Sample records for wave velocity structures

  1. Teleseismic surface wave study of S-wave velocity structure in Southern California

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2002-12-01

    We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.

  2. The exploration technology and application of sea surface wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2016-12-01

    In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.

  3. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Zhang, H.; Maceira, M.

    2017-10-01

    We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.

  4. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE PAGES

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    2017-07-11

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  5. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  6. Study on evaluation methods for Rayleigh wave dispersion characteristic

    USGS Publications Warehouse

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  7. Three-Dimensional Velocity Structure in Southern California from Teleseismic Surface Waves and Body Waves.

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2003-12-01

    Analysis of teleseismic waves generated by large earthquakes worldwide across the Southern California TriNet Seismic Broadband Array has yielded high quality measurements of both surface waves and body waves. Rayleigh waves and Love waves were previously analyzed using a spectral fitting technique (Tanimoto. and Prindle-Sheldrake, GRL 2002; Prindle-Sheldrake and Tanimoto, submitted to JGR), producing a three-dimensional S-wave velocity structure. Features in our velocity structure show some regional contrasts with respect to the starting model (SCEC 2.2), which has detailed crustal structure, but laterally homogeneous upper mantle structure. The most prominent of which is a postulated fast velocity anomaly located west of the Western Transverse Ranges that could be related to a rotated remnant plate from Farallon subduction. Analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Recent advances in our velocity structure focus on accommodation of finite frequency effect, and the addition of body waves to the data. Thus far, 118 events have been analyzed for body waves. A simple geometrical approach is used to represent the finite frequency effect in phase velocity maps. Due to concerns that, for seismic phases between 10-100 seconds, structure away from the ray theoretical is also sampled by a propagating surface wave, we have adopted a technique which examines a normal mode formula in its asymptotic limit (Tanimoto, GRL 2003 in press). An ellipse, based on both distance from source to receiver and wavelength, can be used to approximate the effect on the structure along the ray path and adjacent structure. Three models were tested in order to select the appropriate distribution within the ellipse; the first case gives equal weight to all blocks within the ellipse; case 2 incorporates a Gaussian function which falls off perpendicular to the ray path, allowing the amplitude to peak at the receiver; case 3 is the same as case 2, yet removes the effect of the peak at the receiver. A major improvement is that the locale under consideration has expanded due to the effect of ray paths spreading over a larger area than the ray theoretical. Comparison of the three techniques yields very similar results, and all techniques show an exceptional correlation to the ray theoretical phase velocity maps. After analyzing our data in terms of the finite frequency effect, we find that little change has occurred as a result of employing this technique other than expanding our region of study. P-wave measurements were obtained from the data set for 118 events. Preliminary results show systematic patterns. We have successfully measured 30 S-wave events which we plan to incorporate into our velocity structure. Our goal is to proceed with a joint inversion of P-waves, S-waves and Surface waves for a collective Southern California velocity structure.

  8. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    NASA Astrophysics Data System (ADS)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the frequency range of 0.25-1 Hz. First-higher mode Love-waves are similarly slower than first-higher mode Rayleigh waves. This is incompatible with synthetic dispersion curves we calculate using isotropic, layered velocity models appropriate for Ruapehu and Tongariro, in which Love waves travel more quickly than Rayleigh waves of the same period. The Love-Rayleigh discrepancy is likely due to structures such as dykes or cracks in the vertical plane having increased influence on surface-wave propagation. However, several measurements at Ruapehu have Love-wave group velocities that are faster than Rayleigh-wave group velocities. The differences between the Love- and Rayleigh-wave dispersion curves also vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Significant azimuthal dependence of both Love and Rayleigh-wave velocities are also observed. This suggests azimuthal anisotropy within the volcanic structures, which coupled with radial anisotropy, makes the Vs structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic or lower order symmetry. We suggest that further work to determine three-dimensional volcanic structures should include provisions for such anisotropy.

  9. Research on the middle-of-receiver-spread assumption of the MASW method

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2009-01-01

    The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread. ?? 2008 Elsevier Ltd. All rights reserved.

  10. Site-effect estimations for Taipei Basin based on shallow S-wave velocity structures

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chi; Huang, Huey-Chu; Wu, Cheng-Feng

    2016-03-01

    Shallow S-wave velocities have been widely used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures of Taipei Basin, Taiwan were investigated using array records of microtremors at 15 sites (Huang et al., 2015). In this study, seven velocity structures are added to the database describing Taipei Basin. Validity of S-wave velocity structures are first examined using the 1D Haskell method and well-logging data at the Wuku Sewage Disposal Plant (WK) borehole site. Basically, the synthetic results match well with the observed data at different depths. Based on S-wave velocity structures at 22 sites, theoretical transfer functions at five different formations of the sedimentary basin are calculated. According to these results, predominant frequencies for these formations are estimated. If the S-wave velocity of the Tertiary basement is assumed to be 1000 m/s, the predominant frequencies of the Quaternary sediments are between 0.3 Hz (WUK) and 1.4 Hz (LEL) in Taipei Basin while the depths of sediments between 0 m (i.e. at the edge of the basin) and 616 m (i.e. site WUK) gradually increase from southeast to northwest. Our results show good agreement with available geological and geophysical information.

  11. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  12. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    NASA Astrophysics Data System (ADS)

    Adegbola, R. B.; Oyedele, K. F.; Adeoti, L.; Adeloye, A. B.

    2016-09-01

    We present a method that utilizes multichannel analysis of surface waves (MASW), which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D) structure reflective of the depth and surface wave velocity distribution within a depth of 0-15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  13. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    DTIC Science & Technology

    2010-09-01

    lithospheric velocity structure for a wide variety of tectonic regions throughout Eurasia and the Middle East. We expect the regionalized models will improve...constructed by combining the 1D joint inversion models within each tectonic region and validated through regional waveform modeling. The velocity models thus...important differences in lithospheric structure between the cratonic regions of Eastern Europe and the tectonic regions of Western Europe and the

  14. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    USGS Publications Warehouse

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high stress concentration. Our images also confirm the presence of high-velocity mantle at 100 km depth beneath areas of suspected mantle delamination (southern Sierra Nevada; Grande Ronde uplift), low velocity mantle underlying active rift zones, and high velocity mantle associated with the subducting Juan de Fuca plate. Structure established during the Proterozoic appears to exert a lasting influence on subsequent volcanism and tectonism up to the Present.

  15. Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Li, Peng; Thurber, Clifford

    2018-06-01

    We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.

  16. Crust structure beneath Jilin Province and Liaoning Province in China based on seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Pang, Guanghua; Feng, Jikun; Lin, Jun

    2016-11-01

    We imaged the crust structure beneath Jilin Province and Liaoning Province in China with fundamental mode Rayleigh waves recorded by 60 broadband stations deployed in the region. Surface-wave empirical Green's functions were retrieved from cross-correlations of inter-station data and phase velocity dispersions were measured using a frequency-time analysis method. Dispersion measurements were then utilized to construct 2D phase velocity maps for periods between 5 and 35 s. Subsequently, the phase-dispersion curves extracted from each cell of the 2D phase velocity maps were inverted to determine the 3D shear wave velocity structures of the crust. The phase velocity maps at different periods reflected the average velocity structures corresponding to different depth ranges. The maps in short periods, in particular, were in excellent agreement with known geological features of the surface. In addition to imaging shear wave velocity structures of the volcanoes, we show that obvious low-velocity anomalies imaged in the Changbaishan-Tianchi Volcano, the Longgang-Jinlongdingzi Volcano, and the system of the Dunmi Fault crossing the Jingbohu Volcano, all of which may be due to geothermal anomalies.

  17. A previously unreported type of seismic source in the firn layer of the East Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lough, Amanda C.; Barcheck, C. Grace; Wiens, Douglas A.; Nyblade, Andrew; Anandakrishnan, Sridhar

    2015-11-01

    We identify a unique type of seismic source in the uppermost part of the East Antarctic Ice Sheet recorded by temporary broadband seismic arrays in East Antarctica. These sources, termed "firnquakes," are characterized by dispersed surface wave trains with frequencies of 1-10 Hz detectable at distances up to 1000 km. Events show strong dispersed Rayleigh wave trains and an absence of observable body wave arrivals; most events also show weaker Love waves. Initial events were discovered by standard detection schemes; additional events were then detected with a correlation scanner using the initial arrivals as templates. We locate sources by determining the L2 misfit for a grid of potential source locations using Rayleigh wave arrival times and polarization directions. We then perform a multiple-filter analysis to calculate the Rayleigh wave group velocity dispersion and invert the group velocity for shear velocity structure. The resulting velocity structure is used as an input model to calculate synthetic seismograms. Inverting the dispersion curves yields ice velocity structures consistent with a low-velocity firn layer ~100 m thick and show that velocity structure is laterally variable. The absence of observable body wave phases and the relative amplitudes of Rayleigh waves and noise constrain the source depth to be less than 20 m. The presence of Love waves for most events suggests the source is not isotropic. We propose the events are linked to the formation of small crevasses in the firn, and several events correlate with shallow crevasse fields mapped in satellite imagery.

  18. Quantitative Evaluation of Delamination in Composites Using Lamb Waves

    NASA Astrophysics Data System (ADS)

    Michalcová, L.; Hron, R.

    2018-03-01

    Ultrasonic guided wave monitoring has become very popular in the area of structural health monitoring (SHM) of aerospace structures. Any possible type of damage must be reliably assessed. The paper deals with delamination length determination in DCB specimens using Lamb waves. An analytical equation based on the velocity dependence on variable thickness is utilized. The group velocity of the fundamental antisymmetric A0 mode rapidly changes in a particular range of the frequency-thickness product. Using the same actuation frequency the propagation velocity is different for delaminated structure. Lamb wave based delamination lengths were compared to the visually determined lengths. The method of the wave velocity determination proved to be essential. More accurate results were achieved by tracking the maximum amplitude of A0 mode than the first signal arrival. These findings are considered as the basis for the damage evaluation of complex structures.

  19. An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-07-01

    We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parametrization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  20. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  1. Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.

    2017-12-01

    Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.

  2. East African upper mantle shear wave velocity structure derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Mulibo, G.; Tugume, F.

    2011-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa is being developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset encompasses seismic stations which span Tanzania, Uganda and Zambia. From the new data, fundamental mode Rayleigh wave phase velocities are being measured at periods ranging from 20 to 180 seconds using the two-plane-wave method. These measurements will be combined with similarly processed measurements from previous studies and inverted for an upper mantle three-dimensional shear wave velocity model. In particular, the model will further constrain the morphology of the low velocity anomaly which underlies the East African Plateau extending to the southwest beneath Zambia.

  3. Subduction zone guided waves in Northern Chile

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate depths by dipping low velocity normal faults. Additionally, we show that the low velocity oceanic crust persists to depths of up to 200 km, well beyond the depth range where the eclogite transition is expected to have occurred. Our results suggest that young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.

  4. The use of the multiwavelet transform for the estimation of surface wave group and phase velocities and their associated uncertainties

    NASA Astrophysics Data System (ADS)

    Poppeliers, C.; Preston, L. A.

    2017-12-01

    Measurements of seismic surface wave dispersion can be used to infer the structure of the Earth's subsurface. Typically, to identify group- and phase-velocity, a series of narrow-band filters are applied to surface wave seismograms. Frequency dependent arrival times of surface waves can then be identified from the resulting suite of narrow band seismograms. The frequency-dependent velocity estimates are then inverted for subsurface velocity structure. However, this technique has no method to estimate the uncertainty of the measured surface wave velocities, and subsequently there is no estimate of uncertainty on, for example, tomographic results. For the work here, we explore using the multiwavelet transform (MWT) as an alternate method to estimate surface wave speeds. The MWT decomposes a signal similarly to the conventional filter bank technique, but with two primary advantages: 1) the time-frequency localization is optimized in regard to the time-frequency tradeoff, and 2) we can use the MWT to estimate the uncertainty of the resulting surface wave group- and phase-velocities. The uncertainties of the surface wave speed measurements can then be propagated into tomographic inversions to provide uncertainties of resolved Earth structure. As proof-of-concept, we apply our technique to four seismic ambient noise correlograms that were collected from the University of Nevada Reno seismic network near the Nevada National Security Site. We invert the estimated group- and phase-velocities, as well the uncertainties, for 1-D Earth structure for each station pair. These preliminary results generally agree with 1-D velocities that are obtained from inverting dispersion curves estimated from a conventional Gaussian filter bank.

  5. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  6. SH wave structure of the crust and upper mantle in southeastern margin of the Tibetan Plateau from teleseismic Love wave tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Jia, Ruizhi; Han, Fengqin; Chen, Anguo

    2018-06-01

    The deep structure of southeastern Tibet is important for determining lateral plateau expansion mechanisms, such as movement of rigid crustal blocks along large strike-slip faults, continuous deformation or the eastward crustal channel flow. We invert for 3-D isotropic SH wave velocity model of the crust and upper mantle to the depth of 110 km from Love wave phase velocity data using a best fitting average model as the starting model. The 3-D SH velocity model presented here is the first SH wave velocity structure in the study area. In the model, the Tibetan Plateau is characterized by prominent slow SH wave velocity with channel-like geometry along strike-slip faults in the upper crust and as broad zones in the lower crust, indicating block-like and distributed deformation at different depth. Positive radial anisotropy (VSH > VSV) is suggested by a high SH wave and low SV wave anomaly at the depths of 70-110 km beneath the northern Indochina block. This positive radial anisotropy could result from the horizontal alignment of anisotropic minerals caused by lithospheric extensional deformation due to the slab rollback of the Australian plate beneath the Sumatra trench.

  7. Interface waves in multilayered plates.

    PubMed

    Li, Bing; Li, Ming-Hang; Lu, Tong

    2018-04-01

    In this paper, the characteristic equation of interface waves in multilayered plates is derived. With a reasonable assumption undertaken for the potential functions of longitudinal and shear waves in the nth layer medium, the characteristic equation of interface waves in the N-layered plate is derived and presented in a determinant form. The particle displacement and stress components are further presented in explicit forms. The dispersion curves and wave structures of interface waves in both a three-layered Al-Steel-Ti and a four-layered Steel-Al-Steel-Ti plate are displayed subsequently. It is observed in dispersion curves that obvious dispersion occurs on the low frequency band, whereas the phase velocities converge to the corresponding true Stoneley wave mode velocities at high frequency, and the number of interface wave modes equals the number of interfaces in multilayered plates (if all individual interfaces satisfy the existence condition of Stoneley waves). The wave structures reveal that the displacement components of interface waves are relatively high at interfaces, and the amplitude distribution varies from frequency to frequency. In the end, a similarly structured three-layered Al-Steel-Ti plate is tested. In this experiment, theoretical group velocity and experimental group velocity are compared. According to the discussion and comparison, the predicted group velocities are in good agreement with the experimental results. Thus, the theory of interface wave in multilayered plates is proved. As a result, the proposed theoretical approach represents a leap forward in the understanding of how to promote the characteristic study and practical applications of interface waves in multilayered structures.

  8. Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Ma, Shutian; Motazedian, Dariush; Corchete, Victor

    2013-04-01

    Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh ( Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.

  9. Shear wave velocity model beneath CBJI station West Java, Indonesia from joint inversion of teleseismic receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto

    2018-03-01

    Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.

  10. Transdimensional inversion of scattered body waves for 1D S-wave velocity structure - Application to the Tengchong volcanic area, Southwestern China

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei

    2018-06-01

    Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.

  11. Influence of Aggregate Gradation on the Longitudinal Wave Velocity Changes in Unloaded Concrete

    NASA Astrophysics Data System (ADS)

    Teodorczyk, Michał

    2017-10-01

    Diagnosis is an important factor in the assessment of structural and operational condition of a concrete structure. Among diagnostic methods, non-destructive testing methods play a special role. Acoustic emission evaluation based on the identification and location of destructive processes is one of such methods. The 3D location of AE events and moment tensor of fracture analysis are calculated by longitudinal wave velocity. Therefore, determining the velocity of longitudinal wave of concrete and the impact of the material and destructive factors are of essential importance. This paper reports the investigation of the effect of aggregate gradation on the change in wave velocity of unloaded concrete. The investigation was carried out on six 150 x 150 x 600 mm elements. Three elements contained aggregate fraction 8/16 mm and the other three were made with aggregate fraction 2/16 mm. Two acoustic emission sensors were used on the surface of the elements, and the wave was generated by the Hsu - Nielsen source. Longitudinal wave velocities for each group of elements were calculated and statistical test of significance was used for the comparison of two means. The results of the test indicated a substantial effect of the aggregate grain size on the change in longitudinal wave velocity. The average wave velocity in the concrete containing 8/16 mm fraction was 4672 m/s. In the concrete with 2/16 mm fraction, the velocity decreased to 4373 m/s. The velocity of the wave decreases at larger quantities of aggregate. The propagating longitudinal wave encounters more aggregate grains on its way and is reflected, also from air voids, multiple times and so its velocity is noticeably lower in the concrete with the 2/16 fraction. Thus, to be able to accurately locate AE events and analyse moment tensor during concrete structure testing, the aggregate grain size used in the concrete should be taken into account.

  12. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  13. High-Resolution Seismic Velocity and Attenuation Models of the Caucasus-Caspian Region

    DTIC Science & Technology

    2009-09-30

    region is part of the Alpine-Himalayan collision belt and is an area of complex structure accompanied by large variations in seismic wave velocities...velocity structure is developed using teleseismic receiver functions and surface waves. Joint inversion of surface wave group dispersion curves...Caucasus and the thinnest is in the Arabian Plate. Thin crust is also observed near the Caspian. The lithospheric mantle in the Greater Caucasus and the

  14. Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data

    NASA Astrophysics Data System (ADS)

    Kawai, Kenji; Sekine, Shutaro; Fuji, Nobuaki; Geller, Robert J.

