS DE CALCULO DE ESPESADORES POR ENSAYOS DISCONTINUOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasos, P.; Perea, C.P.; Jodra, L.G.

    1957-01-01

    >In order to calculate settling tanks, some tests on batch sedimentation were made, and with the data obtained the dimensions of the settling tank were found. The mechanism of sedimentation is first briefly described, and then the factors involved in the calculation of the dimensions and the sedimentation velocity are discussed. The Cloe and Clevenger method and the Kynch method were investigated experimentally and compared. The application of the calculations are illustrated. It is shown that the two methods gave markedly different results. (J.S.R.)

  20. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze themore » effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (< ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.« less

  1. Laboratory evaluation of a walleye (Sander vitreus) bioenergetics model

    USGS Publications Warehouse

    Madenjian, C.P.; Wang, C.; O'Brien, T. P.; Holuszko, M.J.; Ogilvie, L.M.; Stickel, R.G.

    2010-01-01

    Walleye (Sander vitreus) is an important game fish throughout much of North America. We evaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks during a 126-day experiment. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with the observed monthly consumption, we concluded that the bioenergetics model significantly underestimated food consumption by walleye in the laboratory. The degree of underestimation appeared to depend on the feeding rate. For the tank with the lowest feeding rate (1.4% of walleye body weight per day), the agreement between the bioenergetics model prediction of cumulative consumption over the entire 126-day experiment and the observed cumulative consumption was remarkably close, as the prediction was within 0.1% of the observed cumulative consumption. Feeding rates in the other three tanks ranged from 1.6% to 1.7% of walleye body weight per day, and bioenergetics model predictions of cumulative consumption over the 126-day experiment ranged between 11 and 15% less than the observed cumulative consumption. ?? 2008 Springer Science+Business Media B.V.

  2. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    NASA Astrophysics Data System (ADS)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  3. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  4. Generation of realistic tsunami waves using a bottom-tilting wave maker

    NASA Astrophysics Data System (ADS)

    Park, Yong Sung; Hwang, Jin Hwan

    2016-11-01

    Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.

  5. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  6. Performance of Soldiers on the Battle Sight Tank Gunnery Video Game

    DTIC Science & Technology

    1986-06-01

    The purpose of this research was to examine practice effects on a tank gunnery video game in a series of three experiments. Number of hits and number...the standard video game with three lives and 60 rounds of ammunition, (b) a revised format that equally distributed the three lives and 60 rounds of ammunition into three separate games.

  7. Estuarine and Riverine Areas Final Programmatic Environmental Assessment

    DTIC Science & Technology

    2004-06-25

    sources in the study area include WWTP spray field runoff, urban and agricultural runoff, septic tank leachate , landfill leachate , silviculture...overland sheet flow. Urban and agricultural runoff are sources of fecal and total coliform and fecal streptococcus bacteria. Septic tank leachate and...in leachate from experiments using sand showed the greatest mobility of tungsten. Outdoor exposures and accelerated aging tests studied the

  8. Wind friction parametrisation used in emission models for wastewater treatment plants: A critical review.

    PubMed

    Prata, Ademir A; Santos, Jane M; Timchenko, Victoria; Reis, Neyval C; Stuetz, Richard M

    2017-11-01

    Emission models are widely applied tools for estimating atmospheric emissions from wastewater treatment plants (WWTPs). The friction velocity u ∗ is a key variable for the modelling of emissions from passive liquid surfaces in WWTPs. This work evaluated different parametrisations of u ∗ for passive liquid surfaces at the scale of WWTP units, which present relatively small fetches, based on available wind friction and wave data measured at wind-wave tanks (fetches spanning from approximately 3 to 100 m, and wind speeds from 2 to 17 m s -1 ). The empirical correlation by Smith (1980; J. Phys. Oceanogr. 10, 709-726), which has been frequently adopted in air emission models (despite the fact that it was originally derived for the ocean) presented a general tendency to overestimate u ∗ , with significant (although not extreme) relative errors (mean and maximum errors of 13.5% and 36.6%, respectively); the use of Charnock's relation, with Charnock constant 0.010, performed in a very similar manner (mean and maximum errors of 13.3% and 37.8%, respectively). Better estimates of u ∗ were achieved by parametrisations based on the significant wave steepness. Simplified correlations between the wind drag and the non-dimensional fetch were obtained. An approach was devised, comprising the use of Charnock's relation (with Charnock constant 0.010) and of these simplified correlations, depending on the ranges of frequency of the peak waves, fetch and wind speed. The proposed approach predicted u ∗ with improved accuracy (mean, maximum and 95%-percentile relative errors of 6.6%, 16.7% and 13.9%, respectively), besides being able to incorporate the influence of the fetch in the wind drag, thus taking into account the size of the tanks in the WWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analytic Modeling of Pressurization and Cryogenic Propellant Conditions for Lunar Landing Vehicle

