Sample records for wave transit time

  1. Method and apparatus for measurement of orientation in an anisotropic medium

    DOEpatents

    Gilmore, Robert Snee; Kline, Ronald Alan; Deaton, Jr., John Broddus

    1999-01-01

    A method and apparatus are provided for simultaneously measuring the anisotropic orientation and the thickness of an article. The apparatus comprises a transducer assembly which propagates longitudinal and transverse waves through the article and which receives reflections of the waves. A processor is provided to measure respective transit times of the longitudinal and shear waves propagated through the article and to calculate respective predicted transit times of the longitudinal and shear waves based on an estimated thickness, an estimated anisotropic orientation, and an elasticity of the article. The processor adjusts the estimated thickness and the estimated anisotropic orientation to reduce the difference between the measured transit times and the respective predicted transit times of the longitudinal and shear waves.

  2. Relationship between stress wave velocities of green and dry veneer

    Treesearch

    Brian K. Brashaw; Xiping Wang; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This paper evaluates the relationship between the stress wave velocities of green and dry southern pine and Douglas-fir veneers. A commercial stress wave timer and a laboratory signal analysis system were used to measure the transit time required for an induced stress wave to travel the longitudinal length of each veneer. Stress wave transit times were measured in the...

  3. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  4. Relationship between longitudinal stress wave transit time and moisture content of lumber during kiln-drying

    Treesearch

    William T. Simpson; Xiping. Wang

    2001-01-01

    The relationship between longitudinal stress wave transit time and wood moisture content (MC) was examined as a potential means of estimating MC control points in dry kiln schedules for lumber. A linear relationship was found between the relative transit time and the average MC of sugar maple and ponderosa pine boards dried according to typical kiln schedules.

  5. Trajectory description of the quantum–classical transition for wave packet interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less

  6. Transition operators in electromagnetic-wave diffraction theory - General theory

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  7. Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozument, Kirill; Colombo, Anthony P.; Zhou Yan

    2011-09-30

    Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

  8. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  9. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...

    2018-05-02

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  10. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  11. Gravitational waves from a very strong electroweak phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we findmore » parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.« less

  12. Revivals of electron currents and topological-band insulator transitions in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Romera, E.; Bolívar, J. C.; Roldán, J. B.; de los Santos, F.

    2016-07-01

    We have studied the time evolution of electron wave packets in silicene under perpendicular magnetic and electric fields to characterize topological-band insulator transitions. We have found that at the charge neutrality points, the periodicities exhibited by the wave packet dynamics (classical and revival times) reach maximum values, and that the electron currents reflect the transition from a topological insulator to a band insulator. This provides a signature of topological phase transition in silicene that can be extended to other 2D Dirac materials isostructural to graphene and with a buckled structure and a significant spin-orbit coupling.

  13. Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence

    NASA Astrophysics Data System (ADS)

    Shen, Wenxian

    2017-09-01

    This paper is concerned with the stability of transition waves and strictly positive entire solutions of random and nonlocal dispersal evolution equations of Fisher-KPP type with general time and space dependence, including time and space periodic or almost periodic dependence as special cases. We first show the existence, uniqueness, and stability of strictly positive entire solutions of such equations. Next, we show the stability of uniformly continuous transition waves connecting the unique strictly positive entire solution and the trivial solution zero and satisfying certain decay property at the end close to the trivial solution zero (if it exists). The existence of transition waves has been studied in Liang and Zhao (2010 J. Funct. Anal. 259 857-903), Nadin (2009 J. Math. Pures Appl. 92 232-62), Nolen et al (2005 Dyn. PDE 2 1-24), Nolen and Xin (2005 Discrete Contin. Dyn. Syst. 13 1217-34) and Weinberger (2002 J. Math. Biol. 45 511-48) for random dispersal Fisher-KPP equations with time and space periodic dependence, in Nadin and Rossi (2012 J. Math. Pures Appl. 98 633-53), Nadin and Rossi (2015 Anal. PDE 8 1351-77), Nadin and Rossi (2017 Arch. Ration. Mech. Anal. 223 1239-67), Shen (2010 Trans. Am. Math. Soc. 362 5125-68), Shen (2011 J. Dynam. Differ. Equ. 23 1-44), Shen (2011 J. Appl. Anal. Comput. 1 69-93), Tao et al (2014 Nonlinearity 27 2409-16) and Zlatoš (2012 J. Math. Pures Appl. 98 89-102) for random dispersal Fisher-KPP equations with quite general time and/or space dependence, and in Coville et al (2013 Ann. Inst. Henri Poincare 30 179-223), Rawal et al (2015 Discrete Contin. Dyn. Syst. 35 1609-40) and Shen and Zhang (2012 Comm. Appl. Nonlinear Anal. 19 73-101) for nonlocal dispersal Fisher-KPP equations with time and/or space periodic dependence. The stability result established in this paper implies that the transition waves obtained in many of the above mentioned papers are asymptotically stable for well-fitted perturbation. Up to the author’s knowledge, it is the first time that the stability of transition waves of Fisher-KPP equations with general time and space dependence is studied.

  14. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.

    PubMed

    Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku

    2017-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.

  15. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep

    PubMed Central

    Onisawa, Naomi; Mori, Kensaku

    2016-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591

  16. Self-consistent non-stationary theory of the gyrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-15

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theorymore » free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.« less

  17. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  18. Transition and Adaptation to the Continuing Care Retirement Community From a Life Course Perspective: Something Old, Something New, and Something Borrowed.

    PubMed

    Ayalon, Liat

    2018-03-01

    The study examined the accounts of older adults and their adult children concerning the transition to the continuing care retirement community (CCRC) and the adjustment to it, using a life course perspective. Up to three waves of interviews, consisting of a total of 187 interviews with older adults and their adult children, were conducted between 6 months and 6 years from the transition to the CCRC. Thematic analysis was employed using comparisons across groups of interviewees (older adults and adult children) and waves of interviews (up to three waves) to identify core categories of meaning. Time perception was an organizing principle across interviews. Both older adults and their adult children perceived themselves as moving forward and backward in time following the transition to the CCRC and future expectations for deterioration. The study emphasizes the linked-lives of older adults and their adult children.

  19. Pulse wave velocity in patients with severe head injury a pilot study.

    PubMed

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  20. Mantle Structure Beneath East Africa and Zambia from Body Wave Tomography

    NASA Astrophysics Data System (ADS)

    Mulibo, G.; Nyblade, A.; Tugume, F.

    2011-12-01

    In this study, P and S travel time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are being inverted, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds variations extending to a depth of 1200 km. Preliminary results show that at depths of 200 km of less, low wave speed anomalies are well developed beneath the Eastern and Western Branches of the East African Rift System. At deep depths, the low wave speed anomalies focus under the center and southern part of the East African Plateau and extend into the transition zone. At transition zone depths and within the top part of the lower mantle, the low wave speed anomaly shifts to the southwest beneath Zambia, indicating that the low wave speed anomaly is continuous across the transition zone and that it extends into the lower mantle. This result suggests that the upper mantle low wave speed anomaly beneath East Africa is connected to the African superplume anomaly in the lower mantle beneath southern Africa.

  1. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  2. Traveling waves in an optimal velocity model of freeway traffic

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  3. STEREO observations of insitu waves in the vicinity of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2017-12-01

    We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.

  4. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    NASA Astrophysics Data System (ADS)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  6. Effect of cross grain on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1980-01-01

    An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...

  7. An anisotropic lens for transitioning plane waves between media of different permittivities

    NASA Astrophysics Data System (ADS)

    Stone, Alexander P.; Baum, Carl E.

    1988-11-01

    A particularly simple geometry is considered in which an inhomogeneous and anisotropic lens is specified for the transition of plane waves between media of different permittivities. The permittivities of the regions outside of the lens can be constant, but the permittivity of the lens region depends on position. Results are presented for a plane wave in the second medium propagating normally to the assumed plane boundary of that medium. The results for the case of normal incidence are then generalized to the case of nonnormal incidence. The conditions of transit time conservation and impedance matching are related to the Brewster angle.

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh-Rose Neurons

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long

    2010-02-01

    Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.

  9. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  10. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  11. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    PubMed

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  12. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.

    PubMed

    Wille, Marie-Luise; Langton, Christian M

    2016-02-01

    The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis.

    PubMed

    Chang, Kuo-Chu; Hsu, Kwan-Lih; Tseng, Yung-Zu

    2003-01-01

    We determined the effects of diabetes and gender on the physical properties of the vasculature in streptozotocin (STZ)-treated rats based on the aortic input impedance analysis. Rats given STZ 65 mg/kg i.v. were compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured and were then subjected to Fourier transformation for the analysis of aortic input impedance. Wave transit time was determined using the impulse response function of the filtered aortic input impedance spectra. Male but not female diabetic rats exhibited an increase in cardiac output in the absence of any significant changes in arterial blood pressure, resulting in a decline in total peripheral resistance. However, in each gender group, diabetes contributed to an increase in wave reflection factor, from 0.47 +/- 0.04 to 0.84 +/- 0.03 in males and from 0.46 +/- 0.03 to 0.81 +/- 0.03 in females. Diabetic rats had reduced wave transit time, at 18.82 +/- 0.60 vs 21.34 +/- 0.51 msec in males and at 19.63 +/- 0.37 vs 22.74 +/- 0.57 msec in females. Changes in wave transit time and reflection factor indicate that diabetes can modify the timing and magnitude of the wave reflection in the rat arterial system. Meanwhile, diabetes produced a fall in aortic characteristic impedance from 0.023 +/- 0.002 to 0.009 +/- 0.001 mmHg/min/kg/ml in males and from 0.028 +/- 0.002 to 0.014 +/- 0.001 mmHg/min/kg/ml in females. With unaltered aortic pressure, both the diminished aortic characteristic impedance and wave transit time suggest that the muscle inactivation in diabetes may occur in aortas and large arteries and may cause a detriment to the aortic distensibility in rats with either sex. We conclude that only rats with male gender diabetes produce a detriment to the physical properties of the resistance arterioles. In spite of male or female gender, diabetes decreases the aortic distensibility and impairs the wave reflection phenomenon in the rat arterial system.

  14. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinyuan

    A digitization scheme of sub-microampere current using a commercial comparator with adjustable hysteresis and FPGA-based Wave Union TDC has been tested. The comparator plus a few passive components forms a current controlled oscillator and the input current is sent into the hysteresis control pin. The input current is converted into the transition times of the oscillations, which are digitized with a Wave Union TDC in FPGA and the variation of the transition times reflects the variation of the input current. Preliminary tests show that input charges < 25 fC can be measured at > 50 M samples/s without a preamplifier.

  16. Time-dependent reflection at the localization transition

    NASA Astrophysics Data System (ADS)

    Skipetrov, Sergey E.; Sinha, Aritra

    2018-03-01

    A short quasimonochromatic wave packet incident on a semi-infinite disordered medium gives rise to a reflected wave. The intensity of the latter decays as a power law, 1 /tα , in the long-time limit. Using the one-dimensional Aubry-André model, we show that in the vicinity of the critical point of Anderson localization transition, the decay slows down, and the power-law exponent α becomes smaller than both α =2 found in the Anderson localization regime and α =3 /2 expected for a one-dimensional random walk of classical particles.

  17. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  18. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    PubMed

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  19. Stationary phase method and delay times for relativistic and non-relativistic tunneling particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardini, A.E.

    2009-06-15

    The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less

  20. Band transition and topological interface modes in 1D elastic phononic crystals.

    PubMed

    Yin, Jianfei; Ruzzene, Massimo; Wen, Jihong; Yu, Dianlong; Cai, Li; Yue, Linfeng

    2018-05-01

    In this report, we design a one-dimensional elastic phononic crystal (PC) comprised of an Aluminum beam with periodically arranged cross-sections to study the inversion of bulk bands due to the change of topological phases. As the geometric parameters of the unit cell varies, the second bulk band closes and reopens forming a topological transition point. This phenomenon is confirmed for both longitudinal waves and bending waves. By constructing a structural system formed by two PCs with different topological phases, for the first time, we experimentally demonstrate the existence of interface mode within the bulk band gap as a result of topological transition for both longitudinal and bending modes in elastic systems, although for bending modes, additional conditions have to be met in order to have the interface mode due to the dispersive nature of the bending waves in uniform media compared to the longitudinal waves.

  1. Effect of phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, V.; Fitz, D.E.; Kouri, D.J.

    1980-09-15

    The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less

  2. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard

    2010-06-01

    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.

  3. Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk

    NASA Astrophysics Data System (ADS)

    Misra, R.

    2000-02-01

    We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.

  4. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  5. Unidirectional Transition Waves in Bistable Lattices

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara

    2016-06-01

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  6. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  7. Examining Longitudinal Relationships between Dysfunctional Career Thoughts and Career Decision-Making Self-Efficacy in School-to-Work Transition

    ERIC Educational Resources Information Center

    Kim, Boyoung; Lee, Bo Hyun; Ha, Gyuyoung; Lee, Hong Kwon; Lee, Sang Min

    2015-01-01

    This study examines the role of dysfunctional career thoughts between two-wave longitudinal data (Time 1 and Time 2) in career decision-making self-efficacy during school-to-work transition periods. Career decision-making self-efficacy was measured before (Time 1) and after college graduation (Time 2). The results indicated that the growth of…

  8. Realization of a topological phase transition in a gyroscopic lattice

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah P.; Nash, Lisa M.; Irvine, William T. M.

    2018-03-01

    Topological metamaterials exhibit unusual behaviors at their boundaries, such as unidirectional chiral waves, that are protected by a topological feature of their band structures. The ability to tune such a material through a topological phase transition in real time could enable the use of protected waves for information storage and readout. Here we dynamically tune through a topological phase transition by breaking inversion symmetry in a metamaterial composed of interacting gyroscopes. Through the transition, we track the divergence of the edge modes' localization length and the change in Chern number characterizing the topology of the material's band structure. This Rapid Communication provides a new axis with which to tune the response of mechanical topological metamaterials.

  9. Numerical Modeling of Footpoint-driven Magneto-acoustic Wave Propagation in a Localized Solar Flux Tube

    NASA Astrophysics Data System (ADS)

    Fedun, V.; Shelyag, S.; Erdélyi, R.

    2011-01-01

    In this paper, we present and discuss results of two-dimensional simulations of linear and nonlinear magneto-acoustic wave propagation through an open magnetic flux tube embedded in the solar atmosphere expanding from the photosphere through to the transition region and into the low corona. Our aim is to model and analyze the response of such a magnetic structure to vertical and horizontal periodic motions originating in the photosphere. To carry out the simulations, we employed our MHD code SAC (Sheffield Advanced Code). A combination of the VALIIIC and McWhirter solar atmospheres and coronal density profiles were used as the background equilibrium model in the simulations. Vertical and horizontal harmonic sources, located at the footpoint region of the open magnetic flux tube, are incorporated in the calculations, to excite oscillations in the domain of interest. To perform the analysis we have constructed a series of time-distance diagrams of the vertical and perpendicular components of the velocity with respect to the magnetic field lines at each height of the computational domain. These time-distance diagrams are subject to spatio-temporal Fourier transforms allowing us to build ω-k dispersion diagrams for all of the simulated regions in the solar atmosphere. This approach makes it possible to compute the phase speeds of waves propagating throughout the various regions of the solar atmosphere model. We demonstrate the transformation of linear slow and fast magneto-acoustic wave modes into nonlinear ones, i.e., shock waves, and also show that magneto-acoustic waves with a range of frequencies efficiently leak through the transition region into the solar corona. It is found that the waves interact with the transition region and excite horizontally propagating surface waves along the transition region for both types of drivers. Finally, we estimate the phase speed of the oscillations in the solar corona and compare it with the phase speed derived from observations.

  10. A chemometric method to identify enzymatic reactions leading to the transition from glycolytic oscillations to waves

    NASA Astrophysics Data System (ADS)

    Zimányi, László; Khoroshyy, Petro; Mair, Thomas

    2010-06-01

    In the present work we demonstrate that FTIR-spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in a yeast extract. Based on a spectral library constructed from the pure glycolytic intermediates, chemometric analysis of the complex spectra allowed us the identification of many of these intermediates. Singular value decomposition and multiple level wavelet decomposition were used to separate drifting substances from oscillating ones. This enabled us to identify slow and fast variables of glycolytic oscillations. Most importantly, we can attribute a qualitative change in the positive feedback regulation of the autocatalytic reaction to the transition from homogeneous oscillations to travelling waves. During the oscillatory phase the enzyme phosphofructokinase is mainly activated by its own product ADP, whereas the transition to waves is accompanied with a shift of the positive feedback from ADP to AMP. This indicates that the overall energetic state of the yeast extract determines the transition between spatially homogeneous oscillations and travelling waves.

  11. The Timing of School Transitions and Early Adolescent Problem Behavior

    PubMed Central

    Lippold, Melissa A.; Powers, Christopher J.; Syvertsen, Amy K.; Feinberg, Mark E.; Greenberg, Mark T.

    2013-01-01

    This longitudinal study investigates whether rural adolescents who transition to a new school in sixth grade have higher levels of risky behavior than adolescents who transition in seventh grade. Our findings indicate that later school transitions had little effect on problem behavior between sixth and ninth grades. Cross-sectional analyses found a small number of temporary effects of transition timing on problem behavior: Spending an additional year in elementary school was associated with higher levels of deviant behavior in the Fall of Grade 6 and higher levels of antisocial peer associations in Grade 8. However, transition effects were not consistent across waves and latent growth curve models found no effects of transition timing on the trajectory of problem behavior. We discuss policy implications and compare our findings with other research on transition timing. PMID:24089584

  12. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  13. Tobacco use transitions in the United States: The National Longitudinal Study of Adolescent Health

    PubMed Central

    Kaufman, Annette R.; Land, Stephanie; Parascandola, Mark; Augustson, Erik; Backinger, Cathy L.

    2015-01-01

    Objectives The purpose of this study is to evaluate and describe transitions in cigarette and smokeless tobacco (ST) use, including dual use, prospectively from adolescence into young adulthood. Methods The current study utilizes four waves of the National Longitudinal Study of Adolescent Health (Add Health) to examine patterns of cigarette and ST use (within 30 days of survey) over time among a cohort in the United States beginning in 7th–12th grade (1995) into young adulthood (2008–2009). Transition probabilities were estimated using Markov modeling. Results Among the cohort (N = 20,774), 48.7% reported using cigarettes, 12.8% reported using ST, and 7.2% reported dual use (cigarettes and ST in the same wave) in at least one wave. In general, the risk for transitioning between cigarettes and ST was higher for males and those who were older. Dual users exhibited a high probability (81%) of continuing dual use over time. Conclusions Findings suggest that adolescents who use multiple tobacco products are likely to continue such use as they move into young adulthood. When addressing tobacco use among adolescents and young adults, multiple forms of tobacco use should be considered. PMID:26361752

  14. Effect of knots on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1982-01-01

    An impact stress wave was induced in the end of 2 by 6 lumber containing knots. Rather than a normal, perpendicular-to-the-axis profile in transiting by a knot, the stress wave tended to Iead in zones of clear wood in the direction of the slope of grain or slope of the annual rings and to lag behind the knot. Of three methods evaluated to time the stress wave, the...

  15. Electron acceleration by inertial Alfven waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when themore » transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.« less

  16. Identification of Langmuir wave turbulence-supercontinuum transition by application of von Neumann entropy

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou

    2017-09-01

    A transition from Langmuir wave turbulence (LWT) to coherent Langmuir wave supercontinuum (LWSC) is identified in one-dimensional particle-in-cell simulations as the emergence of a broad frequency band showing significant temporal coherence of a wave field accompanied by a decrease in the von Neumann entropy of classical wave fields. The concept of the von Neumann entropy is utilized for evaluation of the phase-randomizing degree of the classical wave fields, together with introduction of the density matrix of the wave fields. The transition from LWT to LWSC takes place when the energy per one plasmon (one wave quantum) exceeds a certain threshold. The coherent nature, which Langmuir wave systems acquire through the transition, is created by four wave mixings of the plasmons. The emergence of temporal coherence and the decrease in the phase randomization are considered as the development of long-range order and spontaneous symmetry breaking, respectively, indicating that the LWT-LWSC transition is a second order phase transition phenomenon.

  17. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  18. Do Gender and Exposure to Interparental Violence Moderate the Stability of Teen Dating Violence?: Latent Transition Analysis.

    PubMed

    Choi, Hye Jeong; Temple, Jeff R

    2016-04-01

    This study investigates the development, change, and stability of teen dating violence (TDV) victimization over time. Specifically, we identify distinct subgroups of adolescents based on past-year TDV victimization, whether adolescents change victimization statuses over time (e.g., from psychological victimization to physical victimization), and how exposure to interparental violence and gender influence the prevalence and stability of TDV statuses. Adolescents (N=1,042) from 7 public high schools in Texas participated in this longitudinal study. The Conflict in Adolescent Dating Relationships Inventory (CADRI) (Wolfe et al., Psychological Assessment, 13(2), 277-293, 2001) was used to identify victimization statuses. Latent Transition Analysis (LTA) with measurement invariance was used to examine transition probability of an individual's latent status at Wave3 or Wave4 given his or her latent status at Wave2 or Wave3. Gender and exposure to interparental violence was included as moderators in the LTA. Three statuses of TDV victimization were identified: (1) non-victims; (2) emotional/verbal victims; and (3) physical/psychological victims. LTA showed that the majority of adolescents stayed in the same status over time; however, female youth exposed to interparental violence were more likely to move from a less to more severe status over time compared to non-exposed youth. This is among the first study to identify subgroups of TDV victimization and to examine the stability of group membership over time. Female youth exposed to interparental violence were more likely to remain in or move into a violent relationship compared to unexposed youth.

  19. Transition wave in the collapse of the San Saba bridge

    NASA Astrophysics Data System (ADS)

    Brun, Michele; Giaccu, Gian Felice; Movchan, Alexander; Slepyan, Leonid

    2014-09-01

    A domino wave is a well-known illustration of a transition wave, which appears to reach a stable regime of propagation. Nature also provides spectacular cases of gravity driven transition waves at large scale, observed in snow avalanches and landslides. On a different scale, the micro-structure level interaction between different constituents of the macro-system may influence critical regimes leading to instabilities in avalanche-like flow systems. Most transition waves observed in systems such as bulletproof vests, racing helmets under impact, shock-wave driven fracture in solids, are transient. For some structured waveguides a transition wave may stabilize to achieve a steady regime. Here we show that the failure of a long bridge is also driven by a transition wave that may allow for steady-state regimes. The recent observation of a failure of the San Saba Bridge in Texas provides experimental evidence supporting an elegant theory based on the notion of transition failure wave. No one would think of an analogy between a snow avalanche and a collapsing bridge. Despite an apparent controversy of such a comparison, these two phenomena can both be described in the framework of a model of the dynamic gravity driven transition fault.

  20. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  1. Probing the Bond Order Wave Phase Transitions of the Ionic Hubbard Model by Superlattice Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Loida, Karla; Bernier, Jean-Sébastien; Citro, Roberta; Orignac, Edmond; Kollath, Corinna

    2017-12-01

    An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott insulators.

  2. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    NASA Astrophysics Data System (ADS)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  3. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    PubMed

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.

  4. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.

  5. Shock-induced solitary waves in granular crystals.

    PubMed

    Hasan, M Arif; Nemat-Nasser, Sia

    2018-02-01

    Solitary waves (SWs) are generated in monoatomic (homogeneous) lightly contacting spherical granules by an applied input force of any time-variation and intensity. We consider finite duration shock loads on one-dimensional arrays of granules and focus on the transition regime that leads to the formation of SWs. Based on geometrical and material properties of the granules and the properties of the input shock, we provide explicit analytic expressions to calculate the peak value of the compressive contact force at each contact point in the transition regime that precedes the formation of a primary solitary wave. We also provide explicit expressions to estimate the number of granules involved in the transition regime and show its dependence on the characteristics of the input shock and material/geometrical properties of the interacting granules. Finally, we assess the accuracy of our theoretical results by comparing them with those obtained through numerical integration of the equations of motion.

  6. Revealing Extremely Low Energy Amplitude Modes in the Charge-Density-Wave Compound LaAgSb_{2}.

    PubMed

    Chen, R Y; Zhang, S J; Zhang, M Y; Dong, T; Wang, N L

    2017-03-10

    Using infrared spectroscopy and ultrafast pump probe measurement, we have studied the two charge-density-wave (CDW) instabilities in the layered compound LaAgSb_{2}. The development of CDW energy gaps was clearly observed by optical spectroscopy, which removed most of the free carrier spectral weight. More interestingly, our time-resolved measurements revealed two coherent oscillations that softened by approaching the two phase transition temperatures, respectively. We addressed that these two oscillations come from the amplitude modes of CDW collective excitations, the surprisingly low energies (0.12 THz and 0.34 THz for the higher and lower temperature ones, respectively) of which are associated with the extremely small nesting wave vectors. Additionally, the amplitude and relaxation time of photoinduced reflectivity of LaAgSb_{2} single crystals stayed unchanged across the CDW phase transitions, which is quite rare and deserves further investigation.

  7. Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space

    NASA Technical Reports Server (NTRS)

    Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.

    2001-01-01

    The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.

  8. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  9. Hearing the signal of dark sectors with gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

    2016-11-01

    Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

  10. Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami, and transition to turbulence

    NASA Astrophysics Data System (ADS)

    Bhaumik, Swagata; Sengupta, Tapan K.

    2017-12-01

    Here, we present the impulse response of the canonical zero pressure gradient boundary layer from the dynamical system approach. The fundamental physical mechanism of the impulse response is in creation of a spatio-temporal wave-front (STWF) by a localized, time-impulsive wall excitation of the boundary layer. The present research is undertaken to explain the unit process of diverse phenomena in geophysical fluid flows and basic hydrodynamics. Creation of a tsunami has been attributed to localized events in the ocean-bed caused by earthquakes, landslides, or volcanic eruptions, whose manifestation is in the run up to the coast by surface waves of massive amplitude but of very finite fetch. Similarly rogue waves have often been noted; a coherent account of the same is yet to appear, although some explanations have been proposed. Our studies in both two- and three-dimensional frameworks in Sengupta and Bhaumik ["Onset of turbulence from the receptivity stage of fluid flows," Phys. Rev. Lett. 107(15), 154501 (2011)] and Bhaumik and Sengupta ["Precursor of transition to turbulence: Spatiotemporal wave front," Phys. Rev. E 89(4), 043018 (2014)] have shown that the STWF provides the central role for causing transition to turbulence by reproducing carefully conducted transition experiments. Here, we furthermore relax the condition of time behavior and use a Dirac-delta wall excitation for the impulse response. The present approach is not based on any simplification of the governing Navier-Stokes equation (NSE), which is unlike solving a nonlinear shallow water equation and/or nonlinear Schrödinger equation. The full nonlinear Navier-Stokes equation (NSE) is solved here using high accuracy dispersion relation preserving numerical schemes and using appropriate formulation of the NSE which minimizes error. The adopted numerical methods and formulation have been extensively validated with respect to various external and internal 2D and 3D flow problems. We also present results from the Orr-Sommerfeld equation to show that the origin of the STWF is via a linear mechanism. Nonlinearity and nonparallelism play the central role in causing these phenomena of geophysics and transition to turbulence.

  11. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  12. Spin-wave wavelength down-conversion at thickness steps

    NASA Astrophysics Data System (ADS)

    Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.

    2018-05-01

    We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.

  13. Development of relativistic shock waves in viscous gluon matter

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2009-11-01

    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.

  14. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially affected by experimental manipulations and sleep disorders. Citation: Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. SLEEP 2014;37(10):1621-1637. PMID:25197810

  15. Constitutive modeling of shock response of PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phasemore » II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.« less

  16. Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK

    NASA Astrophysics Data System (ADS)

    Berg, L.-E.; Beutter, M.; Hansson, T.

    1996-05-01

    The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.

  17. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  18. Phase locking of convectively coupled equatorial atmospheric Kelvin waves over Indian Ocean basin

    NASA Astrophysics Data System (ADS)

    Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr; Matthews, Adrian

    2015-04-01

    The properties of convectively coupled Kelvin waves in the Indian Ocean and their propagation over the Maritime Continent are studied. It is shown that Kelvin waves are longitude - diurnal cycle phase locked over the Maritime Continent, Africa and the Indian Ocean. Thus, it is shown that they tend to propagate over definite areas during specific times of the day. Over the Maritime Continent, longitude-diurnal cycle phase locking is such that it agrees with mean, local diurnal cycle of convection. The strength of the longitude-diurnal cycle phase locking differs between 'non-blocked' Kelvin waves, which make successful transition over the Maritime Continent, and 'blocked' waves that terminated within it. It is shown that a specific combination of Kelvin wave phase speed and time of the day at which a wave approaches the Maritime Continent influence the chance of successful transition into the Western Pacific. Kelvin waves that maintain phase speed of 10 to 11 degrees per day over the central-eastern Indian Ocean and arrive at 90E between 9UTC and 18UTC have the highest chance of being 'non-blocked' by the Maritime Continent. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average convectively coupled Kelvin wave in one day. This suggests that the Maritime Continent may act as a 'filter' for Kelvin waves favoring successful propagation of those waves for which propagation is in phase with the local diurnal cycle of precipitation. The AmPm index, a simple measure of local diurnal cycle for propagating disturbances, is introduced and shown to be useful metric depicting key characteristics of the convection associated with propagating Kelvin waves.