    2009-10-01

    We invert shear-wave waveform data for the radial variation of (isotropic) shear-velocity in D″ beneath Northern Asia. We reduce source and receiver effects by using data for intermediate and deep events beneath Italy and Japan recorded respectively at stations in East Asia and Europe. Relative to PREM, we find a significantly higher S-wave velocity in the depth range from 150 to 300 km above the core-mantle boundary (CMB) and a slightly lower S-wave velocity in the depth range 0-150 km above the CMB. As our previous studies of D″ structure beneath Central America and the Arctic obtained similar S-wave velocity models, we suggest that this pattern of vertical dependence of shear wave velocity in D″ may be a general phenomenon, at least in relatively cold regions.

  15. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.

  16. 3D shear wave velocity structure revealed with ambient noise tomography on a DAS array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.

    2017-12-01

    An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and sediment thicknesses in the near surface. Shear wave velocities in the northeast corner of the tested area is high whereas loose soil reduces shear wave velocities in the central part of the tested area. This spatial variation pattern is very similar to the results obtained with the ambient noise tomography using the 238-geophone array used the experiment.

  17. Finite-frequency sensitivity kernels for head waves

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Shen, Yang; Zhao, Li

    2007-11-01

    Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.

  18. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  19. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  20. Thunder-induced ground motions: 2. Site characterization

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  1. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The main seismogenic layer dips to northwest.

  2. Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction zone from surface waves and receiver functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying

    2017-04-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  3. Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction Zone from Surface Waves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2016-12-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  4. Study of 3D P-wave Velocity Structure in Lushan Area of Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2017-12-01

    The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above all, the P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth, while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity anomaly. A "y" distribution pattern is shown between two seismic belts.

  5. Relationship between the upper mantle high velocity seismic lid and the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Priestley, Keith; Tilmann, Frederik

    2009-04-01

    The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.

  6. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  7. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex structures. In the future, approximate 3-D sensitivity kernels for dispersion data will be incorporated to account for finite-frequency effect of surface wave propagation. In addition, our approach provides a consistent framework for joint inversion of surface wave dispersion and body wave traveltime data for 3-D Vp and Vs structures.

  8. Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2015-12-01

    For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.

  9. 3-dimensional structure of the Indian Ocean inferred from long period surface waves

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul

    1986-04-01

    To improve the lateral resolution of the first global 3 - dimensional models of seismic wave velocities, regional studies have to be undertaken. The dispersion of Rayleigh waves along 86 paths across the Indian Ocean and surrounding regions is investigated in the period range 40 - 300 s. The regionalization of group velocity according to the age of the sea floor shows an increase of velocity with age up to 150 s only, similar to the results in the Pacific Ocean. But here, this relationship vanishes more quickly at long period. Therefore the correlation of the deep structure with surface tectonics seems to be shallower in the Indian Ocean than in the Pacific Ocean. A tomographic method is applied to compute the geographical distributions of group velocity and azimuthal anisotropy and then the 3-D structure of S-wave velocity. Horizontal wavelengths of 2000 km for velocity and 3000 km for azimuthal anisotropy distribution can be resolved. Except for the central part of the South East Indian ridge which displays high velocities at all depths, the inversion corroborates a good correlation between lithospheric structure down to 120 km and surface tectonics: low velocities along the central and southeast Indian ridges, velocity increasing with the age of the sea floor, high velocities under African, Indian and Australian shields. At greater depths, the low velocity zones under the Gulf of Aden and the western part of the Southeast Indian ridges hold but the low velocity anomaly of the Central Indian ridge is offset eastward. The low velocity anomalies suggest uprising material and complex plate boundary.

  10. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the logarithm of the lapse time. At some stations, the estimated P-wave velocity also shows co-seismic velocity decrease and subsequent gradual recovery. However, the magnitude of estimated P-wave velocity change is much smaller than that of S-wave, and at the other stations, the magnitude of P-wave velocity change is smaller than the resolution of our analysis. Using the CCFs computed from horizontal components, we also determine the seismic anisotropy in subsurface structure, and examine its temporal change. The estimated strength of anisotropy strength shows co-seismic increase at most of stations where co-seismic velocity change is detected. Nevertheless, the direction of anisotropy after the 2011 Tohoku earthquake stays about the same as before. These results suggest that, in addition to the change in pore pressure and corresponding decrease in the rigidity, the change in the aspect ratio of pre-existing subsurface fractures/micro-crack may be another key mechanism causing the co-seismic velocity change in shallow subsurface structures.

  11. Estimation of velocity structure around a natural gas reservoir at Yufutsu, Japan, by microtremor survey

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.; Tezuka, K.

    2010-12-01

    Seismic reflection survey has been commonly used for exploration and time-lapse monitoring of oil/gas resources. Seismic reflection images typically have reasonable reliability and resolution for commercial production. However, cost consideration sometimes avoids deployment of widely distributed array or repeating survey in cases of time lapse monitoring or exploration of small-scale reservoir. Hence, technologies to estimate structures and physical properties around the reservoir with limited cost would be effectively used. Microtremor survey method (MSM) has an ability to realize long-term monitoring of reservoir with low cost, because this technique has a passive nature and minimum numbers of the monitoring station is four. MSM has been mainly used for earthquake disaster prevention, because velocity structure of S-wave is directly estimated from velocity dispersion of the Rayleigh wave. The authors experimentally investigated feasibility of the MSM survey for exploration of oil/gas reservoir. The field measurement was carried out around natural gas reservoir at Yufutsu, Hokkaido, Japan. Four types of arrays with array radii of 30m, 100m, 300m and 600m are deployed in each area. Dispersion curves of the velocity of Rayleigh wave were estimated from observed microtremors, and S-wave velocity structures were estimated by an inverse analysis of the dispersion curves with genetic algorism (GA). The estimated velocity structures showed good consistency with one dimensional velocity structure by previous reflection surveys up to 4-5 km. We also found from the field experiment that a data of 40min is effective to estimate the velocity structure even the seismometers are deployed along roads with heavy traffic.

  12. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  13. Wave-formed structures and paleoenvironmental reconstruction

    USGS Publications Warehouse

    Clifton, H.E.; Dingler, J.R.

    1984-01-01

    Wave-formed sedimentary structures can be powerful interpretive tools because they reflect not only the velocity and direction of the oscillatory currents, but also the length of the horizontal component of orbital motion and the presence of velocity asymmetry within the flow. Several of these aspects can be related through standard wave theories to combinations of wave dimensions and water depth that have definable natural limits. For a particular grain size, threshold of particle movement and that of conversion from a rippled to flat bed indicate flow-velocity limits. The ratio of ripple spacing to grain size provides an estimate of the length of the near-bottom orbital motion. The degree of velocity asymmetry is related to the asymmetry of the bedforms, though it presently cannot be estimated with confidence. A plot of water depth versus wave height (h-H diagram) provides a convenient approach for showing the combination of wave parameters and water depths capable of generating any particular structure in sand of a given grain size. Natural limits on wave height and inferences or assumptions regarding either water depth or wave period based on geologic evidence allow refinement of the paleoenvironmental reconstruction. The assumptions and the degree of approximation involved in the different techniques impose significant constraints. Inferences based on wave-formed structures are most reliable when they are drawn in the context of other evidence such as the association of sedimentary features or progradational sequences. ?? 1984.

  14. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena; Kozhevnikov, Vladimir; Melnikova, Valentina; Solovey, Oksana

    2016-12-01

    Correlations between seismicity, seismotectonic deformation (STD) field and velocity structure of the crust and the upper mantle in the Baikal rift and the adjacent areas of the Siberian platform and the Mongol-Okhotsk fold belt have been investigated. The 3D S-wave velocity structure up to the depths of 500 km has been modeled using a representative sample of Rayleigh wave group velocity dispersion curves (about 3200 paths) at periods from 10 to 250 s. The STD pattern has been reconstructed from mechanisms of large earthquakes, and is in good agreement with GPS and structural data. Analysis of the results has shown that most of large shallow earthquakes fall in regions of low S-wave velocities in the uppermost mantle (western Mongolia and areas of recent mountain building in southern Siberia) and in zones of their relatively high lateral variations (northeastern flank of the Baikal rift). In the first case the dominant STD regime is compression manifested in a mixture of thrust and strike-slip deformations. In the second case we observe a general predominance of extension.

  15. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  16. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20km depth the velocity structure in southwest and northeast segment of mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxingarea the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity anomaly.

  17. 3D crustal structure of the Alpine belt and foreland basins as imaged by ambient-noise surface wave

    NASA Astrophysics Data System (ADS)

    Molinari, Irene; Morelli, Andrea; Cardi, Riccardo; Boschi, Lapo; Poli, Piero; Kissling, Edi

    2016-04-01

    We derive a 3-D crustal structure (S wave velocity) underneath northern Italy and the wider Alpine region, from an extensive data set of measurements of Rayleigh-wave phase- and group-velocities from ambient noise correlation among all seismographic stations available to date in the region, via a constrained tomographic inversion made to honor detailed active source reflection/refraction profiles and other geological information. We first derive a regional-scale surface wave tomography from ambient-noise-based phase- and group- surface wave velocity observations (Verbeke et al., 2012). Our regional 3D model (Molinari et al., 2015) shows the low velocity area beneath the Po Plain and the Molasse basin; the contrast between the low-velocity crust of the Adriatic domain and the high-velocity crust of the Tyrrhenian domain is clearly seen, as well as an almost uniform crystalline crust beneath the Alpine belt. However, higher frequency data can be exploited to achieve higher resolution images of the Po Plain and Alpine foreland 3D crustal structure. We collected and analyze one year of noise records (2011) of ~100 North Italy seismic broadband stations, we derive the Green functions between each couple of stations and we measure the phase- and group-Rayleigh wave velocity. We conduct a suite of linear least squares inversion of both phase- and group-velocity data, resulting in 2-D maps of Rayleigh-wave phase and group velocity at periods between 3 and 40s with a resolution of 0.1x0.1 degrees. The maps are then inverted to get the 3D structure with unprecedented details. We present here our results, we compare them with other studies, and we discuss geological/geodynamical implications. We believe that such a model stands for the most up-to-date seismological information on the crustal structure of the Alpine belt and foreland basins, and it can represent a reliable reference for further, more detailed, studies to come, based on the high seismograph station density being accomplished by the AlpArray project.

  18. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  19. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.

  20. Upper mantle velocity structure beneath southern Africa from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.

    1999-03-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.

  1. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yong; Huangfu, Gang

    2004-02-01

    Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.

  2. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide. The velocity structure of this relatively young subducting plate is compared to the velocity structure resolved in the older oceanic lithosphere subducted beneath Northern Japan. We also use guided wave observations to investigate the thickness and low velocity structure of the subducting Yakutat terrain. Additionally we discuss the dependence of the inferred slab geometry on the earthquake catalogues that are used.

  3. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  4. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    NASA Astrophysics Data System (ADS)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  5. Resilience of branching and massive corals to wave loading under sea level rise--a coupled computational fluid dynamics-structural analysis.

    PubMed

    Baldock, Tom E; Karampour, Hassan; Sleep, Rachael; Vyltla, Anisha; Albermani, Faris; Golshani, Aliasghar; Callaghan, David P; Roff, George; Mumby, Peter J

    2014-09-15

    Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.

    2012-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.

  7. Turbulent Structure Under Short Fetch Wind Waves

    DTIC Science & Technology

    2015-12-01

    1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval

  8. Thin Lithosphere Beneath the Ethiopian Plateau Revealed by a Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi

    2007-08-01

    The seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Most of the data for this study come from the Ethiopia broadband seismic experiment, conducted between 2000 and 2002. Shear velocity models obtained from the joint inversion show crustal structure that is similar to previously published models, with crustal thicknesses of 35 to 44 km beneath the Ethiopian Plateau, and 25 to 35 km beneath the Main Ethiopian Rift (MER) and the Afar. The lithospheric mantle beneath the Ethiopian Plateau has a maximum shear wave velocity of about 4.3 km/s and extends to a depth of ˜70-80 km. Beneath the MER and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the Ethiopian Plateau lithosphere can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30-50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.

  9. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara

    2016-09-15

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less

  10. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali

    2016-09-01

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  11. Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Ammon, Charles J.; Nyblade, Andrew A.

    2005-08-01

    The S-wave velocity structure of Precambrian terranes in Tanzania, East Africa is modelled by jointly inverting receiver functions and surface wave dispersion velocities from the 1994-1995 Tanzania broad-band seismic experiment. The study region, which consists of an Archean craton surrounded by Proterozoic mobile belts, forms a unique setting for evaluating Precambrian crustal evolution. Our results show a uniform crustal structure across the region, with a 10-15 km thick upper crust with VS= 3.4-3.5 km s-1, overlying a gradational lower crust with S-wave velocities up to 4.1 km s-1 at 38-42 km depth. The upper-mantle lid displays uniform S-wave velocities of 4.5-4.7 km s-1 to depths of 100-150 km and overlays a prominent low-velocity zone. This low-velocity zone is required by the dispersion and receiver function data, but its depth interval is uncertain. The high crustal velocities within the lowermost crust characterize the entire region and suggest that mafic lithologies are present in both Archean and Proterozoic terranes. The ubiquitous mafic lower crust can be attributed to underplating associated with mafic dyke emplacement. This finding suggests that in East Africa there has been little secular variation in Precambrian crustal development.

  12. Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Zhou, Y.

    2010-12-01

    It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.

  13. P-wave velocity structure of the uppermost mantle beneath Hawaii from traveltime tomography

    USGS Publications Warehouse

    Tilmann, F.J.; Benz, H.M.; Priestley, K.F.; Okubo, P.G.

    2001-01-01

    We examine the P-wave velocity structure beneath the island of Hawaii using P-wave residuals from teleseismic earthquakes recorded by the Hawaiian Volcano Observatory seismic network. The station geometry and distribution of events makes it possible to image the velocity structure between ~ 40 and 100 km depth with a lateral resolution of ~ 15 km and a vertical resolution of ~ 30 km. For depths between 40 and 80 km, P-wave velocities are up to 5 per cent slower in a broad elongated region trending SE-NW that underlies the island between the two lines defined by the volcanic loci. No direct correlation between the magnitude of the lithospheric anomaly and the current level of volcanic activity is apparent, but the slow region is broadened at ~ 19.8??N and narrow beneath Kilauea. In the case of the occanic lithosphere beneath Hawaii, slow seismic velocities are likely to be related to magma transport from the top of the melting zone at the base of the lithosphere to the surface. Thermal modelling shows that the broad elongated low-velocity zone cannot be explained in terms of conductive heating by one primary conduit per volcano but that more complicated melt pathways must exist.

  14. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  15. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    NASA Astrophysics Data System (ADS)

    Masera, D.; Bocca, P.; Grazzini, A.

    2011-07-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  16. Detailed p- and s-wave velocity models along the LARSE II transect, Southern California

    USGS Publications Warehouse

    Murphy, J.M.; Fuis, G.S.; Ryberg, T.; Lutter, W.J.; Catchings, R.D.; Goldman, M.R.

    2010-01-01

    Structural details of the crust determined from P-wave velocity models can be improved with S-wave velocity models, and S-wave velocities are needed for model-based predictions of strong ground motion in southern California. We picked P- and S-wave travel times for refracted phases from explosive-source shots of the Los Angeles Region Seismic Experiment, Phase II (LARSE II); we developed refraction velocity models from these picks using two different inversion algorithms. For each inversion technique, we calculated ratios of P- to S-wave velocities (VP/VS) where there is coincident P- and S-wave ray coverage.We compare the two VP inverse velocity models to each other and to results from forward modeling, and we compare the VS inverse models. The VS and VP/VS models differ in structural details from the VP models. In particular, dipping, tabular zones of low VS, or high VP/VS, appear to define two fault zones in the central Transverse Ranges that could be parts of a positive flower structure to the San Andreas fault. These two zones are marginally resolved, but their presence in two independent models lends them some credibility. A plot of VS versus VP differs from recently published plots that are based on direct laboratory or down-hole sonic measurements. The difference in plots is most prominent in the range of VP = 3 to 5 km=s (or VS ~ 1:25 to 2:9 km/s), where our refraction VS is lower by a few tenths of a kilometer per second from VS based on direct measurements. Our new VS - VP curve may be useful for modeling the lower limit of VS from a VP model in calculating strong motions from scenario earthquakes.

  17. Seismic structure of the crust and uppermost mantle of north America and adjacent oceanic basins: A synthesis

    USGS Publications Warehouse

    Chulick, G.S.; Mooney, W.D.

    2002-01-01

    We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.

  18. Loading effects beneath the Gotvand-e Olya Reservoir (south-west of Iran) deduced from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Tatar, M.; Aoudia, A.; Guidarelli, M.