    NASA Technical Reports Server (NTRS)

    Corpening, Jeremy

    2010-01-01

    This slide presentation reviews the development, validation and application of the model to the Lunar Landing Vehicle. The model named, Computational Propellant and Pressurization Program -- One Dimensional (CPPPO), is used to model in this case cryogenic propellant conditions of the Altair Lunar lander. The validation of CPPPO was accomplished via comparison to an existing analytic model (i.e., ROCETS), flight experiment and ground experiments. The model was used to the Lunar Landing Vehicle perform a parametric analysis on pressurant conditions and to examine the results of unequal tank pressurization and draining for multiple tank designs.

  10. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  11. Liquid Motion in a Rotating Tank Experiment (LME)

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, D. M.; Dodge, F. T.; Green, S. T.

    1998-01-01

    The Liquid Motion Experiment (LME), which flew on STS 84 in May 1997, was an investigation of liquid motions in spinning, nutating tanks. LME was designed to quantify the effects of such liquid motions on the stability of spinning spacecraft, which are known to be adversely affected by the energy dissipated by the liquid motions. The LME hardware was essentially a spin table which could be forced to nutate at specified frequencies at a constant cone angle, independently of the spin rate. Cylindrical and spherical test tanks, partially filled with liquids of different viscosities, were located at the periphery of the spin table to simulate a spacecraft with off-axis propellant tanks; one set of tanks contained generic propellant management devices (PMDs). The primary quantitative data from the flight tests were the liquid-induced torques exerted on the tanks about radial and tangential axes through the center of the tank. Visual recordings of the liquid oscillations also provided qualitative information. The flight program incorporated two types of tests: sine sweep tests, in which the spin rate was held constant and the nutation frequency varied over a wide range; and sine dwell test, in which both the spin rate and the nutation frequency were held constant. The sine sweep tests were meant to investigate all the prominent liquid resonant oscillations and the damping of the resonances, and the sine dwell tests were meant to quantify the viscous energy dissipation rate of the liquid oscillations for steady state conditions. The LME flight data were compared to analytical results obtained from two companion IR&D programs at Southwest Research Institute. The comparisons indicated that the models predicted the observed liquid resonances, damping, and energy dissipation rates for many test conditions but not for all. It was concluded that improved models and CFD simulations are needed to resolve the differences. This work is ongoing under a current IR&D program.

  12. Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Kreppel, Samantha

    A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.

  13. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, D.L.; Lunsford, T.R.

    1994-09-27

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less

  14. A model to simulate the haemodynamic effects of right heart pulsatile flow after modified Fontan procedure.

    PubMed

    Tamaki, S; Kawazoe, K; Yagihara, T; Abe, T

    1992-02-01

    The effect of pulsatile pulmonary flow after the modified Fontan procedure was examined in a model that simulated the right heart. An inlet overflow tank (preload), axial pulsatile pump, Wind-Kessel model (afterload), and an outlet overflow tank were connected in series. The standard conditions were flow 2.00 l/min with 12 mm Hg preload pressure, 3.0 Wood units resistance, and an outlet overflow tank pressure at 6 mm Hg. The pump rate was set at 80 beats/min. The simulated pulmonary arterial pressure and pulmonary flow waves produced by this model closely resembled those obtained from patients who had undergone the modified Fontan procedure. All variables except the preload were fixed and changes in pulmonary flow were examined at preload pressures of 8, 12, 15, and 17 mm Hg. As the peak pulmonary arterial pressure increased so did pulmonary flow, until it was greater than during the non-pulsatile state. Because the afterload of this model was fixed, this result suggests that there was a concomitant decrease in resistance. This model indicates that pulsatile pulmonary blood flow is likely to have a beneficial effect on the pulmonary circulation after the modified Fontan procedure.