  19. Tight regulation of a timed nuclear import wave of EKLF by PKCθ and FOE during Pro-E to Baso-E transition.

    PubMed

    Shyu, Yu-Chiau; Lee, Tung-Liang; Chen, Xin; Hsu, Pang-Hung; Wen, Shau-Ching; Liaw, Yi-Wei; Lu, Chi-Huan; Hsu, Po-Yen; Lu, Mu-Jie; Hwang, JauLang; Tsai, Ming-Daw; Hwang, Ming-Jing; Chen, Jim-Ray; Shen, Che-Kun James

    2014-02-24

    Erythropoiesis is a highly regulated process during which BFU-E are differentiated into RBCs through CFU-E, Pro-E, PolyCh-E, OrthoCh-E, and reticulocyte stages. Uniquely, most erythroid-specific genes are activated during the Pro-E to Baso-E transition. We show that a wave of nuclear import of the erythroid-specific transcription factor EKLF occurs during the Pro-E to Baso-E transition. We further demonstrate that this wave results from a series of finely tuned events, including timed activation of PKCθ, phosphorylation of EKLF at S68 by P-PKCθ(S676), and sumoylation of EKLF at K74. The latter EKLF modifications modulate its interactions with a cytoplasmic ankyrin-repeat-protein FOE and importinβ1, respectively. The role of FOE in the control of EKLF nuclear import is further supported by analysis of the subcellular distribution patterns of EKLF in FOE-knockout mice. This study reveals the regulatory mechanisms of the nuclear import of EKLF, which may also be utilized in the nuclear import of other factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Waves on radial film flows

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  1. Relativistic Shock Waves in Viscous Gluon Matter

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2009-07-01

    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s from zero to infinity. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.

  2. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less

  3. Very high resolution observations of waves in the OH airglow at low latitudes.

    NASA Astrophysics Data System (ADS)

    Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert E.; Djupvik, Amanda A.

    2017-04-01

    Vibrationally excited hydroxyl (OH) is produced in the mesosphere by the reaction of atomic hydrogen and ozone. This excited OH radiates a strong, near-infrared airglow emission in a thin ( 8 km thick) layer near 87 km. In the past, remote sensing of perturbations in the OH Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through this region. However, information on the highest frequency gravity waves is often limited by the temporal and spatial resolution of the available observations. In an effort to expand the wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements are taken with a 10 s integration time (24 s repetition rate), and the spatial resolution at 87 km is as small as 10 m, allowing us to quantify the transition between the gravity and acoustic wave domains in the mesosphere.

  4. Genetic and environmental influences on personality trait stability and growth during the transition to adulthood: A three wave longitudinal study

    PubMed Central

    Hopwood, Christopher J.; Donnellan, M. Brent; Blonigen, Daniel M.; Krueger, Robert F.; McGue, Matt; Iacono, William G.; Burt, S. Alexandra

    2010-01-01

    During the transition to adulthood individuals typically settle into adult roles in love and work. This transition also involves significant changes in personality traits that are generally in the direction of greater maturity and increased stability. Competing hypotheses have been offered to account for these personality changes: the intrinsic maturation hypothesis suggests that change trajectories are endogenous, whereas the life-course hypothesis suggests that these changes occur because of transactions with the social environment. This study investigated the patterns and origins of personality trait changes from ages 17 to 29 using 3 waves of Multidimensional Personality Questionnaire data provided by twins. Results suggest that a) trait changes were more profound in the first relative to the second half of the transition to adulthood; b) traits tend to become more stable during the second half of this transition, with all the traits yielding retest correlations between .74 and .78; c) negative affectivity declined over time and constraint increased over time; minimal change was observed on agentic or communal aspects of positive affectivity; and d) both genetic and non-shared environmental factors accounted for personality changes. Overall, these genetically-informed results support a life-course perspective on personality development during the transition to adulthood. PMID:21244174

  5. Genetic and environmental influences on personality trait stability and growth during the transition to adulthood: a three-wave longitudinal study.

    PubMed

    Hopwood, Christopher J; Donnellan, M Brent; Blonigen, Daniel M; Krueger, Robert F; McGue, Matt; Iacono, William G; Burt, S Alexandra

    2011-03-01

    During the transition to adulthood individuals typically settle into adult roles in love and work. This transition also involves significant changes in personality traits that are generally in the direction of greater maturity and increased stability. Competing hypotheses have been offered to account for these personality changes: The intrinsic maturation hypothesis suggests that change trajectories are endogenous, whereas the life-course hypothesis suggests that these changes occur because of transactions with the social environment. This study investigated the patterns and origins of personality trait changes from ages 17 to 29 using 3 waves of Multidimensional Personality Questionnaire data provided by twins. Results suggest that (a) trait changes were more profound in the first relative to the second half of the transition to adulthood; (b) traits tend to become more stable during the second half of this transition, with all the traits yielding retest correlations between .74 and .78; (c) Negative Affectivity declined over time, and Constraint increased over time; minimal change was observed on agentic or communal aspects of Positive Emotionality; and (d) both genetic and nonshared environmental factors accounted for personality changes. Overall, these genetically informed results support a life-course perspective on personality development during the transition to adulthood. (c) 2011 APA, all rights reserved

  6. Atom Interferometry with the Sr Optical Clock Transition.

    PubMed

    Hu, Liang; Poli, Nicola; Salvi, Leonardo; Tino, Guglielmo M

    2017-12-29

    We report on the realization of a matter-wave interferometer based on single-photon interaction on the ultranarrow optical clock transition of strontium atoms. We experimentally demonstrate its operation as a gravimeter and as a gravity gradiometer. No reduction of interferometric contrast was observed for a total interferometer time up to ∼10  ms, limited by geometric constraints of the apparatus. Single-photon interferometers represent a new class of high-precision sensors that could be used for the detection of gravitational waves in so far unexplored frequency ranges and to enlighten the boundary between quantum mechanics and general relativity.

  7. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liheng; Zhang, Jun; Li, Ting

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less

  8. Monolayer phosphorene under time-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  9. How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring

    ERIC Educational Resources Information Center

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-01-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…

  10. Novel Techniques for Millimeter-Wave Packages

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Kolawa, Elzbieta A.; Lowry, Lynn E.; Tulintseff, Ann N.

    1995-01-01

    A new millimeter-wave package architecture with supporting electrical, mechanical and material science experiment and analysis is presented. This package is well suited for discrete devices, monolithic microwave integrated circuits (MMIC's) and multichip module (MCM) applications. It has low-loss wide-band RF transitions which are necessary to overcome manufacturing tolerances leading to lower per unit cost Potential applications of this new packaging architecture which go beyond the standard requirements of device protection include integration of antennas, compatibility to photonic networks and direct transitions to waveguide systems. Techniques for electromagnetic analysis, thermal control and hermetic sealing were explored. Three dimensional electromagnetic analysis was performed using a finite difference time-domain (FDTD) algorithm and experimentally verified for millimeter-wave package input and output transitions. New multi-material system concepts (AlN, Cu, and diamond thin films) which allow excellent surface finishes to be achieved with enhanced thermal management have been investigated. A new approach utilizing block copolymer coatings was employed to hermetically seal packages which met MIL STD-883.

  11. The upper mantle structure of the central Rio Grande rift region from teleseismic P and S wave travel time delays and attenuation

    USGS Publications Warehouse

    Slack, P.D.; Davis, P.M.; Baldridge, W.S.; Olsen, K.H.; Glahn, A.; Achauer, U.; Spence, W.

    1996-01-01

    The lithosphere beneath a continental rift should be significantly modified due to extension. To image the lithosphere beneath the Rio Grande rift (RGR), we analyzed teleseismic travel time delays of both P and S wave arrivals and solved for the attenuation of P and S waves for four seismic experiments spanning the Rio Grande rift. Two tomographic inversions of the P wave travel time data are given: an Aki-Christofferson-Husebye (ACH) block model inversion and a downward projection inversion. The tomographic inversions reveal a NE-SW to NNE-SSW trending feature at depths of 35 to 145 km with a velocity reduction of 7 to 8% relative to mantle velocities beneath the Great Plains. This region correlates with the transition zone between the Colorado Plateau and the Rio Grande rift and is bounded on the NW by the Jemez lineament, a N52??E trending zone of late Miocene to Holocene volcanism. S wave delays plotted against P wave delays are fit with a straight line giving a slope of 3.0??0.4. This correlation and the absolute velocity reduction imply that temperatures in the lithosphere are close to the solidus, consistent with, but not requiring, the presence of partial melt in the mantle beneath the Rio Grande rift. The attenuation data could imply the presence of partial melt. We compare our results with other geophysical and geologic data. We propose that any north-south trending thermal (velocity) anomaly that may have existed in the upper mantle during earlier (Oligocene to late Miocene) phases of rifting and that may have correlated with the axis of the rift has diminished with time and has been overprinted with more recent structure. The anomalously low-velocity body presently underlying the transition zone between the core of the Colorado Plateau and the rift may reflect processes resulting from the modern (Pliocene to present) regional stress field (oriented WNW-ESE), possibly heralding future extension across the Jemez lineament and transition zone.

  12. Comparison of velocity and temperature time series data analysis in experiments on the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments of baroclinic wave interactions, and a number of data acquisition techniques are applied e.g. to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. In our experiments presented here, we make use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera, which resolution allows for resolving fine scale structures, measures the surface temperature field. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). In addition, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us not only to compare the data analysis methods but also to reclassify the results yielded with the LDV data analysis. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. For example, we found a dominant and a weak mode in the 3-4 wave transition region. This finding confirms earlier ideas on wave dispersion in transition regions between regular waves. Increasing the annulus' rotation leads to a growth of the weak mode until this mode becomes the dominant one. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  13. Measurements and Computations of Second-Mode Instability Waves in Three Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Casper, Katya M.; Rufer, Shann J.; Alba, Christopher R.; Lewis, Daniel R.; Beresh, Steven J.; Schneider, Steven P.

    2010-01-01

    High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7deg-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 micro-s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N approx. equals 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes. In Tunnel 9, the measured transition locations were found to be at N = 4.5 using thermocouples, and N = 5.3 using 50-kHz-response pressure sensors. What appears to be a very long transitional region was observed at a unit Reynolds number of 13.5 million per meter in Tunnel 9. These results were consistent with the high-frequency pressure fluctuation measurements. High-frequency pressure fluctuation measurements indicated that transition did occur in the Langley Mach-6 tunnel, but the location of transition was not precisely determined. Unit Reynolds numbers in the Langley Mach-10 tunnel were too low to observe transition. More analysis of this data set is expected in the future.

  14. Dynamical criterion for a marginally unstable, quasi-linear behavior in a two-layer model

    NASA Technical Reports Server (NTRS)

    Ebisuzaki, W.

    1988-01-01

    A two-layer quasi-geostrophic flow forced by meridional variations in heating can be in regimes ranging from radiative equilibrium to forced geostrophic turbulence. Between these extremes is a regime where the time-mean (zonal) flow is marginally unstable. Using scaling arguments, it is concluded that such a marginally unstable state should occur when a certain parameter, measuring the strength of wave-wave interactions relative to the beta effect and advection by the thermal wind, is small. Numerical simulations support this proposal. A transition from the marginally unstable regime to a more nonlinear regime is then examined through numerical simulations with different radiative forcings. It is found that transition is not caused by secondary instability of waves in the marginally unstable regime. Instead, the time-mean flow can support a number of marginally unstable normal modes. These normal modes interact with each other, and if they are of sufficient amplitude, the flow enters a more nonlinear regime.

  15. Pulse transit time reveals drug kinetics on vascular changes affected by propofol.

    PubMed

    Lan, Yuan-Chun; Shen, Ching-Hui; Kang, Hsung-Ming; Chong, Fok-Ching

    2012-01-01

    Pulse transit time (PTT) is the duration in which a pulse wave travels between two arterial sites within the same cardiac cycle. The aim of our study is to use PTT to examine propofol's effects on the vascular system. Methods. We collected data from 50 healthy women, between 28 and 51 years old, who underwent gynaecological surgery under general anaesthesia. The general anaesthesia was induced with propofol injection (2 mg/kg). PTT measurements were obtained from the R-wave of electrocardiogram and the pulse wave of photoplethysmograph. Two PTT values were obtained; one before (the control) and the other after propofol injection. The results were analysed by Student's t-test. Results. After propofol injection, the PTT was prolonged. The change in the PTT value from that of baseline was significant statistically (P < 0.05, by Student's t-test). The PTT change over time correlated with the degree of vasodilatation over time. Monitoring of PTT not only revealed the magnitude of vascular changes but also demonstrated the onset of vascular dilation, its peak and duration. We conclude that PTT is a useful guide in monitoring the drug kinetics of propofol.

  16. Social Status Attainment during the Transition to Adulthood

    PubMed Central

    Lui, Camillia K.; Chung, Paul J.; Wallace, Steven P.; Aneshensel, Carol S.

    2013-01-01

    The transition from adolescence to adulthood is a critical time for status attainment, with income, education, work experience, and independence from parents accruing at varying speeds and intensities. This study takes an intergenerational life-course perspective that incorporates parents’ and one’s own social status to examine the status attainment process from adolescence into adulthood in the domains of economic capital (e.g., income) and human capital (e.g., education, occupation). Survey data from three waves of the National Longitudinal Study of Adolescent Health (analytic n=8,977) are analyzed using latent class analysis to capture the ebb and flow of social status advantages and disadvantages from adolescence (Wave 1) through young adulthood (Wave 3) into adulthood (Wave 4). The analytic sample is composed of 50.3% females and 70.2% Whites, 15.3% Blacks, 11.0% Hispanics, and 3.5% Asians ages 12 to 18 at Wave 1 and 25 to 31 at Wave 4. Four latent classes are found for economic capital and five for human capital. The importance of parents’ social status is demonstrated by the presence of large groups with persistently low and persistently high social status over time in both domains. The capacity of individuals to determine their own status, however, is shown by equally large groups with upward and downward mobility in both domains. These findings demonstrate the dynamic nature of social status during this critical developmental period. PMID:24129883

  17. Social status attainment during the transition to adulthood.

    PubMed

    Lui, Camillia K; Chung, Paul J; Wallace, Steven P; Aneshensel, Carol S

    2014-07-01

    The transition from adolescence to adulthood is a critical time for status attainment, with income, education, work experience, and independence from parents accruing at varying speeds and intensities. This study takes an intergenerational life-course perspective that incorporates parents' and one's own social status to examine the status attainment process from adolescence into adulthood in the domains of economic capital (e.g., income) and human capital (e.g., education, occupation). Survey data from three waves of the National Longitudinal Study of Adolescent Health (analytic n = 8,977) are analyzed using latent class analysis to capture the ebb and flow of social status advantages and disadvantages from adolescence (Wave 1) through young adulthood (Wave 3) into adulthood (Wave 4). The analytic sample is composed of 50.3 % females and 70.2 % Whites, 15.3 % Blacks, 11.0 % Hispanics, and 3.5 % Asians ages 12-18 at Wave 1 and 25-31 at Wave 4. Four latent classes are found for economic capital and five for human capital. The importance of parents' social status is demonstrated by the presence of large groups with persistently low and persistently high social status over time in both domains. The capacity of individuals to determine their own status, however, is shown by equally large groups with upward and downward mobility in both domains. These findings demonstrate the dynamic nature of social status during this critical developmental period.

  18. Non-contact measurement of pulse wave velocity using RGB cameras

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  19. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Lamanna, Grazia; Holten, A. P. C.; van Dongen, M. E. H.

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and experimentally. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of experiment are carried out in such a tube. First, the phase transition in a strong unsteady expansion wave is investigated to demonstrate the mutual interaction between the unsteady flow and the condensation process and also the formation of condensation-induced shock waves. The role of condensation-induced shocks in the gradual transition from a frozen initial structure to an equilibrium structure is explained. Second, the condensing flow in a slender supersonic nozzle G2 is considered. Particular attention is given to condensation-induced oscillations and to the transition from symmetrical mode-1 oscillations to asymmetrical mode-2 oscillations in a starting nozzle flow, as first observed by Adam & Schnerr. The transition is also found numerically, but the amplitude, frequency and transition time are not yet well predicted. Third, a sharp-edged obstacle is placed in the tube to generate a starting vortex. Condensation in the vortex is found. Owing to the release of latent heat of condensation, an increase in the pressure and temperature in the vortex core is observed. Condensation-induced shock waves are found, for a sufficiently high initial saturation ratio, which interact with the starting vortex, resulting in a very complex flow. As time proceeds, a subsonic or transonic free jet is formed downstream of the sharp-edged obstacle, which becomes oscillatory for a relatively high main-flow velocity and for a sufficiently high humidity.

  20. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  1. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  2. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  3. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  4. Self-similar relativistic blast waves with energy injection

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  5. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  6. Progress towards 3-cell superconducting traveling wave cavity cryogenic test

    NASA Astrophysics Data System (ADS)

    Kostin, R.; Avrakhov, P.; Kanareykin, A.; Yakovlev, V.; Solyak, N.

    2017-12-01

    This paper describes a superconducting L-band travelling wave cavity for electron linacs as an alternative to the 9-cell superconducting standing wave Tesla type cavity. A superconducting travelling wave cavity may provide 20-40% higher accelerating gradient by comparison with conventional cavities. This feature arises from an opportunity to use a smaller phase advance per cell which increases the transit time factor and affords the opportunity to use longer cavities because of its significantly smaller sensitivity to manufacturing errors. Two prototype superconducting travelling wave cavities were designed and manufactured for a high gradient travelling wave demonstration at cryogenic temperature. This paper presents the main milestones achieved towards this test.

  7. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    NASA Technical Reports Server (NTRS)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  8. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  9. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    PubMed

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  10. A novel device for measuring arterial stiffness using finger-toe pulse wave velocity: Validation study of the pOpmètre®.

    PubMed

    Alivon, Maureen; Vo-Duc Phuong, Thao; Vignon, Virginie; Bozec, Erwan; Khettab, Hakim; Hanon, Olivier; Briet, Marie; Halimi, Jean-Michel; Hallab, Magid; Plichart, Matthieu; Mohammedi, Kamel; Marre, Michel; Boutouyrie, Pierre; Laurent, Stéphane

    2015-04-01

    The finger-toe pathway could be a good alternative for assessing arterial stiffness conveniently. To evaluate the accuracy of the pOpmètre®--a new device that measures finger-toe pulse wave velocity (ft-PWV). The pOpmètre has two photodiode sensors, positioned on the finger and the toe. Pulse waves are recorded continuously for 20 seconds, and the difference in pulse wave transit time between toe and finger (ft-TT) is calculated. The travelled distance is estimated using subject height. Study 1 compared ft-PWV with carotid-femoral PWV (cf-PWV) obtained by the reference method (SphygmoCor®) in 86 subjects (mean age 53±20 years), including 69 patients with various pathologies and 17 healthy normotensives. Study 2 compared changes in ft-PWV and cf-PWV during a cold pressor test in 10 healthy subjects. Study 3 assessed repeatability in 45 patients. ft-PWV correlated significantly with cf-PWV (R2=0.43; P<0.0001). A better correlation was found in terms of transit time (R2=0.61; P<0.0001). The discrepancy between transit times was related to age. The cold pressor test induced parallel changes in cf-PWV and ft-PWV, with increased aortic stiffness that was reversible during recovery. Intra-session repeatability was very good, with a coefficient of variation of 4.52%. The pOpmètre® allows measurement of arterial stiffness in routine clinical practice. The greatest advantages of ft-PWV are simplicity, rapidity, feasibility, acceptability by patients and correct agreement with the reference technique. Further studies are needed to adjust for bias and to validate the pOpmètre in larger populations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Gravitational waves from a first-order electroweak phase transition: a brief review

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2018-01-01

    We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  12. Detection of the MW Transition Between Ortho and Para States

    NASA Astrophysics Data System (ADS)

    Kanamori, Hideto; Dehghani, Zeinab Tafti; Mizoguchi, Asao; Endo, Yasuki

    2017-06-01

    Thorough the detailed analysis of the hyperfine resolved rotational transitions, we have been pointed out that there exists not a little interaction between ortho and para states in the molecular Hamiltonian of S_2Cl_2. Using the ortho-para mixed molecular wavefunctions derived from the Hamiltonian, we calculated the transition moment and frequency of the ortho-para forbidden transitions in the cm- and mm-wave region, and picked up some promising candidate transitions for the spectroscopic detection. In the experiment, the S_2Cl_2 vapor with Ar buffer gas in a supersonic jet condition was used with FTMW spectrometer at National Chiao Tung University. As a result, seven hyperfine resolved rotational transitions in the cm-wave region were detected as the ortho-para transition at the predicted frequency within the experimental error range. The observed intensity was 10^{-3} smaller than that of an allowed transition, which is also consistent with the prediction. This is the first time the electric dipole transition between ortho and para states has been detected in a free isolated molecule. A. Mizoguchi, S. Ota, H. Kanamori, Y. Sumiyoshi, and Y. Endo, J. Mol. Spectrosc, 250, 86 (2008) Z. T. Dehghani, S. Ota, A. Mizoguchi and H. Kanamori, J. Phys. Chem. A, 117(39), 10041, (2013)

  13. Coherence time of over a second in a telecom-compatible quantum memory storage material

    NASA Astrophysics Data System (ADS)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  14. Time-resolved nonlinear optics in strongly correlated insulators

    NASA Astrophysics Data System (ADS)

    Dodge, J. Steven

    2000-03-01

    Transition metal oxides form the basis for much of our understanding of Mott insulators, and have enjoyed a renaissance of interest since the discovery of high temperature superconductivity in the cuprates. They are characterized by complex interactions among spin, lattice, orbital and charge degrees of freedom, which lead to dynamical behavior on time scales ranging from femtoseconds to microseconds. We have applied time resolved nonlinear optical spectroscopy to probe these dynamics. In one well-studied antiferromagnetic insulator, Cr_2O_3, we observed spin-wave dynamics on a picosecond time scale by performing pump-probe spectroscopy of the exciton-magnon transition(J. S. Dodge, et al.), Phys. Rev. Lett. 83, 4650 (1999).. At excitation densities ~ 10-3/Cr, a lineshape associated with the exciton-magnon absorption appears in the pump-probe spectrum. We assign this nonlinearity to a time-dependent renormalization of the magnon band structure, which in turn modifies the lineshape of the exciton-magnon transition. At long time delays, this assignment agrees semiquantitatively with calculations based on spin-wave theory. However, the initial population at the zone-boundary induces surprisingly little renormalization effect, indicating that spin-wave theory is insufficient to describe our observations in this regime. The renormalization lineshape grows on a time scale of ~ 50 ps, which we associate with the decay of the photoexcited, nonequilibrium population of zone-boundary spin-waves into a thermalized population of zone-center spin-waves. We have also performed a study of the linear and nonlinear optical properties of Sr_2CuO_2Cl_2, an insulating, two-dimensional cuprate. In the nonlinear optical experiments, we have performed pump-probe spectroscopy over a 1 eV spectral range, varying both the pump and the probe energy. We observe a pump-probe lineshape which varies considerably as a function of pump energy and temperature, and which differs sharply from those typically observed in band insulators. At low-temperatures, in particular, we observe an overall increase of spectral weight in our probe range, indicating that states are shifting over an energy scale larger than 1 eV. We attribute this behavior to the strongly correlated nature of the electronic structure in this material. Studies of the elementary excitations in other magnetic oxides, currently in progress, will be discussed.

  15. Double Shock Experiments on PBX Explosive JOB-9003

    NASA Astrophysics Data System (ADS)

    Zhang, Xu

    2017-06-01

    One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.

  16. Gravitation waves from QCD and electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Yidian; Huang, Mei; Yan, Qi-Shu

    2018-05-01

    We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.

  17. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  18. A swash-backwash model of the single epidemic wave

    NASA Astrophysics Data System (ADS)

    Cliff, Andrew D.; Haggett, Peter

    2006-09-01

    While there is a large literature on the form of epidemic waves in the time domain, models of their structure and shape in the spatial domain remain poorly developed. This paper concentrates on the changing spatial distribution of an epidemic wave over time and presents a simple method for identifying the leading and trailing edges of the spatial advance and retreat of such waves. Analysis of edge characteristics is used to (a) disaggregate waves into ‘swash’ and ‘backwash’ stages, (b) measure the phase transitions of areas from susceptible, S, through infective, I, to recovered, R, status ( S → I → R) as dimensionless integrals and (c) estimate a spatial version of the basic reproduction number, R 0. The methods used are illustrated by application to measles waves in Iceland over a 60-year period from 1915 to 1974. Extensions of the methods for use with more complex waves are possible through modifying the threshold values used to define the start and end points of an event.

  19. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum.

    PubMed

    Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M

    2015-06-21

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  20. Wave Phenomena Associated with Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2016-12-01

    Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.

  1. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.

    2017-10-01

    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.

  2. Radiation from an electron beam in magnetized plasma: excitation of a whistler mode wave packet by interacting, higher-frequency, electrostatic-wave eigenmodes

    NASA Astrophysics Data System (ADS)

    Brenning, N.; Axnäs, I.; Koepke, M.; Raadu, M. A.; Tennfors, E.

    2017-12-01

    Infrequent, bursty, electromagnetic, whistler-mode wave packets, excited spontaneously in the laboratory by an electron beam from a hot cathode, appear transiently, each with a time duration τ around ∼1 μs. The wave packets have a center frequency f W that is broadly distributed in the range 7 MHz < f W < 40 MHz. They are excited in a region with separate electrostatic (es) plasma oscillations at values of f hf, 200 MHz < f hf < 500 MHz, that are hypothesized to match eigenmode frequencies of an axially localized hf es field in a well-defined region attached to the cathode. Features of these es-eigenmodes that are studied include: the mode competition at times of transitions from one dominating es-eigenmode to another, the amplitude and spectral distribution of simultaneously occurring es-eigenmodes that do not lead to a transition, and the correlation of these features with the excitation of whistler mode waves. It is concluded that transient coupling of es-eigenmode pairs at f hf such that | {{{f}}}1,{{h}{{f}}}-{{{f}}}2,{{h}{{f}}}| = {f}{{W}}< {f}{{g}{{e}}} can explain both the transient lifetime and the frequency spectra of the whistler-mode wave packets (f W) as observed in lab. The generalization of the results to bursty whistler-mode excitation in space from electron beams, created on the high potential side of double layers, is discussed.

  3. Numerical simulations of sheared magnetic lines at the solar null line

    NASA Astrophysics Data System (ADS)

    Kuźma, B.; Murawski, K.; Solov'ev, A.

    2015-05-01

    Aims: We perform numerical simulations of sheared magnetic lines at the magnetic null line configuration of two magnetic arcades that are settled in a gravitationally stratified and magnetically confined solar corona. Methods: We developed a general analytical model of a 2.5D solar atmospheric structure. As a particular application of this model, we adopted it for the curved magnetic field lines with an inverted Y shape that compose the null line above two magnetic arcades, which are embedded in the solar atmosphere that is specified by the realistic temperature distribution. The physical system is described by 2.5D magnetohydrodynamic equations that are numerically solved by the FLASH code. Results: The magnetic field line shearing, implemented about 200 km below the transition region, results in Alfvén and magnetoacoustic waves that are able to penetrate solar coronal regions above the magnetic null line. As a result of the coupling of these waves, partial reflection from the transition region and scattering from inhomogeneous regions the Alfvén waves experience fast attenuation on time scales comparable to their wave periods, and the physical system relaxes in time. The attenuation time grows with the large amplitude and characteristic growing time of the shearing. Conclusions: By having chosen a different magnetic flux function, the analytical model we devised can be adopted to derive equilibrium conditions for a diversity of 2.5D magnetic structures in the solar atmosphere. Movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  4. Elastic Anomaly and Polyamorphic Transition in (La, Ce)-based Bulk Metallic Glass under Pressure

    DOE PAGES

    Qi, Xintong; Zou, Yongtao; Wang, Xuebing; ...

    2017-04-07

    In this paper, we discovered that in association with the polyamorphism of La 32Ce 32Al 16Ni 5Cu 15 bulk metallic glass, the acoustic velocities, measured up to 12.3 GPa using ultrasonic interferometry, exhibit velocity minima at 1.8 GPa for P wave and 3.2 GPa for S wave. The low and high density amorphous states are distinguished by their distinct pressure derivatives of the bulk and shear moduli. The elasticity, permanent densification, and polyamorphic transition are interpreted by the topological rearrangement of solute-centered clusters in medium-range order (MRO) mediated by the 4f electron delocalization of Ce under pressure. The precisely measuredmore » acoustic wave travel times which were used to derive the velocities and densities provided unprecedented data to document the evolution of the bulk and shear elastic moduli associated with a polyamorphic transition in La 32Ce 32Al 16Ni 5Cu 15 bulk metallic glass and can shed new light on the mechanisms of polyamorphism and structural evolution in metallic glasses under pressure.« less

  5. Stable lattice Boltzmann model for Maxwell equations in media

    NASA Astrophysics Data System (ADS)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  6. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  7. Acoustic waves and the detectability of first-order phase transitions by eLISA

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  8. Principal component analysis for fermionic critical points

    NASA Astrophysics Data System (ADS)

    Costa, Natanael C.; Hu, Wenjian; Bai, Z. J.; Scalettar, Richard T.; Singh, Rajiv R. P.