    2018-01-01

    In order to define the precise shallow velocity structure beneath the second largest dam reservoir in Iran and to understand the loading effects on the underlying crust, the shear wave velocity of the shallow structure beneath the Gotvand-e Olya (hereinafter referred to as Gotvand) reservoir is determined through the inversion of group velocities obtained from seismic ambient noise tomography, using continuous data from 10 stations of a local network, installed to monitor the induced seismicity in the region surrounding the Gotvand and Masjed Soleyman dams for potential hazard. We obtained Rayleigh waves from cross-correlation of waveforms recorded 10 months before and the same duration after impoundment of the Gotvand reservoir and calculated the group velocity from dispersion analysis in the period range 2-8 s. The group velocity dispersion curves are used to produce 2-D group velocity tomographic maps. The resulting tomographic maps at short periods are well correlated with subsurface geological features and delineate distinct low- and high-velocity zones separated mainly by geological boundaries. The 3-D shear wave velocity structure provides detailed information about the crustal features underneath the reservoir. The results are consistent with the lithology of the region, and attest that ambient noise tomography (ANT) can be used for detailed studies of the velocity structure and lithology at shallow depths using continuous data from a dense local seismic network. An increase of shear wave velocity is observed at the deep parts (4-6 km) underneath the reservoir after impoundment of the dam, which could be caused by the changes in rocks properties after impoundment. However, at shallow depths (2-4 km), a decrease of Vs velocity is observed that can be associated to the penetration of water after the impoundment.

  19. Southern Africa seismic structure and source studies

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    1998-09-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data. Waveform and travel time data used in this study come mainly from a large mine tremor in South Africa (msb{b} 5.6) recorded on stations of the southern Africa and the Tanzania Broadband Seismic Experiment. Auxiliary data along similar profiles are obtained from other moderate events within eastern and southern Africa. The waveform data from the large tremor show upper mantle triplications for both the 400 and 670-km discontinuities between 18sp° and 27sp° distance. The most notable feature of the data is a large, late P phase that propagates to at least 27sp°. This phase is striking because of its late arrival time (as much as 15 seconds after direct P at 27sp°) and high amplitude relative to the first arrival. Travel times from all available stations are used to invert for the P wave velocity structure down to 800 km depth and S wave velocity structure down to 200 km using the Wiechert-Herglotz (W-H) inversion technique. The P wave velocities from the uppermost mantle down to 300 km are as much as 3% higher than the global average and are slightly slower than the global average between 300 and 400 km depths. The velocity gradient between 300 and 400 km is 0.0015 1/s. The S wave travel time data yield fast velocities above 200-km depth. The S wave velocity structure appears inconsistent with the P wave structure model indicating varying Poisson's ratio in the upper mantle. Little evidence is found for a pronounced upper mantle low velocity zone. Both sharp and gradual-change 400-km discontinuities are favored by the waveform data. The 670-km discontinuity appears as a gradual-change zone. The source mechanism of the mb 5.6 mining tremor itself is important for seismic discrimination and insight into mining tremor sources. Source parameters for this event as well as some other large mining tremors from the South African gold mines are studied using detailed waveform modeling. All these events (mb > 4.8) indicate normal-faulting slip with P wave nodal planes striking approximately NS. Tectonic stress is essential to control the mining seismicity of large magnitude. Mining geometry also plays an important role in influencing the seismicity. The crustal velocity structure at the study area is investigated in detail using teleseismic receiver function and regional surface wave dispersion data. The results indicate some lateral variation in the shallow crust. The thickness of the crust beneath the GSN station BOSA is 33-36 km. Gradually increasing velocities with depth in the crust are preferred. A thin layer with rather low velocity at the top of the crust beneath BOSA is important for generating the regional waveforms. The crust beneath LBTB is a few kilometers thicker than at BOSA and the Moho there is likely to be dipping. (Abstract shortened by UMI.)

  20. Three-dimensional P-wave velocity structure of Mt. Etna, Italy

    USGS Publications Warehouse

    Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.

    1998-01-01

    The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.

  1. Lithospheric Velocity Structure of the Anatolain plateau-Caucasus-Caspian Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gok, R; Mellors, R J; Sandvol, E

    Anatolian Plateau-Caucasus-Caspian region is an area of complex structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region little is known about the detailed lithospheric structure. Using data from 29 new broadband seismic stations in the region, a unified velocity structure is developed using teleseismic receiver functions and surface waves. Love and Rayleigh surface waves dispersion curves have been derived from event-based analysis and ambient-noise correlation. We jointly inverted the receiver functions with the surface wave dispersion curves to determine absolute shear wave velocity and important discontinuities such as sedimentary layer, Moho, lithospheric-asthenospheric boundary. Wemore » combined these new station results with Eastern Turkey Seismic Experiment results (29 stations). Caspian Sea and Kura basin underlained by one of the thickest sediments in the world. Therefore, short-period surface waves are observed to be very slow. The strong crustal multiples in receiver functions and the slow velocities in upper crust indicate the presence of thick sedimentary unit (up to 20 km). Crustal thickness varies from 34 to 52 km in the region. The thickest crust is in Lesser Caucasus and the thinnest is in the Arabian Plate. The lithospheric mantle in the Greater Caucasus and the Kura depression is faster than the Anatolian Plateau and Lesser Caucasus. This possibly indicates the presence of cold lithosphere. The lower crust is slowest in the northeastern part of the Anatolian Plateau where Holocene volcanoes are located.« less

  2. The uppermost mantle shear wave velocity structure of eastern Africa from Rayleigh wave tomography: constraints on rift evolution

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Adams, A.; Nyblade, A. A.; Mulibo, G. D.; Tugume, F.

    2013-08-01

    An expanded model of the 3-D shear wave velocity structure of the uppermost mantle beneath eastern Africa has been developed using earthquakes recorded by the AfricaArray East African Seismic Experiment in conjunction with data from permanent stations and previously deployed temporary stations. The combined data set comprises 331 earthquakes recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this study, data from 149 earthquakes were used to determine fundamental-mode Rayleigh wave phase velocities at periods ranging from 20 to 182 s using the two-plane wave method, and then combined with the similarly processed published measurements and inverted for a 3-D shear wave velocity model of the uppermost mantle. New features in the model include (1) a low-velocity region in western Zambia, (2) a high-velocity region in eastern Zambia, (3) a low-velocity region in eastern Tanzania and (4) low-velocity regions beneath the Lake Malawi rift. When considered in conjunction with mapped seismicity, these results support a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. We estimate a lithospheric thickness of ˜150-200 km for the substantial fast shear wave anomaly imaged in eastern Zambia, which may be a southward subsurface extension of the Bangweulu Block. The low-velocity region in eastern Tanzania suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. Pronounced velocity lows along the Lake Malawi rift are found beneath the northern and southern ends of the lake, but not beneath the central portion of the lake.

  3. Structure of the lithosphere-asthenosphere system in the vicinity of the Tristan da Cunha hot spot as seen by surface waves

    NASA Astrophysics Data System (ADS)

    Bonadio, Raffaele; Geissler, Wolfram H.; Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas L.; Jokat, Wilfried; Jegen, Marion; Sens-Schönfelder, Christoph; Baba, Kiyoshi

    2017-04-01

    Tristan da Cunha is a volcanic island located above a hotspot in the South Atlantic. The deep mantle plume origin of the hotspot volcanism at the island is supported by anomalous geochemical data (Rohde et al., 2013 [1]) and global seismological evidences (French and Romanovicz, 2015 [2]). However, until recently, due to lack of local geophysical data in the South Atlantic and especially around Tristan da Cunha, the existence of a plume has not yet been confirmed. Therefore, an Ocean Bottom Seismometer experiment was carried out in 2012 and 2013 in the vicinity of the archipelago, with the aim of obtaining geophysical data that may help to get some more detailed insights into the structure of the upper mantle, possibly confirming the existence of a plume. In this work we study the shear wave velocity structure of the lithosphere-asthenosphere system beneath the Island. Rayleigh surface wave phase velocity dispersion curves have been obtained using a recent powerful implementation of the inter-station cross-correlation method (Meier et al., 2004 [3]; Soomro et al., 2016 [4]). The measured dispersion curves are used to invert for the 1D shear wave velocity structure beneath the study area and to obtain phase velocity tomographic maps. Our results show a pronounced low shear wave velocity anomaly between 70 and 120 km depth beneath the area; the lid shows high velocity, suggesting a cold, depleted and dehydrated shallow lithosphere, while the deeper lithosphere shows a velocity structure similar to young or rejuvenated Pacific oceanic lithosphere (Laske et al., 2011 [5]; Goes et al., 2012 [6]). Below the base of the lithosphere, shear wave velocities appear to be low, suggesting thermal effects and partial melting (as confirmed by petrological data). Decreasing velocities within the lithosphere south-westward reflect probably a thermal imprint of an underlying mantle plume. References [1] J.K. Rohde, P. van den Bogaard, K. Hoernle, F. Hauff, R. Werner, Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/ 39Ar ages on phenocryst phases, Tectonophysics, Volume 604, p. 60-71 (2013). [2] S. French and B. Romanowicz, Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525(7567), 95-99 (2015). [3] T. Meier, K. Dietrich, B. Stockhert and H. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Earth and Planetary Science Letters, 249(3), 415-424 (2004). [4] R.A. Soomro, C. Weidle, L. Cristiano, S. Lebedev, T. Meier and PASSEQ Working Group, Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int. (2016) 204, 517-534. [5] G. Laske, A. Markee, J.A. Orcutt, C.J. Wolfe, J.A. Collins and S.C. Solomon, R.S. Detrick, D. Bercovici and E.H. Hauri, Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network, Geophys. J. Int. (2011) 187, 1725-1742. [6] S. Goes, J. Armitage, N. Harmon, H. Smith and R. Huismans, Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention, Journal of geophysical research, Vol. 117, B12403, (2012).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less

  5. The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure

    NASA Astrophysics Data System (ADS)

    Yano, Tomoko; Tanimoto, T.; Rivera, L.

    2009-10-01

    The particle motion of surface waves, in addition to phase and group velocities, can provide useful information for S-wave velocity structure in the crust and upper mantle. In this study, we applied a new method to retrieve velocity structure using the ZH ratio, the ratio between vertical and horizontal surface amplitudes of Rayleigh waves. Analysing data from the GEOSCOPE network, we measured the ZH ratios for frequencies between 0.004 and 0.05 Hz (period between 20 and 250s) and inverted them for S-wave velocity structure beneath each station. Our analysis showed that the resolving power of the ZH ratio is limited and final solutions display dependence on starting models; in particular, the depth of the Moho in the starting model is important in order to get reliable results. Thus, initial models for the inversion need to be carefully constructed. We chose PREM and CRUST2.0 in this study as a starting model for all but one station (ECH). The eigenvalue analysis of the least-squares problem that arises for each step of the iterative process shows a few dominant eigenvalues which explains the cause of the inversion's initial-model dependence. However, the ZH ratio is unique in having high sensitivity to near-surface structure and thus provides complementary information to phase and group velocities. Application of this method to GEOSCOPE data suggest that low velocity zones may exist beneath some stations near hotspots. Our tests with different starting models show that the models with low-velocity anomalies fit better to the ZH ratio data. Such low velocity zones are seen near Hawaii (station KIP), Crozet Island (CRZF) and Djibuti (ATD) but not near Reunion Island (RER). It is also found near Echery (ECH) which is in a geothermal area. However, this method has a tendency to produce spurious low velocity zones and resolution of the low velocity zones requires further careful study. We also performed simultaneous inversions for volumetric perturbation and discontinuity-depth perturbation. While its formulation and inversion were straightforward, there seemed to be a difficult trade-off problem between volumetric perturbation and discontinuity-depth perturbation.

  6. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  7. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  8. Implications of elastic wave velocities for Apollo 17 rock powders

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1974-01-01

    Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.

  9. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  10. P-wave velocity structure beneath the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  11. Lithospheric instability and the source of the Cameroon Volcanic Line: Evidence from Rayleigh wave phase velocity tomography

    DOE PAGES

    Adams, Aubreya N.; Wiens, Douglas A.; Nyblade, Andrew A.; ...

    2015-03-24

    The Cameroon Volcanic Line (CVL) is a 1800 km long volcanic chain, extending SW-NE from the Gulf of Guinea into Central Africa, that lacks the typical age progression exhibited by hot spot-related volcanic tracks. Our study investigates the upper mantle seismic structure beneath the CVL and surrounding regions to constrain the origin of volcanic lines that are poorly described by the classic plume model. Rayleigh wave phase velocities are measured at periods from 20 to 182 s following the two-plane wave methodology, using data from the Cameroon Seismic Experiment, which consists of 32 broadband stations deployed between 2005 and 2007.more » These phase velocities are then inverted to build a model of shear wave velocity structure in the upper mantle beneath the CVL. Our results show that phase velocities beneath the CVL are reduced at all periods, with average velocities beneath the CVL deviating more than –2% from the regional average and +4% beneath the Congo Craton. This distinction is observed for all periods but is less pronounced for the longest periods measured. Inversion for shear wave velocity structure indicates a tabular low velocity anomaly directly beneath the CVL at depths of 50 to at least 200 km and a sharp vertical boundary with faster velocities beneath the Congo Craton. Finally, these observations demonstrate widespread infiltration or erosion of the continental lithosphere beneath the CVL, most likely caused by mantle upwelling associated with edge-flow convection driven by the Congo Craton or by lithospheric instabilities that develop due to the nearby edge of the African continent.« less

  12. Crustal and upper-mantle structure of South China from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Shan, B.; Xiong, X.; Zhao, K. F.; Xie, Z. J.; Zheng, Y.; Zhou, L.

    2017-03-01

    In this study, we image the crust and upper-mantle seismic velocity structures in South China using teleseismic Rayleigh waves recorded at 354 stations from the Chinese provincial networks (CEArray). We process Rayleigh wave data from 1087 teleseismic events and construct phase velocity maps at periods of 40-150 s. By combining dispersion curves at 6-70 s from Zhou et al. and at 40-150 s from the teleseismic surface wave tomography of this study, we construct a 3-D shear velocity model of the crust and upper mantle of South China. Distinct seismic structures are revealed from the eastern part of South China (including the South China Fold System and the eastern Yangtze Craton) to the western Yangtze Craton. The South China Fold System and eastern Yangtze Craton are characterized by lower velocities and shallow lithosphere-asthenosphere boundary (∼90 km), which are similar to the lithospheric thermal and seismic velocity structures of the North China basin. These observations may imply that the lithospheric destruction and thinning occurred not only beneath the North China Craton, but also beneath the eastern part of South China. The western Yangtze Craton, including the Sichuan Basin and Jiangnan Orogen, is underlain by a thicker and colder lithosphere with high velocities. The contrast of the lithosphere structure between the western Yangtze Craton and other parts of South China indicates that the lithospheric destruction and thinning of the east and southeast parts of South China may terminate at the boundary of the Jiangnan Orogen.

  13. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  14. Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Li, A.

    2014-12-01

    Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.

  15. Mapping Tectonic features beneath the Gulf of California using Rayleigh and Love Waves Group Velocities

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Di Luccio, F.; Clayton, R. W.

    2012-12-01

    This study contributes to our understanding of the Pacific-North America lithospheric structure beneath the Gulf of California and its western and eastern confining regions, by mapping fundamental mode surface wave group velocities. We measure the dispersion of Rayleigh and Love surface waves to create a series of 2D maps of group velocities, which provide important information on the earth structure beneath the study region. Although several surface waves studies were published in the last decade, all of them were done using phase velocity measurements based on the two stations method. Here we combine dispersion measurements at the regional scale with data at teleseismic distances to provide a more complete dataset for studies of earth structure. We also analyze group velocities from short to long periods in order to define structural features at both crustal and mantle scales. Our study uses earthquakes recorded by the Network of Autonomously Recording Seismographs (NARS-Baja), a set of 14 broadband seismic stations that flank the Gulf of California. From the NEIC bulletin we selected 140 events recorded by the NARS-Baja array. In order to have dispersion measurements in a wide range of periods, we used regional earthquakes with M > 4.2 and teleseismic events with M > 6.9. We first computed the dispersion curves for the surface wave paths crossing the region. Then, the along path group velocity measurements for multiple periods are converted into tomographic images using kernels which vary in off-path width with the square root of the period. Dispersion measurements show interesting and consistent features for both Rayleigh and Love waves. At periods equal to or shorter than 15 s, when surface waves are primarily sensitive to shear velocity in the upper 15 km of the crust, slow group velocities beneath the northern-central Gulf reveal the presence of a thick sedimentary layer, relative to the southern Gulf. Group velocities beneath the northwestern side of Baja are faster than the rest of the peninsula. At deeper crustal levels, group velocities become faster in the northern Gulf, whereas in the central Gulf a slow velocity patch becomes more localized. At periods of 30 s and longer, tomographic maps become more complex, reflecting the variation in lithospheric structure beneath the study area. Above 40 s, two areas of high velocity are clearly incoming from the Pacific. Going even deeper into the mantle (60-100 s), the velocity pattern becomes less heterogeneous and relatively slow. The separation between low velocities beneath the East Pacific Rise and the Rivera Transform fault zone and high velocities beneath the northern tip of the Rivera plate is clear at these periods. At even longer periods, tomographic maps are relatively homogeneous beneath Baja and the Gulf, as well as onshore and offshore.

  16. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    DTIC Science & Technology

    2011-09-01

    modeling of regional waveforms at station ANTO , in UNIFIED region #14. The velocity models (left) and the corresponding predictions (middle and right) are...models, Geophy. J. Int. 118: 245–254. Rychert, C. A. and P. M. Shearer (2009). A global view of the lithosphere-asthenosphere boundary, Science 324 : 495

  17. A Surface Wave Dispersion Study of the Middle East and North Africa for Monitoring the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Walter, W. R.; Hazler, S. E.

    - We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined MS measurements, which we hope can be used to extend the threshold of mb:MS discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.

  18. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul

    2016-03-01

    The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.

  19. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    PubMed

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  20. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  1. Magnetoplasma sheath waves on a conducting tether in the ionosphere with applications to EMI propagation on large space structures

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; James, H. G.; Bantin, C. C.