  15. Numerical modeling of landslide-generated tsunami using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Wilson, Cian; Collins, Gareth; Desousa Costa, Patrick; Piggott, Matthew

    2010-05-01

    Landslides impacting into or occurring under water generate waves, which can have devastating environmental consequences. Depending on the characteristics of the landslide the waves can have significant amplitude and potentially propagate over large distances. Linear models of classical earthquake-generated tsunamis cannot reproduce the highly nonlinear generation mechanisms required to accurately predict the consequences of landslide-generated tsunamis. Also, laboratory-scale experimental investigation is limited to simple geometries and short time-scales before wave reflections contaminate the data. Computational fluid dynamics models based on the nonlinear Navier-Stokes equations can simulate landslide-tsunami generation at realistic scales. However, traditional chessboard-like structured meshes introduce superfluous resolution and hence the computing power required for such a simulation can be prohibitively high, especially in three dimensions. Unstructured meshes allow the grid spacing to vary rapidly from high resolution in the vicinity of small scale features to much coarser, lower resolution in other areas. Combining this variable resolution with dynamic mesh adaptivity allows such high resolution zones to follow features like the interface between the landslide and the water whilst minimising the computational costs. Unstructured meshes are also better suited to representing complex geometries and bathymetries allowing more realistic domains to be simulated. Modelling multiple materials, like water, air and a landslide, on an unstructured adaptive mesh poses significant numerical challenges. Novel methods of interface preservation must be considered and coupled to a flow model in such a way that ensures conservation of the different materials. Furthermore this conservation property must be maintained during successive stages of mesh optimisation and interpolation. In this paper we validate a new multi-material adaptive unstructured fluid dynamics model against the well-known Lituya Bay landslide-generated wave experiment and case study [1]. In addition, we explore the effect of physical parameters, such as the shape, velocity and viscosity of the landslide, on wave amplitude and run-up, to quantify their influence on the landslide-tsunami hazard. As well as reproducing the experimental results, the model is shown to have excellent conservation and bounding properties. It also requires fewer nodes than an equivalent resolution fixed mesh simulation, therefore minimising at least one aspect of the computational cost. These computational savings are directly transferable to higher dimensions and some initial three dimensional results are also presented. These reproduce the experiments of DiRisio et al. [2], where an 80cm long landslide analogue was released from the side of an 8.9m diameter conical island in a 50 × 30m tank of water. The resulting impact between the landslide and the water generated waves with an amplitude of 1cm at wave gauges around the island. The range of scales that must be considered in any attempt to numerically reproduce this experiment makes it an ideal case study for our multi-material adaptive unstructured fluid dynamics model. [1] FRITZ, H. M., MOHAMMED, F., & YOO, J. 2009. Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure and Applied Geophysics, 166(1), 153-175. [2] DIRISIO, M., DEGIROLAMO, P., BELLOTTI, G., PANIZZO, A., ARISTODEMO, F.,

  16. Frequency-depth dependent spherical reflection response from the sea surface - A transmission experiment

    NASA Astrophysics Data System (ADS)

    Wehner, D.; Landrø, M.; Amundsen, L.; Westerdahl, H.

    2018-05-01

    In academia and the industry, there is increasing interest in generating and recording low seismic frequencies, which lead to better data quality, deeper signal penetration and can be important for full-waveform inversion. The common marine seismic source in acquisition is the air gun which is towed behind a vessel. The frequency content of the signal produced by the air gun mainly depends on its source depth as there are two effects which are presumed to counteract each other. First, there is the oscillating air bubble generated by the air gun which leads to more low frequencies for shallow source depths. Secondly, there is the interference of the downgoing wave with the first reflection from the sea surface, referred to as the ghost, which leads to more low frequencies for deeper source depths. It is still under debate whether it is beneficial to place the source shallow or deep to generate the strongest signal for frequencies below 5 Hz. Therefore, the ghost effect is studied in more detail by measuring the transmission at the water-air interface. We conduct experiments in a water tank where a small-volume seismic source is fired at different depths below the water surface to investigate how the ghost varies with frequency and depth. The signal from the seismic source is recorded with hydrophones inside water and air during the test to estimate the transmitted signal through the interface. In a second test, we perform experiments with an acoustic source located in air which is fired at different elevations above the water surface. The source in air is a starter gun and the signals are again recorded in water and air. The measured data indicates an increasing transmission of the signal through the water-air interface when the source is closer to the water surface which leads to a decreasing reflection for sources close to the surface. The measured results are compared with modeled data and the existing theory. The observed increase in transmission for shallow source depths could be explained by the theory of a spherical wave front striking the interface instead of assuming a plane wave front. The difference can be important for frequencies below 1 Hz. The results suggest that deploying a few sources very shallow during marine seismic acquisition could be beneficial for these very low frequencies. In addition, the effect of a spherical wave front might be considered for modeling far field signatures of seismic sources for frequencies below 1 Hz.