    2017-11-01

    We use determinant quantum Monte Carlo (DQMC), in combination with the principal component analysis (PCA) approach to unsupervised learning, to extract information about phase transitions in several of the most fundamental Hamiltonians describing strongly correlated materials. We first explore the zero-temperature antiferromagnet to singlet transition in the periodic Anderson model, the Mott insulating transition in the Hubbard model on a honeycomb lattice, and the magnetic transition in the 1/6-filled Lieb lattice. We then discuss the prospects for learning finite temperature superconducting transitions in the attractive Hubbard model, for which there is no sign problem. Finally, we investigate finite temperature charge density wave (CDW) transitions in the Holstein model, where the electrons are coupled to phonon degrees of freedom, and carry out a finite size scaling analysis to determine Tc. We examine the different behaviors associated with Hubbard-Stratonovich auxiliary field configurations on both the entire space-time lattice and on a single imaginary time slice, or other quantities, such as equal-time Green's and pair-pair correlation functions.

  9. Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.

    2018-03-01

    We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.

  10. Method and apparatus for upshifting light frequency by rapid plasma creation

    DOEpatents

    Dawson, John M.; Wilks, Scott C.; Mori, Warren B.; Joshi, Chandrasekhar J.; Sessler, Andrew M.

    1990-01-01

    Photons of an electromagnetic source wave are frequency-upshifted as a plasma is rapidly created around the path of this propagating source wave. The final frequency can be controlled by adjusting the gas density. A controlled time-varying frequency (chirped) pulse can be produced by using a controlled spatially varying gas density. The plasma must be created in a time which is short compared to the transit time of the light through the plasmas region. For very fast creation over one to at most a few light periods of an overdense plasma, static magnetic fields with short wavelengths are created.

  11. A compact micro-wave synthesizer for transportable cold-atom interferometers

    NASA Astrophysics Data System (ADS)

    Lautier, J.; Lours, M.; Landragin, A.

    2014-06-01

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of 87Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais-Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of -65 dB rad2 Hz-1 at 10 Hz offset frequency and a white phase noise level in the order of -120 dB rad2 Hz-1 for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

  12. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  13. Influence of the Verwey Transition on the Spin-Wave Dispersion of Magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron-scattering measurements of the spin-wave spectrum of magnetite (Fe{sub 3}O{sub 4}) that shed new light on the Verwey transition problem are presented. Above the Verwey transition, the spin waves can fit a simple Heisenberg model. Below TV, a large gap (8?meV) forms in the acoustic spin-wave branch at q = (0,0,1/2) and E = 43?meV. Heisenberg models with large unit cells were used to examine the spin waves when the superexchange is modified to reflect the crystallographic symmetry lowering due to either atomic distortions or charge ordering and find that neither of these models predicts the spin-wave gap.

  14. Statistical Detection of Propagating Waves in a Polar Coronal Hole

    NASA Astrophysics Data System (ADS)

    Gupta, G. R.; O'Shea, E.; Banerjee, D.; Popescu, M.; Doyle, J. G.

    Waves are important in the heating of the solar corona and the acceleration of the solar wind. We have examined a long spectral time series sampling a southern coronal hole, observed on the 25 February 1997 using the SUMER spectrometer onboard SoHO. The observations used the spectra lines NIV 765Å, formed in the transition region, and Ne VIII 770Å, formed in the low corona. The spectra indicate the presence of compressional waves with periods of about 18 min, and also significant power at shorter periods. Using Fourier techniques, we measured the phase delays between the intensity as well as the velocity oscillations in the two lines as a function of frequency. From these measurements we derive the travel time of the propagating oscillations and so the propagation speeds of the waves producing the oscillations. As the measured propagation speeds are subsonic, we conclude that the observed waves are slow magneto-acoustic ones.

  15. Vibrational wave packets in the B 1Πu and D 1Σu+ states of Cs2: Determination of improved Cs2+(X) and Cs2(B) spectroscopic constants

    NASA Astrophysics Data System (ADS)

    Oldenburg, A. L.; John, P. C.; Eden, J. G.

    2000-12-01

    Vibrational wave packets in the B 1Πu and D 1Σu+ excited states of Cs2 have been studied on the ˜100 fs time scale by pump-probe laser spectroscopy. The temporal behavior of the wave packets was monitored by photoionizing the electronically excited molecule with a time-delayed probe pulse and recording the time and energy-integrated photoelectron signal as a function of time delay between the pump and probe pulses. For the B 1Σu+ experiments, wave packets were produced by exciting the B 1Σu+←X 1Σg+ transition in the ˜740-790 nm region and subsequently detected by photoionizing the molecule at wavelengths between 565 nm and 600 nm. By simulating the experimentally observed transients with the density matrix formalism (and explicitly accounting for laser chirp and |Δv|>1 coherences), improved values for the equilibrium internuclear separation for the Cs2(B1Πu) state and Te for the Cs2+(X) state were determined to be Re(B 1Πu)=4.93±0.03 Å and Te[Cs2+(X)]=29 930±100 cm-1, respectively. Similar experiments were conducted for the D 1Σu+ state. Wave packets composed of vibrational levels (v'≈40-50) perturbed by the bound 2 3Πou state were produced on the D 1Σu+ potential surface by driving the D 1Σu+←X 1Σg+ transition in the 575-610 nm spectral interval.

  16. SYMBMAT: Symbolic computation of quantum transition matrix elements

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Kirchner, T.

    2012-08-01

    We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.

  17. Semidiurnal Solar Tide during the Fall Transition in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Conte, J. F.; Chau, J. L.; Laskar, F.; Stober, G.; Schmidt, H.

    2017-12-01

    We present an analysis of the semidiurnal solar tide (S2) during the fall transition in the Northern Hemisphere mesosphere and lower thermosphere (MLT) region. The tidal information has been derived from wind measurements provided by meteor radars at Andenes (69°N) and Juliusruh (54°N). During the autumn, S2 is characterized by a sudden and pronounced decrease occurring around day 285, every year and at all height levels. The spring transition also shows a decrease of S2, but that progressively extends from lower to higher altitudes during an interval of 15 to 40 days whose starting date varies from one year to the next. Possible explanations for the differences observed between fall and spring time periods are investigated using Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) simulations of zonal and meridional winds, as well as ozone concentrations. Our results indicate that both, the westward propagating wave number 2 migrating tide (SW2) and the westward propagating wave number 1 non-migrating tide (SW1) decrease significantly during the fall, which results in a pronounced decrease of S2, as seen in the observations. During the spring, SW2 also decreases while SW1 remains approximately constant or slightly increases, resulting in a not so pronounced and more extended in time decrease of S2. SW2 and ozone concentrations do not show significant differences from one year to the next. SW1 on the other hand, presents considerable variability, which suggests that its source might be connected to interaction with other waves, such as gravity and planetary waves.

  18. Unifying role of dissipative action in the dynamic failure of solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2015-04-01

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less

  20. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  1. Gravitational Waves and Multi-Messenger Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  2. Theory of quantum metal to superconductor transitions in highly conducting systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure whichmore » is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.« less

  3. The string soundscape at gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, Isabel; Krippendorf, Sven; March-Russell, John

    2018-04-01

    We argue that gravitational wave signals due to collisions of ultra-relativistic bubble walls may be common in string theory. This occurs due to a process of post-inflationary vacuum decay via quantum tunnelling. Though we study a specific string construction involving warped throats, we argue that our conclusions are more general. Many such transitions could have occurred in the post-inflationary Universe, as a large number of throats with exponentially different mass scales can be present in the string landscape, leading to several signals of widely different frequencies - a soundscape connected to the landscape of vacua. Detectors such as aLIGO/VIRGO, LISA, and pulsar timing observations with SKA and EPTA have the sensitivity to detect such signals. A distribution of primordial black holes is also a likely consequence, though reliable estimates of masses and their abundance require dedicated numerical simulations, as do the fine details of the gravitational wave spectrum due to the unusual nature of the transition.

  4. Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark

    2014-03-01

    A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.

  5. Out-of-equilibrium dynamics of photoexcited spin-state concentration waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.

    2015-01-28

    The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW

  6. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  7. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm.

    PubMed

    Tan, Xia; Ji, Zhong; Zhang, Yadan

    2018-04-25

    Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.

  8. Instability waves and transition in adverse-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  9. Parity-violating electric-dipole transitions in helium

    NASA Technical Reports Server (NTRS)

    Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.

    1980-01-01

    The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question

  10. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    NASA Astrophysics Data System (ADS)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  11. Who needs a friend? Marital status transitions and physical health outcomes in later life.

    PubMed

    Bookwala, Jamila; Marshall, Kirsten I; Manning, Suzanne W

    2014-06-01

    This study assessed the moderating role of 2 types of confidante relationships in mitigating the negative health impact of transitions involving spousal loss in late life (widowhood and divorce/separation). The sample included 707 respondents who participated in the 1992 and 2004 waves of the Wisconsin Longitudinal Study (WLS, 2007) all of whom were married at Time 1 and by Time 2 experienced either an end of the marriage resulting from widowhood or divorce/separation or remained continuously married to the same spouse. The majority of the sample was female (n = 457) and 64.3 years old on average. Three indicators of physical health were examined, including somatic depressive symptomatology, self-rated health, and number of sick days in the preceding year. Moderated regression analyses showed that the availability of a friend as confidante at Time 2 played a significant moderating role in the link between marital transitions and health outcomes, buffering the health impact of widowhood. Specifically, among those who became widowed between the 2 waves, those who had available a friend as confidante at Time 2 reported significantly lower somatic depressive symptoms, better self-rated health, and fewer sick days in bed during the preceding year than those who reported not having a friend as confidante. No support was obtained for the moderating role of having a family member as confidante at Time 2 in the link from marital transitions to health. These results highlight the need to develop means to maintain and enhance confiding friendships among widowed older adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  13. Electroencephalographic slow waves prior to sleepwalking episodes.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2014-12-01

    Recent studies have suggested that the onset of sleepwalking episodes may be preceded by fluctuations in slow-wave sleep electroencephalographic characteristics. However, whether or not such fluctuations are specific to sleepwalking episodes or generalized to all sleep-wake transitions in sleepwalkers remains unknown. The goal of this study was to compare spectral power for delta (1-4 Hz) and slow delta (0.5-1 Hz) as well as slow oscillation density before the onset of somnambulistic episodes versus non-behavioral awakenings recorded from the same group of sleepwalkers. A secondary aim was to describe the time course of observed changes in slow-wave activity and slow oscillations during the 3 min immediately preceding the occurrence of somnambulistic episodes. Twelve adult sleepwalkers were investigated polysomnographically during the course of one night. Slow-wave activity and slow oscillation density were significantly greater prior to patients' somnambulistic episodes as compared with non-behavioral awakenings. However, there was no evidence for a gradual increase over the 3 min preceding the episodes. Increased slow-wave activity and slow oscillation density appear to be specific to sleepwalking episodes rather than generalized to all sleep-wake transitions in sleepwalkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Optimization of Advanced ACTPol Transition Edge Sensor Bolometer Operation Using R(T,I) Transition Measurements

    NASA Astrophysics Data System (ADS)

    Salatino, Maria

    2017-06-01

    In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.

  15. Gravitational waves from phase transition in split NMSSM

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2018-04-01

    We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.

  16. Effects of cone surface waviness and freestream noise on transition in supersonic flow

    NASA Technical Reports Server (NTRS)

    Morrisette, E. L.; Creel, T. R., Jr.; Chen, F.-J.

    1986-01-01

    A comparison of transition on wavy-wall and smooth-wall cones in a Mach 3.5 wind tunnel is made under conditions of either low freestream noise (quiet flow) or high freestream noise (noisy flow). The noisy flow compares to that found in conventional wind tunnels while the quiet flow gives transitional Reynolds numbers on smooth sharp cones comparable to those found in flight. The waves were found to have a much smaller effect on transition than similar sized trip wires. A satisfatory correlating parameter for the effect of waves on transition was simply the wave height-to-length ratio. A given value of this ratio was found to cause the same percentage change in transition location in quiet and noisy flows.

  17. Mortality at older ages and moves in residential and sheltered housing: evidence from the UK.

    PubMed

    Robards, James; Evandrou, Maria; Falkingham, Jane; Vlachantoni, Athina

    2014-06-01

    The study examines the relationship between transitions to residential and sheltered housing and mortality. Past research has focused on housing moves over extended time periods and subsequent mortality. In this paper, annual housing transitions allow the identification of the patterning of housing moves, the duration of stay in each sector and the assessment of the relationship of preceding moves to a heightened risk of dying. The study uses longitudinal data constructed from pooled observations from the British Household Panel Survey (waves 1993-2008). Records were pooled for all cases where the survey member is 65 years or over and living in private housing at baseline and observed at three consecutive time points, including baseline (N=23 727). Binary logistic regression (death as outcome three waves after baseline) explored the relative strength of different housing transitions, controlling for sociodemographic predictors. (1) Transition to residential housing within the previous 12 months was associated with the highest mortality risk. (2) Results support existing findings showing an interaction between marital status and mortality, whereby unmarried persons were more likely to die. (3) Higher male mortality was observed across all housing transitions. An older person's move to residential housing is associated with a higher risk of mortality within 12 months of the move. Survivors living in residential housing for more than a year, show a similar probability of dying to those living in sheltered housing. Results highlight that it is the type of accommodation that affects an older person's mortality risk, and the length of time they spend there.

  18. High-resolution laser spectroscopy between 0.9 and 14.3 THz in a supersonic beam: Rydberg-Rydberg transitions of atomic Xe at intermediate n values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, Christa; Agner, Josef A.; Merkt, Frederic

    2013-06-28

    A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less

  19. It is all about Phase and it is not Star Trek

    NASA Astrophysics Data System (ADS)

    Field, Robert W.; Grimes, David; Barnum, Timothy J.; Coy, Stephen; Zhou, Yan

    2016-06-01

    The marriage of chirped pulse millimeter-wave spectroscopy with a buffer gas cooled molecular beam source has yielded an increase in spectral velocity (number of resolution elements per unit time) of a factor of one million! But it gets even better. Essential information is encoded not just in the frequencies of the transitions, but also in the relative intensities and especially phases of the transitions. Transitions between Rydberg states of atoms and molecules are an ideal test ground for techniques that fully exploit these newly accessible observables.

  20. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less

  1. Wave Measurements in Landfast Ice in Svalbard: Evolution of Wave Propagation following Wind Waves to Swell Transition

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Rabault, J.; Jensen, A.; Christensen, K. H.; Ward, B.; Marchenko, A. V.; Morozov, E.; Gundersen, O.; Halsne, T.; Lindstrøm, E.

    2016-02-01

    The impact of sea-ice cover on propagation of water waves has been studied over five decades, both theoretically and from measurements on the ice. Understanding the interaction between water waves and sea-ice covers is a topic of interest for a variety of purposes such as formulation of ocean models for climate, weather and sea state predictions, and the analysis of pollution dispersion in the Arctic. Our knowledge of the underlying phenomena is still partial, and more experimental data is required to gain further insight into the associated physics. Three Inertial Motion Units (IMUs) have been assessed in the lab and used to perform measurements on landfast ice over 2 days in Tempelfjorden, Svalbard during March 2015. The ice thickness in the measurement area was approximately 60 to 80 cm. Two IMUs were located close to each other (6 meters) at a distance around 180 m from the ice edge. The third IMU was placed 120 m from the ice edge. The data collected contains a transition from high frequency, wind generated waves to lower frequency swell. Drastic changes in wave propagation are observed in relation with this transition. The level of reflected energy obtained from rotational spectra is much higher before the transition to low frequency swell than later on. The correlation between the signal recorded by the IMU closer to the ice edge and the two others IMUs is low during the wind waves dominated period, and increases with incoming swell. The dispersion relation for waves in ice was found to correspond to flexural-gravity waves before the transition and deepwater gravity waves afterwards.

  2. Proceedings of Hawaiian Winter Workshop (6th) on Dynamics of Oceanic Internal Gravity Waves Held in Manoa, Hawaii on 15-18 January 1991

    DTIC Science & Technology

    1991-11-01

    Gravity Waves 12. PERSONAL AUTHOR(S) MUller, Peter and Henderson, Diane (eds.) 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15...differ by 27r in defining the buoyancy scale.) Because the largest overturns must be several times larger than Dillon’s rms scale, LB is a good upper...0.6 times GM76 at 0.01 cpm. From there, they slope upward as k+ 0.0 7 and k+0 16. The shallow spectrum makes a sharp transition at the rolloff and

  3. Improved Pulse Transit Time Estimation by System Identification Analysis of Proximal and Distal Arterial Waveforms

    DTIC Science & Technology

    2011-10-01

    response; pulse wave velocity ACCORDING TO THE MOENS-KORTEWEG equation, pulse wave ve- locity ( PWV ) increases as the arteries stiffen. Indeed, PWV is the...and mortality in hypertensive patients (2, 4, 12, 14). In addition, because arterial stiffness increases with arterial blood pressure (ABP), PWV and...ABP often show positive correlation, suggesting that PWV could provide a means to achieve continuous, noninvasive, and cuffless ABP monitoring (18

  4. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  5. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.

    PubMed

    Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes

    2013-11-01

    Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.

  6. Chiralities of spiral waves and their transitions.

    PubMed

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  7. Quantum transition probabilities during a perturbing pulse: Differences between the nonadiabatic results and Fermi's golden rule forms

    NASA Astrophysics Data System (ADS)

    Mandal, Anirban; Hunt, Katharine L. C.

    2018-05-01

    For a perturbed quantum system initially in the ground state, the coefficient ck(t) of excited state k in the time-dependent wave function separates into adiabatic and nonadiabatic terms. The adiabatic term ak(t) accounts for the adjustment of the original ground state to form the new ground state of the instantaneous Hamiltonian H(t), by incorporating excited states of the unperturbed Hamiltonian H0 without transitions; ak(t) follows the adiabatic theorem of Born and Fock. The nonadiabatic term bk(t) describes excitation into another quantum state k; bk(t) is obtained as an integral containing the time derivative of the perturbation. The true transition probability is given by |bk(t)|2, as first stated by Landau and Lifshitz. In this work, we contrast |bk(t)|2 and |ck(t)|2. The latter is the norm-square of the entire excited-state coefficient which is used for the transition probability within Fermi's golden rule. Calculations are performed for a perturbing pulse consisting of a cosine or sine wave in a Gaussian envelope. When the transition frequency ωk0 is on resonance with the frequency ω of the cosine wave, |bk(t)|2 and |ck(t)|2 rise almost monotonically to the same final value; the two are intertwined, but they are out of phase with each other. Off resonance (when ωk0 ≠ ω), |bk(t)|2 and |ck(t)|2 differ significantly during the pulse. They oscillate out of phase and reach different maxima but then fall off to equal final values after the pulse has ended, when ak(t) ≡ 0. If ωk0 < ω, |bk(t)|2 generally exceeds |ck(t)|2, while the opposite is true when ωk0 > ω. While the transition probability is rising, the midpoints between successive maxima and minima fit Gaussian functions of the form a exp[-b(t - d)2]. To our knowledge, this is the first analysis of nonadiabatic transition probabilities during a perturbing pulse.

  8. A classical phase r-centroid approach to molecular wave packet dynamics illustrating the danger of using an incomplete set of initial states for thermal averaging

    NASA Astrophysics Data System (ADS)

    Hansson, Tony

    1999-08-01

    An inexpensive semiclassical method to simulate time-resolved pump-probe spectroscopy on molecular wave packets is applied to NaK molecules at high temperature. The method builds on the introduction of classical phase factors related to the r-centroids for vibronic transitions and assumes instantaneous laser-molecule interaction. All observed quantum mechanical features are reproduced - for short times where experimental data are available even quantitatively. Furthermore, it is shown that fully quantum dynamical molecular wave packet calculations on molecules at elevated temperatures, which do not include all rovibrational states, must be regarded with caution, as they easily might yield even qualitatively incorrect results.

  9. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  10. Invasion-wave-induced first-order phase transition in systems of active particles.

    PubMed

    Ihle, Thomas

    2013-10-01

    An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.

  11. Determining arterial wave transit time from a single aortic pressure pulse in rats: vascular impulse response analysis.

    PubMed

    Chang, Ru-Wen; Chang, Chun-Yi; Lai, Liang-Chuan; Wu, Ming-Shiou; Young, Tai-Horng; Chen, Yih-Sharng; Wang, Chih-Hsien; Chang, Kuo-Chu

    2017-01-19

    Arterial wave transit time (τ w ) in the lower body circulation is an effective biomarker of cardiovascular risk that substantially affects systolic workload imposed on the heart. This study evaluated a method for determining τ w from the vascular impulse response on the basis of the measured aortic pressure and an assumed triangular flow (Q tri ). The base of the unknown Q tri was constructed with a duration set equal to ejection time. The timing of the peak triangle was derived using a fourth-order derivative of the pressure waveform. Values of τ w s obtained using Q tri were compared with those obtained from the measure aortic flow wave (Q m ). Healthy rats (n = 27), rats with chronic kidney disease (CKD; n = 22), and rats with type 1 (n = 22) or type 2 (n = 11) diabetes were analyzed. The cardiovascular conditions in the CKD rats and both diabetic groups were characterized by a decrease in τ w s. The following significant relation was observed (P < 0.0001): τ w triQ  = -1.5709 + 1.0604 × τ w mQ (r 2  = 0.9641). Our finding indicates that aortic impulse response can be an effective method for the estimation of arterial τ w by using a single pressure recording together with the assumed Q tri .

  12. Turbulence Statistics in the Coastal Ocean Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nayak, A. R.; Hackett, E. E.; Luznik, L.; Katz, J.; Osborn, T. R.

    2010-12-01

    A submersible particle image velocimetry (PIV) system was deployed off the coast of New Jersey, near the LEO-15 site, to characterize the flow and turbulence in the inner part of the continental shelf bottom boundary layer. The measurement domain extended from 5 mm at the bottom up to an elevation of 51 cm in different datasets. The flow comprised of a mean current and wave-induced flow with a period of 10 s. The ratio of wave velocity amplitude to mean current magnitude varied over the tidal cycle and with elevation, with a maximum of 2.35. Their relative orientation also varied. Large databases of time-resolved, high resolution, 2D velocity distributions enabled us to calculate the instantaneous spatial velocity gradients, and from them, the statistically converged vertical dissipation rate profiles. Reynolds Stresses were estimated using the Shaw & Trowbridge technique outside of the wave boundary layer (WBL), and directly, using the instantaneous spatial variations in velocity, near the wall. Results were utilized for calculating the shear production profiles. Hilbert Transforms were utilized for calculating the wave phase of each velocity distribution, and performing conditional sampling of data to determine variations in flow and turbulence parameters during a wave cycle. The mean velocity profiles indicated the presence of a wave boundary layer, followed by a transition region, and a log layer above it. The datasets extending to the wall show that there is no clear log layer within the WBL, but, as expected, profiles vary substantially with location relative to the ripples. Phase dependent variations in mean flow and dissipation rate occurred only in the WBL and transition region, but vanished at higher elevations. The dissipation rate typically peaked during acceleration phases of wave-induced motion, especially near the wall, but it sometimes peaked during wave-crest phases. Below the transition region, the dissipation rate increased rapidly as the wall was approached all the way to the ripple crest, presumably due to the increasing presence of eddies with characteristic size of 1-3 times the ripple height that fell in the dissipation range of the energy spectra. Shear production also peaked at the ripple crest, consistent with laboratory data for rough wall boundary layers. Acknowledgements : NSF

  13. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    PubMed

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  14. Morphological Inheritance in Sandy Coastline Morphologies Subject to Long-Term Changes in Wave Climate: Surprising Insights from a Coastline Evolution Model

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Thomas, C.; Hurst, M. D.; Barkwith, A.; Ashton, A. D.; Ellis, M. A.

    2014-12-01

    Recent numerical modelling demonstrates that when sandy coastlines are affected predominantly by waves approaching from "high" angles (> ~45° between the coastline and wave crests at the offshore limit of shore-parallel contours), large-scale (kms to 100 kms) morphodynamic instabilities and finite-amplitude interactions can lead to the emergence of striking coastline features, including sand waves, capes and spits. The type of feature that emerges depends on the wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Under a constant wave climate, coastline morphology reaches a dynamical steady state; the cross-shore/alongshore aspect ratio and the general appearance of the features remains constant. In previous modelling involving wave-climate change, as well as comparisons between observed coastline morphologies and wave climates, it has been implicitly assumed that the morphology adjusts in a quasi-equilibrium fashion, so that at any time the coastline shape reflects the current forcing. However, here we present new model results showing pronounced path dependence in coastline morphodynamics. In experiments with a period of constant wave climate followed by a period of transition to a new wave climate and then a run-on phase, the features that exist during the run-on phase can be qualitatively and quantitatively different from those that would develop initially under the final wave climate. Although the features inherited from the past wave-climate history may in some case be true alternate stable states, in other cases the inherited features gradually decay toward the morphology that would be expected given the final wave climate. A suite of such experiments allows us to characterize how the e-folding timescale of this decay depends on 1) the initial wave climate, 2) the path through wave-climate space, and 3) the rate of transition. When the initial features are flying spits with cross-shore amplitudes of 6 - 8 km, e-folding times can be on the order of millennia or longer. These results could provide a new perspective when interpreting current and past coastline features. In addition, the complex paleo-coastline structure that develops in the coastal hinterlands in these experiments could be relevant to the structures observed in some coastal environments.

  15. A compact micro-wave synthesizer for transportable cold-atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr

    2014-06-15

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in themore » order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.« less

  16. Driven waves in a two-fluid plasma

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.; Ciolek, Glenn E.

    2007-12-01

    We study the physics of wave propagation in a weakly ionized plasma, as it applies to the formation of multifluid, magnetohydrodynamics (MHD) shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time-scales, ambipolar diffusion on long time-scales and transitional behaviour at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force-free motion and the magnetic field grows monotonically with time. The flow appears to be self-similar at the time when linear analysis ceases to be valid.

  17. Modeled and Observed Transitions Between Rip Currents and Alongshore Flows

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.

    2014-12-01

    Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.

  18. Random Choice Solutions for Weak Spherical Shock-Wave Transitions of N-Waves in Air with Vibrational Excitation.

    DTIC Science & Technology

    1983-07-01

    ionalI relaxat in dii icons whe-re kricrw-i aitMSo~lli-l-ic cirrd it ions could efc-tes for spherical I\\ -svrmetric wave s . bc obitani rd - It will lit...of cibirat jona 1 nonequ iiib rium cont rihuteCs to tr univ for weak waves. The rise times for the ieI ciCUlatijun for cases A5 , 81l, Cl and DI real...I ibrium thle c;iI itid ma iuum oci-rpressiire t I pIm1 atid in) :ompairisoni with c-ase A5 . hi ile almxost the same the half diii t iou tdI

  19. Early School Transitions and the Social Behavior of Children with Disabilities: Selected Findings from the Pre-Elementary Education Longitudinal Study. Wave 3 Overview Report from the Pre-Elementary Education Longitudinal Study (PEELS). NCSER 2009-3016

    ERIC Educational Resources Information Center

    Carlson, Elaine; Daley, Tamara; Bitterman, Amy; Heinzen, Harriotte; Keller, Brad; Markowitz, Joy; Riley, Jarnee

    2009-01-01

    The Pre-Elementary Education Longitudinal Study (PEELS), funded by the U.S. Department of Education, is examining the characteristics of children receiving preschool special education, the services they receive, their transitions across educational levels, and their performance over time on assessments of academic and adaptive skills. PEELS…

  20. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  1. Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Marko, John R.

    2003-09-01

    Ice draft, ice velocity, ice concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk ice pack. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from ice draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-ice event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent ice cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-ice dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to ice pack divergence.

  2. PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, R.; Fulara, A.; Chen, P. F.

    We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less

  3. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  4. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Bing; Liu, Jin-Liang; Zhang, Hong-Bo; Feng, Jia-Huai; Qian, Bao-Liang

    2010-07-01

    The Blumlein pulse forming line (BPFL) consisting of an inner coaxial pulse forming line (PFL) and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA). The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  5. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Kelvin Wave Influence on the Shallow-to-Deep Transition Over the Amazon

    NASA Astrophysics Data System (ADS)

    Rowe, A.; Serra, Y. L.