    1991-01-01

    A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit.

  2. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    NASA Astrophysics Data System (ADS)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of high-quality teleseismic events recorded at 81 stations is available, and we have high-resolution P-wave velocity model available (Diehl et al., 2009). We plan to extend the 3D shear-wave velocity inversion method to the entire Alpine domain in frame of the AlpArray project, and apply it to other areas with a dense network of broadband seismometers.

  3. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    NASA Astrophysics Data System (ADS)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP, which not only extend to the northern part, but the whole SYRB, and further rifle through the vast region between the SYRB and the SB. Its scope corresponds well with topography high in there, which forms a strong evidence for the Lower Crustal Flow model in Eastern Tibet claimed by Royden et al. (Science, 1997).

  4. Spectral fitting inversion of low-frequency normal modes with self-coupling and cross-coupling of toroidal and spheroidal multiplets: numerical experiments to estimate the isotropic and anisotropic velocity structures

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2016-06-01

    The aspherical structure of the Earth is described in terms of lateral heterogeneity and anisotropy of the P- and S-wave velocities, density heterogeneity, ellipticity and rotation of the Earth and undulation of the discontinuity interfaces of the seismic wave velocities. Its structure significantly influences the normal mode spectra of the Earth's free oscillation in the form of cross-coupling between toroidal and spheroidal multiplets and self-coupling between the singlets forming them. Thus, the aspherical structure must be conversely estimated from the free oscillation spectra influenced by the cross-coupling and self-coupling. In the present study, we improve a spectral fitting inversion algorithm which was developed in a previous study to retrieve the global structures of the isotropic and anisotropic velocities of the P and S waves from the free oscillation spectra. The main improvement is that the geographical distribution of the intensity of the S-wave azimuthal anisotropy is represented by a nonlinear combination of structure coefficients for the anisotropic velocity structure, whereas in the previous study it was expanded into a generalized spherical harmonic series. Consequently, the improved inversion algorithm reduces the number of unknown parameters that must be determined compared to the previous inversion algorithm and employs a one-step inversion method by which the structure coefficients for the isotropic and anisotropic velocities are directly estimated from the fee oscillation spectra. The applicability of the improved inversion is examined by several numerical experiments using synthetic spectral data, which are produced by supposing a variety of isotropic and anisotropic velocity structures, earthquake source parameters and station-event pairs. Furthermore, the robustness of the inversion algorithm is investigated with respect to the back-ground noise contaminating the spectral data as well as truncating the series expansions by finite terms to represent the three-dimensional velocity structures. As a result, it is shown that the improved inversion can estimate not only the isotropic and anisotropic velocity structures but also the depth extent of the anisotropic regions in the Earth. In particular, the cross-coupling modes are essential to correctly estimate the isotropic and anisotropic velocity structures from the normal mode spectra. In addition, we argue that the effect of the seismic anisotropy is not negligible when estimating only the isotropic velocity structure from the spheroidal mode spectra.

  5. Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure

    USGS Publications Warehouse

    Pollitz, F.F.

    2007-01-01

    Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.

  6. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  7. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallowmore » primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.« less

  8. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  9. Numerical simulation and experimental validation of Lamb wave propagation behavior in composite plates

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.

  10. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    NASA Astrophysics Data System (ADS)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  11. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  12. Three Dimensional P-Wave Velocity Structure Beneath Eastern Turkey by Local Earthquake Tomography (LET) Method

    NASA Astrophysics Data System (ADS)

    Teoman, U. M.; Turkelli, N.; Gok, R.

    2005-12-01

    Recently, crustal structure and the tectonic evolution of Eastern Turkey region was extensively studied in the context of Eastern Turkey Seismic Experiment (ETSE) from late 1999 to August 2001. Collision of the Arabian and Eurasian plates has been occurring along East Anatolian Fault Zone (EAFZ) and the Bitlis Suture, which made Eastern Turkey an ideal platform for scientific research. High quality local earthquake data from the ETSE seismic network were used in order to determine the 3-D P-wave velocity structure of upper crust for Eastern Turkey. Within the 32-station network, 524 well locatable earthquakes with azimuthal gaps < 200° and number of P-wave observations > 8 (corresponding to 6842 P-phase readings) were selected from the initial data set and simultaneously inverted. 1-D reference velocity model was derived by an iterative 1-D velocity inversion including the updated hypocenters and the station delays. The following 3-D tomographic inversion was iteratively performed by SIMULPS14 algorithm in a ``damped least-squares'' sense using the appropriate ray tracing technique, model parametrization and control parameters. As far as resolution is concerned, S waves were not included in this study due to strong attenuation, insufficient number of S phase readings and higher picking errors with respect to P phases. Several tests with the synthetic data were conducted to assess the solution quality, suggesting that the velocity structure is well resolved down to ~17km. Overall,resulting 3-D P-wave velocity model led to a more reliable hypocenter determination indicated by reduced event scattering and a significant reduction of %50 both in variance and residual (rms) values.With the influence of improved velocity model, average location errors did not exceed ~1.5km in horizontal and ~4km in vertical directions. Tomographic images revealed the presence of lateral velocity variations in Eastern Turkey. Existence of relatively low velocity zones (5.6 < Vp < 6.0 km/sec) along most of the vertical profiles possibly indicates the influence of major tectonic structures such as North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ) and the Bitlis thrust belt correlated with the seismicity. Low velocity anomalies extend deeper along EAFZ down to ~15km compared to a depth of ~10km along NAFZ. Arabian plate is generally marked by relatively higher velocities (Vp > 6.2 km/sec) in 10-15 km depth range.

  13. Linearized traveling wave amplifier with hard limiter characteristics

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1986-01-01

    A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The reduction which takes place coincides with the ouput point of helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curve increases the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reduced from 0.1% to 5% at an exponential rate. Output power (or efficiency) versus input power for a commercial tube is shown.

  14. Investigation on earthquake ground motions observed along a north-south survey line in the Kumamoto Plain, during the aftershocks of 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Korenaga, M.; Okamoto, K.; Chimoto, K.; Yamanaka, H.; Yamada, N.; Matsushima, T.

    2017-12-01

    To evaluate local site effects in the Kumamoto Plain, we installed 15 temporary seismic stations along the north-south survey line, after the 2016 Kumamoto earthquake foreshock (Mj 6.4). In this report, to investigate earthquake ground motions observed along the north-south survey line, we estimated site amplification factors from weak ground motion data and estimated S-wave velocity structures by array microtremor observations at temporary seismic stations. We installed 15 temporary seismic stations at an interval of 300m to 2.5km along the north-south survey line. We estimated site amplification factors, with a station at Mt. Kinbo as a reference. Site amplification factors at the middle part and the southern part along the survey line, located in the alluvial lowland, were dominated in the frequency of 1-2Hz. On the other hand, site amplification factors at the northern part along the survey line were dominated in the frequency of 2-5Hz. It suggests that the ground profiles near the surface are complicate along this north-south survey line in the Kumamoto Plain. Therefore, we performed array microtremor observations at the temporary seismic stations, to estimate S-wave velocity structures along the north-south survey line. We obtained phase velocities of Rayleigh waves by the SPAC method and estimated S-wave velocity structures by applying the Genetic Algorism to those phase velocity. The low velocity layer with a thickness of around 15m was deposited on the surface at sites located in the alluvial lowland. Finally, we compared the distribution of PGAs observed along the north-south survey line to AVs30 estimated by S-wave velocity structures. As a result, PGAs along the survey line were strongly concerned by AVs30. We concluded that earthquake ground motions in the frequency of more than 1Hz observed in this north-south survey line were excited by the low velocity layer near the surface.

  15. Crust And Upper Mantle Structure Of The Bengal Basin And Bay Of Bengal From Surface Wave Group Velocity Dispersion Studies

    NASA Astrophysics Data System (ADS)

    Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.

    2007-12-01

    Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.

  16. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  17. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  18. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.

  19. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  20. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.

  1. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  2. Surface Wave Tomography across the Alpine-Mediterranean Mobile Belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, A. M. M. E.; Meier, T. M.; Lebedev, S.; Weidle, C.; Cristiano, L.

    2017-12-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. The purpose of this study is to better define the 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain Rayleigh fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 3000 broadband seismic stations within the area (WebDc/EIDA, IRIS). Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. We calculate maps of Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical slices through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates

  3. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.

  4. Investigation into influence factors of wave velocity anisotropy for TCDP borehole

    NASA Astrophysics Data System (ADS)

    Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.

    2015-12-01

    The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.

  5. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  6. Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific using waveform inversion

    NASA Astrophysics Data System (ADS)

    Konishi, K.; Deschamps, F.; Fuji, N.

    2015-12-01

    We investigate quasi-2D elastic and anelastic structure of the lowermost mantle beneath the Western Pacific by inverting S and ScS waveforms. The transverse component data were obtained from F-net for 32 deep sources beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratio, according to which we divide our region of interest into four sub-regions and perform 1D waveform inversion for S-wave velocity and Qμ value simultaneously. We find S-shaped structure of S-wave velocity beneath the whole region with sub-regional variation of S-wave velocity peak depths, which can explain regional difference in travel times. Qμ structure varies with sub-regions as well, but the physical interpretation has not yet done.

  7. Lithospheric structure beneath Eastern Africa from joint inversion of receiver functions and Rayleigh wave velocities

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta Tuji

    Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.

  8. Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis

    NASA Astrophysics Data System (ADS)

    Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi

    2015-07-01

    New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.

  9. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, S; Gaherty, J; Schwartz, S

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across themore » lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.« less

  10. Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gok, R; Mahdi, H; Al-Shukri, H

    2006-08-31

    We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km atmore » station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.« less

  11. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.

    2013-12-01

    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  12. Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.

    2017-05-01

    We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.

  13. Maintenance of Austral Summertime Upper-Tropospheric Circulation over Tropical South America: The Bolivian High-Nordeste Low System.

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Weng, Shu-Ping; Schubert, Siegfried

    1999-07-01

    Using the NASA/GEOS reanalysis data for 1980-95, the austral-summer stationary eddies in the tropical-subtropical Southern Hemisphere are examined in two wave regimes: long and short wave (wave 1 and waves 2-6, respectively). The basic structure of the Bolivian high-Nordeste low (BH-NL) system is formed by a short-wave train across South America but modulated by the long-wave regime. The short-wave train exhibits a monsoonlike vertical phase reversal in the midtroposphere and a quarter-wave phase shift relative to the divergent circulation. As inferred from (a) the spatial relationship between the streamfunction and velocity potential and (b) the structure of the divergent circulation, the short-wave train forming the BH-NL system is maintained by South American local heating and remote African heating, while the long-wave regime is maintained by western tropical Pacific heating.The maintenance of the stationary waves in the two wave regimes is further illustrated by a simple diagnostic scheme that includes the velocity-potential maintenance equation (which links velocity potential and diabatic heating) and the streamfunction budget (which is the inverse Laplacian transform of the vorticity equation). Some simple relationships between streamfunction and velocity potential for both wave regimes are established to substantiate the links between diabatic heating and streamfunction; of particular interest is a Sverdrup balance in the short-wave regime. This simplified vorticity equation explains the vertical structure of the short-wave train associated with the BH-NL system and its spatial relationship with the divergent circulation.Based upon the diagnostic analysis of its maintenance a simple forced barotropic model is adopted to simulate the BH-NL system with idealized forcings, which imitates the real 200-mb divergence centers over South America, Africa, and the tropical Pacific. Numerical simulations demonstrate that the formation of the BH-NL system is affected not only by the African remote forcing, but also by the tropical Pacific forcing.

  14. Preliminary analysis of seismic anisotropy in the uppermost mantle beneath NW Pacific reveled by the Normal Oceanic Mantle project

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Isse, T.; Nishida, K.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Utada, H.

    2013-12-01

    Seismic structure including anisotropy in the oceanic uppermost mantle is essential for understanding deformation related to plate tectonics. Recent reports of a sharp discontinuity between the high velocity LID and the low velocity zone (LVZ) especially emphasize the importance of observation in oceanic basins apart from ridges and hotspots for determining the structure including LID and LVZ. In this study, we analyzed records of four broadband ocean bottom seismometers (BBOBSs) deployed in the northwest of Shatsky Rise by the pilot observation of the Normal Oceanic Mantle (NOMan) project in 2010-2011. We first measured average phase velocities of surface waves at periods of 5-30 s by the ambient-noise cross correlation method. Based on the method of Takeo et al. (in prep. GJI), we analyzed fundamental- and first higher- mode Rayleigh waves and fundamental-mode Love wave simultaneously by waveform fitting after the correction of clock delay. At periods of 25-100 s, we measured phase velocities of fundamental-mode surface waves by the array analysis of teleseismic waveforms. We then determined one-dimensional radially anisotropic structure beneath the array by the method of Takeo et al. (2013, JGR). The obtained structure shows transition from LID to LVZ at depths of 50-80km, which is marginally consistent with the depth of ~80 km estimated by a receiver function analysis at WP2 station situated at east of the studies area (Kawakatsu et al., 2009). The velocity gradient in the LID is almost zero and inconsistent with the simple cooling model of homogeneous oceanic plate. The average intensity of S-wave radial anisotropy at depths of ~10-220 km is ~3% (VSH>VSV). We further estimated S-wave azimuthal anisotropy at depths of ~30-100 km by analyzing teleseismic fundamental-mode Rayleigh waves at periods of 25-50 s. The intensity of anisotropy is 2-3%. The fastest direction is about N35W, close to that of Sn-wave velocity around WP2 station obtained by a refraction survey (Shinohara et al., 2008), and indicates the presence of past mantle flow almost perpendicular to the ancient mid ocean ridge or the presence of current mantle flow parallel to the plate motion at depths of 30-100 km. We will further analyze new records after the recovery of 13 BBOBSs in August 2013 and will present more detailed structure around Shatsky Rise. BBOBS stations of pilot observation of NOMan project (white crosses), WP2 station (circle), isochrons (white lines). Black bars show the fastest directions of Rayleigh wave at periods of 25-50 s and the fastest direction of Sn-wave velocity (Shinohara et al. 2008).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Aubreya N.; Wiens, Douglas A.; Nyblade, Andrew A.

    The Cameroon Volcanic Line (CVL) is a 1800 km long volcanic chain, extending SW-NE from the Gulf of Guinea into Central Africa, that lacks the typical age progression exhibited by hot spot-related volcanic tracks. Our study investigates the upper mantle seismic structure beneath the CVL and surrounding regions to constrain the origin of volcanic lines that are poorly described by the classic plume model. Rayleigh wave phase velocities are measured at periods from 20 to 182 s following the two-plane wave methodology, using data from the Cameroon Seismic Experiment, which consists of 32 broadband stations deployed between 2005 and 2007.more » These phase velocities are then inverted to build a model of shear wave velocity structure in the upper mantle beneath the CVL. Our results show that phase velocities beneath the CVL are reduced at all periods, with average velocities beneath the CVL deviating more than –2% from the regional average and +4% beneath the Congo Craton. This distinction is observed for all periods but is less pronounced for the longest periods measured. Inversion for shear wave velocity structure indicates a tabular low velocity anomaly directly beneath the CVL at depths of 50 to at least 200 km and a sharp vertical boundary with faster velocities beneath the Congo Craton. Finally, these observations demonstrate widespread infiltration or erosion of the continental lithosphere beneath the CVL, most likely caused by mantle upwelling associated with edge-flow convection driven by the Congo Craton or by lithospheric instabilities that develop due to the nearby edge of the African continent.« less

  16. Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Dawson, P.

    2003-01-01

    The properties of the surface wavefield at Kilauea Volcano are analysed using data from small-aperture arrays of short-period seismometers deployed in and around the Kilauea caldera. Tremor recordings were obtained during two Japan-US cooperative experiments conducted in 1996 and 1997. The seismometers were deployed in three semi-circular arrays with apertures of 300, 300 and 400 m, and a linear array with length of 1680 m. Data are analysed using a spatio-temporal correlation technique well suited for the study of the stationary stochastic wavefields of Rayleigh and Love waves associated with volcanic activity and scattering sources distributed in and around the summit caldera. Spatial autocorrelation coefficients are obtained as a function of frequency and are inverted for the dispersion characteristics of Rayleigh and Love waves using a grid search that seeks phase velocities for which the L-2 norm between data and forward modelling operators is minimized. Within the caldera, the phase velocities of Rayleigh waves range from 1400 to 1800 m s-1 at 1 Hz down to 300-400 m s-1 at 10 Hz, and the phase velocities of Love waves range from 2600 to 400 m s-1 within the same frequency band. Outside the caldera, Rayleigh wave velocities range from 1800 to 1600 m s-1 at 1 Hz down to 260-360 m s-1 at 10 Hz, and Love wave velocities range from 600 to 150 m s-1 within the same frequency band. The dispersion curves are inverted for velocity structure beneath each array, assuming these dispersions represent the fundamental modes of Rayleigh and Love waves. The velocity structures observed at different array sites are consistent with results from a recent 3-D traveltime tomography of the caldera region, and point to a marked velocity discontinuity associated with the southern caldera boundary.

  17. Monitoring stress changes in a concrete bridge with coda wave interferometry.

    PubMed

    Stähler, Simon Christian; Sens-Schönfelder, Christoph; Niederleithinger, Ernst

    2011-04-01

    Coda wave interferometry is a recent analysis method now widely used in seismology. It uses the increased sensitivity of multiply scattered elastic waves with long travel-times for monitoring weak changes in a medium. While its application for structural monitoring has been shown to work under laboratory conditions, the usability on a real structure with known material changes had yet to be proven. This article presents experiments on a concrete bridge during construction. The results show that small velocity perturbations induced by a changing stress state in the structure can be determined even under adverse conditions. Theoretical estimations based on the stress calculations by the structural engineers are in good agreement with the measured velocity variations.