  17. Airborne Lidar Bathymetry Beam Diagnostics Using an Underwater Optical Detector Array

    NASA Astrophysics Data System (ADS)

    Birkebak, Matthew

    The surface geometry of air-water interface is considered as an important factor affecting the performance of Airborne Lidar Bathymetry (ALB), and laser optical communication through the water surface. ALB is a remote sensing technique that utilizes a pulsed green (532 nm) laser mounted to an airborne platform in order to measure water depth. The water surface (i.e., air-water interface) can distort the light beam's ray-path geometry and add uncertainty to range calculation measurements. Previous studies on light refracting through a complex water surface are heavily dependent on theoretical models and simulations. In addition, only very limited work has been conducted to validate these theoretical models using experiments under well-controlled laboratory conditions. The goal of the study is to establish a clear relationship between water-surface conditions and the uncertainty of ALB measurement. This relationship will be determined by conducting more extensive empirical measurements to characterize the changes in beam slant path associated with a variety of short wavelength wind ripples, typically seen in ALB survey conditions. This study will focus on the effects of capillary and gravity-capillary waves with surface wavelengths smaller than the diameter of the laser beam on the water surface. Simulations using Monte-Carlo techniques of the ALB beam footprints and the environmental conditions were used to analyze the ray-path geometries. Based on the simulation results, laboratory experiments were then designed to test key parameters that have the greatest contribution on beam path and direction through the water. The laser beam dispersion experiments were conducted in well-controlled laboratory setting at the University of New Hampshire's Wave and Tow tank. The spatial elevations of the water surface were independently measured using a high resolution wave staff. The refracted laser beam footprint was measured using an underwater optical detector consisting of a 6x6 array of photodiodes. Image processing techniques were used to estimate the laser's incidence angle intercepted by the detector array. Beam patterns that resulted from intersection between the laser beam light field underwater and the detector array were modeled and used to calculate changes in position and orientation for water surface conditions containing wavelengths less than 0.1m. Finally, a total horizontal uncertainty (THU) model was estimated, which can be implemented in total propagated uncertainty (TPU) models for reporting as a measure of the quality of each measurement. The wave refraction error for various sea states and beam characteristics was successfully quantified using both experimental and analytical techniques.

  18. Numerical modeling of a spherical buoy moored by a cable in three dimensions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangqian; Yoo, Wan-Suk

    2016-05-01

    Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.

  19. Tracer adsorption in sand-tank experiments of saltwater up-coning

    NASA Astrophysics Data System (ADS)

    Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.

    2012-01-01

    SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.

  20. Calculating Depth of Closure Using WIS Hindcast Data

    DTIC Science & Technology

    2016-03-01

    revised the Hallermeier (1978, 1981) equations using data from the Duck , NC, U.S. Army Corps of Engineers (USACE) Field Research Facility. Many studies ... Study (WIS) hindcast stations along the United States coastlines. The results summarized in this CHETN are available in the form of a spreadsheet on...theoretical definition of DOC came from a study by Hallermeier (1978, 1981) using wave tank and field data. Initially, the DOC was related to the critical

  1. Engineering For Ship Production: A Textbook

    DTIC Science & Technology

    1986-06-01

    content. (g) Bulbous Bow. Bulbous bows are wave-resistance-reducing devices. They incorporate displacement at the bow forefoot , which sets up a surface...displacement from the fore body in way of the load waterline entrance to the bow forefoot in the form of a faired-in bulb. More recently, the...install open-ended sounding tubes with striking plates welded to the tank bottom. Where the sounding tuba slopes at the end, it is common to close the

  2. Workbook for Predicting Pressure Wave and Fragment Effect of Exploding Propellent Tanks and Gas Storage Vessels

    DTIC Science & Technology

    1975-11-01

    1241 . 1) (0. 00103) + 22.03 Vso = 23.4 m/s (76. 8 ft/sec) (d) From Equation (5-8). the striking velocity V is V = (10. 2539) + (1. 89f• x 10-4...34 ORNL -NSIC-2Z, Oak Ridc:e Nýv-ot.l! Laboratory, September 1968. ]H.hrn, Gerald J. , and Shapiro, Samuel S., Stati.,tical Models in -.n_..-ering, John

  3. A Experimental Investigation of Hydrodynamic Forces on Circular Cylinders in Sinusoidal and Random Oscillating Flow

    NASA Astrophysics Data System (ADS)