    2017-12-01

    The suite of observations from GOAmazon and CHUVA offers a unique opportunity to examine land-based convective processes in the tropics, including the poorly represented shallow-to-deep transition. This study uses these data to investigate impacts of Kelvin waves on the the shallow-to-deep transition over the Central Amazon. The Kelvin waves that propagate over the region often originate over the tropical central and east Pacific, with local generation over the Andes also observed. The observed 15 m s-1 phase speed and 4500 km wave length during the two-year campaign are in agreement with previously published studies of these waves across the tropics. Also in agreement with previous studies, we find the waves are most active during the wet season (November-May) for this region. Using four separate convective event classes (clear-sky, nonprecipitating cumulus congestus, afternoon deep convection, and mesoscale convective systems), we examine how the convection preferentially develops for different phases of the Kelvin waves seen during GOAmazon. We additionally examine surface meteorological variables, the vertical thermodynamic and dynamic structure of the troposphere, vertical moist static stability, integrated column water vapor and liquid water, and surface energy fluxes within the context of these convective classes to identify the important environmental factors contributing to observed periods of enhanced deep convection related to the waves. Results suggest that the waves significantly modify the local environment, such as creating a deep layer of moisture throughout the troposphere, favoring more organized convection in the active than in the suppressed phase of the wave. The significance of wave-related environmental modifications are assessed by comparing local rainfall accumulations during Kelvin wave activity to that when the waves are not present. Future work will further explore the shallow-to-deep transition and its modulation by Kelvin wave activity over the Central Amazon in both global and regional model simulations with differing resolution and choice of convective parameterization. This work will test the hypothesis that when the environment is strongly modified by a Kelvin wave, model shallow-to-deep transition will be better simulated than when this forcing is not present.

  7. Electroencephalographic Variation during End Maintenance and Emergence from Surgical Anesthesia

    PubMed Central

    MacColl, Jono N.; Illing, Sam; Sleigh, Jamie W.

    2014-01-01

    The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5–4 Hz) and alpha/spindle (8–14 Hz) power (‘Slow-Wave Anesthesia’) to a state marked by low delta-spindle power (‘Non Slow-Wave Anesthesia’) before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain. PMID:25264892

  8. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions.

    PubMed

    Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per

    2017-08-01

    Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.

  9. Wide Angle Converted Shear Wave Analysis of North Atlantic Volcanic Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A.

    2007-12-01

    High-quality, wide-angle, ocean bottom seismometer (OBS) data have been acquired with a low frequency (9 Hz) seismic source across the Faroes and Hatton Bank volcanic rifted continental margins in the North Atlantic. In these regions thick Tertiary flood basalt sequences provide a challenge to deep seismic imaging. S-wave arrivals, which are dominantly converted from P- to S-waves at the sediment-top basalt interface, were recorded at 170 4-component OBS locations. Variation in the conversion efficiency was observed along the profiles. Tomographic inversion of over 70,000 converted S-wave crustal diving waves and Moho reflections was performed to produce S-wave velocity models and hence, when combined with pre-existing P-wave velocity models, a measure of the Vp/Vs ratio structure of the crust. Resolution testing shows the structure of the oceanic crust and continent-ocean transition is generally well resolved on both profiles. Lateral and vertical changes in Vp/Vs resolves changing crustal composition within, and between, oceanic and continental crust, including regions in the lower crust at the continent-ocean transition with high P-wave velocities of up to 7.5 km/s and low Vp/Vs ratios of ~ 1.75 associated with intense high-temperature intrusion at the time of break-up. Vp/Vs ratios of 1.75-1.80 at the base of the thickened oceanic crust are also lower than generally reported in normal oceanic crust. The P-wave travel-time tomography revealed a low velocity zone (LVZ) beneath the basalt on the Faroes margin and additional constraint on the Vp/Vs of the LVZ beneath the Fugloy Ridge has been gained by analysing the relative travel-time delays between basalt and basement refractions for P- and S-waves. This approach is less subject to the velocity-depth ambiguity associated with velocity inversions than is the determination of P- or S- wave velocity alone. Comparison of the calculated Vp/Vs ratio and P-wave velocity with measurements from relevant lithologies reveals that the LVZ is likely to contain sill-intruded Paleocene sedimentary rock rather than igneous hyaloclastites similar to those found beneath the basalt in a nearby well. Immediately beneath the LVZ, a unit with Vp/Vs ratios of 1.80-1.85 and P-wave velocities of 5.5-6.0 km/s is interpreted as sill-intruded sedimentary rock of a pre-breakup Mesozoic basin. We thank C.J. Parkin, A.W. Roberts and L.K. Smith for their contributions.

  10. ARTICLES: Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.

    1984-04-01

    The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.

  11. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model

    NASA Astrophysics Data System (ADS)

    Matsui, Toshinori

    2018-01-01

    Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  12. Avoided critical behavior in dynamically forced wetting.

    PubMed

    Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno

    2006-05-05

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.

  13. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  14. Spatiotemporal interference of photoelectron wave packets and the time scale of nonadiabatic transitions in the high-frequency regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai

    2016-10-01

    The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.

  15. Dual channel photoplethysmography studies of cardio-vascular response to the body position changes

    NASA Astrophysics Data System (ADS)

    Erts, R.; Kukulis, I.; Spigulis, J.; Kere, L.

    2005-08-01

    The dual-channel photoplethysmography studies of physiological responses during 3-stage orthostatic test were performed. Clear differences in heartbeat rate, pulse wave transit time and blood pressure variations of healthy volunteers and diabetic patients have been observed.

  16. Study of the Reynolds Number Effect on the Process of Instability Transition Into the Turbulent Stage.

    PubMed

    Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V

    2014-09-01

    The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.

  17. Criticality in the quantum kicked rotor with a smooth potential.

    PubMed

    Dutta, Rina; Shukla, Pragya

    2008-09-01

    We investigate the possibility of an Anderson-type transition in the quantum kicked rotor with a smooth potential due to dynamical localization of the wave functions. Our results show the typical characteristics of a critical behavior, i.e., multifractal eigenfunctions and a scale-invariant level statistics at a critical kicking strength which classically corresponds to a mixed regime. This indicates the existence of a localization to delocalization transition in the quantum kicked rotor. Our study also reveals the possibility of other types of transition in the quantum kicked rotor, with a kicking strength well within the strongly chaotic regime. These transitions, driven by the breaking of exact symmetries, e.g., time reversal and parity, are similar to weak-localization transitions in disordered metals.

  18. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  19. Rogue-wave pattern transition induced by relative frequency.

    PubMed

    Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying

    2014-08-01

    We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.

  20. Mortality at older ages and moves in residential and sheltered housing: evidence from the UK

    PubMed Central

    Robards, James; Evandrou, Maria; Falkingham, Jane; Vlachantoni, Athina

    2014-01-01

    Background The study examines the relationship between transitions to residential and sheltered housing and mortality. Past research has focused on housing moves over extended time periods and subsequent mortality. In this paper, annual housing transitions allow the identification of the patterning of housing moves, the duration of stay in each sector and the assessment of the relationship of preceding moves to a heightened risk of dying. Methods The study uses longitudinal data constructed from pooled observations from the British Household Panel Survey (waves 1993–2008). Records were pooled for all cases where the survey member is 65 years or over and living in private housing at baseline and observed at three consecutive time points, including baseline (N=23 727). Binary logistic regression (death as outcome three waves after baseline) explored the relative strength of different housing transitions, controlling for sociodemographic predictors. Results (1) Transition to residential housing within the previous 12 months was associated with the highest mortality risk. (2) Results support existing findings showing an interaction between marital status and mortality, whereby unmarried persons were more likely to die. (3) Higher male mortality was observed across all housing transitions. Conclusions An older person's move to residential housing is associated with a higher risk of mortality within 12 months of the move. Survivors living in residential housing for more than a year, show a similar probability of dying to those living in sheltered housing. Results highlight that it is the type of accommodation that affects an older person's mortality risk, and the length of time they spend there. PMID:24638058

  1. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE PAGES

    Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...

    2017-01-17

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  2. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sándor, Csand; Libál, Andras; Reichhardt, Charles

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  3. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  4. Wave structure in the radial film flow with a circular hydraulic jump

    NASA Astrophysics Data System (ADS)

    Rao, A.; Arakeri, J. H.

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.

  5. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong

    2010-09-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.

  6. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  7. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  8. Optical properties of two-dimensional charge density wave materials

    NASA Astrophysics Data System (ADS)

    Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico

    Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.

  9. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of magnitude smaller than that of the driving source.

  10. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  11. Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen

    2017-06-01

    We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.

  12. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  13. Off-fault heterogeneities promote supershear transition of dynamic mode II cracks

    NASA Astrophysics Data System (ADS)

    Albertini, Gabriele; Kammer, David S.

    2017-08-01

    The transition from sub-Rayleigh to supershear propagation of mode II cracks is a fundamental problem of fracture mechanics. It has extensively been studied in homogeneous uniform setups. When the applied shear load exceeds a critical value, transition occurs through the Burridge-Andrews mechanism at a well-defined crack length. However, velocity structures in geophysical conditions can be complex and affect the transition. Damage induced by previous earthquakes causes low-velocity zones surrounding mature faults and inclusions with contrasting material properties can be present at seismogenic depth. We relax the assumption of homogeneous media and investigate dynamic shear fracture in heterogeneous media using two-dimensional finite element simulations and a linear slip-weakening law. We analyze the role of heterogeneities in the elastic media, while keeping the frictional interface properties uniform. We show that supershear transition is possible due to the sole presence of favorable off-fault heterogeneities. Subcritical shear loads, for which propagation would remain permanently sub-Rayleigh in an equivalent homogeneous setup, will transition to supershear as a result of reflected waves. P wave reflected as S waves, followed by further reflections, affect the amplitude of the shear stress peak in front of the propagating crack, leading to supershear transition. A wave reflection model allows to uniquely describe the effect of off-fault inclusions on the shear stress peak. A competing mechanism of modified released potential energy affects transition and becomes predominant with decreasing distance between fault and inclusions. For inclusions at far distances, the wave reflection is the predominant mechanism.

  14. Influence of defects on the charge density wave of ([SnSe] 1+δ) 1(VSe 2) 1 ferecrystals

    DOE PAGES

    Falmbigl, Matthias; Putzky, Daniel; Ditto, Jeffrey; ...

    2015-07-14

    A series of ferecrystalline compounds ([SnSe] 1+δ) 1(VSe 2) 1 with varying Sn/V ratios were synthesized using the modulated elemental reactant technique. Temperature-dependent specific heat data reveal a phase transition at 102 K, where the heat capacity changes abruptly. An abrupt increase in electrical resistivity occurs at the same temperature, correlated with an abrupt increase in the Hall coefficient. Combined with the magnitude and nature of the specific heat discontinuity, this suggests that the transition is similar to the charge density wave transitions in transition metal dichalcogenides. An ordered intergrowth was formed over a surprisingly wide compositional range of Sn/Vmore » ratios of 0.89 ≤ 1 + δ ≤ 1.37. X-ray diffraction and transmission electron microscopy reveal the formation of various volume defects in the compounds in response to the nonstoichiometry. The electrical resistivity and Hall coefficient data of samples with different Sn/V ratios show systematic variation in the carrier concentration with the Sn/V ratio. There is no significant change in the onset temperature of the charge density wave transition, only a variation in the carrier densities before and after the transition. Given the sensitivity of the charge density wave transitions of transition metal dichalcogenides to variations in composition, it is very surprising that the charge density wave transition observed at 102 K for ([SnSe] 1.15) 1(VSe 2) 1 is barely influenced by the nonstoichiometry and structural defects. As a result, this might be a consequence of the two-dimensional nature of the structurally independent VSe 2 layers.« less

  15. Numerical simulation of anomalous wave phenomena in hot nuclear matter

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Likhachev, A. P.

    2015-11-01

    The collective dynamic phenomena accompanying the collision of high-energy heavy ions are suggested to be approximately described in the framework of ideal relativistic hydrodynamics. If the transition from hadron state to quark-gluon plasma is the first-order phase transition (presently this view is prevailing), the hydrodynamic description of the nuclear matter must demonstrate several anomalous wave phenomena—such as the shock splitting and the formation of rarefaction shock and composite waves, which may be indicative of this transition. The present work is devoted to numerical study of these phenomena.

  16. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  17. Noncontact sphygmomanometer based on pulse-wave transit time between the face and hand

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Ohnishi, Takashi; Nishidate, Izumi; Haneishi, Hideaki

    2018-02-01

    Systolic blood pressure (SBP) is highly sensitive to various factors such as psychological stress, and hence its continuous monitoring is essential to evaluate different health conditions. However, conventional sphygmomanometers cannot continuously measure SBP given the time-consuming setup based on a pressure cuff. Moreover, continuous biological signal monitoring is more comfortable when no sensors are attached. A solution for continuous SBP estimation is based on pulse transit time (PTT), which determines the time difference between two pulse waves at different body parts. In previous studies, we successfully measured the PTT using a contactless setup composed by two digital color cameras recording the face and hand of subjects. Then, the acquired images were transformed into blood volume by combining multiple regression analysis and a Monte Carlo method. As a result, the delay among images allowed to determine the PPT from pulse waves. In this study, we simultaneously measured SBP and PTT by using a sphygmomanometer and the two cameras, respectively. We evaluated SBP increases (i.e., stressful situations) and the corresponding PPT by asking participants to either grasp a handgrip or momentarily interrupting breath. We also determined the SBP and PTT without asking for such exercises. Comparison results show that the mean PTT under stress was significantly lower than that without stress, which is consistent with an increased SBP. Finally, we related the SBP and PTT by a nonlinear formula with a coefficient of determination of 0.59, thus confirming the effectiveness of the proposed system.

  18. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  19. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    NASA Astrophysics Data System (ADS)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  20. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  1. Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2018-02-01

    The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.

  2. Comparing Changes in Late-Life Depressive Symptoms across Aging, Disablement, and Mortality Processes

    ERIC Educational Resources Information Center

    Fauth, Elizabeth B.; Gerstorf, Denis; Ram, Nilam; Malmberg, Bo

    2014-01-01

    Developmental processes are inherently time-related, with various time metrics and transition points being used to proxy how change is organized with respect to the theoretically underlying mechanisms. Using data from 4 Swedish studies of individuals aged 70-100+ (N = 453) who were measured every 2 years for up to 5 waves, we tested whether…

  3. Direct observations of a flare related coronal and solar wind disturbance

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Hildner, E.; Macqueen, R. M.; Munro, R. H.; Poland, A. I.; Ross, C. L.

    1975-01-01

    Numerous mass ejections from the sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass and energy content of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.

  4. Spectral Interferometry with Electron Microscopes

    PubMed Central

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  5. Three-dimensional characterization and control of Tollmien-Schlichting waves on a flat plate

    NASA Astrophysics Data System (ADS)

    Tuna, Burak; Amitay, Michael

    2014-11-01

    Tollmien-Schlichting (T-S) waves are instability waves inside the boundary layer which are the prime mechanism for the transition from laminar to turbulent flows. The T-S waves grow in amplitude and develop three-dimensionality as they advect downstream. At sufficiently large amplitude they break up into turbulent spots, followed by a turbulent flow, which yields a drag increase. The present work aims to identify the T-S waves and reduce their amplitude to delay transition to turbulence. For that propose, Piezoelectric-Driven Oscillating Surface (PDOS) actuator was developed; Two PDOS actuators were used are two stream wise locations. The upstream PDOS was used to excite and phase-lock the T-S waves, and the downstream PDOS was used to cancel the T-S waves by applying an anti phase disturbance at the proper amplitude. Stereoscopic particle image velocimetry (SPIV) was used to identify the three-dimensional development of the T-S waves along the flat plate. Moreover, the SPIV results showed that reduction of peak values of velocity fluctuations due to the T-S waves could be achieved, and this reduction corresponds to a delay of laminar to turbulent transition.

  6. Disorder-Induced Topological State Transition in Photonic Metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Changxu; Gao, Wenlong; Yang, Biao; Zhang, Shuang

    2017-11-01

    The topological state transition has been widely studied based on the quantized topological band invariant such as the Chern number for the system without intense randomness that may break the band structures. We numerically demonstrate the disorder-induced state transition in the photonic topological systems for the first time. Instead of applying the ill-defined topological band invariant in a disordered system, we utilize an empirical parameter to unambiguously illustrate the state transition of the topological metamaterials. Before the state transition, we observe a robust surface state with well-confined electromagnetic waves propagating unidirectionally, immune to the disorder from permittivity fluctuation up to 60% of the original value. During the transition, a hybrid state composed of a quasiunidirectional surface mode and intensively localized hot spots is established, a result of the competition between the topological protection and Anderson localization.

  7. E-cigarette initiation and associated changes in smoking cessation and reduction: the Population Assessment of Tobacco and Health Study, 2013-2015.

    PubMed

    Berry, Kaitlyn M; Reynolds, Lindsay M; Collins, Jason M; Siegel, Michael B; Fetterman, Jessica L; Hamburg, Naomi M; Bhatnagar, Aruni; Benjamin, Emelia J; Stokes, Andrew

    2018-03-24

    The role of electronic cigarettes (e-cigarettes) in product transitions has been debated. We used nationally representative data from the Population Assessment of Tobacco and Health Study waves 1 (2013-2014) and 2 (2014-2015) to investigate the associations between e-cigarette initiation and cigarette cessation/reduction in the USA. We limited the sample to current cigarette smokers aged 25+ years who were not current e-cigarette users at wave 1. We modelled 30-day cigarette cessation and substantial reduction in cigarette consumption as a function of e-cigarette initiation between surveys using multivariable logistic regression. Between waves 1 and 2, 6.9% of cigarette smokers who were not current e-cigarette users transitioned to former smokers. After adjusting for covariates, cigarette smokers who initiated e-cigarette use between waves and reported they used e-cigarettes daily at wave 2 had 7.88 (95% CI 4.45 to 13.95) times the odds of 30-day cigarette cessation compared with non-users of e-cigarettes at wave 2. Cigarette smokers who began using e-cigarettes every day and did not achieve cessation had 5.70 (95% CI 3.47 to 9.35) times the odds of reducing their average daily cigarette use by at least 50% between waves 1 and 2 compared with e-cigarette non-users. Daily e-cigarette initiators were more likely to have quit smoking cigarettes or reduced use compared with non-users. However, less frequent e-cigarette use was not associated with cigarette cessation/reduction. These results suggest incorporating frequency of e-cigarette use is important for developing a more thorough understanding of the association between e-cigarette use and cigarette cessation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Wave climate, sediment supply and the depth of the sand-mud transition: A global survey

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.

    2008-01-01

    The influences of wave climate and sediment supply on the depths of sand-mud transitions (hSMT) are investigated. Depths of sand-mud transitions (SMT) are based on published granulometric data from surface samples gathered from 14 sites in different wave-dominated coastal environments with fluvial input, including high energy (Columbia, Eel, Russian, San Lorenzo, Copper, and Nepean rivers), moderate energy (Ebro, Nile, Santa Clara, Tseng-wen and Kao-ping rivers), and low energy (Po, Pescara and Tronto rivers) regimes. Geometric mean diameter (GMD) and mud percent are compiled from samples along shore-normal transects, and significant correlation is found between these two textural descriptors. Nominally, the SMT is defined as the transition from GMD > 63????m to 25% mud. This dual definition is applied to the 14 systems, and hSMT is tabulated for each system. Correlation is found between hSMT and the depth at which wave-induced bottom shear stress equals the critical erosion shear stress of the largest mud particles and also between hSMT and significant wave height. Lack of correlation between hSMT and sediment load of nearby rivers indicates either that the influence of sediment supply on depth of the sand-mud transition is small or is not adequately represented in this study. Shelf width and slope do not correlate with residuals from a formalized linear relationship between hSMT and significant wave height. The relationship between hSMT and wave climate is useful for calibration of numerical models of erosion and deposition in wave-dominated coastal environments, for prediction of seabed properties in remote or inaccessible areas, and for reconstruction of paleodepth based on facies changes from sand to mud in ancient rocks. ?? 2008.

  9. Simulation of linear and nonlinear Landau damping of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lei; Wang, X. Y.; Lin, Y.

    2013-06-15

    The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less

  10. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity.

    PubMed

    Feistritzer, Hans-Josef; Reinstadler, Sebastian J; Klug, Gert; Kremser, Christian; Seidner, Benjamin; Esterhammer, Regina; Schocke, Michael F; Franz, Wolfgang-Michael; Metzler, Bernhard

    2015-01-01

    Pulse wave velocity (PWV) is the proposed gold-standard for the assessment of aortic elastic properties. The aim of this study was to compare aortic PWV determined by a recently developed oscillometric device with cardiac magnetic resonance imaging (CMR). PWV was assessed in 40 volunteers with two different methods. The oscillometric method (PWVOSC) is based on a transfer function from the brachial pressure waves determined by oscillometric blood pressure measurements with a common cuff (Mobil-O-Graph, I.E.M. Stolberg, Germany). CMR was used to determine aortic PWVCMR with the use of the transit time method based on phase-contrast imaging at the level of the ascending and abdominal aorta on a clinical 1.5 Tesla scanner (Siemens, Erlangen, Germany). The median age of the study population was 34 years (IQR: 24-55 years, 11 females). A very strong correlation was found between PWVOSC and PWVCMR (r = 0.859, p < 0.001). Mean PWVOSC was 6.7 ± 1.8 m/s and mean PWVCMR was 6.1 ± 1.8 m/s (p < 0.001). Analysis of agreement between the two measurements using Bland-Altman method showed a bias of 0.57 m/s (upper and lower limit of agreement: 2.49 m/s and -1.34 m/s). The corresponding coefficient of variation between both measurements was 15%. Aortic pulse wave velocity assessed by transformation of the brachial pressure waveform showed an acceptable agreement with the CMR-derived transit time method.

  11. Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Li, Fei

    2013-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.

  12. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.

    PubMed

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  13. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  14. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  15. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  16. Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, S.P.; Faith, J.

    1997-08-01

    The interaction of electromagnetic waves with rapidly created time-varying spatially periodic plasmas is studied. The numerical results of the collisionless case show that both frequency upshifted and frequency downshifted waves are generated. Moreover, the frequency downshifted waves are trapped by the plasma when the plasma frequency is larger than the wave frequency. The trapping has the effect of dramatically enhancing the efficiency of the frequency downshift conversion process, by accumulating incident wave energy during the plasma transition period. A theory based on the wave impedance of each Floquet mode of the periodic structure is formulated, incorporating with the collisional dampingmore » of the plasma. Such a theory explains the recent experimental observations [Faith, Kuo, and Huang, Phys. Rev. E {bold 55}, 1843 (1997)] where the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities while the frequency upshifted signals were missing. {copyright} {ital 1997} {ital The American Physical Society}« less

  17. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    PubMed

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  18. Input-Independent Energy Harvesting in Bistable Lattices from Transition Waves.

    PubMed

    Hwang, Myungwon; Arrieta, Andres F

    2018-02-26

    We demonstrate the utilisation of transition waves for realising input-invariant, frequency-independent energy harvesting in 1D lattices of bistable elements. We propose a metamaterial-inspired design with an integrated electromechanical transduction mechanism to the unit cell, rendering the power conversion capability an intrinsic property of the lattice. Moreover, focusing of transmitted energy to desired locations is demonstrated numerically and experimentally by introducing engineered defects in the form of perturbation in mass or inter-element forcing. We achieve further localisation of energy and numerically observe a breather-like mode for the first time in this type of lattice, improving the harvesting performance by an order of magnitude. Our approach considers generic bistable unit cells and thus provides a universal mechanism to harvest energy and realise metamaterials effectively behaving as a capacitor and power delivery system.

  19. Changes in Sleep Difficulties During the Transition to Statutory Retirement.

    PubMed

    Myllyntausta, Saana; Salo, Paula; Kronholm, Erkki; Pentti, Jaana; Kivimäki, Mika; Vahtera, Jussi; Stenholm, Sari

    2018-01-01

    This study examined changes in sleep during the transition from full-time work to statutory retirement. Both the prevalence of any sleep difficulty and the prevalence of specific sleep difficulties, such as difficulties falling asleep, difficulties maintaining sleep, waking up too early in the morning, and nonrestorative sleep, were examined. Data from the Finnish Public Sector study were used. The study population consisted of 5,807 Finnish public sector employees who retired on statutory basis between 2000 and 2011. The participants responded on the Jenkins Sleep Problem Scale Questionnaire before and after retirement in surveys conducted every 4 years. At the last study wave before retirement, 30% of the participants had sleep difficulties. Prevalence of any sleep difficulty decreased during the retirement transition: the risk ratio (RR) for having sleep difficulties in the first study wave following retirement compared with the last study wave preceding retirement was 0.89 (95% confidence interval [CI] 0.85-0.94). During the retirement transition, both waking up too early in the morning (RR = 0.76, 95% CI 0.69-0.82) and nonrestorative sleep (RR = 0.47, 95% CI 0.42-0.53) decreased, whereas there was no change in difficulties falling asleep or difficulties maintaining sleep. The decreases in sleep difficulties occurred primarily among those with psychological distress, suboptimal self-rated health, short sleep duration, and job strain before retirement. These longitudinal data suggest that transition to statutory retirement is associated with a decrease in sleep difficulties, especially waking up too early in the morning and nonrestorative sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2017-01-01

    Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .

  1. Quantum Dynamics and a Semiclassical Description of the Photon.

    ERIC Educational Resources Information Center

    Henderson, Giles

    1980-01-01

    Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…

  2. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  3. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  4. Direct Numerical Simulation of Acoustic Waves Interacting with a Shock Wave in a Quasi-1D Convergent-Divergent Nozzle Using an Unstructured Finite Volume Algorithm

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Mankbadi, Reda R.

    1995-01-01

    Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.

  5. Observation of Tropical Cyclone-Induced Shallow Water Currents in Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Shen, Junqiang; Qiu, Yun; Zhang, Shanwu; Kuang, Fangfang

    2017-06-01

    The data from three stations equipped with Acoustic Doppler Current Profilers (ADCPs) deployed in the shallow water of the Taiwan Strait (TWS) were used to study the shallow coastal ocean response to five quasi-continuous tropical cyclone (TC) events in the late summer 2006. We revealed that, in the forced stage, when the large and strong TC (Bilis) transited, the geostrophic currents were formed which dominated the whole event, while the strong but relatively small one (Saomai) or the weak one (Bopha) primarily leaded to the generation of Ekman currents. In the relaxation stage, the barotropic subinertial waves and/or the baroclinic near-inertial oscillations (NIOs) were triggered. Typically, during the transit of the Saomai, subinertial waves were induced which demonstrated a period of 2.8-4.1 days and a mean alongshore phase velocity of 14.9 ± 3.2 m/s in the form of free-barotropic continental shelf waves. However, the NIOs are only notable in the area in which the water column is stably stratified and also where the wind stress is dominated by the clockwise component and accompanied by high-frequency (near-inertial) variations. We also demonstrated that, due to the damping effects, the nonlinear wave-wave interaction (e.g., between NIO and semidiurnal tide in our case), together with the well-known bottom friction, led to the rapid decay of the observed TC-induced near-inertial currents, giving a typical e-folding time scale of 1-3 inertial periods. Moreover, such nonlinear wave-wave interaction was even found to play a major role during the spring tide in TWS.

  6. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  7. Local entanglement entropy of fermions as a marker of quantum phase transition in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Cha, Min-Chul; Chung, Myung-Hoon

    2018-05-01

    We study quantum phase transition of interacting fermions by measuring the local entanglement entropy in the one-dimensional Hubbard model. The reduced density matrices for blocks of a few sites are constructed from the ground state wave function in infinite systems by adopting the matrix product state representation where time-evolving block decimations are performed to obtain the lowest energy states. The local entanglement entropy, constructed from the reduced density matrices, as a function of the chemical potential shows clear signatures of the Mott transition. The value of the central charge, numerically determined from the universal properties of the local entanglement entropy, confirms that the transition is caused by the suppression of the charge degrees of freedom.

  8. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    PubMed

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  9. Nonlinear Propagation of Alfven Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma; Shibata, Kazunari

    We have performed MHD simulations of Alfven wave propagation along an open ux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photo-spheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy ux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave gener-ator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have conrmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy ux to heat the corona.

  10. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  11. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.

    In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less

  12. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    DOE PAGES

    Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.

    2016-03-24

    In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less

  13. Moving Out: Transition to Non-Residence among Resident Fathers in the United States, 1968-1997

    ERIC Educational Resources Information Center

    Gupta, Sanjiv; Smock, Pamela J.; Manning, Wendy D.

    2004-01-01

    This article provides the first individual-level estimates of the change over time in the probability of non-residence for initially resident fathers in the United States. Drawing on the 1968-1997 waves of the Panel Study of Income Dynamics, we used discrete-time event history models to compute the probabilities of non-residence for six 5-year…

  14. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  15. Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators

    NASA Astrophysics Data System (ADS)

    Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei

    The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002

  16. Parametric disordering of meta-atoms and nonlinear topological transitions in liquid metacrystals

    NASA Astrophysics Data System (ADS)

    Zharov, Alexander A.; Zharova, Nina A.; Zharov, Alexander A.

    2017-09-01

    We show that amplitude-modulated electromagnetic wave incident onto a liquid metacrystal may cause parametric instability of meta-atoms resulting in isotropization of the medium that can be treated in terms of effective temperature. It makes possible to switch the sign of certain components of dielectric permittivity and/or magnetic permeability tensors that, in turn, modifies the topology of isofrequency surface. At the same time it leads to the changes of the conditions of electromagnetic wave propagation appearing in the form of focusing or defocusing nonlinearity.

  17. Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.

    1984-04-01

    Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.

  18. ab initio calculation of the rate of vibrational relaxation and thermal dissociation of hydrogen by helium at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dove, J.E.; Raynor, S.