  18. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  19. Should tsunami models use a nonzero initial condition for horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.

  20. Transdimensional, hierarchical, Bayesian inversion of ambient seismic noise: Australia

    NASA Astrophysics Data System (ADS)

    Crowder, E.; Rawlinson, N.; Cornwell, D. G.

    2017-12-01

    We present models of crustal velocity structure in southeastern Australia using a novel, transdimensional and hierarchical, Bayesian inversion approach. The inversion is applied to long-time ambient noise cross-correlations. The study area of SE Australia is thought to represent the eastern margin of Gondwana. Conflicting tectonic models have been proposed to explain the formation of eastern Gondwana and the enigmatic geological relationships in Bass Strait, which separates Tasmania and the mainland. A geologically complex area of crustal accretion, Bass Strait may contain part of an exotic continental block entrained in colliding crusts. Ambient noise data recorded by an array of 24 seismometers is used to produce a high resolution, 3D shear wave velocity model of Bass Strait. Phase velocity maps in the period range 2-30 s are produced and subsequently inverted for 3D shear wave velocity structure. The transdimensional, hierarchical Bayesian, inversion technique is used. This technique proves far superior to linearised inversion. The inversion model is dynamically parameterised during the process, implicitly controlled by the data, and noise is treated as an inversion unknown. The resulting shear wave velocity model shows three sedimentary basins in Bass Strait constrained by slow shear velocities (2.4-2.9 km/s) at 2-10 km depth. These failed rift basins from the breakup of Australia-Antartica appear to be overlying thinned crust, where typical mantle velocities of 3.8-4.0 km/s occur at depths greater than 20 km. High shear wave velocities ( 3.7-3.8 km/s) in our new model also match well with regions of high magnetic and gravity anomalies. Furthermore, we use both Rayleigh and Love wave phase data to to construct Vsv and Vsh maps. These are used to estimate crustal radial anisotropy in the Bass Strait. We interpret that structures delineated by our velocity models support the presence and extent of the exotic Precambrian micro-continent (the Selwyn Block) that was most likely entrained during crustal accretion.

  1. Wave-current generated turbulence over hemisphere bottom roughness

    NASA Astrophysics Data System (ADS)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  2. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    NASA Astrophysics Data System (ADS)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  3. Detailed structure of the top of the melt body beneath the East Pacific Rise at 9°40'N from waveform inversion of seismic reflection data

    NASA Astrophysics Data System (ADS)

    Collier, J. S.; Singh, S. C.

    1997-01-01

    We have applied waveform inversion to multichannel seismic reflection data collected at the East Pacific Rise at 9°40'N in order to determine the precise velocity structure of the magma body causing the axial magma chamber reflection. Our analysis supports the idea of a molten sill as previously suggested from forward modeling of seismic data from this location. Our inverted solution has a 30-m-thick sill with a P wave seismic velocity of 2.6 km s-1. Although not well constrained by the data we believe that the S wave velocity in the sill is not significantly different from 0.0 km s-1. The low P- and S wave velocities in the sill imply that it contains less than 30% crystals. The molten sill is underlain by a velocity gradient in which the P wave velocity increases from 2.6 to 3.5 km s-1 over a vertical distance of 50-m. The shape of our velocity-depth profile implies that accretion of material to the roof of the sill is minor compared to accretion to the floor. The underlying velocity gradient zone may represent crystal settling under gravity. We suggest that only material from the 30-m-thick layer can erupt.

  4. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.

  5. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    DOE PAGES

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less

  6. Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus

    NASA Astrophysics Data System (ADS)

    Wibowo, Bagus Adi; Ngadmanto, Drajat; Daryono

    2015-04-01

    A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wave in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below.

  7. Imaging the Earth's anisotropic structure with Bayesian Inversion of fundamental and higher mode surface-wave dispersion data

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas

    2017-04-01

    We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.

  8. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.

  9. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond.

    PubMed

    El Hakiki, Mohamed; Elmazria, Omar; Alnot, Patrick

    2007-03-01

    The new layered structure, ZnO/AlN/diamond, for surface acoustic wave (SAW) devices is investigated for gigahertz-band applications. This structure combines the advantages of both piezoelectric materials, with a high electromechanical coupling coefficient (K2) of ZnO and high acoustic velocity of AlN. Theoretical results show that Rayleigh mode SAWs with large phase velocities up to 12,200 m/s and large K2 from 1 to 3% were generated with this new structure.

  10. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    NASA Astrophysics Data System (ADS)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  11. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.

  12. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924

  13. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.

  14. Lithospheric Structure of Arabia from the Joint Inversion of P- and S-wave Receiver Functions and Dispersion Velocities

    NASA Astrophysics Data System (ADS)

    Julia, Jordi; Al-Amri, Abdullah; Pasyanos, Michael; Rodgers, Arthur; Matzel, Eric; Nyblade, Andrew

    2013-04-01

    Seismic imaging of the lithosphere under the Arabian shield and platform is critical to help answer important geologic questions of regional and global interest. The Arabian Shield can be regarded as an amalgamation of several arcs and microplates of Proterozoic age that culminated in the accretion of the Arabian portion of Gondwana during the Pan-African event at ~550 Ma and the role of important geologic features observed on the surface - such as the lineaments and shear zones separating the Proterozoic terrains in the shield - is not completely understood. Also, current models of Precambrian crustal evolution predict that Proterozoic terranes are underlain by fertile (FeO-rich) cratonic roots that should promote the production of mafic magmas and underplating of the Arabian shield terranes, and the shield contains Tertiary and Quaternary volcanic rocks related to the early stages of the Red Sea formation that might also be related to plume-related lithospheric "erosion". In order to better understand these relationships, we are developing new velocity models of litospheric structure for the Arabian shield and platform from the joint inversion of up to four seismic data sets: P-wave receiver functions, S-wave receiver functions, dispersion velocities from surface-waves, and dispersion velocities from ambient-noise cross-correlations. The joint inversion combines constraints on crustal thickness from P-wave receiver functions, constraints on lithospheric thickness from S-wave receiver functions and constraints on S-velocity and S-velocity gradients from dispersion velocities to produce detailed S-velocity profiles under single recording stations. We will present S-velocity profiles for a number of permanent stations operated by the Saudi Geological Survey and the King ing Abdulaziz Center for Science and Technology as well as stations from past temporary deployments and discuss the implications of the velocity models regarding composition and tectonics of the Arabian shield and platform.

  15. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R.B.

    1983-07-28

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  16. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R. Bruce

    1985-06-11

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  17. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  18. North American Crust and Upper Mantle Structure Imaged Using an Adaptive Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Eilon, Z.; Fischer, K. M.; Dalton, C. A.

    2017-12-01

    We present a methodology for imaging upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing increased computing power alongside sophisticated data analysis, with the flexibility to include multiple datatypes with complementary resolution. Our new method has been designed to simultaneously fit P-s and S-p converted phases and Rayleigh wave phase velocities measured from ambient noise (periods 6-40 s) and earthquake sources (periods 30-170s). Careful processing of the body wave data isolates the signals from velocity gradients between the mid-crust and 250 km depth. We jointly invert the body and surface wave data to obtain detailed 1-D velocity models that include robustly imaged mantle discontinuities. Synthetic tests demonstrate that S-p phases are particularly important for resolving mantle structure, while surface waves capture absolute velocities with resolution better than 0.1 km/s. By treating data noise as an unknown parameter, and by generating posterior parameter distributions, model trade offs and uncertainties are fully captured by the inversion. We apply the method to stations across the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles and offering robust uncertainty estimates. In the tectonically active northwestern US, a strong velocity drop immediately beneath the Moho connotes thin (<70 km) lithosphere and a sharp lithosphere-asthenosphere transition; the asthenospheric velocity profile here matches observations at mid-ocean ridges. Within the Wyoming and Superior cratons, our models reveal mid-lithospheric velocity gradients indicative of thermochemical cratonic layering, but the lithosphere-asthenosphere boundary is relatively gradual. This flexible method holds promise for increasingly detailed understanding of the lithosphere-asthenosphere system.

  19. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  20. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions

    NASA Astrophysics Data System (ADS)

    Wu, Zhenbo; Xu, Tao; Liang, Chuntao; Wu, Chenglong; Liu, Zhiqiang

    2018-03-01

    The northeastern (NE) Tibet records and represents the far-field deformation response of the collision between the Indian and Eurasian plates in the Cenozoic time. Over the past two decades, studies have revealed the existence of thickened crust in the NE Tibet, but the thickening mechanism is still in debate. We deployed a passive-source seismic profile with 22 temporary broad-band seismic stations in the NE Tibet to investigate the crustal shear wave velocity structure in this region. We selected 288 teleseismic events located in the west Pacific subduction zone near Japan with similar ray path to calculate P-wave receiver functions. Neighbourhood algorithm method is applied to invert the shear wave velocity beneath stations. The inversion result shows a low-velocity zone (LVZ) is roughly confined to the Songpan-Ganzi block and Kunlun mountains and extends to the southern margin of Gonghe basin. Considering the low P-wave velocity revealed by the wide-angle reflection-refraction seismic experiment and high ratio of Vp/Vs based on H-κ grid searching of the receiver functions in this profile, LVZ may be attributed to partial melting induced by temperature change. This observation appears to be consistent with the crustal ductile deformation in this region derived from other geophysical investigations.

  1. Wide Angle Converted Shear Wave Analysis of North Atlantic Volcanic Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Eccles, J. D.; White, R. S.; Christie, P. A.

    2007-12-01

    High-quality, wide-angle, ocean bottom seismometer (OBS) data have been acquired with a low frequency (9 Hz) seismic source across the Faroes and Hatton Bank volcanic rifted continental margins in the North Atlantic. In these regions thick Tertiary flood basalt sequences provide a challenge to deep seismic imaging. S-wave arrivals, which are dominantly converted from P- to S-waves at the sediment-top basalt interface, were recorded at 170 4-component OBS locations. Variation in the conversion efficiency was observed along the profiles. Tomographic inversion of over 70,000 converted S-wave crustal diving waves and Moho reflections was performed to produce S-wave velocity models and hence, when combined with pre-existing P-wave velocity models, a measure of the Vp/Vs ratio structure of the crust. Resolution testing shows the structure of the oceanic crust and continent-ocean transition is generally well resolved on both profiles. Lateral and vertical changes in Vp/Vs resolves changing crustal composition within, and between, oceanic and continental crust, including regions in the lower crust at the continent-ocean transition with high P-wave velocities of up to 7.5 km/s and low Vp/Vs ratios of ~ 1.75 associated with intense high-temperature intrusion at the time of break-up. Vp/Vs ratios of 1.75-1.80 at the base of the thickened oceanic crust are also lower than generally reported in normal oceanic crust. The P-wave travel-time tomography revealed a low velocity zone (LVZ) beneath the basalt on the Faroes margin and additional constraint on the Vp/Vs of the LVZ beneath the Fugloy Ridge has been gained by analysing the relative travel-time delays between basalt and basement refractions for P- and S-waves. This approach is less subject to the velocity-depth ambiguity associated with velocity inversions than is the determination of P- or S- wave velocity alone. Comparison of the calculated Vp/Vs ratio and P-wave velocity with measurements from relevant lithologies reveals that the LVZ is likely to contain sill-intruded Paleocene sedimentary rock rather than igneous hyaloclastites similar to those found beneath the basalt in a nearby well. Immediately beneath the LVZ, a unit with Vp/Vs ratios of 1.80-1.85 and P-wave velocities of 5.5-6.0 km/s is interpreted as sill-intruded sedimentary rock of a pre-breakup Mesozoic basin. We thank C.J. Parkin, A.W. Roberts and L.K. Smith for their contributions.

  2. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  3. The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test

    PubMed Central

    Lee, Young Hak; Oh, Taekeun

    2016-01-01

    In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave velocity (R-wave) for the condition assessment (e.g., the estimation of elastic properties). This is done by identifying the zero-order antisymmetric (A0) and first-order symmetric (S1) modes among multimodal Lamb waves. The MASW data were collected on eight concrete wide beams and compared to the actual depth and to the pressure (P-) wave velocities collected for the same specimen. Information is extracted from multimodal Lamb wave dispersion curves to obtain the elastic stiffness parameters and the thickness of the concrete structures. Due to the simple and cost-effective procedure associated with the MASW processing technique, the characteristics of several fundamental modes in the experimental Lamb wave dispersion curves could be measured. Available reference data are in good agreement with the parameters that were determined by our analysis scheme. PMID:28773562

  4. Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations

    NASA Astrophysics Data System (ADS)

    Manea, Elena Florinela; Michel, Clotaire; Poggi, Valerio; Fäh, Donat; Radulian, Mircea; Balan, Florin Stefan

    2016-11-01

    Large earthquakes from the intermediate-depth Vrancea seismic zone are known to produce in Bucharest ground motion characterized by predominant long periods. This phenomenon has been interpreted as the combined effect of both seismic source properties and site response of the large sedimentary basin. The thickness of the unconsolidated Quaternary deposits beneath the city is more than 200 m, the total depth of sediments is more than 1000 m. Complex basin geometry and the low seismic wave velocities of the sediments are primarily responsible for the large amplification and long duration experienced during earthquakes. For a better understanding of the geological structure under Bucharest, a number of investigations using non-invasive methods have been carried out. With the goal to analyse and extract the polarization and dispersion characteristics of the surface waves, ambient vibrations and low-magnitude earthquakes have been investigated using single station and array techniques. Love and Rayleigh dispersion curves (including higher modes), Rayleigh waves ellipticity and SH-wave fundamental frequency of resonance (f0SH) have been inverted simultaneously to estimate the shear wave velocity structure under Bucharest down to a depth of about 8 km. Information from existing borehole logs was used as prior to reduce the non-uniqueness of the inversion and to constrain the shallow part of the velocity model (<300 m). In this study, we use data from a 35-km diameter array (the URS experiment) installed by the National Institute for Earth Physics and by the Karlsruhe Institute of Technology during 10 months in the period 2003-2004. The array consisted of 32 three-component seismological stations, deployed in the urban area of Bucharest and adjacent zones. The large size of the array and the broad-band nature of the available sensors gave us the possibility to characterize the surface wave dispersion at very low frequencies (0.05-1 Hz) using frequency-wavenumber techniques. This is essential to explore and resolve the deeper portions of the basin. The horizontal to vertical spectral ratio (H/V) curves provide important additional information about the structure and are here characterized by two major peaks. The first is attributed to the fundamental frequency of the basin, while the second can be interpreted as a mixture of the second higher mode of Rayleigh waves and other types of waves such as SH waves. This hypothesis has been verified by comparing the H/V curves with the SH-wave transfer function from the retrieved velocity structure. We could also approximate the SH transfer function with H/V ratios of earthquake recordings, providing additional verification of the robustness of the proposed velocity model. The Cretaceous bedrock depth was then inverted at each URS station from the fundamental frequency of resonance and using this model. A 3-D geophysical model for Bucharest has been constructed based on the integration of the inverted velocity profiles and the available geological information using a geographic information system.

  5. Distribution of Longitudinal Wave Velocities in Bovine Cortical Bone in vitro

    NASA Astrophysics Data System (ADS)

    Yamato, Yu; Kataoka, Hideo; Matsukawa, Mami; Yamazaki, Kaoru; Otani, Takahiko; Nagano, Akira

    2005-06-01

    The distribution of longitudinal wave velocities and longitudinal moduli in a bovine femoral cortical bone was experimentally investigated. In all parts of the long cylindrical bone, the velocities and longitudinal moduli in the axial direction were the highest. In the anterior (A) part, the velocities in the axial direction were high and almost constant, whereas the velocities in the proximal postero medial (PM) and distal postero lateral (PL) parts markedly decreased. Classifying the cortical bone into three structures (plexiform, Haversian, and porotic), we clarify the velocity distributions in the bone with discussion from an anatomical point of view.

  6. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  7. Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase-biotite-muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling)

    NASA Astrophysics Data System (ADS)

    Ivankina, T. I.; Zel, I. Yu.; Lokajicek, T.; Kern, H.; Lobanov, K. V.; Zharikov, A. V.

    2017-08-01

    In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. The implementation of a nonlinear approximation of the P-wave velocity-pressure relation was applied to estimate the mineral matrix properties and the orientation distribution of microcracks. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.

  8. Structure of the detonation wave front in a mixture of nitromethane with acetone

    NASA Astrophysics Data System (ADS)

    Buravova, S. N.

    2012-09-01

    It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.