    Longoria, Raul Gilberto

    An experimental apparatus has been developed which can be used to generate a general time-dependent planar flow across a cylinder. A mass of water enclosed with no free surface within a square cross-section tank and two spring pre-loaded pistons is oscillated using a hydraulic actuator. A circular cylinder is suspended horizontally in the tank by two X-Y force transducers used to simultaneously measure the total in-line and transverse forces. Fluid motion is measured using a differential pressure transducer for instantaneous acceleration and an LVDT for displacement. This investigation provides measurement of forces on cylinders subjected to planar fluid flow velocity with a time (and frequency) dependence which more accurately represent the random conditions encountered in a natural ocean environment. The use of the same apparatus for both sinusoidal and random experiments provides a quantified assessment of the applicability of sinusoidal planar oscillatory flow data in offshore structure design methods. The drag and inertia coefficients for a Morison equation representation of the inline force are presented for both sinusoidal and random flow. Comparison of the sinusoidal results is favorable with those of previous investigations. The results from random experiments illustrates the difference in the force mechanism by contrasting the force transfer coefficients for the inline and transverse forces. It is found that application of sinusoidal results to random hydrodynamic inline force prediction using the Morison equation wrongly weighs the drag and inertia components, and the transverse force is overpredicted. The use of random planar oscillatory flow in the laboratory, contrasted with sinusoidal planar oscillatory flow, quantifies the accepted belief that the force transfer coefficients from sinusoidal flow experiments are conservative for prediction of forces on cylindrical structures subjected to random sea waves and the ensuing forces. Further analysis of data is conducted in the frequency domain to illustrate models used for predicting the power spectral density of the inline force including a nonlinear describing function method. It is postulated that the large-scale vortex activity prominent in sinusoidal oscillatory flow is subdued in random flow conditions.

  4. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

  5. Low-g fluid mixing - Further results from the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.

    1993-01-01

    The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.

  6. Self-Pressurization and Spray Cooling Simulations of the Multipurpose Hydrogen Test Bed (MHTB) Ground-Based Experiment

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.

    2014-01-01

    This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.

  7. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  8. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  9. STS-6 sixth Space Shuttle mission. First flight of the Challenger

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A prelaunch summary of the sixth Space Shuttle mission is provided. The Challenger orbiter; launching; uprated engines; lighter weight boosters; lightweight tank; external tank reduction; landing; the tracking and data relay satellite system (TDRSS), TDRS-1 deployment; the inertial upper stage (IUS), the spacewalk;electrophoresis, monodisperse latex reactor, night time/day time optical survey of lightning, and getaway special experiments are described.

  10. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.

  11. Imaging across the interface of small-scale breaking waves

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra H.; Belden, Jesse L.

    2007-11-01

    Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.

  12. Planning for coordinated space and ground-based ionospheric modification experiments

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Burke, William J.; Carlson, Herbert C.; Heckscher, John L.; Kossey, Paul A.; Weber, E. J.; Kuo, S. P.

    1990-01-01

    The planning and conduction of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to discuss: (1) the nonlinear VLF wave interaction with the ionospheric plasmas; and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HF-induced ionospheric density striations can render the nonlinear mode conversion of VLF waved into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the results obtained from the field experiments.

  13. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  14. An RF phased array applicator designed for hyperthermia breast cancer treatments

    PubMed Central

    Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V

    2007-01-01

    An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427

  15. Using Electrostriction to Manipulate Ullage in Microgravity

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Strayer, Donald

    2006-01-01

    A report proposes to use electrostriction to manipulate the ullage in a tank containing a dielectric liquid in a microgravitational environment. In the original intended application, the liquid would be a spacecraft propellant and the goal would be to force the ullage (comprising bubbles of noncondensible gas) to coalesce at one end of the tank, to enable use of one of the established means of (1) measuring the position of the gas/liquid interface and (2) inferring the quantity of liquid from the measurement. Electrically insulated wires would be installed in the tank, shaped and positioned so that application of a suitably high potential (e.g., 1 kV) between adjacent wires in successive pairs would give rise to a sufficient electric field gradient along the tank. The resulting electrostriction in the liquid would give rise to a pressure gradient that would force the ullage toward the low-electric-field-magnitude end of the tank. The feasibility of this proposal was demonstrated in an experiment in a tank containing liquid helium aboard an airplane flying a low-gravity arc. The ullage-segregating electrostrictive effect is expected to be considerably greater in other liquids.

  16. 322-R2U2 Engineering Assessment - August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abri, M.; Griffin, D.

    This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.

    Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less

  18. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  19. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  20. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    NASA Astrophysics Data System (ADS)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

Top