    The master equation for the thermal dissociation of para-H/sub 2/ infinitely dilute in He, was solved for temperatures of 1000 to 10,000/sup 0/K. Transition probabilities, used in the master equation, were obtained, in the case of energy transfer transitions, from distorted wave and quasi-classical trajectory calculations and, for dissociative processes, from trajectory calculations alone. An ab initio potential was used. From the solution, values of the dissociation rate constant, vibrational relaxation times, and incubation times for dissociation and vibrational relaxation were calculated. The sensitivity of the calculated results to variations in the transition probabilities was examined. Vibrational relaxation is mostmore » sensitive to simultaneous transitions in vibration and rotation (VRT processes); pure rotational (RT) transitions also have a substantial effect. Dissociation is most strongly affected by RT processes, but changes in VRT and groups of dissociative transitions also have a significant effect. However complete suppression of all dissociative transitions except those from levels immediately next to the continuum lowers the dissociation rates only by a factor of about 2. The location of the dissociation ''bottleneck'' is discussed. 5 figures, 3 tables.« less

  19. State dynamics of a double sandbar system

    NASA Astrophysics Data System (ADS)

    Price, T. D.; Ruessink, B. G.

    2011-04-01

    A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of Wright and Short [1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56, 93-118]. Besides the two end members (the dissipative (D) and the reflective (R) states) and the four intermediate states (longshore bar and trough (LBT), rhythmic bar and beach (RBB), transverse bar and rip (TBR) and low tide terrace (LTT)), we identified two additional intermediate bar states. The erosive transverse bar and rip (eTBR) state related to the dominant oblique angle of wave incidence at the study site and the rhythmic low tide terrace (rLTT) related to the multiple bar setting. Using the alongshore barline variability and alongshore trough continuity as morphological indicators enabled the objective classification of the inner and outer bar states from the images. The outer bar was mostly in the TBR state and generally advanced sequentially through the states LBT-RBB-TBR-eTBR-LBT, with occasional transitions to the D state. Wave events led to abrupt state transitions of the outer bar, but, in contrast to expectations, did not necessarily correspond to upstate transitions. Instead, upstate (downstate) transitions coincided with angles of wave incidence θ larger (smaller) than 30°. The upstate TBR-eTBR-LBT sequence during high-angle events highlights the role of alongshore currents in bar straightening. The outer bar was found to govern the state of the inner bar to a large extent. Two types of inner bar behaviour were distinguished, based on the outer bar state. For intermediate outer bar states, the alongshore variability of the dominant inner rLTT state (52% in time) mainly related to that of the outer bar, implying some sort of morphological coupling. For dissipative outer bar states, however, the more upstate inner bar frequently separated from the shoreline and persistently developed rip channels as TBR became the most frequent state (60% in time).

  20. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  1. The effects of shock wave compaction on the transition temperatures of A15 structure superconductors

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1974-01-01

    Several superconductors with the A15 structure exhibit a positive pressure coefficient, indicating that their transition temperatures increase with applied pressure. Powders of the composition Nb3Al, Nb3Ge, Nb3(Al0.75Ge0.25), and V3Si were compacted by explosive shock waves. The superconducting properties of these materials were measured before and after compaction and it was found that regardless of the sign of the pressure coefficient, the transition temperature is always lowered. The decrease in transition temperature is associated with a decrease in the particle diameter. The shock wave passage through a 3Nb:1Ge powder mixture leads to the formation of at least one compound (probably Nb5Ge3). However, the formation of the A15 compound Nb3Ge is not observed. Elemental niobium powder can be compacted by converging shock waves close to the expected value of the bulk density. Under special circumstances a partial remelting in the center of the sample is observed.

  2. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  3. Transition region, coronal heating and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp < 106 K) between 2 and 4 solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  4. Multivariate statistical data analysis methods for detecting baroclinic wave interactions in the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    Experiments on baroclinic wave instabilities in a rotating cylindrical gap have been long performed, e.g., to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. We present the application of appropriate multivariate data analysis methods on time series data sets acquired by the use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera measures the surface temperature field. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. Obviously, the temperature data set has much more information content as the velocity data set due to the particular measurement techniques. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). Our goal is (a) to verify the results yielded with the analysis of the velocity data and (b) to compare the data analysis methods. Therefor, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us to compare the methods. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  5. Two-dimensional global hybrid simulation of pressure evolution and waves in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Denton, R. E.; Lee, L. C.; Chao, J. K.

    2001-06-01

    A two-dimensional hybrid simulation is carried out for the global structure of the magnetosheath. Quasi-perpendicular magnetosonic/fast mode waves with large-amplitude in-phase oscillations of the magnetic field and the ion density are seen near the bow shock transition. Alfvén/ion-cyclotron waves are observed along the streamlines in the magnetosheath, and the wave power peaks in the middle magnetosheath. Antiphase oscillations in the magnetic field and density are present away from the shock transition. Transport ratio analysis suggests that these oscillations result from mirror mode waves. Since fluid simulations are currently best able to model the global magnetosphere and the pressure in the magnetosphere is inherently anisotropic (parallel pressure p∥≠perpendicular pressure p⊥), it is of some interest to see if a fluid model can be used to predict the anisotropic pressure evolution of a plasma. Here the predictions of double adiabatic theory, the bounded anisotropy model, and the double polytropic model are tested using the two-dimensional hybrid simulation of the magnetosheath. Inputs to the models from the hybrid simulation are the initial post bow shock pressures and the time-dependent density and magnetic field strength along streamlines of the plasma. The success of the models is evaluated on the basis of how well they predict the subsequent evolution of p∥ and p⊥. The bounded anisotropy model, which encorporates a bound on p⊥/p∥ due to the effect of ion cyclotron pitch angle scattering, does a very good job of predicting the evolution of p⊥ this is evidence that local transfer of energy due to waves is occurring. Further evidence is the positive identification of ion-cyclotron waves in the simulation. The lack of such a good prediction for the evolution of p∥ appears to be due to the model's lack of time dependence for the wave-particle interaction and its neglect of the parallel heat flux. Estimates indicate that these effects will be less significant in the real magnetosheath, though perhaps not negligible.

  6. Practicality of magnetic compression for plasma density control

    DOE PAGES

    Gueroult, Renaud; Fisch, Nathaniel J.

    2016-03-16

    Here, plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations aftermore » the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasmaβ is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.« less

  7. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  8. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.

    2005-03-01

    The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.

  9. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  10. Fractionalized Fermi liquid with bosonic chargons as a candidate for the pseudogap metal

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shubhayu; Sachdev, Subir

    2016-11-01

    Doping a Mott-insulating Z2 spin liquid can lead to a fractionalized Fermi liquid (FL*). Such a phase has several favorable features that make it a candidate for the pseudogap metal for the underdoped cuprates. We focus on a particular, simple Z2-FL* state which can undergo a confinement transition to a spatially uniform superconductor which is smoothly connected to the "plain vanilla" BCS superconductor with d -wave pairing. Such a transition occurs by the condensation of bosonic particles carrying +e charge but no spin ("chargons"). We show that modifying the dispersion of the bosonic chargons can lead to confinement transitions with charge density waves and pair density waves at the same wave vector K , coexisting with d -wave superconductivity. We also compute the evolution of the Hall number in the normal state during the transition from the plain vanilla FL* state to a Fermi liquid, and argue, following Coleman, Marston, and Schofield [Phys. Rev. B 72, 245111 (2005), 10.1103/PhysRevB.72.245111], that it exhibits a discontinuous jump near optimal doping. We note the distinction between these results and those obtained from models of the pseudogap with fermionic chargons.

  11. Reply to the Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.

    2009-01-01

    An analysis of concepts presented by George and Hill [George, D.A., Hill, P.S., 2008. Wave climate, sediment supply and the depth of the sand-mud transition: A global survey. Marine Geology, 254, 121-128.] regarding the depth of the sand-mud transition (hSMT) was performed by Guill??n and Jim??nez [Jorge Guill??n and Jos?? A. Jim??nez, Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128], Marine Geology, in press]. We are pleased that our proposed definition of the hSMT was confirmed to be appropriate. We are encouraged that the authors agree that wave period and wave height should both be used to determine hSMT as we demonstrated in our Eq. (1), which calculates the bed shear stress at hSMT. More in-depth research should focus on characterizing the role of sediment supply in determining hSMT. ?? 2009 Elsevier B.V. All rights reserved.

  12. The occurrence of individual slow waves in sleep is predicted by heart rate

    PubMed Central

    Mensen, Armand; Zhang, Zhongxing; Qi, Ming; Khatami, Ramin

    2016-01-01

    The integration of near-infrared spectroscopy and electroencephalography measures presents an ideal method to study the haemodynamics of sleep. While the cortical dynamics and neuro-modulating influences affecting the transition from wakefulness to sleep is well researched, the assumption has been that individual slow waves, the hallmark of deep sleep, are spontaneously occurring cortical events. By creating event-related potentials from the NIRS recording, time-locked to the onset of thousands of individual slow waves, we show the onset of slow waves is phase-locked to an ongoing oscillation in the NIRS recording. This oscillation stems from the moment to moment fluctuations of light absorption caused by arterial pulsations driven by the heart beat. The same oscillating signal can be detected if the electrocardiogram is time-locked to the onset of the slow wave. The ongoing NIRS oscillation suggests that individual slow wave initiation is dependent on that signal, and not the other way round. However, the precise causal links remain speculative. We propose several potential mechanisms: that the heart-beat or arterial pulsation acts as a stimulus which evokes a down-state; local fluctuations in energy supply may lead to a network effect of hyperpolarization; that the arterial pulsations lead to corresponding changes in the cerebral-spinal-fluid which evokes the slow wave; or that a third neural generator, regulating heart rate and slow waves may be involved. PMID:27445083

  13. Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions

    NASA Astrophysics Data System (ADS)

    Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.

    2018-04-01

    We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

  14. Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions.

    PubMed

    Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N

    2018-04-20

    We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

  15. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  16. Angular momentum transport with twisted exciton wave packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  17. Syntax diagrams for body wave nomenclature, with generalizations for terrestrial planets

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.

    2003-04-01

    The Apollo network on the Moon constitutes the beginning of planetary seismology. In the next few decades, we may see seismometers deployed on the Moon again, on Mars, and perhaps on other terrestrial planets or satellites. Any seismological software for computation of body wave travel times on other planets should be highly versatile and be prepared for a huge variety of velocity distributions and internal structures. A suite of trial models for a planet might, for example, contain models with and without solid inner cores. It would then be useful if the software could detect physically meaningless phase names automatically without actually carrying out any computation. It would also be useful if the program were prepared to deal with features like fully solid cores, internal oceans, and varying depths of mineralogical phase changes like the olivine-spinel transition. Syntax diagrams are a standard method to describe the syntax of programming languages. They represent a graphical way to define which letter or phrase is allowed to follow a given sequence of letters. Syntax diagrams may be stored in data structures that allow automatic evaluation of a given letter sequence. Such diagrams are presented here for a generalized body wave nomenclature. Generalizations are made to overcome earth-specific notations which incorporate discontinuity depths into phase names or to distinguish olivine transitions from ice-ice transitions (as expected on the Galilean Satellites).

  18. Obesity in the Transition to Adulthood: Predictions across Race-Ethnicity, Immigrant Generation, and Sex

    PubMed Central

    Harris, Kathleen Mullan; Perreira, Krista; Lee, Dohoon

    2009-01-01

    Objectives With longitudinal data we traced how race, ethnic, and immigrant disparities in body mass index (BMI) change over time as adolescents (ages 11–19) transition to young adulthood (ages 20–28). Design We used growth curve modeling to estimate the pattern of change in BMI from adolescence through the transition to adulthood. Setting All participants in the study were residents of the United States enrolled in high school or junior high school during the 1994–95 school year. Participants We used nationally representative data on 20,000+ adolescents interviewed at Wave I (1994–95) of Add Health, followed in Wave II (1996) and Wave III (2001–02) when the sample was in early adulthood. Main Exposure(s) Exposures of interest include race-ethnicity, immigrant generation, and sex. Main Outcome Measure(s) Our main outcome measure is BMI. Results Findings indicate significant differences in both the level and change in BMI across age by sex, race-ethnicity, and immigrant generation. Females, second and third generation immigrants, and Hispanics and blacks experience more rapidly increasing BMI as adolescents age into young adulthood. Increases in BMI are relatively lower for males, first generation immigrants, and whites and Asians. Conclusions Disparities in BMI and percent overweight and obese widen with age as adolescents leave home and begin independent lives as young adults in their 20s. PMID:19884593

  19. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    PubMed

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  20. System for testing optical fibers

    DOEpatents

    Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

  1. Early Family Formation among White, Black, and Mexican American Women

    ERIC Educational Resources Information Center

    Landale, Nancy S.; Schoen, Robert; Daniels, Kimberly

    2010-01-01

    Using data from Waves I and III of Add Health, this study examines early family formation among 6,144 White, Black, and Mexican American women. Drawing on cultural and structural perspectives, models of the first and second family transitions (cohabitation, marriage, or childbearing) are estimated using discrete-time multinomial logistic…

  2. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chong; Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn; Zhao, Li-Chen, E-mail: zhaolichen3@163.com

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relativemore » background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.« less

  4. Transition probability functions for applications of inelastic electron scattering

    PubMed Central

    Löffler, Stefan; Schattschneider, Peter

    2012-01-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  5. Optimal laser pulse design for transferring the coherent nuclear wave packet of H+2

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; He, Guang-Qiang; He, Feng

    2014-07-01

    Within the Franck-Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.

  6. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  7. On the Nature of Oblique Instability Waves in Boundary Layer Transition.

    DTIC Science & Technology

    1986-05-23

    analogy with the starting vortex of a finite span airfoil , these vortices ." must also connect to some form of starting vortex system at the heater. The...quite suprising. %’ . .5 % *. % % .~%\\~, *-:. % % % % - 61 - For instance, a series of experiments involving forced oblique waves has shown that several...Morkovin, M. V. (1980). Dialog on Bridging Some Gaps in Stability and Transition Research. Laminar-Turbulent Transition (eds. R. Eppler and H. Fuel

  8. Nonlinear hydrodynamic stability and transition; Proceedings of the IUTAM Symposium, Nice, France, Sept. 3-7, 1990

    NASA Astrophysics Data System (ADS)

    Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.

  9. [Comprehensive testing system for cardiorespiratory interaction research].

    PubMed

    Zhang, Zhengbo; Wang, Buqing; Wang, Weidong; Zheng, Jiewen; Liu, Hongyun; Li, Kaiyuan; Sun, Congcong; Wang, Guojing

    2013-04-01

    To investigate the modulation effects of breathing movement on cardiovascular system and to study the physiological coupling relationship between respiration and cardiovascular system, we designed a comprehensive testing system for cardiorespiratory interaction research. This system, comprising three parts, i. e. physiological signal conditioning unit, data acquisition and USB medical isolation unit, and a PC based program, can acquire multiple physiological data such as respiratory flow, rib cage and abdomen movement, electrocardiograph, artery pulse wave, cardiac sounds, skin temperature, and electromyography simultaneously under certain experimental protocols. Furthermore this system can be used in research on short-term cardiovascular variability by paced breathing. Preliminary experiments showed that this system could accurately record rib cage and abdomen movement under very low breathing rate, using respiratory inductive plethysmography to acquire respiration signal in direct-current coupling mode. After calibration, this system can be used to estimate ventilation non-intrusively and correctly. The PC based program can generate audio and visual biofeedback signal, and guide the volunteers to perform a slow and regular breathing. An experiment on healthy volunteers showed that this system was able to guide the volunteers to do slow breathing effectively and simultaneously record multiple physiological data during the experiments. Signal processing techniques were used for off-line data analysis, such as non-invasive ventilation calibration, QRS complex wave detection, and respiratory sinus arrhythmia and pulse wave transit time calculation. The experiment result showed that the modulation effect on RR interval, respiratory sinus arrhythmia (RSA), pulse wave transit time (PWTT) by respiration would get stronger with the going of the slow and regular breathing.

  10. Comparison of an Oscillometric Method with Cardiac Magnetic Resonance for the Analysis of Aortic Pulse Wave Velocity

    PubMed Central

    Feistritzer, Hans-Josef; Reinstadler, Sebastian J.; Klug, Gert; Kremser, Christian; Seidner, Benjamin; Esterhammer, Regina; Schocke, Michael F.; Franz, Wolfgang-Michael; Metzler, Bernhard

    2015-01-01

    Objectives Pulse wave velocity (PWV) is the proposed gold-standard for the assessment of aortic elastic properties. The aim of this study was to compare aortic PWV determined by a recently developed oscillometric device with cardiac magnetic resonance imaging (CMR). Methods PWV was assessed in 40 volunteers with two different methods. The oscillometric method (PWVOSC) is based on a transfer function from the brachial pressure waves determined by oscillometric blood pressure measurements with a common cuff (Mobil-O-Graph, I.E.M. Stolberg, Germany). CMR was used to determine aortic PWVCMR with the use of the transit time method based on phase-contrast imaging at the level of the ascending and abdominal aorta on a clinical 1.5 Tesla scanner (Siemens, Erlangen, Germany). Results The median age of the study population was 34 years (IQR: 24–55 years, 11 females). A very strong correlation was found between PWVOSC and PWVCMR (r = 0.859, p < 0.001). Mean PWVOSC was 6.7 ± 1.8 m/s and mean PWVCMR was 6.1 ± 1.8 m/s (p < 0.001). Analysis of agreement between the two measurements using Bland-Altman method showed a bias of 0.57 m/s (upper and lower limit of agreement: 2.49 m/s and -1.34 m/s). The corresponding coefficient of variation between both measurements was 15%. Conclusion Aortic pulse wave velocity assessed by transformation of the brachial pressure waveform showed an acceptable agreement with the CMR-derived transit time method. PMID:25612307

  11. A Thin Lens Model for Charged-Particle RF Accelerating Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model aremore » presented.« less

  12. New results on thermalization of electrons in GaAs

    NASA Astrophysics Data System (ADS)

    Hannak, Reinhard M.; Ruehle, Wolfgang W.

    1994-05-01

    The transition from a nonthermal into a thermal distribution of electrons at low densities (< 1014 cm-3) is traced on a picosecond time-scale by the time evolution of a band-to-acceptor transition in GaAs:Be. Two narrow, nonthermal electron distributions are detected during the first picoseconds originating from the heavy- and light-hole valence band, respectively. Measurements with circular polarization of excitation and luminescence confirm this assignment. The variation of their energetic peak-positions with excitation energy allows the experimental determination of the valence band dispersions for very small wave vectors near k equals 0, where only parabolic energy terms contribute to the dispersions. The results are consistent with the commonly used effective hole masses.

  13. Slab geometry of the South American margin from joint inversion of body waves and surface waves

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.

    2016-12-01

    The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.

  14. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE PAGES

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba 3Mn 2O 8 using single crystal neutron diffraction. We find that for magnetic fields between μ 0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ 0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  15. Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals

    NASA Astrophysics Data System (ADS)

    Knudson, M. D.; Gupta, Y. M.

    2002-06-01

    Initial stage kinetics of the cadmium sulfide (CdS) phase transition was investigated using picosecond time-resolved electronic spectroscopy in plate-impact shock wave experiments. Real-time changes in the electronic spectra were observed, with 100 ps time resolution, in CdS single crystals shocked along a and c axes to stresses ranging between 35 and 90 kbar, which is above the phase-transition threshold stress of approximately 30 kbar. Significant difference in the transformation kinetics was observed for the two crystal orientations. At sufficiently high instantaneous stress, above approximately 60 to 70 kbar for a axis and 50 kbar for c axis, transformation to a metastable state appears to reach a constant state within the 100 ps time resolution. At lower instantaneous stresses, an incubation period on the order of several nanoseconds is observed prior to the onset of electronic changes that mark the onset of the structural change. The subsequent increase in absorbance was quite rapid, with a constant state being reached within the first few nanoseconds after the onset of the structural changes. These results suggest that the nucleation process determines the transformation rate. This insight into transformation kinetics, along with the transformation mechanism obtained from the high-stress experiments, was used to develop a phenomenological model, incorporating ideas of nucleation and growth in martensitic transformations, to simulate the time-dependent extinction of light observed in our experiments. The calculational results incorporating both extinction due to light absorption by the daughter phase volumes and scattering of light by small volumes of the daughter phase were in good agreement with experimental observations. Finally, the orientational differences observed in the transformation kinetics were interpreted in terms of the differences in the elastic-plastic response for the two orientations.

  16. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction: LLNL-G3DV3---GLOBAL P WAVE TOMOGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.

    [1] We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 millionP and Pnarrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trendsmore » as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0–97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed.« less

  17. Experimental analysis of the boundary layer transition with zero and positive pressure gradient

    NASA Technical Reports Server (NTRS)

    Arnal, D.; Jullen, J. C.; Michel, R.

    1980-01-01

    The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.

  18. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  19. Effects of Changes in Number of Medications and Drug Burden Index Exposure on Transitions Between Frailty States and Death: The Concord Health and Ageing in Men Project Cohort Study.

    PubMed

    Jamsen, Kris M; Bell, J Simon; Hilmer, Sarah N; Kirkpatrick, Carl M J; Ilomäki, Jenni; Le Couteur, David; Blyth, Fiona M; Handelsman, David J; Waite, Louise; Naganathan, Vasi; Cumming, Robert G; Gnjidic, Danijela

    2016-01-01

    To investigate the effects of number of medications and Drug Burden Index (DBI) on transitions between frailty stages and death in community-dwelling older men. Cohort study. Sydney, Australia. Community-dwelling men aged 70 and older (N=1,705). Self-reported questionnaires and clinic visits were conducted at baseline and 2 and 5 years. Frailty was assessed at all three waves according to the modified Fried frailty phenotype. The total number of regular prescription medications and DBI (a measure of exposure to sedative and anticholinergic medications) were calculated over the three waves. Data on mortality over 9 years were obtained. Multistate modeling was used to characterize the transitions across three frailty states (robust, prefrail, frail) and death. Each additional medication was associated with a 22% greater risk of transitioning from the robust state to death (adjusted 95% confidence interval (CI)=1.06-1.41). Every unit increase in DBI was associated with a 73% greater risk of transitioning from the robust state to the prefrail state (adjusted 95% CI=1.30-2.31) and a 2.75 times greater risk of transitioning from the robust state to death (adjusted 95% CI=1.60-4.75). There was no evidence of an adjusted association between total number of medications or DBI and the other transitions. Although the possibility of confounding by indication cannot be excluded, additional medications were associated with greater risk of mortality in robust community-dwelling older men. Greater DBI was also associated with greater risk of death and transitioning from the robust state to the prefrail state. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  20. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Kim, Ji-Won

    2018-05-01

    El Niño is frequently followed by La Niña, but the opposite case rarely happens. Here we explore a mechanism for such an asymmetrical transition and its future changes. Internally, the asymmetrical response of upper ocean waves against surface wind stress anomaly exerts a primary cause of El Niño-Southern Oscillation (ENSO) transition asymmetry. Externally, the asymmetrical capacitor effects of both Indian and Atlantic Oceans play some roles in driving the ENSO transition asymmetry via the interbasin interactions. The historical runs of Coupled Model Intercomparison Project Phase 5 show that the intermodel transition asymmetry is significantly correlated with the intermodel asymmetry in ocean wave response to surface wind forcing but not with that in the interbasin interactions. In addition, the El Niño-to-La Niña transition tendency was weaker in moderate global warming scenario runs (Representative Concentration Pathway 4.5) while slightly enhanced in strong warming scenario runs (Representative Concentration Pathway 8.5). Similar changes also appeared in the asymmetrical response of ocean waves against the surface wind forcing.

  1. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  2. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  3. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  4. Retrocausation acting in the single-electron double-slit interference experiment

    NASA Astrophysics Data System (ADS)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  5. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    PubMed

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  6. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2015-03-01

    Blood pressure monitoring based on pulse transit or arrival time has been the focus of much research in order to design ambulatory blood pressure monitors. The accuracy of these monitors is limited by several challenges, such as acquisition and processing of physiological signals as well as changes in vascular tone and the pre-ejection period. In this work, a literature survey covering recent developments is presented in order to identify gaps in the literature. The findings of the literature are classified according to three aspects. These are the calibration of pulse transit/arrival times to blood pressure, acquisition and processing of physiological signals and finally, the design of fully integrated blood pressure measurement systems. Alternative technologies as well as locations for the measurement of the pulse wave signal should be investigated in order to improve the accuracy during calibration. Furthermore, the integration and validation of monitoring systems needs to be improved in current ambulatory blood pressure monitors.

  7. Epidemiology of Suicide Attempts among Youth Transitioning to Adulthood.

    PubMed

    Thompson, Martie P; Swartout, Kevin

    2018-04-01

    Suicide is the second leading cause of death for older adolescents and young adults. Although empirical literature has identified important risk factors of suicidal behavior, it is less understood if changes in risk factors correspond with changes in suicide risk. To address this knowledge gap, we assessed if there were different trajectories of suicidal behavior as youth transition into young adulthood and determined what time-varying risk factors predicted these trajectories. This study used four waves of data spanning approximately 13 years from the National Longitudinal Study of Adolescent Health. The sample included 9027 respondents who were 12-18 years old (M = 15.26; SD = 1.76) at Wave 1, 50% male, 17% Hispanic, and 58% White. The results indicated that 93.6% of the sample had a low likelihood for suicide attempts across time, 5.1% had an elevated likelihood of attempting suicide in adolescence but not young adulthood, and 1.3% had an elevated likelihood of attempting suicide during adolescence and adulthood. The likelihood of a suicide attempt corresponded with changes on depression, impulsivity, delinquency, alcohol problems, family and friend suicide history, and experience with partner violence. Determining how suicide risk changes as youth transition into young adulthood and what factors predict these changes can help prevent suicide. Interventions targeting these risk factors could lead to reductions in suicide attempts.

  8. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model

    NASA Astrophysics Data System (ADS)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-05-01

    By assuming a relaxation process for depolarization associated with the ferroelectric (FE) to antiferroelectric (AFE) phase transition in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression, we build a new model for the depoling current, which is different from both the traditional constant current source (CCS) model and the phase transition kinetics (PTK) model. The characteristic relaxation time and new-equilibrated polarization are dependent on both the shock pressure and electric field. After incorporating a Maxwell s equation, the relaxation model developed applies to all the depoling currents under short-circuit condition and high-impedance condition. Influences of shock pressure, load resistance, dielectric property, and electrical conductivity on the depoling current are also discussed. The relaxation model gives a good description about the suppressing effect of the self-generated electric field on the FE-to-AFE phase transition at low shock pressures, which cannot be described by the traditional models. After incorporating a time- and electric-field-dependent repolarization, this model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. Finally, we make the comparison between our relaxation model and the traditional CCS model and PTK model.

  9. Development, Test, and Evaluation of Microwave Radar Water Level (MWWL) Sensors' Wave Measurement Capability

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Heitsenrether, R.

    2015-12-01

    Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.

  10. Mantle structure beneath eastern Africa: Evidence for a through going-mantle anomaly and its implications for the origin of Cenozoic tectonism in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mulibo, G.; Tugume, F.; Julia, J.

    2012-12-01

    In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.

  11. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.

  12. Theory of disordered unconventional superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keles, A.; Andreev, A. V.; Spivak, B. Z., E-mail: spivak@uw.edu

    In contrast to conventional s-wave superconductivity, unconventional (e.g., p- or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductormetal transition, the order parameter amplitude becomes increasingly inhomogeneous, leading to effective granularity and a phase ordering transition described by the Mattis model of spin glasses. One consequence of this is that at sufficiently low temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is necessarily an intermediate superconducting phase that exhibits s-wave symmetry on macroscopic scales.

  13. Sensitivity analysis of seismic waveforms to upper-mantle discontinuities using the adjoint method

    NASA Astrophysics Data System (ADS)

    Koroni, Maria; Bozdağ, Ebru; Paulssen, Hanneke; Trampert, Jeannot

    2017-09-01

    Using spectral-element simulations of wave propagation, we investigated the sensitivity of seismic waveforms, recorded on transverse components, to upper-mantle discontinuities in 1-D and 3-D background models. These sensitivity kernels, or Fréchet derivatives, illustrate the spatial sensitivity to model parameters, of which those for shear wave speed and the surface topography of internal boundaries are discussed in this paper. We focus on the boundaries at 400 and 670 km depth of the mantle transition zone. SS precursors have frequently been used to infer the topography of upper-mantle discontinuities. These seismic phases are underside reflections off these boundaries and are usually analysed in the distance range of 110°-160°. This distance range is chosen to minimize the interference from other waves. We show sensitivity kernels for consecutive time windows at three characteristic epicentral distances within the 110°-160° range. The sensitivity kernels are computed with the adjoint method using synthetic data. From our simulations we can draw three main conclusions: (i) The exact Fréchet derivatives show that in all time windows, and also in those centred on the SS precursors, there is interference from other waves. This explains the difficulty reported in the literature to correct for 3-D shear wave speed perturbations, even if the 3-D structure is perfectly known. (ii) All studies attempting to map the topography of the 400 and 670 km discontinuities to date assume that the traveltimes of SS precursors can be linearly decomposed into a 3-D elastic structure and a topography part. We recently showed that such a linear decomposition is not possible for SS precursors, and the sensitivity kernels presented in this paper explain why. (iii) In agreement with previous work, we show that other parts of the seismograms have greater sensitivity to upper-mantle discontinuities than SS precursors, especially multiply bouncing S waves exploiting the S-wave triplications due to the mantle transition zone. These phases can potentially improve the inference of global topographic variations of the upper-mantle discontinuities in the context of full waveform inversion in a joint inversion for (an)elastic parameters and topography.