  9. Geometry and velocity structure of the northern Costa Rica seismogenic zone from 3D local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Schwartz, S. Y.; Newman, A. V.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2003-12-01

    We present results of a 3D local earthquake tomography study of the Middle America Trench seismogenic zone in northern Costa Rica. Local earthquake tomography can provide constraints on the updip, downdip, and lateral variability of seismicity and P- and S-wave velocities; these constraints may in turn provide information on compositional and/or mechanical variability along the seismogenic zone. We use arrival time data recorded by the Nicoya Peninsula seismic array, part of the Costa Rica seismogenic zone experiment (CRSEIZE), a collaborative effort undertaken to better understand seismogenic behavior at the Costa Rica subduction zone using data from land and ocean bottom seismic arrays, oceanic fluid flux meters, and GPS receivers. We invert ˜10,000 P-wave and S-wave arrival times from 475 well-recorded local earthquakes (GAP < 180° , >8 P-wave arrivals) to solve for the best-fitting 1D P- and S-wave velocity models, station corrections, and hypocenters using the algorithm VELEST. These 1D velocity models are used as a starting models for 3D simultaneous inversion using the algorithm SIMULPS14. Preliminary P-wave inversions contain a positive velocity anomaly dipping beneath the Nicoya Peninsula, interpreted as the subducting Cocos Plate. Earthquakes occur in a narrow band along the slab-continent interface and are consistent with the results of Newman et al. (2002). The updip limit of seismicity occurs ˜5 km deeper and 5-10 km landward in the northern vs. the southern Nicoya Peninsula, and this shift spatially correlates to the change from Cocos-Nazca to East Pacific Rise derived oceanic plate. P-wave velocities in the upper 5-10 km of the model are consistent with the geology of the Nicoya Peninsula. We will correlate relocated microseismicity to previously noted variability in oceanic plate morphology, heat flow, fluid flow, and thermal structure and compare the resulting P- and S-wave velocity models to wide-angle refraction models and hypothesized mantle wedge compositions.

  10. Uppermost mantle structure beneath eastern China and its surroundings from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Kennett, B. L. N.

    2016-04-01

    The Pn and Sn residuals from regional events provide strong constraints on the structure and lithological characteristics of the uppermost mantle beneath eastern China and its surroundings. With the dense Chinese Digital Seismic Network in eastern China, separate Pn and Sn tomographic inversions have been exploited to obtain P and S velocities at a resolution of 2° × 2° or better. The patterns of P velocities are quite consistent with the S velocities at depth of 50 and 60 km, but the amplitude of P wave speed anomalies are a little larger than those of S wave speed. The low P wave speed, high S wave speed, and low Vp/Vs ratio beneath the northern part of Ordos Basin are related to upwelling hot material. Abrupt changes in material properties are indicated from the rapid variations in the Vp/Vs ratio.

  11. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  12. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  13. Seismic triplication used to reveal slab subduction that had disappeared in the late Mesozoic beneath the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoran; Li, Qiusheng; Li, Guohui; Zhou, Yuanze; Ye, Zhuo; Zhang, Hongshuang

    2018-03-01

    We provided a new study of the seismic velocity structure of the mantle transition zone (MTZ) beneath the northeastern South China Sea using P-wave triplications from two earthquakes at the central Philippines recorded by the Chinese Digital Seismic Network. Through fitting the observed and theoretical triplications modeled by the dynamic ray tracing method for traveltimes, and the reflectivity method for synthetic waveforms using grid-searching method, best-fit velocity models based on IASP91 were obtained to constrain the P-wave velocity structure of the MTZ. The models show that a high-velocity anomaly (HVA) resides at the bottom of MTZ. The HVA is 215 km to 225 km thick, with a P-wave velocity increment of 1.0% between 450 km and 665 km or 675 km transition and increase by 2.5-3.5% at 665 km or 675 km depth. The P-wave velocity increment ranges from approximately 0.3% to 0.8% below the 665 km or 675 km. We proposed that the HVA in the MTZ was caused by the broken fragments of a diving oceanic plate falling into the MTZ at a high angle, and/or by unstable thick continental lithosphere dropping into the MTZ sequentially or almost simultaneously.

  14. Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol

    Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.

  15. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic P-wave residuals

    USGS Publications Warehouse

    Monfort, Mary E.; Evans, John R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at as many as 53 sites in this area. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: 1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly-localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS. 2) There is a high-velocity body in the mantle between 81 and 131 km deep centered about i0 km north of the edge of the Timber Mountain caldera, 3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas, 4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km, and 5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the Nevada Test Site to make good use of the closer station spacing i in that area. Results of these inversions show more details of the velocity structure but generally the same features as those found in the regional study.

  16. True-triaxial experimental seismic velocities linked to an in situ 3D seismic velocity structure

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.

    2017-12-01

    Upscaling from laboratory seismic velocities to in situ field seismic velocities is a fundamental problem in rock physics. This study presents a unique situation where a 3D velocity structure of comparable frequency ranges is available both in situ and experimentally. The in situ data comes from the Underground Research Laboratory (URL) located in Manitoba, Canada. The velocity survey and oriented, cubic rock sample, are from the 420m level of the mine, where the geology is a homogeneous and isotropic granite. The triaxial in situ stress field at this level was determined and the Mine-by tunnel was excavated horizontally to maximize borehole break out. Ultrasonic velocity measurements for P-, S1-,and S2-waves were done in the tunnel sidewall, ceiling and far-field rock mass.The geophysical imaging cell (GIC) used in this study allows for true triaxial stress (σ1 > σ2 > σ3). Velocity surveys for P-, S1-, and S2-wave can be acquired along all three axes, and therefore the effects of σ1, σ2, σ3 on the velocity-stress relationship is obtained along all 3 axes. The cubic (80 mm) granite sample was prepared oriented to the in situ principle stress axis in the field. The stress path of the sample extraction from in situ stress was modeled in FLAC 3D (by Itasca inc ), and then reapplied in the GIC to obtain the laboratory velocities at in situ stress. Both laboratory and field velocities conclude the same maximum velocity axis, within error, to be along σ2 at 5880±60 m/s for P-wave. This deviation from the expected fast axis being σ1, is believed to be caused by an aligned microcrack fabric. The theory of acoustoelasticity, the dependence of acoustic wave velocity on stresses in the propagating isotropic medium, is applied to the borehole hoop and radial stresses produced by the Mine-by tunnel. The acoustoelastic effect involves determining the linear (second-order) and nonlinear (third-order) elastic constants, which are derived from the velocity-stress slopes obtained from both uniaxial and hydrostatic stress tests performed on the granite. The acoustoelastic model produces the in situ far field P-wave velocity, as well as similar near borehole field velocities. In summary, this study compares a 3D field and laboratory velocity structure, and shows the potential of the theory of acoustoelasticity for velocity-stress inversion.

  17. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  18. Lithospheric Structure of the Arabian Shield From the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    DTIC Science & Technology

    2007-01-01

    dashed lines correspond to observations and predictions, respectively. 9 Inversion results corresponding to the stations located within the Asir t~er- 17...wave velocity models ............................................................. A-2 A3 Asir terrane S-wave velocity models...island-arc terranes ( Asir , Hijaz and Midyan), and to the east, one terrane of continental affinity (Afif) and one terrane of possible continental

  19. The distribution of seismic velocities and attenuation in the earth. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hart, R. S.

    1977-01-01

    Estimates of the radial distribution of seismic velocities and density and of seismic attenuation within the earth are obtained through inversion of body wave, surface wave, and normal mode data. The effect of attenuation related dispersion on gross earth structure, and on the reliability of eigenperiod identifications is discussed. The travel time baseline discrepancies between body waves and free oscillation models are examined and largely resolved.

  20. D″ shear velocity heterogeneity, anisotropy and discontinuity structure beneath the Caribbean and Central America

    NASA Astrophysics Data System (ADS)

    Garnero, Edward J.; Lay, Thorne

    2003-11-01

    The D″ region in the lowermost mantle beneath the Caribbean and Central America is investigated using shear waves from South American earthquakes recorded by seismic stations in North America. We present a large-scale, composite study of volumetric shear velocity heterogeneity, anisotropy, and the possible presence of a D″ discontinuity in the region. Our data set includes: 328 S( Sdiff)- SKS differential travel times, 300 ScS-S differential travel times, 125 S( Sdiff) and 120 ScS shear wave splitting measurements, and 297 seismograms inspected for Scd, the seismic phase refracted from a high-velocity D″ layer. Broadband digital data are augmented by high-quality digitized analog WWSSN data, providing extensive path coverage in our study area. In all, data from 61 events are utilized. In some cases, a given seismogram can be used for velocity heterogeneity, anisotropy, and discontinuity analyses. Significant mid-mantle structure, possibly associated with the ancient subducted Farallon slab, affects shear wave travel times and must be corrected for to prevent erroneous mapping of D″ shear velocity. All differential times are corrected for contributions from aspherical mantle structure above D″ using a high-resolution tomography model. Travel time analyses demonstrate the presence of pervasive high velocities in D″, with the highest velocities localized to a region beneath Central America, approximately 500-700 km in lateral dimension. Short wavelength variability overprints this general high-velocity background. Corrections are also made for lithospheric anisotropy beneath the receivers. Shear wave splitting analyses of the corrected waveforms reveal D″ anisotropy throughout the study area, with a general correlation with heterogeneity strength. Evidence for Scd arrivals is pervasive across the study area, consistent with earlier work, but there are a few localized regions (100-200 km) lacking clear Scd arrivals, which indicates heterogeneity in the thickness or velocity gradients of the high-velocity layer. While small-scale geographic patterns of heterogeneity, anisotropy, and discontinuity are present, the details appear complex, and require higher resolution array analyses to fully characterize the structure. Explanations for the high-shear wave speeds, anisotropy, and reflector associated with D″ beneath the Caribbean and Central America must be applicable over a lateral scale of roughly 1500 km 2, the dimension over which we observe coherent wavefield behavior in the region. A slab graveyard appears viable in this regard.

  1. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  2. 3-D velocity structure model for long-period ground motion simulation of the hypothetical Nankai Earthquake

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Petukhin, A.; Koketsu, K.; Miyake, H.; Murotani, S.; Tsurugi, M.

    2010-12-01

    Three dimensional velocity structure model of southwest Japan is provided to simulate long-period ground motions due to the hypothetical subduction earthquakes. The model is constructed from numerous physical explorations conducted in land and offshore areas and observational study of natural earthquakes. Any available information is involved to explain crustal structure and sedimentary structure. Figure 1 shows an example of cross section with P wave velocities. The model has been revised through numbers of simulations of small to middle earthquakes as to have good agreement with observed arrival times, amplitudes, and also waveforms including surface waves. Figure 2 shows a comparison between Observed (dash line) and simulated (solid line) waveforms. Low velocity layers have added on seismological basement to reproduce observed records. The thickness of the layer has been adjusted through iterative analysis. The final result is found to have good agreement with the results from other physical explorations; e.g. gravity anomaly. We are planning to make long-period (about 2 to 10 sec or longer) simulations of ground motion due to the hypothetical Nankai Earthquake with the 3-D velocity structure model. As the first step, we will simulate the observed ground motions of the latest event occurred in 1946 to check the source model and newly developed velocity structure model. This project is partly supported by Integrated Research Project for Long-Period Ground Motion Hazard Maps by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The ground motion data used in this study were provided by National Research Institute for Earth Science and Disaster Prevention Disaster (NIED). Figure 1 An example of cross section with P wave velocities Figure 2 Observed (dash line) and simulated (solid line) waveforms due to a small earthquake

  3. Shear wave velocity structure in the lithosphere and asthenosphere across the Southern California continent and Pacific plate margin using inversion of Rayleigh wave data from the ALBACORE project.

    NASA Astrophysics Data System (ADS)

    Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.

    2015-12-01

    The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.

  4. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  5. Velocity Structure of the Subducted Yakutat Terrane, Alaska: Insights from Guided Waves

    NASA Astrophysics Data System (ADS)

    Coulson, S.; Garth, T.; Rietbrock, A.

    2017-12-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes provide insight into the fine scale velocity structure of the subducting oceanic crust as it dehydrates. These observations can be used to determine the average velocity and thickness of the crustal low velocity layer (LVL) at depth, allowing inferences to be drawn about composition and degree of hydration. We constrain guided wave dispersion by comparing waveforms recorded in the subduction forearc with simulated waveforms, produced using a 2D finite difference waveform propagation model. The structure of the Aleutian arc is complex due to the accretion of the Yakutat Terrane (YT) to the east, which is partially coupled with the subducting Pacific plate. An unusually thick LVL associated with the YT has been inferred down to 140 km depth by receiver function studies and travel time tomography. Focussing on a profile running NNW-SSE close to Anchorage, we constrain slab geometry using global and local catalogues, as well as the curvature inferred from receiver functions (Kim et al., 2014). P-wave arrivals from 41 earthquakes (2012-2015) show significant guided wave dispersion on at least one station; high frequency (>1-3 Hz) energy is delayed by up to 2-3 seconds. Choosing the clearest dispersion observations, we systematically vary both LVL width and P-wave velocity, to find the lowest misfit between the observed and synthetic waveforms. Multiple modelled events show the thickness of the LVL associated with subducted YT to be 6-10 km, significantly thinner than inferred by receiver function studies. Most events are accounted for by an LVL velocity contrast of 12.5-15% with overriding mantle material, however, observations of the deepest event in the northern corner of the YT require a velocity contrast of 6%. Lower velocities in the shallower slab (70-120 km) cannot be accounted for by reacted or unreacted MORB or gabbro compositions. We postulate the presence of interbedded sediments within the YT reducing the bulk velocity of the LVL. Increased velocities seen at the northern edge of the YT can be explained by reacted MORB or gabbro assemblages. This may be explained by a lack of interbedded sediments in this part of the YT, or the warmer conditions at the edge of the subducted terrane causing a faster pace of metamorphic reaction in this part of the slab.

  6. Unveiling the lithospheric structure of the US Interior using the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Ritzwoller, M. H.; Lin, F.; Shen, W.; Yang, Y.

    2009-12-01

    We present current results from ambient noise tomography (ANT) and earthquake surface wave tomography applied to the USARRAY Transportable Array (TA) for the western and central US. We have processed ambient seismic noise data since October 2004 to produce cumulative Rayleigh and Love wave dispersion maps (from about 6 to 40 sec period) within the footprint of the TA. The high spatial density of these instruments results in dispersion maps with a resolution of about the average inter-station distance (70 km) and far exceeds previous surface wave tomographic results for the US interior. The dispersion maps from ANT are complemented by Rayleigh wave phase speed maps from teleseismic earthquake tomography (25 - 100 sec period). The development of a new method of surface wave tomography, termed Eikonal tomography, that models wavefront complexity and off great-circle propagation allows for the robust estimation of phase velocity azimuthal anisotropy. Eikonal tomography has been applied to ambient seismic noise and earthquake measurements and provides a means to compare and vet results in the period band of overlap (25 - 40 sec). In addition, the recent application of this method to Love waves from teleseismic earthquakes provides dispersion measurements up to 50 sec period. These longer period Love wave dispersion measurements may improve the characterization of anisotropy in the uppermost mantle. In addition to the current dispersion maps, we present regional-scale 3-D models of isotropic and anisotropic shear-velocities for the crust and uppermost mantle beneath the western US. Because dispersion measurements from ambient seismic noise include short period (<20 sec) information, they provide a strong constraint on the shear-velocity structure of the crust and uppermost mantle. A radially anisotropic shear-velocity model of the crust and uppermost mantle is constructed by simultaneously inverting Rayleigh and Love wave dispersion measurements from ANT and from earthquake tomography. Models with isotropic and radially anisotropic mantle shear-velocities do not fit the Rayleigh and Love wave measurements simultaneously across large regions of the western US, and the models present a Rayleigh-Love misfit discrepancy at the periods most sensitive to crustal velocity structures. However, by introducing positive radial anisotropy (Vsh>Vsv) to the middle and lower crust, this misfit discrepancy is resolved. Higher amplitude crustal radial anisotropy is observed in the predominant extensional provinces of the western US and is thought to result from the alignment of anisotropic crustal minerals during extension and deformation. Several regions of the western US remain poorly fit by the 3-D radially anisotropic shear-velocity model. These include the Olympic Peninsula, Mendocino Triple Junction, southern Cascadia backarc, Yakima Fold Belt, Wasatch Front, Salton Trough and Great Valley. We investigate various additional model parametrizations and the effect of breaking the constraint on the monotonic increase of crustal velocities with depth to resolve crustal shear-velocity structure in these regions. These techniques will readily be applied to data from the US Interior as the TA moves to the east.

  7. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  8. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  9. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  10. Lithospheric structure beneath the extinct ridge of South China Sea: Constraints from Rayleigh wave phase velocity tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Yang, T.; Le, B. M.; passive-Source Seismic Team, S.

    2016-12-01

    What would happen when a mid-ocean-ridge stops spreading? Global occurrences of such ridges appear to indicate that magmatic activities had continued for million years after ridges were abandoned and often formed seamount chains over ridges. The extinct ridge and the seamount chain at the South China Sea represent one classic example of such ridges. To understand this unique process and the lithospheric and deep mantle structure, we carry out a Rayleigh wave phase velocity tomography using data from a passive-source OBS array experiment in South China Sea from 2012 to 2013. We correct OBS clock errors by using Scholte waves retrieved through cross-correlating hydrophone records of each OBS pair. 60 regional and teleseismic events with high quality Rayleigh waves are selected and their dispersion curves at the OBS array are used to inverse the phase velocities of periods from 15 s to 100 s. The shear wave velocity model derived from phase velocities of all periods shows a strong low-velocity zone situated beneath the seamounts starting at about 30 km depth. The lithosphere thickness of the extinct ridge inferred from this model provide insights on the cooling process and magmatism at this unique oceanic setting. In addition, our model images the tear of the subducting South China Sea plate beneath the Manila trench and Luzon island, which is clearly generated by the subduction of the extinct ridge and overriding seamounts.

  11. Lithospheric structure of east Asia from ambient noise and two-station Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Li, M.; Song, X.; Li, J.; Bao, X.

    2017-12-01

    The complex tectonic background of east Asia makes it an ideal region to investigate the evolution of continental lithosphere. High-resolution lithospheric structure models are essential in this endeavor. Surface-wave tomography has been an important technique for constructing 3D lithospheric structure in global and regional scales. In this study, using event data recorded by more than 1000 seismic stations from multiple national and international networks in and surrounding China (CEArray, PASSCAL, GSN), we systematically measured Rayleigh-wave phase-velocity dispersion curves at periods 10-120 s and group-velocity dispersion curves at periods 10-140 s based on the traditional two-station method. The dispersion curves were extracted from the cross-correlation functions of the earthquake data at the two stations near the great circle path using frequency-time analysis method. The new measurements extend the phase and group dispersion data to longer periods (i.e. >70 s), which are difficult to extract from ambient noise cross-correlation. The longer-period data allow us to image deeper lithospheric velocity structure. We combined the new dispersion measurements with two previously obtained data sets: (1) data set from Bao et al. (2015) across the Chinese continent that includes group and phase dispersion measurements from ambient noise correlations and group velocity measurements from earthquakes, and (2) data set from Wang et al. (2017) across the marginal seas in east Asia from ambient noise correlations. We used the combined data set to invert for the phase velocity maps up to 120 s and group velocity maps up to 140 s at a grid spacing of 0.5°×0.5°and then invert for the 1D shear-wave velocity structure at each grid to obtain the new 3D shear-wave velocity model. The new model is generally consistent with that of Bao et al. (2015) but with improved resolution particularly in greater depths and in east-Asia marginal seas. We also derived crustal thickness and lithospheric thickness models. The lithospheric thickness model shows strong spatial heterogeneity and thinning trend from west to east in our study region. These models reveal important lithospheric features beneath east Asia and provide a fundamental data set for understanding continental dynamics and evolution.

  12. Application of Microtremor Survey Methods to Determine the Shallow Crustal S-wave Velocity Structure beneath the Wudalianchi Weishan Volcano Area

    NASA Astrophysics Data System (ADS)

    Zhang, B.; LI, Z.; Chu, R.

    2015-12-01

    Ambient noise has been proven particularly effective in imaging Earth's crust and uppermost mantle on local, regional and global scales, as well as in monitoring temporal variations of the Earth interior and determining earthquake ground truth location. Previous studies also have shown that the Microtremor Survey Method is effective to map the shallow crustal structure. In order to obtain the shallow crustal velocity structure beneath the Wudalianchi Weishan volcano area, an array of 29 new no-cable digital geophones were deployed for three days at the test site (3km×3km) for recording continuously seismic noise. Weishan volcano is located in the far north of Wudalianchi Volcanoes, the volcanic cone is composed of basaltic lava and the volcano area covered by a quaternary sediments layer (gray and black loam, brown and yellow loam, sandy loam). Accurate shallow crustal structure, particularly sedimentary structure model can improve the accuracy of location of volcanic earthquakes and structural imaging. We use ESPAC method, which is one of Microtremor Survey Methods, to calculate surface wave phase velocity dispersion curves between station pairs. A generalized 2-D linear inversion code that is named Surface Wave Tomography (SWT) is adopted to invert phase velocity tomographic maps in 2-5 Hz periods band. On the basis of a series of numerical tests, the study region is parameterized with a grid spacing of 0.1km×0.1km, all damping parameters and regularization are set properly to ensure relatively smooth results and small data misfits as well. We constructed a 3D Shallow Crustal S-wave Velocity model in the area by inverting the phase velocity dispersion curves at each node adopting an iterative linearized least-square inversion scheme of surf96. The tomography model is useful in interpreting volcanic features.

  13. Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil

    2015-04-01

    In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated island in the world.

  14. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  15. Structures of Xishan village landslide in Li County, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, Z.; Chu, R.

    2017-12-01

    Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.

  16. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  17. P and S Wave Velocity Structure of the Crust and Upper Mantle Under China and Surrounding Areas From Body and Surface Wave Tomography

    DTIC Science & Technology

    2008-03-31

    Validation Results The 3D shear-wave velocity models are shown in Fig- ures 5–7 and can be accessed Ⓔ in the electronic edition of BSSA. Depth slices... edited by S. Karato and M. Toriumi, Oxford Sci., New York. Levshin, A. L., M. H. Ritzwoller, M. P. Barmin, A. Villasenor, and C. A. Padgett (2001), New...vol. 16, edited by K. Fuchs and C. Froidevaux, pp. 111–123, AGU, Washington, D.C. Nolet, G., C. Coutlee, and R. Clouser (1998), Sn velocities in

  18. A 3-D shear velocity model of the southern North America and the Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2014-10-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  19. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  20. Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a Rhesus macaque model

    PubMed Central

    Rosado-Mendez, Ivan M.; Palmeri, Mark L.; Drehfal, Lindsey C.; Guerrero, Quinton W.; Simmons, Heather; Feltovich, Helen; Hall, Timothy J.

    2016-01-01

    Shear Wave Elasticity Imaging (SWEI) shows promise for evaluating the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. SWEI was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from Rhesus macaques. After application of tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity vs. frequency. Dispersion was observed in both groups (median 5.5 m/s/kHz, interquartile range: 1.5–12.0 m/s/kHz), also decreasing towards the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity. PMID:28189282

  1. Shear Wave Velocity Structure Beneath Eastern North America from Rayleigh Wave Tomography

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Li, A.; Yao, Y.

    2017-12-01

    The Geology of eastern North America is characterized by distinctive tectonic terranes, including the Grenville Province, the Appalachian Orogen, and the passive Atlantic margin. To investigate how the lithosphere has evolved through the orogenesis and rifting process, we construct shear wave velocity models from Rayleigh wave tomography using a two-plane wave inversion method. The fundamental mode Rayleigh wave data from 113 earthquakes recorded at 220 USArray Transportable Array stations are analyzed and inverted for phase velocities at 18 periods from 20 to 167 s. The average phase velocity of the region varies from 3.60 km/s at 20 s to 4.11 km/s at 67 s to 4.42 km/s at 167 s, all of which are faster than the predictions from the global AK135 model. At short periods from 20 to 33 s, low velocity anomalies mainly appear in the Appalachians in northern Pennsylvania and northwestern Virginia while high velocity anomalies are imaged at the Grenville Province, the North America craton, and along the Atlantic coast. These phase velocity variations reflect crustal velocity and thickness change across the area, which could be distinguished in 3-D velocity models after the inversion of phase velocities. High phase velocities continuously appear beneath the stable craton and the Grenville Province at longer periods. However, a significant low velocity anomaly is present in the Appalachians in northern New England beyond period 50 s, which is consistent with previous models in this region. This anomaly has been interpreted as the result of past heating from the Great Meteor hotspot or current asthenospheric upwelling. The 3-D azimuthally anisotropic shear velocity model that we are developing may help to resolve this ambiguity.

  2. Rayleigh and Love Wave Phase Velocities in the Northern Gulf Coast of the United States

    NASA Astrophysics Data System (ADS)

    Li, A.; Yao, Y.

    2017-12-01

    The last major tectonic event in the northern Gulf Coast of the United States is Mesozoic continental rifting that formed the Gulf of Mexico. This area also experienced igneous activity and local uplifts during Cretaceous. To investigate lithosphere evolution associated with the rifting and igneous activity, we construct Rayleigh and Love wave phase velocity models at the periods of 6 s to 125 s in the northern Gulf Coast from Louisiana to Alabama including the eastern Ouachita and southern Appalachian orogeny. The phase velocities are derived from ambient noise and earthquake data recorded at the 120 USArray Transportable Array stations. At periods below 20 s, phase velocity maps are characterized by significant low velocities in the Interior Salt Basin and Gulf Coast Basin, reflecting the effects of thick sediments. The northern Louisiana and southern Arkansas are imaged as a low velocity anomaly in Rayleigh wave models but a high velocity anomaly of Love wave at the periods of 14 s to 30 s, indicating strong lower crust extension to the Ouachita front. High velocity is present in the Mississippi Valley Graben from period 20 s to 35 s, probably reflecting a thin crust or high-velocity lower crust. At longer periods, low velocities are along the Mississippi River to the Gulf Coast Basin, and high velocity anomaly mainly locates in the Black Warrior Basin between the Ouachita Belt and Appalachian Orogeny. The magnitude of anomalies in Love wave images is much smaller than that in Rayleigh wave models, which is probably due to radial anisotropy in the upper mantle. A 3-D anisotropic shear velocity model will be developed from the phase velocities and will provide more details for the crust and upper mantle structure beneath the northern Gulf of Mexico continental margin.

  3. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  4. Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.

    2003-02-01

    Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.

  5. Monitoring the Groningen gas field by seismic noise interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field in the Netherlands is the world's 7th largest onshore gas field and has been producing from 1963. Since 2013, the year with the highest level of induced seismicity, the reservoir has been monitored by two geophone strings at reservoir level at about 3 km depth. For borehole SDM, 10 geophones with a natural frequency of 15-Hz are positioned from the top to bottom of the reservoir with a geophone spacing of 30 m. We used seismic interferometry to determine, as accurately as possible, the inter-geophone P- and S-wave velocities from ambient noise. We used 1-bit normalization and spectral whitening, together with a bandpass filter from 3 to 400 Hz. After that, for each station pair, the normalized cross-correlation was calculated for 6 seconds segments with 2/3 overlap. These segmented cross-correlations were stacked for every 1 hour, 24(hours)*33(days) segments were obtained for each station pair. The cross-correlations show both day-and-night and weekly variations reflecting fluctuations in cultural noise. The apparent P-wave travel time for each geophone pair is measured from the maximum of the vertical component cross-correlation for each of the hourly stacks. Because the distribution of these (24*33) picked travel times is not Gaussian but skewed, we used Kernel density estimations to obtain probability density functions of the travel times. The maximum likelihood travel times of all the geophone pairs was subsequently used to determine inter-geophone P-wave velocities. A good agreement was found between our estimated P velocity structure and well logging data, with difference less than 5%. The S-velocity structure was obtained from the east-component cross-correlations. They show both the direct P- and S-wave arrivals and, because of the interference, the inferred S-velocity structure is less accurate. From the 9(3x3)-component cross-correlations for all the geophone pairs, not only the direct P and S waves can be identified, but also reflected waves within the reservoir for some of the cross-correlations. It is concluded that noise interferometry can be used to determine the seismic velocity structure from deep borehole data.

  6. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2 times greater than the array aperture. At Hollister, the measured phase velocity at 3.9 Hz (near the upper edge of the microtremor frequency band) is within 20% of the calculated Rayleigh-wave velocity. Because shear-wave velocity is the predominant factor controlling Rayleigh-wave phase velocities, the comparisons suggest that this nonintrusive method can provide VS information adequate for ground-motion estimation.

  7. Crustal velocity structure of the Northern Victoria Land, Antarctica, from ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Yoo, H. J.; Park, Y.; Lee, W. S.; Graw, J. H.; Hansen, S. E.; Kang, T. S.

    2017-12-01

    A shear wave velocity model of the Northern Victoria Land, Antarctica, was derived using Rayleigh-wave group velocity dispersions estimated from the cross correlation of ambient seismic noise. The continuous data, from January to November 2015, recorded on 29 broadband stations operated by Korea Polar Research Institute and Alabama University were used for retrieving the fundamental mode Rayleigh-wave Green's functions of each station pair. Rayleigh-wave group dispersions at period ranging from 3 to 23 s were determined by applying the multi-filter analysis technique. The measured group velocities were inverted to obtain 2-D group velocity maps using a fast marching method. We constructed a pseudo-3-D shear velocity model of the study region using 1-D shear velocity inversions at each node followed by a linear interpolation. The resulting shear velocity maps and cross-sections showed the significant velocity differences in the crust across the East Antarctica, Transantarctic Mountains, and the coastal region. The velocity changes are well correlated with the aeromagnetic lineaments, especially in shallow depth. The velocities in the Transantarctic Mountains are relatively high at shallow depth and lower at deeper depth, while those of the coastal region are relatively low in shallow depth and higher at deeper depth, implying thin crust over this area.

  8. 3D shallow velocity model in the area of Pozzo Pitarrone, NE flank of Mt. Etna Volcano, by using SPAC array method.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore

    2016-04-01

    In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.

  9. Rayleigh wave ellipticity across the Iberian Peninsula and Morocco

    NASA Astrophysics Data System (ADS)

    Gómez García, Clara; Villaseñor, Antonio

    2015-04-01

    Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared to inversions based on phase velocities alone.

  10. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    NASA Astrophysics Data System (ADS)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  11. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    USGS Publications Warehouse

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-01-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  12. Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.

    2016-12-01

    Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.

  13. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  14. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves

    PubMed Central

    Dodson, Jacob C.; Inman, Daniel J.

    2014-01-01

    Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂vP/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂vP/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955

  15. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    NASA Astrophysics Data System (ADS)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.

  16. Vertical directivities of seismic arrays on the ground surface

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.

    2012-12-01

    Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.

  17. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  18. Regional Crustal Velocity Models for Northern Arabian Platform and Turkish-Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Aleqabi, G.; Wysession, M.; Ghalib, H.

    2008-12-01

    The geological structure of the Northern Arabian platform and surrounding mountains is dominated by the collision and suturing of the Arabian plate with the Eurasian plate and the formation of the Turkish-Iranian plateau. The structure of the Northern Arabian platform and surrounding region is poorly constrained. A recent deployment of 10 broadband seismometers in northern and central Iraq provides an opportunity to refine velocity models of the region. We have applied the Niching Genetic Algorithm waveform inversion technique to Rayleigh and Love waves traversing the Northern Arabian platform, the Zagros fold belt, the southern Turkish Plateau, the Iranian Plateau. Results show variations in crustal thickness and shear wave velocity between the Northern Arabian platform and the Turkish-Iranian plateau. In general the shear wave velocities are higher in the Northern Arabian platform than in the Plateaus. Variation of shear velocities within each of the provinces reflects the diversity in tectonic environment across the Zagros fold belt and the complex tectonic history of the region. Crustal thickness results show little crustal thickening has occurred due to collision.

  19. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  20. Characterization of the Subsurface Using Vp, Vs, Vp/Vs, and Poisson's Ratio from Body and Surface Waves

    NASA Astrophysics Data System (ADS)

    Catchings, R.

    2017-12-01

    P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.

  1. 3D velocity structure of upper crust beneath NW Bohemia/Vogtland

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mousavi, Sima; Korn, Michael; Sens-Schönfelder, Christoph; Bauer, Klaus; Rößler, Dirk

    2013-04-01

    The 3D structure of the upper crust beneath west Bohemia/Vogtland region, analyzed with travel time tomography and ambient noise surface wave tomography using existing data. This region is characterized by a series of phenomena like occurrence of repeated earthquake swarms, surface exhalation, CO2 enriched fluids, mofettes, mineral springs and enhanced heat flow, and has been proposed as an excellent location for an ICDP drilling project targeted to a better understanding of the crust in an active magmatic environment. We performed a 3D tomography using P-and S-wave travel times of local earthquakes and explosions. The data set were taken from permanent and temporary seismic networks in Germany and Czech Republic from 2000 to 2010, as well as active seismic experiments like Celebration 2000 and quarry blasts. After picking P and S wave arrival times, 399 events which were recorded by 9 or more stations and azimuthal gap<160° were selected for inversion. A simultaneous inversion of P and S wave 1D velocity models together with relocations of hypocenters and station corrections was performed. The obtained minimum 1D velocity model was used as starting model for the 3D Vp and Vp/Vs velocity models. P and S wave travel time tomography employs damped least-square method and ray tracing by pseudo-bending algorithm. For model parametrization different cell node spacings have been tested to evaluate the resolution in each node. Synthetic checkerboard tests have been done to check the structural resolution. Then Vp and Vp/Vs in the preferred 3D grid model have been determined. Earthquakes locations in iteration process change till the hypocenter adjustments and travel time residuals become smaller than the defined threshold criteria. Finally the analysis of the resolution depicts the well resolved features for interpretation. We observed lower Vp/Vs ratio in depth of 5-10 km close to the foci of earthquake swarms and higher Vp/Vs ratio is observed in Saxoturingian zone and surrounding area. Surface wave tomography using ambient noise provides additional constraints on shear velocities. The detailed knowledge of the 3D structure is essential to select the optimal future borehole locations. we use the vertical and transverse component ambient noise data to estimate both Rayleigh and Love waves from ambient noise cross-correlation waveforms to investigate the crustal seismic structure of W-Bohemia/Vogtland. More than 2000 Rayleigh and Love group-velocity dispersion curves are obtained by time-frequency analysis of stacked ambient noise cross-correlation functions between station pairs. We used the data between 2002 and 2004 recorded at 43 seismic stations from BOHEMA experiment and between 2006 and 2008 recorded at 79 seismic stations from permanent station networks of Germany, Czech Academy of Sciences (WEBNET) and PASSEQ experiments. At each period between 1 and 10 s, group velocity maps are constructed, all corresponding to different sampling depths, and thus together giving an indication of the 3D shear wave velocity structure extending to a depth of about 15 km.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com; Pramumijoyo, Subagyo; Wilopo, Wahyu

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  3. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  4. Färoe-Iceland Ridge Experiment: 1. Crustal structure of northeastern Iceland

    USGS Publications Warehouse

    Staples, Robert K.; White, Robert S.; Brandsdottir, Bryndis; Menke, William; Maguire, Peter K.H.; McBride, John H.