  14. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  15. A longitudinal study of factors explaining attitude change towards gambling among adolescents

    PubMed Central

    Pallesen, Ståle; Hanss, Daniel; Molde, Helge; Griffiths, Mark D.; Mentzoni, Rune Aune

    2016-01-01

    Background and aims No previous study has investigated changes in attitudes toward gambling from under legal gambling age to legal gambling age. The aim of the present study was therefore to investigate attitudinal changes during this transition and to identify predictors of corresponding attitude change. Methods In all 1239 adolescents from a national representative sample participated in two survey waves (Wave 1; 17.5 years; Wave 2; 18.5 years). Results From Wave 1 to Wave 2 the sample became more acceptant toward gambling. A regression analysis showed that when controlling for attitudes toward gambling at Wave 1 males developed more acceptant attitudes than females. Neuroticism was inversely related to development of acceptant attitudes toward gambling from Wave 1 to Wave 2, whereas approval of gambling by close others at Wave 1 was positively associated with development of more acceptant attitudes. Continuous or increased participation in gambling was related to development of more acceptant attitudes from Wave 1 to Wave 2. Conclusions Attitudes toward gambling became more acceptant when reaching legal gambling age. Male gender, approval of gambling by close others and gambling participation predicted development of positive attitudes toward gambling whereas neuroticism was inversely related to development of positive attitudes toward gambling over time. PMID:28092188

  16. A longitudinal study of factors explaining attitude change towards gambling among adolescents.

    PubMed

    Pallesen, Ståle; Hanss, Daniel; Molde, Helge; Griffiths, Mark D; Mentzoni, Rune Aune

    2016-03-01

    Background and aims No previous study has investigated changes in attitudes toward gambling from under legal gambling age to legal gambling age. The aim of the present study was therefore to investigate attitudinal changes during this transition and to identify predictors of corresponding attitude change. Methods In all 1239 adolescents from a national representative sample participated in two survey waves (Wave 1; 17.5 years; Wave 2; 18.5 years). Results From Wave 1 to Wave 2 the sample became more acceptant toward gambling. A regression analysis showed that when controlling for attitudes toward gambling at Wave 1 males developed more acceptant attitudes than females. Neuroticism was inversely related to development of acceptant attitudes toward gambling from Wave 1 to Wave 2, whereas approval of gambling by close others at Wave 1 was positively associated with development of more acceptant attitudes. Continuous or increased participation in gambling was related to development of more acceptant attitudes from Wave 1 to Wave 2. Conclusions Attitudes toward gambling became more acceptant when reaching legal gambling age. Male gender, approval of gambling by close others and gambling participation predicted development of positive attitudes toward gambling whereas neuroticism was inversely related to development of positive attitudes toward gambling over time.

  17. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    NASA Astrophysics Data System (ADS)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  18. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  19. Aircraft lightning-induced voltage test technique developments

    NASA Technical Reports Server (NTRS)

    Crouch, K. E.

    1983-01-01

    High voltage safety, fuels safety, simulation, and response/measurement techniques are discussed. Travelling wave transit times, return circuit conductor configurations, LC ladder network generators, and repetitive pulse techniques are also discussed. Differential conductive coaxial cable, analog fiber optic link, repetitive pulse sampled data instrumentation system, flash A/D optic link system, and an FM telemetry system are considered.

  20. Hypersonic boundary-layer transition measurements at Mach 10 on a large seven-degree cone at angle of attack

    NASA Astrophysics Data System (ADS)

    Moraru, Ciprian G.

    The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.

  1. Thickness-dependent phase transition in graphite under high magnetic field

    NASA Astrophysics Data System (ADS)

    Taen, Toshihiro; Uchida, Kazuhito; Osada, Toshihito

    2018-03-01

    Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a semimetal-insulator transition at B ≃30 T is still not clear, while an exotic density-wave state is theoretically proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method. The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic states in other high-magnetic-field phases.

  2. Shock wave induced phase transition in α -FePO 4

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Suresh, N.; Jyoti, G.; Kulshreshtha, S. K.; Gupta, S. C.; Sikka, S. K.

    Shock wave induced response of the berlinite form of FePO 4 has been investigated up to 8.5 GPa. The X-ray diffraction measurements on the shock recovered samples reveal transition to the mixture of an amorphous phase and an orthorhombic phase around 5 GPa. The proportion of the amorphous material in the recovered sample is found to decrease at higher pressure. The results are interpreted in terms of a three-level free energy diagram for the crystal to amorphous transitions.

  3. Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang

    2018-06-01

    Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.

  4. Dirty two-band superconductivity with interband pairing order

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Sasaki, Akihiro; Golubov, Alexander A.

    2018-04-01

    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature T c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity symmetry class. In a spin-singlet superconductor, T c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, T c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.

  5. Characteristics of transitions in freeway traffic : final report, OTREC-RR-10-12 September 2010.

    DOT National Transportation Integrated Search

    2010-09-01

    This research seeks to understand the characteristics of transitions as freeway traffic changes from one state to another. This study addresses the features of two types of transitions; transitions near a merge and transitions along shock waves durin...

  6. A new strategy to analyze possible association structures between dynamic nocturnal hormone activities and sleep alterations in humans.

    PubMed

    Kalus, Stefanie; Kneib, Thomas; Steiger, Axel; Holsboer, Florian; Yassouridis, Alexander

    2009-04-01

    The human sleep process shows dynamic alterations during the night. Methods are needed to examine whether and to what extent such alterations are affected by internal, possibly time-dependent, factors, such as endocrine activity. In an observational study, we examined simultaneously sleep EEG and nocturnal levels of renin, growth hormone (GH), and cortisol (between 2300 and 0700) in 47 healthy volunteers comprising 24 women (41.67 +/- 2.93 yr of age) and 23 men (37.26 +/- 2.85 yr of age). Hormone concentrations were measured every 20 min. Conventional sleep stage scoring at 30-s intervals was applied. Semiparametric multinomial logit models are used to study and quantify possible time-dependent hormone effects on sleep stage transition courses. Results show that increased cortisol levels decrease the probability of transition from rapid-eye-movement (REM) sleep to wakefulness (WAKE) and increase the probability of transition from REM to non-REM (NREM) sleep, irrespective of the time in the night. Via the model selection criterion Akaike's information criterion, it was found that all considered hormone effects on transition probabilities with the initial state WAKE change with time. Similarly, transition from slow-wave sleep (SWS) to light sleep (LS) is affected by a "hormone-time" interaction for cortisol and renin, but not GH. For example, there is a considerable increase in the probability of SWS-LS transition toward the end of the night, when cortisol concentrations are very high. In summary, alterations in human sleep possess dynamic forms and are partially influenced by the endocrine activity of certain hormones. Statistical methods, such as semiparametric multinomial and time-dependent logit regression, can offer ambitious ways to investigate and estimate the association intensities between the nonstationary sleep changes and the time-dependent endocrine activities.

  7. Waveform and polarization of compressional Pc 5 waves at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Higuchi, Tomoyuki; Kokubun, Susumu

    1988-12-01

    The factors controlling the occurrence and the properties of compressional Pc 5 waves were examined by studying the statistical characteristics of compressional Pc 5 waves, using magnetic-field data obtained by GOES 2 and GOES 3 satellites during the August 1978 - August 1980 period. The compressional Pc 5 waves could be classified into the harmonic, transitional, and normal types, on the basis of the second-harmonic component in the compressional component of the magnetic field oscillation. It was found that the harmonic and the transitional waves have significant azimuthal perturbations and show right-handed polarization with respect to the local magnetic field, while most of the normal-type waves have small amplitude in the azimuthal component. The polarization properties of transverse perturbation, which may reflect the spatial inhomogeneity of the medium, are investigated.

  8. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  9. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  10. Multigap superconductivity in the charge density wave superconductor LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Das, Debarchan; Gupta, Ritu; Bhattacharyya, A.; Biswas, P. K.; Adroja, D. T.; Hossain, Z.

    2018-05-01

    The superconducting gap structure of a charge density wave (CDW) superconductor LaPt2Si2 (Tc=1.6 K) having a quasi-two-dimensional crystal structure has been investigated using muon spin rotation/relaxation (μ SR ) measurements in transverse field (TF), zero field (ZF), and longitudinal field (LF) geometries. Rigorous analysis of TF-μ SR spectra in the superconducting state corroborates that the temperature dependence of the effective penetration depth, λL, derived from muon spin depolarization, fits to a two gap s wave model (i.e., s +s wave) suggesting that the Fermi surface contains two gaps of different magnitude rather than an isotropic gap expected for a conventional s wave superconductor. On the other hand, ZF μ SR data do not show any significant change in muon spin relaxation rate above and below the superconducting transition temperature indicating the fact that time-reversal symmetry is preserved in the superconducting state of this material.

  11. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.

  12. Metastable state en route to traveling-wave synchronization state

    NASA Astrophysics Data System (ADS)

    Park, Jinha; Kahng, B.

    2018-02-01

    The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.

  13. Ice-coupled wave propagation across an abrupt change in ice rigidity, density, or thickness

    NASA Astrophysics Data System (ADS)

    Barrett, Murray D.; Squire, Vernon A.

    1996-09-01

    The model of Fox and Squire [1990, 1991, 1994], which discusses the oblique propagation of surface gravity waves from the open sea into an ice sheet of constant thickness and properties, is augmented to include propagation across an abrupt transition of properties within a continuous ice sheet or across two dissimilar ice sheets that abut one another but are free to move independently. Rigidity, thickness, and/or density may change across the transition, allowing, for example, the modeling of ice-coupled waves into, across, and out of refrozen leads and polynyas, across cracks, and through coherent pressure ridges. Reflection and transmission behavior is reported for various changes in properties under both types of transition conditions.

  14. Investigation of the acute plantar fasciitis with contrast-enhanced ultrasound and shear wave elastography - first results.

    PubMed

    Putz, Franz Josef; Hautmann, Matthias G; Banas, Miriam C; Jung, Ernst Michael

    2017-01-01

    The plantar fasciitis is a common disease with a high prevalence in public and a frequent cause of heel pain. In our pilot study, we wanted to characterise the feasibility of shear-wave elastography and contrast-enhanced ultrasound (CEUS) in the assessment of the plantar fasciitis. 23 cases of painful heels were examined by B-Mode ultrasound, Power Doppler (PD), shear wave elastography and contrast-enhanced ultrasound before anti-inflammatory radiation. Time-intensity-curves were analysed by the integrated software. The results for area-under-the-curve (AUC), peak, time-to-peak (TTP) and mean-transit-time (MTT) were compared between the plantar fascia and the surrounding tissue. All cases showed thickening of the plantar fascia, in most cases with interstitial oedema (87.0%). Shear wave elastography showed inhomogeneous stiffness of the plantar fascia. 83.3% of cases showed a visible hyperperfusion in CEUS at the proximal plantar fascia in comparison to the surrounding tissue. This hyperperfusion could also be found in 75.0% of cases with no signs of vascularisation in PD. AUC (p = 0.0005) and peak (p = 0.037) were significantely higher in the plantar fascia than in the surrounding tissue. CEUS and shear wave elastography are new diagnostic tools in the assessment of plantar fasciitis and can provide quantitative parameters for monitoring therapy.

  15. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.

    2017-01-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  16. Increased pulse wave transit time after percutaneous coronary intervention procedure in CAD patients.

    PubMed

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Liu, Changchun; Hou, Yinglong

    2018-01-08

    Pulse wave transit time (PWTT) has been widely used as an index in assessing arterial stiffness. Percutaneous coronary intervention (PCI) is usually applied to the treatment of coronary artery disease (CAD). Research on the changes in PWTT caused by PCI is helpful for understanding the impact of the PCI procedure. In addition, effects of stent sites and access sites on the changes in PWTT have not been explored. Consequently, this study aimed to provide this information. The results showed that PWTT significantly increased after PCI (p < 0.01) while the standard deviation (SD) of PWTT time series had no statistically significant changes (p = 0.60) between before and after PCI. Significantly increased PWTT was found in the radial access group (p < 0.01), while there were no significant changes in the femoral access group (p > 0.4). Additionally, PWTT in the left anterior descending (LAD) group significantly increased after PCI (p < 0.01), but the increase that was found in the right coronary artery (RCA) group was not significant (p > 0.1). Our study indicates that arterial elasticity and left ventricular functions can benefit from a successful PCI procedure, and the increase of peripheral PWTT after PCI can help to better understand the effectiveness of the procedure.

  17. The Dynamics and Correlates of Religious Service Attendance in Adolescence

    PubMed Central

    Hardie, Jessica Halliday; Pearce, Lisa D.; Denton, Melinda Lundquist

    2013-01-01

    This study examines changes in religious service attendance over time for a contemporary cohort of adolescents moving from middle to late adolescence. We use two waves of a nationally representative panel survey of youth from the National Study of Youth and Religion (NSYR) to examine the dynamics of religious involvement during adolescence. We then follow with an analysis of how demographic characteristics, family background, and life course transitions relate to changes in religious service attendance during adolescence. Our findings suggest that, on average, adolescent religious service attendance declines over time, related to major life course transitions such as becoming employed, leaving home, and initiating sexual activity. Parents’ affiliation and attendance, on the other hand, are protective factors against decreasing attendance. PMID:26900186

  18. Gravitational waves from dark first order phase transitions and dark photons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

  19. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  20. Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)

    NASA Astrophysics Data System (ADS)

    Kozlov, Viktor V.; Grek, Genrich R.

    The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect of the riblets is to suppress longitudinal vortex structures in a boundary layer. The boundary layer becomes stable with respect to high-frequency travelling waves, which cause the transition in the absence of the riblets.

  1. Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing

    NASA Astrophysics Data System (ADS)

    Casaccia, S.; Sirevaag, E. J.; Richter, E. J.; O'Sullivan, J. A.; Scalise, L.; Rohrbaugh, J. W.

    2016-10-01

    This report amplifies and extends prior descriptions of the use of laser Doppler vibrometry (LDV) as a method for assessing cardiovascular activity, on a non-contact basis. A rebreathing task (n = 35 healthy individuals) was used to elicit multiple effects associated with changes in autonomic drive as well as blood gases including hypercapnia. The LDV pulse was obtained from two sites overlying the carotid artery, separated by 40 mm. A robust pulse signal was obtained from both sites, in accord with the well-described changes in carotid diameter over the blood pressure cycle. Emphasis was placed on extracting timing measures from the LDV pulse, which could serve as surrogate measures of pulse wave velocity (PWV) and the associated arterial stiffness. For validation purposes, a standard measure of pulse transit time (PTT) to the radial artery was obtained using a tonometric sensor. Two key measures of timing were extracted from the LDV pulse. One involved the transit time along the 40 mm distance separating the two LDV measurement sites. A second measure involved the timing of a late feature of the LDV pulse contour, which was interpreted as reflection wave latency and thus a measure of round-trip travel time. Both LDV measures agreed with the conventional PTT measure, in disclosing increased PWV during periods of active rebreathing. These results thus provide additional evidence that measures based on the non-contact LDV technique might provide surrogate measures for those obtained using conventional, more obtrusive assessment methods that require attached sensors.

  2. Weight-teasing and emotional well-being in adolescents: longitudinal findings from Project EAT.

    PubMed

    Eisenberg, Marla E; Neumark-Sztainer, Dianne; Haines, Jess; Wall, Melanie

    2006-06-01

    To determine if weight-teasing predicts subsequent low self-esteem, poor body image, and depressive symptoms; and to examine two mechanisms through which early teasing may influence later emotional health. A racially and socio-economically diverse sample of 2516 adolescents completed surveys for both Wave 1 (1998-99) and Wave 2 (2003-04) of the Project EAT study. Approximately one third of these were early adolescents who transitioned into middle adolescence, and two thirds were middle adolescents who transitioned into young adulthood. Multiple linear regression analysis was conducted in three stages to test Model A: the total effect of Time 1 teasing on Time 2 emotional health; Model B: Model A, mediated by Time 2 teasing and body mass index (BMI); and Model C: Model B, also mediated by Time 1 emotional health. Approximately one third of males and slightly under half of females reported that they had been teased about their weight at Time 1. Time 1 teasing predicted lower self-esteem, lower body image, and higher depressive symptoms at Time 2 for males and females in the older and younger age groups. This relationship was fully mediated, however, by Time 2 teasing and BMI, and by Time 1 emotional health. Adjusted R2 statistics for the final models ranged from .11 to .36. Weight-teasing in adolescence affects emotional well-being at 5-year follow-up, and appears to function through two mechanisms. Reducing early teasing and its concurrent damages to emotional health may prevent longer-term emotional health consequences.

  3. Oscillometric analysis compared with cardiac magnetic resonance for the assessment of aortic pulse wave velocity in patients with myocardial infarction.

    PubMed

    Feistritzer, Hans-Josef; Klug, Gert; Reinstadler, Sebastian J; Reindl, Martin; Mayr, Agnes; Schocke, Michael; Metzler, Bernhard

    2016-09-01

    Measurement of aortic pulse wave velocity (PWV) is the gold standard for assessment of aortic stiffness. In patients with ST-segment elevation myocardial infarction (STEMI), high aortic PWV has deleterious effects on the myocardium. In the present study, we compared a novel oscillometric device with cardiac magnetic resonance (CMR) imaging for the assessment of aortic PWV in STEMI patients. We measured aortic PWV in 60 reperfused STEMI patients using two different methods. The oscillometric method (PWVOSC) is based on mathematical transformation of brachial pressure waveforms, oscillometrically determined using a common cuff (Mobil-O-Graph, I.E.M., Stolberg, North Rhine-Westphalia, Germany). Phase-contrast CMR imaging (1.5 T scanner, Siemens, Erlangen, Bavaria, Germany) at the level of the ascending and abdominal aorta was performed to determine CMR-derived pulse wave velocity with the use of the transit time method. The mean age of the study population was 57 ± 11 years; 11 (18%) were women. Median PWVOSC was 7.4 m/s (interquartile range 6.8-8.9 m/s), and median CMR-derived pulse wave velocity was 6.3 m/s (interquartile range 5.7-8.2 m/s) (P < 0.001). A strong correlation was detected between both methods (r = 0.724, P < 0.001). Bland-Altman analysis revealed a bias of 0.62 m/s (upper and lower limit of agreement: 3.84 and -2.61 m/s). The coefficient of variation between both methods was 21%. In reperfused STEMI patients, aortic PWV assessed noninvasively by transformation of brachial pressure waveforms showed an acceptable agreement with the CMR-derived transit time method.

  4. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.

  5. Evolution and transition mechanisms of internal swirling flows with tangential entry

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Wang, Xingjian; Yang, Vigor

    2018-01-01

    The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.

  6. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  7. The relationship between heart-carotid pulse transit time and carotid intima-media thickness in hypertensive patients.

    PubMed

    Li, C; Xiong, H; Wu, W; Tian, X; Wang, Y; Wu, D; Lin, W-H; Miao, F; Zhang, H; Huang, W; Zhang, Y-T

    2015-11-01

    The study aimed to investigate the relationship between heart-carotid pulse transit time and carotid intima-media thickness (CIMT) in hypertensive patients, and whether including the pre-ejection period (PEP) in heart-carotid pulse transit time would affect this correlation. A total of 62 hypertensive patients were included in this study. They were divided into the normal CIMT group (n=33, CIMT⩽0.8 mm) and the thickened CIMT group (n=29, CIMT>0.8 mm). The noninvasive ultrasound method was used to measure CIMT, electrocardiogram R-wave-based heart-carotid pulse transit time (rcPTT) and PEP. Aortic valve-carotid artery pulse transit time (acPTT) was calculated by subtracting PEP from rcPTT. Simple linear analysis showed that CIMT was negatively associated with rcPTT and acPTT (r=-0.57, P<0.0001; r=-0.41, P=0.016) in the normal CIMT group as well as in the thickened CIMT group (r=-0.50, P=0.0053; r=-0.59, P=0.001). These relationships were eliminated in the normal CIMT group after adjusting for age, gender, smoking behaviour, systolic blood pressure, diastolic blood pressure and cholesterol levels. However, rcPTT and acPTT still showed significant correlations with CIMT in the thickened CIMT group. In conclusion, rcPTT and acPTT were associated with CIMT, independent of well-known clinical confounders in thickened CIMT hypertensive patients. Therefore, rcPTT and acPTT might be useful markers for atherosclerosis evaluation.

  8. Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binétruy, Pierre; Dufaux, Jean-François; Bohé, Alejandro

    We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.

  9. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  10. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography

    NASA Astrophysics Data System (ADS)

    Wawerzinek, B.; Ritter, J. R. R.; Roy, C.

    2013-08-01

    We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.

  11. Alcohol Use During the Transition from Middle School to High School: National Panel Data on Prevalence and Moderators

    PubMed Central

    Jackson, Kristina; Schulenberg, John

    2013-01-01

    The movement from middle school to high school is a normative transition that is typically associated with increased social and academic stress. Theoretically, this transition may reflect a turning point in terms of initiating or sharply increasing heavy alcohol use, a notion that has received little attention in the empirical literature. The present study draws on a nationally representative dataset, National Longitudinal Survey of Youth-1997 (NLSY97), to examine the impact of the high-school transition on increases in alcohol use. The multi-wave multi-cohort design of NLSY97 permits coding of the high-school transition for 3,360 adolescents (48% female; 54% NonBlack/NonHispanic). Using latent transition analysis, we examined transitions among non-drinking, light drinking, and heavy drinking classes to characterize initiation of use and progression to heavier drinking. NonBlack/NonHispanic youth and those higher on delinquent behaviors were more likely to be involved in alcohol prior to the transition and more likely to rapidly escalate use with the transition. Although no sex differences were observed prior to the high-school transition, girls were more likely to transition from non-drinking to light drinking whereas boys were more likely to transition to heavy drinking. High monitoring was associated with greater progression from light drinking in middle school to heavy drinking in high school; low and moderate parental monitoring were associated with initiation of heavy drinking across the transition. The high-school transition is a time of increased risk for many young people, and greater attention to this important transition as a time that one can and should intervene is warranted. PMID:23421801

  12. Wearable wireless photoplethysmography sensors

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  13. Photoinduced discommensuration of the commensurate charge-density wave phase in 1 T -Ta S2

    NASA Astrophysics Data System (ADS)

    Tanimura, Katsumi

    2018-06-01

    The dynamics induced by femtosecond-laser excitation of the commensurate phase of the charge-density wave (CDW) in 1 T -Ta S2 have been studied using both time-resolved electron diffraction and the time-resolved spectroscopy of coherent-phonon dynamics. Electron diffraction results show that the commensurate CDW phase is transformed into a new phase with CDW order that is similar to the nearly commensurate phase with threshold-type transition rates; the threshold excitation density of 0.2 per 13 Ta atoms is evaluated. Coherent-phonon spectroscopy results show that, together with the amplitude mode of CDW with a frequency of 2.41 THz, two other modes with frequencies of 2.34 and 2.07 THz are excited in the photoexcited commensurate CDW phase over a timescale of several tens of picoseconds after excitation. Spectroscopic, temporal, and excitation-intensity dependent characteristics of the three coherent phonons reveal that a photoinduced decomposition of the commensurate CDW order into an ensemble of domains with different CDW orders is induced before the CDW-phase transition occurs. The physics underlying the photoinduced decomposition and evolution into discommensurations responsible for the CDW-order transformation are discussed.

  14. Enhanced coherent oscillations in the superconducting state of underdoped YB a 2 C u 3 O 6 + x induced via ultrafast terahertz excitation

    DOE PAGES

    Dakovski, Georgi L.; Lee, Wei -Sheng; Hawthorn, David G.; ...

    2015-06-24

    We utilize intense, single-cycle terahertz pulses to induce collective excitations in the charge-density-wave-ordered underdoped cuprate YBa 2Cu 3O 6+x. These excitations manifest themselves as pronounced coherent oscillations of the optical reflectivity in the transient state, accompanied by minimal incoherent quasiparticle relaxation dynamics. The oscillations occur at frequencies consistent with soft phonon energies associated with the charge-density-wave, but vanish above the superconducting transition temperature rather than that at the charge-density-wave transition. These results indicate an intimate relationship of the terahertz excitation with the underlying charge-density-wave and the superconducting condensate itself.

  15. Range of earth structure nonuniqueness implied by body wave observations.

    NASA Technical Reports Server (NTRS)

    Wiggins, R. A.; Mcmechan, G. A.; Toksoz, M. N.

    1973-01-01

    The Herglotz-Wiechert integral for the direct inversion of ray parameter versus distance curves can be manipulated to find the envelope of all possible models consistent with geometrical body wave observations (travel time and ray parameter versus distance). Such an extremal inversion approach has been used to find the uncertainty bounds for the velocity structure in the mantle and core. It is found, for example, that there is an uncertainty of plus or minus 40 km in the radius of the inner core boundary, plus or minus 18 km at the core-mantle boundary, and plus or minus 35 km at the 435-km transition zone. The velocity uncertainty is about plus or minus 0.08 km/sec for P and S waves in the lower mantle and about plus or minus 0.20 km/sec in the core. Experiments with various combinations of ray types in the core indicate that rather crude observations of SKKS-SKS travel times confine the range of possible models far more dramatically than do the most precise estimates of PmKP travel times. Comparisons of results from extremal inversion and linearized perturbation inversions indicate that body wave behavior is too strongly nonlinear for linearized schemes to be effective for predicting uncertainty.

  16. Interface wave propagation and edge conversion at a low stiffness interphase layer between two solids: A numerical study.

    PubMed

    Cho, Hideo; Rokhlin, Stanislav I

    2015-09-01

    The Rayleigh-to-interface wave conversion and the propagation of the resulting symmetric and antisymmetric modes on a bonded interface between solids is analyzed by the two dimensional finite difference time domain method. The propagated patterns were visualized to improve understanding of the phenomena. It is found that the partition of the energy of the interface waves above and below the interface changes repeatedly with propagation distance due to interference between the two modes which have slightly different phase velocities. The destructive interference of those two modes results in dips in the amplitude spectrum of the interface waves, which shift in frequency with propagation distance. The Rayleigh wave received that is created by the interface wave at the exit corner of the joint also shows interference dips in its spectrum. Those dips depend on the interface properties and can potentially be used for interface characterization. Conversion factors related to the interface wave at the upward and downward corners are determined and discussed. As a result, the total transition factor through the upward and downward corners for the interface wave was estimated as 0.37 and would be sufficiently large to probe the interface by coupling from the Rayleigh to the interface wave. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  18. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.

    1996-05-01

    The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.

  19. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.

    PubMed

    Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh

    2008-04-04

    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.

  20. Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Woolsey, Lauren N.

    2015-10-01

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.

  1. DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranmer, Steven R.; Woolsey, Lauren N.

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upwardmore » shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.« less

  2. Angular studies of the magnetoresistance in the density wave state of the quasi-two-dimensional purple bronze KMo6O17

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.

    2007-07-01

    The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.

  3. Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow

    NASA Technical Reports Server (NTRS)

    Spalart, P.; Yang, K. S.

    1986-01-01

    The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.

  4. Adolescent home-leaving and the transition to adulthood

    PubMed Central

    Egondi, Thaddaeus; Kabiru, Caroline; Beguy, Donatien; Kanyiva, Muindi; Jessor, Richard

    2013-01-01

    Home-leaving is considered an important marker of the transition to adulthood and is usually framed as an individual decision. We move beyond this limited assumption to examine a broader conceptualization that might better illuminate home-leaving among youth in impoverished circumstances. We adopt the Problem Behavior Theory-framework to investigate the association of home-leaving with behavioral and psychosocial variables and with other transitions. We use data on adolescents aged 14–22 years from a three-wave study conducted between 2007 and 2010. We used variable- and person-centered cross-sectional analyses, as well as predictive analysis of home-leaving by subsequent waves. Parental controls protection predicted home-leaving by subsequent waves. Overall, protective factors moderated the association of problem behavior involvement with leaving home in Nairobi’s slums. PMID:24089582

  5. Wave-Powered Unmanned Surface Vehicle as a Station-Keeping Gateway Node for Undersea Distributed Networks

    DTIC Science & Technology

    2012-09-01

    the vehicles has the same payload in order to determine performance differences and changes in ocean conditions between the Wave Gliders as they transit...and different materials for the vehicle, engineers were able to determine some characteristics of a wave-powered vehicle. The intended use of this wave...small waves, a pressure difference is created, making the wave larger and larger. The waves then coalesce with each other creating longer waves that

  6. Ten reasons why a thermalized system cannot be described by a many-particle wave function

    NASA Astrophysics Data System (ADS)

    Drossel, Barbara

    2017-05-01

    It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.

  7. Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses

    NASA Astrophysics Data System (ADS)

    Harris, Jeremy D.; Ermentrout, Bard

    2018-04-01

    Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.

  8. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    NASA Technical Reports Server (NTRS)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  9. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  10. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity

    PubMed Central

    Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.

    2017-01-01

    Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455

  11. Memory effects, transient growth, and wave breakup in a model of paced atrium

    NASA Astrophysics Data System (ADS)

    Garzón, Alejandro; Grigoriev, Roman O.

    2017-09-01

    The mechanisms underlying cardiac fibrillation have been investigated for over a century, but we are still finding surprising results that change our view of this phenomenon. The present study focuses on the transition from normal rhythm to spiral wave chaos associated with a gradual increase in the pacing rate. While some of our findings are consistent with existing experimental, numerical, and theoretical studies of this problem, one result appears to contradict the accepted picture. Specifically we show that, in a two-dimensional model of paced homogeneous atrial tissue, transition from discordant alternans to conduction block, wave breakup, reentry, and spiral wave chaos is associated with the transient growth of finite amplitude disturbances rather than a conventional instability. It is mathematically very similar to subcritical, or bypass, transition from laminar fluid flow to turbulence, which allows many of the tools developed in the context of fluid turbulence to be used for improving our understanding of cardiac arrhythmias.

  12. A Lithography-Free and Field-Programmable Photonic Metacanvas.

    PubMed

    Dong, Kaichen; Hong, Sukjoon; Deng, Yang; Ma, He; Li, Jiachen; Wang, Xi; Yeo, Junyeob; Wang, Letian; Lou, Shuai; Tom, Kyle B; Liu, Kai; You, Zheng; Wei, Yang; Grigoropoulos, Costas P; Yao, Jie; Wu, Junqiao

    2018-02-01

    The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase-transition materials are able to provide real-time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field-programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all-solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low-power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system-level functionalities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vertical coherence in mantle heterogeneity from global seismic data

    NASA Astrophysics Data System (ADS)

    Boschi, L.; Becker, T. W.

    2011-10-01

    The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.

  14. Rotational Spectrum of Neopentyl Alcohol, (CH_3)_3CCH_2OH

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczołkowski, Lech; Xue, Zhifeng; Suhm, Martin A.

    2012-06-01

    The rotational spectrum of neopentyl alcohol (2,2-dimethyl-1-propanol, (CH_3)_3CCH_2OH) has been investigated for the first time. This molecule differs from ethanol only in having the ^tBu group instead of the methyl group, and is likewise anticipated to exhibit two spectroscopic species, with trans and gauche hydroxyl orientation. Quantum chemistry computations predict the trans to be the more stable species. Rotational transitions of both species have now been assigned in supersonic expansion cm-wave FTMW experiment and in room temperature, mm-wave spectra up to 280 GHz. The supersonic expansion measurements with Ar carrier gas confirm that trans is the global minimum species. The trans spectrum is predominantly b-type, while the gauche is predominantly a-type and the frequencies of rotational transitions in both species appear to be perturbed in different ways. The results from effective and from coupled Hamiltonian fits for neopentyl alcohol are presented, and are compared with predictions from ab initio calculations.

  15. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  16. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  17. Gravitational waves from vacuum first-order phase transitions: From the envelope to the lattice

    NASA Astrophysics Data System (ADS)

    Cutting, Daniel; Hindmarsh, Mark; Weir, David J.

    2018-06-01

    We conduct large scale numerical simulations of gravitational wave production at a first-order vacuum phase transition. We find a power law for the gravitational wave power spectrum at high wave number which falls off as k-1.5 rather than the k-1 produced by the envelope approximation. The peak of the power spectrum is shifted to slightly lower wave numbers from that of the envelope approximation. The envelope approximation reproduces our results for the peak power less well, agreeing only to within an order of magnitude. After the bubbles finish colliding, the scalar field oscillates around the true vacuum. An additional feature is produced in the UV of the gravitational wave power spectrum, and this continues to grow linearly until the end of our simulation. The additional feature peaks at a length scale close to the bubble wall thickness and is shown to have a negligible contribution to the energy in gravitational waves, providing the scalar field mass is much smaller than the Planck mass.

  18. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    NASA Astrophysics Data System (ADS)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  19. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa.

    PubMed

    Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R

    2003-01-24

    A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.

  20. Variation in the excitability of developed D. discoideum cells as a function of agar concentration in the substrate

    NASA Astrophysics Data System (ADS)

    Oikawa, Noriko; Bae, Albert; Amselem, Gabriel; Bodenschatz, Eberhard

    2010-03-01

    In the absence of nutrients, Dictyostelium discoideum cells enter a developmental cycle--they signal each other, aggregate, and ultimately form fruiting bodies. During the signaling stage, the cells relay waves of cyclic adenosine 3',5' monophosphate (cAMP). We observed a transition from spiral to circular patterns in the signaling wave, depending on the agar concentration of the substrate. In this talk we will present the changes in the times for the onset of signaling and synchronization versus agar concentration, as measured by spectral entropy. We also will discuss the origin of these effects.

  1. Principles underlying the Fourth Power Nature of Structured Shock Waves

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  2. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the protons become superAlfvenic (above about 1 MeV/nucleon), they too can suffer transit-time acceleration by the fast mode waves and will receive an extra acceleration "kick." The basic overall objective of this 1 year effort was to construct a spatially-dependent version of this acceleration model and this has been realized.

  3. Band structure dynamics in indium wires

    NASA Astrophysics Data System (ADS)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  4. Cumulative Exposure to Neighborhood Context: Consequences for Health Transitions over the Adult Life Course

    PubMed Central

    Clarke, Philippa; Morenoff, Jeffrey; Debbink, Michelle; Golberstein, Ezra; Elliott, Michael R.; Lantz, Paula M.

    2012-01-01

    Over the last two decades, research has assessed the relationship between neighborhood socioeconomic factors and individual health. However, existing research is based almost exclusively on cross-sectional data, ignoring the complexity in health transitions that may be shaped by long term residential exposures. We address these limitations by specifying distinct health transitions over multiple waves of a 15 year study of American adults. We focus on transitions between a hierarchy of health states, (free from health problems, onset of health problems, and death), not just gradients in a single health indicator over time, and use a cumulative measure of exposure to neighborhoods over adulthood. We find that cumulative exposure to neighborhood disadvantage has significant effects on functional decline and mortality. Research ignoring a persons’ history of exposure to residential contexts over the life course runs the risk of underestimating the role of neighborhood disadvantage on health. PMID:24465068

  5. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  6. Tunable 0-π transition by interband coupling in iron-based superconductor Josephson junctions

    NASA Astrophysics Data System (ADS)

    Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.

    2016-01-01

    An extended four-component Bogoliubov-de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0-π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0-π transition is also presented. The 0-π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.

  7. Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Bei

    This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.

  8. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  9. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Becker, Daniel; Showman, Adam P.

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiationmore » exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day-night advection timescale, τ{sub adv}. Only because τ{sub adv} ∼ τ{sub vert} for hot Jupiters does the commonly assumed timescale comparison between τ{sub rad} and τ{sub adv} yield approximately correct predictions for the heat redistribution efficiency.« less

  11. On the Crest of a Wave: A Review of Wave Power Technology

    ERIC Educational Resources Information Center

    Harris, Fank

    2014-01-01

    The energy potentially available from waves around the coast of the UK far exceeds our domestic and industrial demands and yet, despite much research, numerous patent applications and several pilot schemes, the exploitation of waves for their energy largely remains in transition between development and commercialisation. This article examines the…

  12. No Flares from Gamma-Ray Burst Afterglow Blast Waves Encountering Sudden Circumburst Density Change

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; van Eerten, Hendrik; MacFadyen, Andrew

    2013-08-01

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  13. Primordial gravitational waves in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  14. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    NASA Technical Reports Server (NTRS)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  15. Transition to turbulence in plane channel flows

    NASA Technical Reports Server (NTRS)

    Biringen, S.

    1984-01-01

    Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.

  16. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  17. Electromagnetically-induced-absorption resonance with high contrast and narrow width in the Hanle configuration

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2014-12-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  18. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  19. Lesion contrast and detection using sonoelastographic shear velocity imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Parker, Kevin J.

    2007-03-01

    This paper assesses lesion contrast and detection using sonoelastographic shear velocity imaging. Shear wave interference patterns, termed crawling waves, for a two phase medium were simulated assuming plane wave conditions. Shear velocity estimates were computed using a spatial autocorrelation algorithm that operates in the direction of shear wave propagation for a given kernel size. Contrast was determined by analyzing shear velocity estimate transition between mediums. Experimental results were obtained using heterogeneous phantoms with spherical inclusions (5 or 10 mm in diameter) characterized by elevated shear velocities. Two vibration sources were applied to opposing phantom edges and scanned (orthogonal to shear wave propagation) with an ultrasound scanner equipped for sonoelastography. Demodulated data was saved and transferred to an external computer for processing shear velocity images. Simulation results demonstrate shear velocity transition between contrasting mediums is governed by both estimator kernel size and source vibration frequency. Experimental results from phantoms further indicates that decreasing estimator kernel size produces corresponding decrease in shear velocity estimate transition between background and inclusion material albeit with an increase in estimator noise. Overall, results demonstrate the ability to generate high contrast shear velocity images using sonoelastographic techniques and detect millimeter-sized lesions.

  20. Experimental studies on the stability and transition of 3-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Nitschke-Kowsky, P.

    1987-01-01

    Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.

  1. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO 6O 17

    NASA Astrophysics Data System (ADS)

    Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  2. Modeling dynamic beta-gamma polymorphic transition in Tin

    NASA Astrophysics Data System (ADS)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  3. Early Parenthood as a Link between Childhood Disadvantage and Adult Heart Problems: A Gender-Based Approach

    PubMed Central

    Lee, Chioun; Ryff, Carol D.

    2016-01-01

    Drawing on conceptual models of critical periods, major life transitions, and life pathways, we proposed that the life-course features of parenthood are important, but understudied, mechanisms for explaining possibly gendered heart-health outcomes. Using three waves from the Midlife in the U.S. Study (MIDUS), we investigated (a) gender differences in the timing of the transition to parenthood as a pathway linking childhood SES disadvantage to onset of heart problems and (b) life-course factors (which vary by gender) that link the timing of the transition to parenthood to adult heart problems. We found that individuals who were disadvantaged in childhood were more likely to have their first child as teenagers or in early young adulthood. For women only, an early transition to parenthood partially explained the association between childhood disadvantage and onset of heart problems. Furthermore, women who had their first child at younger ages, particularly in their teens, had lower rates of college graduation, more financial difficulties, higher levels of depressive symptoms, and greater risk of smoking and obesity in midlife. These factors partially accounted for the association between early parenthood and onset of heart problems in later life. Our findings underscore the significance of the timing of the transition to parenthood in specifying the associations between childhood disadvantage and adult heart problems. Various factors are involved, including low adult SES, psychological distress, and unhealthy lifestyles. PMID:27823815

  4. Observation and Control of Hamiltonian Chaos in Wave-particle Interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Elskens, Y.; Ruzzon, A.

    2010-11-01

    Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step. This contribution reviews : presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm. The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  5. Infragravity waves in the ocean as a source of acoustic-gravity waves in the atmosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, Nikolay A.; Godin, Oleg A.

    2013-04-01

    Infragravity waves (IGWs) are surface gravity waves in the ocean with periods longer than the longest periods (~30s) of wind-generated waves. IGWs propagate transoceanic distances with very little attenuation in deep water and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, ice shelves, the atmosphere, and the solid Earth. Here, we build on recent advances in understanding spectral and spatial variability of background infragravity waves in deep ocean to evaluate the IGW manifestations in the atmosphere. Water compressibility has a minor effect on IGWs. On the contrary, much larger compressibility and vertical extent of the atmosphere makes it necessary to treat IGW extension into the atmosphere as acoustic-gravity waves. There exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has surface waves in the atmosphere propagating horizontally along the ocean surface and prominent up to heights of the order of the wavelength. At lower frequencies, IGWs are leaky waves, which continuously radiate their energy into the upper atmosphere. The transition between the two regimes occurs at a frequency of the order of 3 mHz, with the exact value of the transition frequency being a function of the ocean depth, the direction of IGW propagation and the vertical profiles of temperature and wind velocity. The transition frequency decreases with increasing ocean depth. Using recently obtained semi-empirical model of power spectra the IGWs over varying bathymetry [Godin O. A., Zabotin N. A., Sheehan A. F., Yang Z., and Collins J. A. Power spectra of infragravity waves in a deep ocean, Geophys. Res. Lett., under review (2012)], we derive an estimate of the flux of the mechanical energy from the deep ocean into the atmosphere due to IGWs. Significance will be discussed of the IGW contributions into the field of acoustic-gravity waves in the atmosphere.

  6. Temporal Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland

    NASA Astrophysics Data System (ADS)

    Barton, Yannick; Giannakaki, Paraskevi; Von Waldow, Harald; Chevalier, Clément; Pfhal, Stephan; Martius, Olivia

    2017-04-01

    Temporal clustering of extreme precipitation events on subseasonal time scales is a form of compound extremes and is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. To analyze the clustering in the precipitation time series a modified version of Ripley's K function is used. It determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upperlevel breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.

  7. Mitotic waves in the early embryogenesis of Drosophila: Bistability traded for speed.

    PubMed

    Vergassola, Massimo; Deneke, Victoria E; Di Talia, Stefano

    2018-03-06

    Early embryogenesis of most metazoans is characterized by rapid and synchronous cleavage divisions. Chemical waves of Cdk1 activity were previously shown to spread across Drosophila embryos, and the underlying molecular processes were dissected. Here, we present the theory of the physical mechanisms that control Cdk1 waves in Drosophila The in vivo dynamics of Cdk1 are captured by a transiently bistable reaction-diffusion model, where time-dependent reaction terms account for the growing level of cyclins and Cdk1 activation across the cell cycle. We identify two distinct regimes. The first one is observed in mutants of the mitotic switch. There, waves are triggered by the classical mechanism of a stable state invading a metastable one. Conversely, waves in wild type reflect a transient phase that preserves the Cdk1 spatial gradients while the overall level of Cdk1 activity is swept upward by the time-dependent reaction terms. This unique mechanism generates a wave-like spreading that differs from bistable waves for its dependence on dynamic parameters and its faster speed. Namely, the speed of "sweep" waves strikingly decreases as the strength of the reaction terms increases and scales as the powers 3/4, -1/2, and 7/12 of Cdk1 molecular diffusivity, noise amplitude, and rate of increase of Cdk1 activity in the cell-cycle S phase, respectively. Theoretical predictions are supported by numerical simulations and experiments that couple quantitative measurements of Cdk1 activity and genetic perturbations of the accumulation rate of cyclins. Finally, our analysis bears upon the inhibition required to suppress Cdk1 waves at the cell-cycle pause for the maternal-to-zygotic transition.

  8. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  9. An analysis of waves in stochastic layered media using a transition matrix method

    NASA Astrophysics Data System (ADS)

    Kotulski, Zbigniew

    This thesis is the result of several years of work by the author. The research was also the basis for several publications from 1989 to 1992 on wave propagation in randomly structured layered media. At the time the author was employed at the Institute of Basic Problems of Technology of the Polish Academy of Sciences in Warsaw, where he worked as a member of a team led by Professor Kazimierz Sobczyk. He also spent a year at the Institute of Applied Mathematics at Heidelburg University on a research stipend from the Humboldt Foundation and worked with Professor Herman Rost. In writing the last publication used in the thesis, the author also received financial support from the Scientific Research Committee under Individual Grant No 3 0941 91 01 entitled 'Wave Impulses in Structural Members with Random Properties'.

  10. Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-03-21

    A narrowband, time-asymmetric probe pulse is introduced into the hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering (fs/ps RCARS) technique to provide accurate and precise single-shot, high-repetition-rate gas-phase thermometric measurements. This narrowband pulse-generated by inserting a Fabry-Pérot étalon into the probe-pulse beam path-enables frequency-domain detection of pure-rotational transitions. The unique time-asymmetric nature of this pulse, in turn, allows for detection of resonant Raman-active rotational transitions free of signal contamination by nonresonant four-wave-mixing processes while still allowing detection at short probe-pulse delays, where collisional dephasing processes are negligible. We demonstrate that this approach provides excellent single-shot thermometric accuracy (<1% error) and precision (~2.5%) in gas-phase environments. © 2012 American Institute of Physics

  11. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  12. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-01

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  13. High-Speed, High-Resolution Time-to-Digital Conversion

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor; Garcia, Rafael

    2013-01-01

    This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.

  14. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  15. Building destruction from waves and surge on the bolivar peninsula during hurricane ike

    USGS Publications Warehouse

    Kennedy, A.; Rogers, S.; Sallenger, A.; Gravois, U.; Zachry, B.; Dosa, M.; Zarama, F.

    2011-01-01

    The Bolivar Peninsula in Texas was severely impacted by Hurricane Ike with strong winds, large waves, widespread inundation, and severe damage. This paper examines the wave and surge climate on Bolivar during the storm and the consequent survival and destruction of buildings. Emphasis is placed on differences between buildings that survived (with varying degrees of damage) and buildings that were completely destroyed. Building elevations are found to be the primary indicator of survival for areas with large waves. Here, buildings that were sufficiently elevated above waves and surge suffered relatively little structural damage, while houses at lower elevations were impacted by large waves and generally completely destroyed. In many areas, the transition from destruction to survival was over a very small elevation range of around 0.5 m. In areas where waves were smaller, survival was possible at much lower elevations. Higher houses that were not inundated still survived, but well-built houses at lower elevations could also survive as the waves were not large enough to cause structural damage. However, the transition height where waves became damaging could not be determined from this study. ?? 2011 American Society of Civil Engineers.

  16. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as well. Azimuthal anisotropy in the transition zone could result from tilted laminated structures, or from the LPO of wadsleyite and hydrous ringwoodite. Anhydrous ringwoodite is mostly isotropic, but it becomes more anisotropic in the presence of water [Kavner, 2003]. The presence of significant seismic anisotropy in the lower transition zone may thus indicate the presence of OH--bearing minerals. This would be consistent with the observed high solubility of water in ringwoodite and wadsleyite, and the hypothesis that the transition zone is a water reservoir. In addition, at most locations the fast azimuth of propagation for Vsv forms approximately a 90° angle in the transition zone with the fast direction found at shallower depths. Assuming that LPO causes the anisotropy and that seismic fast directions are a proxy for flow direction in the transition zone, this angle change combined with mineral physics data could help us infer mantle convective pattern. The robustness of this feature is, however, currently difficult to assess as Love wave overtones are unable to reliably constrain 2Ψ anisotropy at shallow depths. The inclusion of Rayleigh wave fundamental mode data in future work will help resolve that issue.

  17. Gravitational wave signals of electroweak phase transition triggered by dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Wei; Guo, Huai-Ke; Shu, Jing, E-mail: chaowei@bnu.edu.cn, E-mail: ghk@itp.ac.cn, E-mail: jshu@itp.ac.cn

    We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgsmore » boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.« less

  18. Gravitational wave signals of electroweak phase transition triggered by dark matter

    NASA Astrophysics Data System (ADS)

    Chao, Wei; Guo, Huai-Ke; Shu, Jing

    2017-09-01

    We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgs boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.

  19. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  20. Modeling resting-state functional networks when the cortex falls asleep: local and global changes.

    PubMed

    Deco, Gustavo; Hagmann, Patric; Hudetz, Anthony G; Tononi, Giulio

    2014-12-01

    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    PubMed

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  2. Inertial Wave Turbulence Driven by Elliptical Instability.

    PubMed

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J; Le Bars, Michael

    2017-07-21

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  3. Inertial Wave Turbulence Driven by Elliptical Instability

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J.; Le Bars, Michael

    2017-07-01

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  4. Identifying the chiral d-wave superconductivity by Josephson φ0-states.

    PubMed

    Liu, Jun-Feng; Xu, Yong; Wang, Jun

    2017-03-07

    We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ 0 -junction state where the current-phase relation is shifted by a phase φ 0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ 0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ 0 -states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ 0 - junction, which is useful in superconducting electronics and superconducting quantum computation.

  5. Identifying the chiral d-wave superconductivity by Josephson φ0-states

    PubMed Central

    Liu, Jun-Feng; Xu, Yong; Wang, Jun

    2017-01-01

    We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation. PMID:28266582

  6. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  7. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  8. Instrumentation techniques for monitoring shock and detonation waves

    NASA Astrophysics Data System (ADS)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  9. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu

    2015-06-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  10. Generation of whistler-wave heated discharges with planar resonant RF networks.

    PubMed

    Guittienne, Ph; Howling, A A; Hollenstein, Ch

    2013-09-20

    Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.

  11. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves.

    PubMed

    van Velzen, Marit H N; Loeve, Arjo J; Niehof, Sjoerd P; Mik, Egbert G

    2017-11-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW shape. PPG signals are sensitive to artefacts. Coughing or movement of the subject can affect PW shapes that much that the PWs become unsuitable for further analysis. The aim of this study was to develop an algorithm that automatically and objectively eliminates unsuitable PWs. In order to develop a proper algorithm for eliminating unsuitable PWs, a literature study was conducted. Next, a '7Step PW-Filter' algorithm was developed that applies seven criteria to determine whether a PW matches the characteristics required to allow PTT calculation. To validate whether the '7Step PW-Filter' eliminates only and all unsuitable PWs, its elimination results were compared to the outcome of manual elimination of unsuitable PWs. The '7Step PW-Filter' had a sensitivity of 96.3% and a specificity of 99.3%. The overall accuracy of the '7Step PW-Filter' for detection of unsuitable PWs was 99.3%. Compared to manual elimination, using the '7Step PW-Filter' reduces PW elimination times from hours to minutes and helps to increase the validity, reliability and reproducibility of PTT data.

  12. Nitromethane ignition observed with embedded PDV optical fibers

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.

    For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.

  13. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  14. Numerical modeling of thermal refraction inliquids in the transient regime.

    PubMed

    Kovsh, D; Hagan, D; Van Stryland, E

    1999-04-12

    We present the results of modeling of nanosecond pulse propagation in optically absorbing liquid media. Acoustic and electromagnetic wave equations must be solved simultaneously to model refractive index changes due to thermal expansion and/or electrostriction, which are highly transient phenomena on a nanosecond time scale. Although we consider situations with cylindrical symmetry and where the paraxial approximation is valid, this is still a computation-intensive problem, as beam propagation through optically thick media must be modeled. We compare the full solution of the acoustic wave equation with the approximation of instantaneous expansion (steady-state solution) and hence determine the regimes of validity of this approximation. We also find that the refractive index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulsewidth and the acoustic transit time exceeds a factor of unity.

  15. Synchronization of construction, replenishment and leasing cycles with account of wave dynamics of innovation cycles in the construction and transport field

    NASA Astrophysics Data System (ADS)

    Alekseeva, Tatyana

    2017-10-01

    The article considers the contradictive nature of the basic cycles of the growth in construction, the core of which are construction cycles, replenishment cycles of the active part of fixed assets, innovation and investment cycles. All of the listed cycles objectively thwart the science and technology progress in construction. There are presented results of the study of finance leasing as an effective tool, that provides time reduction of the innovation replenishment cycle of the active part of fixed assets in construction. It takes into account the development and implementation terms of construction investment projects in order to timely support the innovation wave and enhance its efficiency in construction for a rapid transition of the construction investment complex and national economy to a new vector of growth.

  16. Transitional analysis of organic thin color filter layers in displays during baking process using multi-speckle diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Baek Sung; Hyung, Kyung Hee; Oh, Gwi Jeong; Jung, Hyun Wook

    2018-02-01

    The color filter (CF) is one of the key components for improving the performance of TV displays such as liquid crystal display (LCD) and white organic light emitting diodes (WOLED). The profile defects like undercut during the fine fabrication processes for CF layers are inevitably generated through the UV exposure and development processes, however, these can be controlled through the baking process. In order to resolve the profile defects of CF layers, in this study, the real-time dynamic changes of CF layers are monitored during the baking process by changing components such as polymeric binder and acrylate. The motion of pigment particles in CF layers during baking is quantitatively interpreted using multi-speckle diffusing wave spectroscopy (MSDWS), in terms of the autocorrelation function and the characteristic time of α-relaxation.

  17. Changes in developmental contexts as predictors of transitions in HIV-risk behaviors among young men who have sex with men (YMSM).

    PubMed

    Wong, Carolyn F; Schrager, Sheree M; Chou, Chih-Ping; Weiss, George; Kipke, Michele D

    2013-06-01

    Emerging adulthood is a transitional time often marked by instability in many areas of life, including residential status, work, school, and romantic relationships. The purpose of this study is to examine transitions in HIV-risk related behaviors among a cohort of ethnically-diverse young men who have sex with men (YMSM) and to reveal how changes in developmental contexts during emerging adulthood might be associated with these behavioral changes. Hidden Markov models were used to examine movement across different stages of behavioral risk-taking over time. Semi-annual surveys were administered across 2 years; analyses included those with at least three of the five waves of data. Results indicated substantial movement at the individual-level transitions. Additionally, high variability in sexual risk, alcohol misuse, and illicit drug-risk behaviors was predicted by age, ethnicity, and correlates of emerging adulthood, such as residential status, work, post-secondary school enrollment, and primary-relationship status. Findings provide evidence of great change in risky behaviors among YMSM during this pivotal time, particularly among those who actively experiment in varying levels of risk-taking. In order to prevent experimental behaviors from evolving into more serious risk, interventions must consider ways to assist YMSM to adjust to life changes brought on by emerging adulthood.

  18. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, Stephen Edmund

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN -, NCO - and NCS -. Transition state photoelectron spectra are presented for the following systems Br + HI, Clmore » + HI, F + HI, F + CH 30H,F + C 2H 5OH,F + OH and F + H 2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3P, 1D) + HF and F + H 2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made.« less

  19. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  20. Three-wave mixing in conjugated polymer solutions: Two-photon absorption in polydiacetylenes

    NASA Astrophysics Data System (ADS)

    Chance, R. R.; Shand, M. L.; Hogg, C.; Silbey, R.

    1980-10-01

    Three-wave-mixing spectroscopy is used to determine the dispersive and absorptive parts of a strongly allowed two-photon transition in a series of polydiacetylene solutions. The data analysis yields the energy, width, symmetry assignment, and oscillator strength for the two-photon transition. The data conclusively demonstrate that strong two-photon absorption is a fundamental property of the polydiacetylene backbone. The remarkably large two-photon absorption coefficients are explained by large oscillator strengths for both transitions involved in the two-photon absorption combined with strong one-photon resonance effects. The experimental results are shown to be consistent with a simple theoretical model for the energies and oscillator strengths of the one- and two-photon-allowed transitions.

  1. Ultrafast Terahertz Nonlinear Optics of Landau Level Transitions in a Monolayer Graphene

    NASA Astrophysics Data System (ADS)

    Yumoto, Go; Matsunaga, Ryusuke; Hibino, Hiroki; Shimano, Ryo

    2018-03-01

    We investigated the ultrafast terahertz (THz) nonlinearity in a monolayer graphene under the strong magnetic field using THz pump-THz probe spectroscopy. An ultrafast suppression of the Faraday rotation associated with inter-Landau level (LL) transitions is observed, reflecting the Dirac electron character of nonequidistant LLs with large transition dipole moments. A drastic modulation of electron distribution in LLs is induced by far off-resonant THz pulse excitation in the transparent region. Numerical simulation based on the density matrix formalism without rotating-wave approximation reproduces the experimental results. Our results indicate that the strong light-matter coupling regime is realized in graphene, with the Rabi frequency exceeding the carrier wave frequency and even the relevant energy scale of the inter-LL transition.

  2. Numerical Investigation of Three-dimensional Instability of Standing Waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  3. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 1.; Analysis Techniques and Methodology

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.

  4. Pressure-induced electronic topological transitions in the charge-density-wave material In 4 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhang; Song, Liyan; Shao, Xuecheng

    2017-08-01

    High-pressure in situ angle dispersive X-ray diffraction (ADXRD) measurements were performed on the charge-density-wave (CDW) material In4Se3 up to 48.8 GPa. Pressure-induced structural changes were observed at 7.0 and 34.2 GPa, respectively. Using the CALYPSO methodology, the first high-pressure phase was solved as an exotic Pca21 structure. The compressional behaviors of the initial Pnnm and the Pca21 phases were all determined. Combined with first-principle calculations, we find that, unexpectedly, the Pnnm phase probably experiences twice electronic topological transitions (ETTs), from the initial possible CDW state to a semimetallic state at about 2.3 GPa and then back to a possible CDWmore » state at around 3.5 GPa, which was uncovered for the first time in CDW systems. In the both possible CDW states, pressure provokes a decrease of band-gap. The observation of a bulk metallic state was ascribed to structural transition to the Pca21 phase. Besides, based on electronic band structure calculations, the thermoelectric property of the Pnnm phase under compression was discussed. Our results show that pressure play a dramatic role in tuning In4Se3's structure and transport properties.« less

  5. Survey of Coherent Approximately 1 Hz Waves in Mercury's Inner Magnetosphere from MESSENGER Observations

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Schriver, David; Solomon, Sean C.

    2012-01-01

    We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances.

  6. Investigation of the Presence of Charge Order in Magnetite by Measurement of the Sprin Wave Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron scattering results on magnetite (Fe{sub 3}O{sub 4}) show a large splitting in the acoustic spin wave branch, producing a 7 meV gap midway to the Brillouin zone boundary at q = (0,0,1/2) and {h_bar}{omega} = 43 meV. The splitting occurs below the Verwey transition temperature, where a metal-insulator transition occurs simultaneously with a structural transformation, supposedly caused by the charge ordering on the iron sublattice. The wavevector (0,0,1/2) corresponds to the superlattice peak in the low symmetry structure. The dependence of the magnetic superexchange on changes in the crystal structure and ionic configurations that occur below the Verweymore » transition affect the spin wave dispersion. To better understand the origin of the observed splitting, several Heisenberg models intended to reproduce the pair-wise variation of the magnetic superexchange arising from both small crystalline distortions and charge ordering were studied. None of the models studied predicts the observed splitting, whose origin may arise from charge-density wave formation or magnetoelastic coupling.« less

  7. Limiting majoron self-interactions from gravitational wave experiments

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    We show how majoron models may be tested/limited in gravitational wave experiments. In particular, the majoron self-interaction potential may induce a first order phase transition, producing gravitational waves from bubble collisions. We dub such a new scenario the violent majoron model, because it would be associated with a violent phase transition in the early Universe. Sphaleron constraints can be avoided if the global U{(1)}B-L is broken at scales lower than the electroweak scale, provided that the B-L spontaneously breaking scale is lower than 10 TeV in order to satisfy the cosmological mass density bound. The possibility of a sub-electroweak phase transition is practically unconstrained by cosmological bounds and it may be detected within the sensitivity of the next generation of gravitational wave experiments: eLISA, DECIGO and BBO. We also comment on its possible detection in the next generation of electron-positron colliders, where majoron production can be observed from the Higgs portals in missing transverse energy channels. Supported by the Shanghai Municipality, through the grant No. KBH1512299, and by Fudan University, through the grant No. JJH1512105

  8. Numerical assessment and comparison of pulse wave velocity methods aiming at measuring aortic stiffness.

    PubMed

    Obeid, Hasan; Soulat, Gilles; Mousseaux, Elie; Laurent, Stéphane; Stergiopulos, Nikos; Boutouyrie, Pierre; Segers, Patrick

    2017-10-31

    Pulse waveform analyses have become established components of cardiovascular research. Recently several methods have been proposed as tools to measure aortic pulse wave velocity (aPWV). The carotid-femoral pulse wave velocity (cf-PWV), the current clinical gold standard method for the noninvasive assessment of aPWV, uses the carotid-to-femoral pulse transit time difference (cf-PTT) and an estimated path length to derive cf-PWV. The heart-ankle PWV (ha-PWV), brachial-ankle PWV (ba-PWV) and finger-toe (ft-PWV) are also methods presuming to approximate aPWV based on time delays between physiological cardiovascular signals at two locations (~heart-ankle PTT, ha-PTT; ~brachial-ankle PTT, ba-PTT; ~finger-toe PTT, ft-PTT) and a path length typically derived from the subject's height. To test the validity of these methods, we used a detailed 1D arterial network model (143 arterial segments) including the foot and hand circulation. The arterial tree dimensions and properties were taken from the literature and completed with data from patient scans. We calculated PTTs with all the methods mentioned above. The calculated PTTs were compared with the aortic PTT (aPTT), which is considered as the absolute reference method in this study. The correlation between methods and aPTT was good and significant, cf-PTT (R 2   =  0.97; P  <  0.001; mean difference 5  ±  2 ms), ha-PTT (R 2   =  0.96; P  <  0.001; 150  ±  23 ms), ba-PTT (R 2   =  0.96; P  <  0.001; 70  ±  13 ms) and ft-PTT (R 2   =  0.95; P  <  0.001; 14  ±  10 ms). Consequently, good correlation was also observed for the PWV values derived with the tested methods, but absolute values differed because of the different path lengths used. In conclusion, our computer model-based analyses demonstrate that for PWV methods based on peripheral signals, pulse transit time differences closely correlate with the aortic transit time, supporting the use of these methods in clinical practice.

  9. Wave Impact on a Wall: Comparison of Experiments with Similarity Solutions

    NASA Astrophysics Data System (ADS)

    Wang, A.; Duncan, J. H.; Lathrop, D. P.

    2014-11-01

    The impact of a steep water wave on a fixed partially submerged cube is studied with experiments and theory. The temporal evolution of the water surface profile upstream of the front face of the cube in its center plane is measured with a cinematic laser-induced fluorescence technique using frame rates up to 4,500 Hz. For a small range of cube positions, the surface profiles are found to form a nearly circular arc with upward curvature between the front face of the cube and a point just downstream of the wave crest. As the crest approaches the cube, the effective radius of this portion of the profile decreases rapidly. At the same time, the portion of the profile that is upstream of the crest approaches a straight line with a downward slope of about 15°. As the wave impact continues, the circular arc shrinks to zero radius with very high acceleration and a sudden transition to a high-speed vertical jet occurs. This flow singularity is modeled with a power-law scaling in time, which is used to create a time-independent system of equations of motion. The scaled governing equations are solved numerically and the similarly scaled measured free surface shapes, are favorably compared with the solutions. The support of the Office of Naval Research is gratefully acknowledged.

  10. Nonlinear ghost waves accelerate the progression of high-grade brain tumors

    NASA Astrophysics Data System (ADS)

    Pardo, Rosa; Martínez-González, Alicia; Pérez-García, Víctor M.

    2016-10-01

    We study a reduced continuous model describing the evolution of high grade gliomas in response to hypoxic events through the interplay of different cellular phenotypes. We show that hypoxic events, even when sporadic and/or limited in space, may have a crucial role on the acceleration of high grade gliomas growth. Our modeling approach is based on two cellular phenotypes. One of them is more migratory and a second one is more proliferative. Transitions between both phenotypes are driven by the local oxygen values, assumed in this simple model to be uniform. Surprisingly, even very localized in time hypoxia events leading to transient migratory populations have the potential to accelerate the tumor's invasion speed up to speeds close to those of the migratory phenotype. The high invasion speed persists for times much longer than the lifetime of the hypoxic event. Moreover, the phenomenon is observed both when the migratory cells form a persistent wave of cells located on the invasion front and when they form a evanescent "ghost" wave disappearing after a short time by decay to the more proliferative phenotype. Our findings are obtained through numerical simulations of the model equations both in 1D and higher dimensional scenarios. We also provide a deeper mathematical analysis of some aspects of the problem such as the conditions for the existence of persistent waves of cells with a more migratory phenotype.

  11. Laser control of electronic transitions of wave packet by using quadratically chirped pulses.

    PubMed

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-22

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.

  12. Laser control of electronic transitions of wave packet by using quadratically chirped pulses

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-01

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.

  13. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Lai, W.H.; Chung, K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The resultsmore » showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)« less

  14. Optical supercavitation in soft matter.

    PubMed

    Conti, C; DelRe, E

    2010-09-10

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  15. Optical Supercavitation in Soft Matter

    NASA Astrophysics Data System (ADS)

    Conti, C.; Delre, E.

    2010-09-01

    We investigate theoretically, numerically, and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At a sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.

  16. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  17. Direct observation of the lattice precursor of the metal-to-insulator transition in V2O3 thin films by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Kündel, J.; Pontiller, P.; Müller, C.; Obermeier, G.; Liu, Z.; Nateprov, A. A.; Hörner, A.; Wixforth, A.; Horn, S.; Tidecks, R.

    2013-03-01

    A surface acoustic wave (SAW) delay line is used to study the metal-to-insulator (MI) transition of V2O3 thin films deposited on a piezoelectric LiNbO3 substrate. Effects contributing to the sound velocity shift of the SAW which are caused by elastic properties of the lattice of the V2O3 films when changing the temperature are separated from those originating from the electrical conductivity. For this purpose the electric field accompanying the elastic wave of the SAW has been shielded by growing the V2O3 film on a thin metallic Cr interlayer (coated with Cr2O3), covering the piezoelectric substrate. Thus, the recently discovered lattice precursor of the MI transition can be directly observed in the experiments, and its fine structure can be investigated.

  18. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    DOE PAGES

    Artymowski, Michal; Lewicki, Marek; Wells, James D.

    2017-03-13

    Here, we consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wavemore » searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.« less

  19. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passot, T.; Sulem, P. L., E-mail: passot@oca.eu, E-mail: sulem@oca.eu

    A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocalmore » interactions, relevant in the case of steep spectra, are accounted for.« less

  1. From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave.

    PubMed

    Sanlı, Ceyda; Lohse, Detlef; van der Meer, Devaraj

    2014-05-01

    A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration ϕ, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low ϕ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high ϕ, in agreement with the experiment.

  2. Tidal waves in 102Pd: a rotating condensate of multiple d bosons.

    PubMed

    Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S

    2013-03-08

    Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.

  3. Travelling waves for a Frenkel-Kontorova chain

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Schwetlick, Hartmut; Zimmer, Johannes

    2017-08-01

    In this article, the Frenkel-Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of heteroclinic waves-making a transition from one well of the on-site potential to another-is proved by means of a Schauder fixed point argument. The setting developed here is general enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site potential. It is shown that the method can also establish the existence of two-transition waves for a piecewise quadratic on-site potential.

  4. A Study of the Irradiance- and Temperature-Dependence of Mid-Wave-Infrared (MWIR) Absorption in Indium Antimonide (InSb)

    DTIC Science & Technology

    2008-08-01

    Direct valence to conduction band transitions (constant k vector ), (B) Indirect valence to conduction band transitions aided by photon/phonon coupling...feilddt g g dk dk dE dxdk qE dt dt v d v dt→ = = = − h h 1 (2.7) and g dx v dt = , which means that feild dk qE dt = −h . In order to find the...x B k xΨ = + where A and B are variables that are solved, kx is the wave vector and x is the distance. For a realistic solution, the wave function

  5. Family Transitions in Cohabiting Families: a Longitudinal Investigation of the Role of Parent Depressive Symptoms in Youth Problem Behaviors.

    PubMed

    Parent, Justin; Peisch, Virginia D; Forehand, Rex; Golub, Andrew; Reid, Megan

    2017-05-01

    Cohabiting family structures are becoming increasingly prevalent in the United States but are less stable than married family unions. In this longitudinal study we examine the change in psychosocial adjustment of adolescents when a non-biologically related male cohabiting partner (MCP) transitions out of the family home. Of particular interest, the role of maternal and MCP depressive symptoms was examined as a moderator. At wave 1, the sample was comprised of 111 low-income urban Black families, consisting of an adolescent (42.3 % male; Mage = 13), a biological mother, and a non-biologically-related male cohabiting partner (MCP). Wave 2 and 3 assessments occurred over the course of the subsequent 29 months, with 38 % of MCPs transitioning out of the home. We used latent growth curve modeling to characterize trajectories of youth internalizing and externalizing symptom change across the 3 waves. Both maternal and MCP depressive symptoms interacted with whether a transition occurred, consistent with the notion that adolescent problem behaviors are shaped by the dynamic interplay of individual- and family-characteristics.

  6. Family Transitions in Cohabiting Families: A Longitudinal Investigation of the Role of Parent Depressive Symptoms in Youth Problem Behaviors

    PubMed Central

    Parent, Justin; Peisch, Virginia D.; Forehand, Rex; Golub, Andrew; Reid, Megan

    2018-01-01

    Cohabiting family structures are becoming increasingly prevalent in the United States but are less stable than married family unions. In this longitudinal study we examine the change in psychosocial adjustment of adolescents when a non-biologically related male cohabiting partner (MCP) transitions out of the family home. Of particular interest, the role of maternal and MCP depressive symptoms was examined as a moderator. At wave 1, the sample was comprised of 111 low-income urban Black families, consisting of an adolescent (42.3% male; Mage= 13), a biological mother, and a non-biologically-related male cohabiting partner (MCP). Wave 2 and 3 assessments occurred over the course of the subsequent 29 months, with 38% of MCPs transitioning out of the home. We used latent growth curve modeling to characterize trajectories of youth internalizing and externalizing symptom change across the 3 waves. Both maternal and MCP depressive symptoms interacted with whether a transition occurred, consistent with the notion that adolescent problem behaviors are shaped by the dynamic interplay of individual- and family-characteristics. PMID:27581704

  7. Marble Ageing Characterization by Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  8. Traveling waves and chaos in thermosolutal convection

    NASA Technical Reports Server (NTRS)

    Deane, A. E.; Toomre, J.; Knobloch, E.

    1987-01-01

    Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms and steady convection are investigated and compared with theory. Such rich nonlinear behavior is possible in fluid layers of wide horizontal extent, and provides an explanation for waves observed in recent laboratory experiments with binary fluid mixtures.

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Measurements of laser-induced shock waves in aluminium

    NASA Astrophysics Data System (ADS)

    Werdiger, M.; Arad, B.; Moshe, E.; Eliezer, S.

    1995-02-01

    A simple optical method for measurements of high-irradiance (3×1013 W cm-2) laser-induced shock waves is described. The shock wave velocity (~13 km s-1) was measured with an error not exceeding 5%. The laser-induced one-to-two-dimensional (1D-to-2D) shock wave transition was studied.

  10. FAST MAGNETOACOUSTIC WAVE TRAINS OF SAUSAGE SYMMETRY IN CYLINDRICAL WAVEGUIDES OF THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestov, S.; Kuzin, S.; Nakariakov, V. M., E-mail: sshestov@gmail.com

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation,more » with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.« less

  11. The extent to which path-integral models account for evanescent (tunneling) and complex (near-field) waves

    NASA Astrophysics Data System (ADS)

    Ranfagni, Anedio; Mugnai, Daniela; Cacciari, Ilaria

    2018-05-01

    The usefulness of a stochastic approach in determining time scales in tunneling processes (mainly, but not only, in the microwave range) is reconsidered and compared with a different approach to these kinds of processes, based on Feynman's transition elements. This latter method is found to be particularly suitable for interpreting situations in the near field, as results from some experimental cases considered here.

  12. Jobs Taken by Mothers Moving from Welfare to Work and the Effects of Minimum Wages on This Transition.

    ERIC Educational Resources Information Center

    Brandon, Peter D.

    The potential effects of raising the minimum wage on the earnings of mothers moving from welfare to work were examined by analyzing the differences that existed in the late 1980s in the various states' minimum wage rates and data from three waves of the Survey of Income and Program Participation for the years 1985-1990 (during which time 13 states…

  13. Emergence of topological semimetals in gap closing in semiconductors without inversion symmetry.

    PubMed

    Murakami, Shuichi; Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi

    2017-05-01

    A band gap for electronic states in crystals governs various properties of solids, such as transport, optical, and magnetic properties. Its estimation and control have been an important issue in solid-state physics. The band gap can be controlled externally by various parameters, such as pressure, atomic compositions, and external field. Sometimes, the gap even collapses by tuning some parameter. In the field of topological insulators, this closing of the gap at a time-reversal invariant momentum indicates a band inversion, that is, it leads to a topological phase transition from a normal insulator to a topological insulator. We show, through an exhaustive study on possible space groups, that the gap closing in inversion-asymmetric crystals is universal, in the sense that the gap closing always leads either to a Weyl semimetal or to a nodal-line semimetal. We consider three-dimensional spinful systems with time-reversal symmetry. The space group of the system and the wave vector at the gap closing uniquely determine which possibility occurs and where the gap-closing points or lines lie in the wave vector space after the closing of the gap. In particular, we show that an insulator-to-insulator transition never happens, which is in sharp contrast to inversion-symmetric systems.

  14. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows towardmore » Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.« less

  15. On the dynamics of the world demographic transition and financial-economic crises forecasts

    NASA Astrophysics Data System (ADS)

    Akaev, A.; Sadovnichy, V.; Korotayev, A.

    2012-05-01

    The article considers dynamic processes involving non-linear power-law behavior in such apparently diverse spheres, as demographic dynamics and dynamics of prices of highly liquid commodities such as oil and gold. All the respective variables exhibit features of explosive growth containing precursors indicating approaching phase transitions/catastrophes/crises. The first part of the article analyzes mathematical models of demographic dynamics that describe various scenarios of demographic development in the post-phase-transition period, including a model that takes the limitedness of the Earth carrying capacity into account. This model points to a critical point in the early 2050s, when the world population, after reaching its maximum value may decrease afterward stabilizing then at a certain stationary level. The article presents an analysis of the influence of the demographic transition (directly connected with the hyperexponential growth of the world population) on the global socioeconomic and geopolitical development. The second part deals with the phenomenon of explosive growth of prices of such highly liquid commodities as oil and gold. It is demonstrated that at present the respective processes could be regarded as precursors of waves of the global financial-economic crisis that will demand the change of the current global economic and political system. It is also shown that the moments of the start of the first and second waves of the current global crisis could have been forecasted with a model of accelerating log-periodic fluctuations superimposed over a power-law trend with a finite singularity developed by Didier Sornette and collaborators. With respect to the oil prices, it is shown that it was possible to forecast the 2008 crisis with a precision up to a month already in 2007. The gold price dynamics was used to calculate the possible time of the start of the second wave of the global crisis (July-August 2011); note that this forecast has turned out to be quite correct.

  16. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  17. Time-varying coupling functions: Dynamical inference and cause of synchronization transitions

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav

    2017-02-01

    Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.

  18. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  19. Transient, but not persistent, adult food insecurity influences toddler development.

    PubMed

    Hernandez, Daphne C; Jacknowitz, Alison

    2009-08-01

    In this study, we examined characteristics associated with experiencing persistent and transitional adult food insecurity and how persistent and transitional adult food insecurity influences toddler cognitive and motor development, along with toddler's weight and health status. Using the first 2 waves of the Early Childhood Longitudinal Study-Birth Cohort, 4 mutually exclusive variables capturing persistent and transitional adult food insecurity were created to capture those adults that experience adult food insecurity in the following: both waves, in 1 wave (at 9 or 24 mo after birth), and never experience food insecurity. We used logistic regression models to estimate characteristics associated with the likelihood of experiencing persistent and transitional adult food insecurity. Ordinary least squares regression models were used to estimate how persistent and transitional adult food insecurity influences toddler development. Similar factors influenced one's likelihood of experiencing adult transitional and persistent food insecurity; individuals who experienced any food insecurity were more economically disadvantaged. Thus, outreach efforts do not need to vary by duration of food insecurity. Whereas negative effects of food insecurity on school-aged children are found in the literature, it appears toddlers are buffered from the effects of persistent adult food insecurity. Our findings suggest that toddlers residing with a temporarily food-insecure adult compared with a never food-insecure adult experienced immediate, but small, negative effects on their development. Hence, outreach and assistance may lessen immediate impacts of food insecurity on toddler development.

  20. V-T theory for the self-intermediate scattering function in a monatomic liquid

    NASA Astrophysics Data System (ADS)

    Wallace, Duane C.; Chisolm, Eric D.; De Lorenzi-Venneri, Giulia

    2017-02-01

    In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory.

  1. Fast-timing lifetime measurements of excited states in Cu67

    NASA Astrophysics Data System (ADS)

    NiÅ£ǎ, C. R.; Bucurescu, D.; Mǎrginean, N.; Avrigeanu, M.; Bocchi, G.; Bottoni, S.; Bracco, A.; Bruce, A. M.; Cǎta-Danil, G.; Coló, G.; Deleanu, D.; Filipescu, D.; GhiÅ£ǎ, D. G.; Glodariu, T.; Leoni, S.; Mihai, C.; Mason, P. J. R.; Mǎrginean, R.; Negret, A.; Pantelicǎ, D.; Podolyak, Z.; Regan, P. H.; Sava, T.; Stroe, L.; Toma, S.; Ur, C. A.; Wilson, E.

    2014-06-01

    The half-lives of the 9/2+, 13/2+, and 15/2+ yrast states in the neutron-rich Cu67 nucleus were determined by using the in-beam fast-timing technique. The experimentally deduced E3 transition strength for the decay of the 9/2+ level to the 3/2- ground state indicates that the wave function of this level might contain a collective component arising from the coupling of the odd proton p3/2 with the 3- state in Ni66. Theoretical interpretations of the 9/2+ state are presented within the particle-vibration weak-coupling scheme involving the unpaired proton and the 3- state from Ni66 and within shell-model calculations with a Ni56 core using the jj44b residual interaction. The shell model also accounts reasonably well for the other measured electromagnetic transition probabilities.

  2. Observation of Hamiltonian chaos and its control in wave particle interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Macor, A.; Aïssi, A.

    2007-12-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  3. Mantle transition zone structure beneath Tanzania, east Africa

    NASA Astrophysics Data System (ADS)

    Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.

    2000-03-01

    We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition zone beneath Tanzania. The transition zone under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition zone thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S wave velocities. The thinning of the transition zone, as well as the reduction in S wave velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.

  4. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona

    USGS Publications Warehouse

    Parsons, Thomas E.; Howie, John M.; Thompson, George A.

    1992-01-01

    We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that most xenoliths in eruptive basalts of the Transition Zone are of mafic igneous composition, (2) indications that a pulse of magmatic activity crossed the Transition Zone in the late Tertiary period, and (3) the high regional heat flow observed in the Transition Zone. The apparent presence of fluids near the base of the reflective zone may indicate a partially molten intrusion. We present a mechanism by which magma can be trapped and be induced to intrude horizontally at rheologic contrasts in extending crust.

  5. The dissipation of electromagnetic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Basov, N. G.

    The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.

  6. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.

    PubMed

    Haghighi Mood, Kaveh; Lüchow, Arne

    2017-08-17

    Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.

  7. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  8. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  9. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Russo, R. M.

    2016-12-01

    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.

  10. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.

    PubMed

    Sengupta, T K; Bhaumik, S; Bhumkar, Y G

    2012-02-01

    Deterministic route to turbulence creation in 2D wall boundary layer is shown here by solving full Navier-Stokes equation by dispersion relation preserving (DRP) numerical methods for flow over a flat plate excited by wall and free stream excitations. Present results show the transition caused by wall excitation is predominantly due to nonlinear growth of the spatiotemporal wave front, even in the presence of Tollmien-Schlichting (TS) waves. The existence and linear mechanism of creating the spatiotemporal wave front was established in Sengupta, Rao and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] via the solution of Orr-Sommerfeld equation. Effects of spatiotemporal front(s) in the nonlinear phase of disturbance evolution have been documented by Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a flow is taken from the receptivity stage to the fully developed 2D turbulent state exhibiting a k(-3) energy spectrum by solving the Navier-Stokes equation without any artifice. The details of this mechanism are presented here for the first time, along with another problem of forced excitation of the boundary layer by convecting free stream vortices. Thus, the excitations considered here are for a zero pressure gradient (ZPG) boundary layer by (i) monochromatic time-harmonic wall excitation and (ii) free stream excitation by convecting train of vortices at a constant height. The latter case demonstrates neither monochromatic TS wave, nor the spatiotemporal wave front, yet both the cases eventually show the presence of k(-3) energy spectrum, which has been shown experimentally for atmospheric dynamics in Nastrom, Gage and Jasperson [Nature 310, 36 (1984)]. Transition by a nonlinear mechanism of the Navier-Stokes equation leading to k(-3) energy spectrum in the inertial subrange is the typical characteristic feature of all 2D turbulent flows. Reproduction of the spectrum noted in atmospheric data (showing dominance of the k(-3) spectrum over the k(-5/3) spectrum in Nastrom et al.) in laboratory scale indicates universality of this spectrum for all 2D turbulent flows. Creation of universal features of 2D turbulence by a deterministic route has been established here for the first time by solving the Navier-Stokes equation without any modeling, as has been reported earlier in the literature by other researchers.

  11. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.

  12. Rapid intensity and velocity variations in solar transition region lines

    NASA Astrophysics Data System (ADS)

    Hansteen, V. H.; Betta, R.; Carlsson, M.

    2000-08-01

    We have obtained short exposure (3 s) time series of strong upper chromospheric and transition region emission lines from the quiet Sun with the SUMER instrument onboard SOHO during two 1 hour periods in 1996. With a Nyqvist frequency of 167 mHz and relatively high count rates the dataset is uniquely suited for searching for high frequency variations in intensity and Doppler velocity. From Monte-Carlo experiments taking into account the photon-counting statistics we estimate our detection limit to correspond to a wave-packet of four periods coherent over 3'' with a Doppler-shift amplitude of 2.5km s-1 in the darkest internetwork areas observed in C III. In the network the detection limit is estimated to be 1.5km s-1. Above 50 mHz we detect wave-packet amplitudes above 3km s-1 less than 0.5% of the time. Between 20 and 50 mHz we detect some wave-packets with a typical duration of four periods and amplitudes up to 8km s-1. At any given internetwork location these wave-packets are present 1% of the time. In the 10-20 mHz range we see amplitudes above 3km s-1 12% of the time. At lower frequencies our dataset is consistent with other SUMER datasets reported in the literature. The chromospheric 3-7 mHz signal is discernible in the line emission. In the internetwork this is the dominant oscillation frequency but higher frequencies (7-10 mHz) are often present and appear coherent in Doppler velocity over large spatial regions (≍ 40"). Wavelet analysis implies that these oscillations have typical durations of 1000s. The network emission also shows a 5 mHz signal but is dominated by low frequency variations (of < 4 mHz) in both intensity and velocity. The oscillations show less power in intensity than in velocity. We find that while both red and blue shifted emission is observed, the transition region lines are on average red shifted between 5-10km s-1 in the network. A net red shift is also found in the internetwork emission but it is smaller (< 4km s-1). The line widths do not differ much between the internetwork and network, the non-thermal line widths increase with increasing temperature of line formation from 30km s-1 for the C II 1334 Å line to 45km s-1 for the O VI 1032 Å line. By constructing scatterplots of velocity versus intensity we find that in the network a mean redshift is correlated with a high mean intensity. In the internetwork regions we do not find any correlation between the intensity and the Doppler velocity.

  13. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  14. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".

  15. Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum Monte Carlo method.

    PubMed

    Wang, Lei; Troyer, Matthias

    2014-09-12

    We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.

  16. Seismic Migration Imaging of the Mantle Transition Zone Beneath Continental US with Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Schmandt, B.

    2017-12-01

    The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.

  17. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.

    2008-03-01

    High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  18. Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Jabri, A.; Van, V.; Nguyen, H. V. L.; Mouhib, H.; Kwabia Tchana, F.; Manceron, L.; Stahl, W.; Kleiner, I.

    2016-05-01

    Context. Dimethyl sulfide, CH3SCH3 (DMS), is a nonrigid, sulfur-containing molecule whose astronomical detection is considered to be possible in the interstellar medium. Very accurate spectroscopic constants were obtained by a laboratory analysis of rotational microwave and millimeter wave spectra, as well as rotation-torsional far-infrared (FIR) spectra, which can be used to predict transition frequencies for a detection in interstellar sources. Aims: This work aims at the experimental study and theoretical analysis of the ground torsional state and ground torsional band ν15 of DMS in a large spectral range for astrophysical use. Methods: The microwave spectrum was measured in the frequency range 2-40 GHz using two Molecular Beam Fourier Transform MicroWave (MB-FTMW) spectrometers in Aachen, Germany. The millimeter spectrum was recorded in the 50-110 GHz range. The FIR spectrum was measured for the first time at high resolution using the FT spectrometer and the newly built cryogenic cell at the French synchrotron SOLEIL. Results: DMS has two equivalent methyl internal rotors with a barrier height of about 730 cm-1. We performed a fit, using the XIAM and BELGI-Cs-2Tops codes, that contained the new measurements and previous transitions reported in the literature for the ground torsional state νt = 0 (including the four torsional species AA, AE, EA and EE) and for the ground torsional band ν15 = 1 ← 0 (including only the AA species). In the microwave region, we analyzed 584 transitions with J ≤ 30 of the ground torsional state νt = 0 and 18 transitions with J ≤ 5 of the first excited torsional state νt = 1. In the FIR range, 578 transitions belonging to the torsional band ν15 = 1 ← 0 with J ≤ 27 were assigned. Totally, 1180 transitions were included in a global fit with 21 accurately determined parameters. These parameters can be used to produce a reliable line-list for an astrophysical detection of DMS. Full Tables B.1 and C.1, and Table E.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A127

  19. Azimuthal hotwire measurements in a transitional boundary layer on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2012-11-01

    Hotwire measurements of second-mode instability waves and the early stages of nonlinear interaction are conducted on a sharp-tipped, 5°-half-angle flared cone at zero angle of attack in a low-disturbance Mach 6 wind tunnel at Re = 10 ×106 m-1. Profiles of mean and fluctuating mass flux are acquired at several axial stations along the cone with a bandwidth of over 300 kHz. Frequencies and relative amplitude growth of second-mode instability waves are characterized and compared with nonlinear parabolized stability (NPSE) computations. Additionally, an azimuthal probe-traversing mechanism is used to investigate the character of the nonlinear stages of transition occurring near the base of the cone. Recent Direct Numerical Simulations (DNS) of a sharp cone at Mach 6 have shown that a fundamental resonance (or Klebanoff-type) breakdown mechanism can arise in the late stages of transition, wherein a pair of oblique waves nonlinearly interacts with the dominant two-dimensional wave to create an azimuthal modulation in the form of Λ-vortex structures and streamwise streaks. The azimuthal measurements will identify periodicity qualitatively consistent with these computations and with ``hot streaks'' observed in temperature sensitive paints at Purdue. AFOSR/NASA National Center for Hypersonic Laminar-Turbulent Transition Research, Grant FA9550-09-1-0341.

  20. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    PubMed

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

Top