    1997-01-01

    Results from the Färoe-Iceland Ridge Experiment (FIRE) constrain the crustal thickness as 19 km under the Northern Volcanic Zone of Iceland and 35 km under older Tertiary areas of northeastern Iceland. The Moho is defined by strong P wave and S wave reflections. Synthetic seismogram modeling of the Moho reflection indicates mantle velocities of at least 8.0 km/s beneath the Tertiary areas of northeastern Iceland and at least 7.9 km/s beneath the neovolcanic zone. Crustal diving rays resolve the structure of the upper and lower crust. Surface P wave velocities are 1.1–4.0 km/s in Quaternary rocks and are rather higher, 4.4–4.7 km/s, in the Tertiary basalts that outcrop elsewhere. The highest crustal P wave velocities observed directly from diving rays are 7.1 km/s, from rays that turn at 24 km depth. Velocities of 7.35 km/s at the base of the crust are inferred from extrapolation of the lower crustal velocity gradient (0.024 s−1). A Poisson's ratio of approximately 0.27, equivalent to an S wave to P wave travel time ratio of 1.78, is measured throughout the crust east of the neovolcanic zone. The Poisson's ratio and the steep Moho topography (in places up to 30° from the horizontal) indicate that the entire crust outside the neovolcanic zone is cool (<800°C). Gravity data are well matched by a velocity/density conversion of our seismic crustal model and indicate a region of low mantle density beneath the neovolcanic zone, believed to be due to elevated mantle temperatures. The crustal thickness in the neovolcanic zone is consistent with geochemical estimates of the melt generation, placing constraints on the flow within the Iceland mantle plume.

  5. Seismic Waveform Tomography of the Iranian Region

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Priestley, K.; Jackson, J.

    2001-05-01

    Surprisingly little is known about the detailed velocity structure of Iran, despite the region's importance in the tectonics of the Middle East. Previous studies have concentrated mainly on fundamental mode surface wave dispersion measurements along isolated paths (e.g.~Asudeh, 1982; Cong & Mitchell, 1998; Ritzwoller et.~al, 1998), and the propagation characteristics of crust and upper mantle body waves (e.g. Hearn & Ni 1994; Rodgers et.~al 1997). We use the partitioned waveform inversion method of Nolet (1990) on several hundred regional waveforms crossing the Iranian region to produce a 3-D seismic velocity map for the crust and upper mantle of the area. The method consists of using long period seismograms from earthquakes with well determined focal mechanisms and depths to constrain 1-D path-averaged shear wave models along regional paths. The constraints imposed on the 1-D models by the seismograms are then combined with independent constraints from other methods (e.g.~Moho depths from reciever function analysis etc.), to solve for the 3-D seismic velocity structure of the region. A dense coverage of fundamental mode rayleigh waves at a period of 100~s ensures good resolution of lithospheric scale structure. We also use 20~s period fundamental mode rayleigh waves and some Pnl wavetrains to make estimates of crustal thickness variations and average crustal velocities. A few deeper events give us some coverage of higher mode rayleigh waves and mantle S waves, which sample to the base of the upper mantle. Our crustal thickness estimates range from 45~km in the southern Zagros mountains, to 40~km in central Iran and 35~km towards the north of the region. We also find inconsistencies between the 1-D models required to fit the vertical and the tranverse seismograms, indicating the presence of anisotropy.

  6. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography/relocation inversion. Through these efforts, we hope to refine the 3D tomographic image of seismic velocity structure and the complex geometry of the active fault strands near SAFOD and along the Parkfield rupture zone.

  7. Shear Wave Velocity Structure beneath the African-Anatolian Subduction Zone in Southwestern Turkey from Inversions of Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Teoman, U. M.; Sandvol, E. A.; Kahraman, M.; Sahin, S.; Turkelli, N.

    2011-12-01

    The ongoing subduction of the African Plate under western Anatolia results in a highly complex tectonic structure especially beneath Isparta Angle (IA) and the surroundings where the Hellenic and Cyprian slabs with different subduction geometries intersect. The primary objective is to accurately image the lithospheric structure at this convergent plate boundary and further understand the reasons responsible for the active deformation. Data was gathered from a temporary seismic network consisting of 10 broadband stations that was installed in August 2006 with the support from University of Missouri and nine more stations deployed in March 2007 with the support from Bogazici Research Fund (project ID:07T203). In addition, 21 permanent stations of Kandilli Observatory and Earthquake Research Institute (KOERI) and two from Süleyman Demirel University (SDU) together with five stations from IRIS/Geofon Network were also included to extend the station coverage. We used earthquakes in a distance range of 30-120 degrees with body wave magnitudes larger than 5.5. Depending on the signal to noise ratio, azimuthal coverage of events, and coherence from station, 81 events provided high-quality data for our analysis. The distribution of events shows a good azimuthal coverage, which is important for resolving both lateral heterogeneity and azimuthal anisotropy. We adopted a two-plane-wave inversion technique of Forsyth and Li (2003) to simultaneously solve for the incoming wave field and phase velocity. This relatively simpler representation of a more complex wavefield provided quite stable patterns of amplitude variations in many cases. To begin with, an average phase velocity dispersion curve was obtained and used as an input for tomographic inversions. Two-dimensional tomographic maps of isotropic and azimuthally anisotropic phase velocity variations were generated. Phase velocities can only tell us integrated information about the upper mantle. Furthermore, we inverted phase velocities for shear wave velocities (Saito,1988) in order to obtain direct information at a depth range of 30-300 km that can be interpreted in terms of major tectonic processes such as extension, slab detachment/tearing, STEP faults, volcanism, temperature anomalies, the presence of melt or dissolved water, etc. Resulting tomograms along horizontal and vertical depth sections provided valuable insights on the crustal and upper mantle structure beneath Southwestern Turkey down to almost 300 km.

  8. Reducing uncertainties in the velocities determined by inversion of phase velocity dispersion curves using synthetic seismograms

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Mehrdad

    Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.

  9. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke

    2017-04-01

    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii Peninsula), but our result shows the LVZ in the regions of both DONET 1 and 2 (2: western network and southwest of the Kii Peninsula). Similar features could also be obtained by using Rayleigh waves of earthquake-signals only. This indicates lateral variation of Vs structure at the toe of the Nankai accretionary prism.

  10. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.

    2017-12-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  11. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  12. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  13. Induced dynamic nonlinear ground response at Gamer Valley, California

    USGS Publications Warehouse

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  14. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  15. Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Ammon, Charles J.; Herrmann, Robert B.

    2003-08-01

    We estimate lithospheric velocity structure for the Arabian Shield by jointly modeling receiver functions and fundamental-mode group velocities from events recorded by the 1995-1997 Saudi Arabian Portable Broadband Deployment. Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times, and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with the observed surface geology; the Asir terrane to the West consists of a 10-km-thick upper crust of 3.3 km/s overlying a lower crust of 3.7-3.8 km/s; in the Afif terrane to the East, the upper crust is 20 km thick and has an average velocity of 3.6 km/s, and the lower crust is about 3.8 km/s; separating the terranes, the Nabitah mobile belt is made of a gradational upper crust up to 3.6 km/s at 15 km overlying an also gradational lower crust up to 4.0 km/s. The crust-mantle transition is found to be sharp in terranes of continental affinity (east) and gradual in terranes of oceanic affinity (west). The upper mantle shear velocities range from 4.3 to 4.6 km/s. Temperatures around 1000 °C are obtained from our velocity models for a thin upper mantle lid observed beneath station TAIF, and suggest that the lithosphere could be as thin as 50-60 km under this station.

  16. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  17. Love and Rayleigh wave dispersion from regional Ambient Noise Tomography in the Eastern Alps of Europe

    NASA Astrophysics Data System (ADS)

    Behm, Michael; Nakata, Nori; Bianchi, Irene; Bokelmann, Götz

    2014-05-01

    ALPASS is an international passive seismic monitoring experiment aimed at understanding the upper mantle structure in the in the European Eastern Alps. Data were collected from May 2005 to June 2006 at about 50 locations with an average spacing of 20 km, and have been used for teleseismic travel time tomography and receiver function analysis in previous studies. We combine the ALPASS data from 23 broadband stations with additional data from the temporary CBP (Carpathian Basin Project) network (15 stations), and present results from ambient noise tomography applied to the region covering the easternmost part of the Alps and its transition to the adjacent tectonic provinces (Vienna Basin, Bohemian Massif, Dinarides). By turning each station into a virtual source, we are able to recover surface waves in the frequency range of 0.05 - 0.5 Hz, which are sensitive to depths of approximately 2 - 15 kilometers. The three-component recordings allow distinguishing between Rayleigh waves on the vertical/radial components and Love waves on the transverse component. On average, the Love waves have higher apparent velocity by about 15%. Owing to dense receiver spacing and high S/N ratio of the obtained interferograms, we are able to derive a large set of dispersion curves. The complicated 3D structure of the investigated region calls for a tomographic approach to transform these dispersion curves to be representative of local 1D structures. The results correlate well with surface geology and provide the input to inversion for the vertical shear-wave velocity distribution. Compared to data from active source experiments, we derive lower average shear wave velocities. This observation is comparable to receiver functions analysis which show a high Vp/Vs ratio for the area of the Molasse basin, where the shear wave velocities retrieved from the surface wave inversion are in particular low.

  18. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more. We used 158,930 (P wave) and 149,308 (S wave) absolute arrival times, and 374,072 (P wave) and 354,912 (S wave) differential travel times. The initial velocity structure is the JMA2001 (Ueno et al., 2001), and the Vp/Vs ratio is set to 1.73 for all grid nodes. We imaged the subducting PSP and Pacific Plate clearly. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The obtained tomograms combined with seismicity and focal mechanisms indicate that the interior of the subducting PSP is characterized by heterogeneous structures, which could exert a profound influence on the genesis of intra-slab earthquakes. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr; Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr; Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improvedmore » by using new minimum velocity structure.« less

  20. Ultra-low velocity zones beneath the Philippine and Tasman Seas revealed by a trans-dimensional Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Dettmer, Jan; Tkalčić, Hrvoje

    2015-11-01

    Ultra-low velocity zones (ULVZs) are small-scale structures in the Earth's lowermost mantle inferred from the analysis of seismological observations. These structures exhibit a strong decrease in compressional (P)-wave velocity, shear (S)-wave velocity, and an increase in density. Quantifying the elastic properties of ULVZs is crucial for understanding their physical origin, which has been hypothesized either as partial melting, iron enrichment, or a combination of the two. Possible disambiguation of these hypotheses can lead to a better understanding of the dynamic processes of the lowermost mantle, such as, percolation, stirring and thermochemical convection. To date, ULVZs have been predominantly studied by forward waveform modelling of seismic waves that sample the core-mantle boundary region. However, ULVZ parameters (i.e. velocity, density, and vertical and lateral extent) obtained through forward modelling are poorly constrained because inferring Earth structure from seismic observations is a non-linear inverse problem with inherent non-uniqueness. To address these issues, we developed a trans-dimensional hierarchical Bayesian inversion that enables rigorous estimation of ULVZ parameter values and their uncertainties, including the effects of model selection. The model selection includes treating the number of layers and the vertical extent of the ULVZ as unknowns. The posterior probability density (solution to the inverse problem) of the ULVZ parameters is estimated by reversible jump Markov chain Monte Carlo sampling that employs parallel tempering to improve efficiency/convergence. First, we apply our method to study the resolution of complex ULVZ structure (including gradually varying structure) by probabilistically inverting simulated noisy waveforms. Then, two data sets sampling the CMB beneath the Philippine and Tasman Seas are considered in the inversion. Our results indicate that both ULVZs are more complex than previously suggested. For the Philippine Sea data, we find a strong decrease in S-wave velocity, which indicates the presence of iron-rich material, albeit this result is accompanied with larger parameter uncertainties than in a previous study. For the Tasman Sea data, our analysis yields a well-constrained S-wave velocity that gradually decreases with depth. We conclude that this ULVZ represents a partial melt of iron-enriched material with higher melt content near its bottom.

  1. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  2. Comparisons of seismic and electromagnetic structures of the MELT area

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.

  3. Upper mantle structure under western Saudi Arabia from Rayleigh wave tomography and the origin of Cenozoic uplift and volcanism on the Arabian Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y; Nyblade, A; Rodgers, A

    2007-11-09

    The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less

  4. The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan

    2016-11-01

    In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship between the velocity anisotropy index ε and angle θ, which is the difference between the angle of the M plane and the X plane and the angle of the M plane and the Y plane from the theoretical point. The results indicate that 1/ε and cotθ/2 have good negative linear relationship that can be expressed as cotθ/2 = a ∗1/ε + b. According to experimental data, the linear fit of 1/ε and cotθ/2 is found, obtaining cotθ/2 = - 0.04721/ε + 0.03, with a linear fit index of 0.908. From an experimental point of view, the linear relationship between 1/ε and cotθ/2 is verified. Through this research, we propose a new method for quantitatively predicting the main fracture occurrence position by P-wave velocity anisotropy. This work has an important significance for understanding buckling failure of rocks.

  5. Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.

    2013-12-01

    Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a 150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A mantle transition zone about 30-40 km thinner than the global average in a region 200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya was inferred from P to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks. The thinning of the transition zone indicates a 190-300 K thermal anomaly in the same location where the P and S wave tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. These findings provide compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume, implying an origin for the Cenozoic extension, volcanism and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.

  6. Velocity Structure of the Iran Region Using Seismic and Gravity Observations

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.

    2015-12-01

    We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.

  7. Hydrogeologic structure underlying a recharge pond delineated with shear-wave seismic reflection and cone penetrometer data

    USGS Publications Warehouse

    Haines, S.S.; Pidlisecky, Adam; Knight, R.

    2009-01-01

    With the goal of improving the understanding of the subsurface structure beneath the Harkins Slough recharge pond in Pajaro Valley, California, USA, we have undertaken a multimodal approach to develop a robust velocity model to yield an accurate seismic reflection section. Our shear-wave reflection section helps us identify and map an important and previously unknown flow barrier at depth; it also helps us map other relevant structure within the surficial aquifer. Development of an accurate velocity model is essential for depth conversion and interpretation of the reflection section. We incorporate information provided by shear-wave seismic methods along with cone penetrometer testing and seismic cone penetrometer testing measurements. One velocity model is based on reflected and refracted arrivals and provides reliable velocity estimates for the full depth range of interest when anchored on interface depths determined from cone data and borehole drillers' logs. A second velocity model is based on seismic cone penetrometer testing data that provide higher-resolution ID velocity columns with error estimates within the depth range of the cone penetrometer testing. Comparison of the reflection/refraction model with the seismic cone penetrometer testing model also suggests that the mass of the cone truck can influence velocity with the equivalent effect of approximately one metre of extra overburden stress. Together, these velocity models and the depth-converted reflection section result in a better constrained hydrologic model of the subsurface and illustrate the pivotal role that cone data can provide in the reflection processing workflow. ?? 2009 European Association of Geoscientists & Engineers.

  8. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    USGS Publications Warehouse

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After correcting for the crustal thickness the phase velocity perturbations obtained from the subsequent linear waveform inversion for the different period bands are converted to a three-layer model of S velocity perturbations (layer 1, 25-100 km; layer 2, 100-200 km) layer 3, 200-300 km). We have applied this method on 275 high-quality Rayleigh waves recorded by a variety of instruments in North America (IRIS/USGS, IRIS/IDA, TERRAscope, RSTN). Sensitivity tests indicate that the lateral resolution is especially good in the densely sampled western continental United States, Mexico, and the Gulf of Mexico.

  9. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs <3.4 km/s) throughout all of Tibet, as well as beneath the Pamirs, but not below India. The thickness of this layer, the lowest velocity in the layer and the degree of velocity reduction vary across the region. Combining our Rayleigh wave observations with previously published Love wave dispersion measurements (Acton et al., 2010), we find that the low velocity layer has a radial anisotropic signature with Vsh > Vsv. The characteristics of the low velocity layer are supportive of deformation occurring through ductile flow in the mid-crust.

  10. Surface-wave tomography of Ireland and surroundings using ambient noise and teleseismic data

    NASA Astrophysics Data System (ADS)

    Bonadio, Raffaele; Arroucau, Pierre; Lebedev, Sergei; Meier, Thomas; Schaeffer, Andrew; Licciardi, Andrea; Piana Agostinetti, Nicola

    2016-04-01

    Ireland's geology is dominated by northeast-southwest structural trends and suture zones, mostly inferred from geological mapping and a few active source seismic experiments. However, their geometry and extent at depth and their continuity across the Irish Sea are still poorly known. Important questions also remain unanswered regarding the thickness and bulk properties of the sedimentary cover at the regional scale, the deformation and flow of the deep crust during the formation of Ireland, the thickness of Ireland's lithosphere today, and the thermal structure and dynamics of the asthenosphere beneath Ireland. In this work, we take advantage of abundant, newly available broadband data from temporary array deployments and permanent seismic networks in Ireland and Great Britain to produce high-resolution models of seismic velocity structure and anisotropy of the lithosphere. We combine Rayleigh and Love phase velocity measurements from waveform cross-correlation using both ambient noise and teleseismic data in order to produce high-quality dispersion curves for periods ranging from 1 to 300 s. The phase velocity measurement procedures are adapted from Meier et al.[2], Lebedev et al.[1] and Soomro et al.[3] and are automated in order to deal with the large amount of data and ensure consistency and reproducibility. For the nearly 200 stations used in this study, we obtain a very large number of dispersion curves from both ambient noise and teleseimic data. Dispersion measurements are then inverted in a tomographic procedure for surface-wave phase velocity maps in a very broad period range. The maps constrain the 3D seismic-velocity structure of the crust and upper mantle underlying Ireland and the Irish Sea. {9} Lebedev, S., T. Meier, R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 249, 415-424, 2006. Meier, T., K. Dietrich, B. Stockhert, H.P. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int. 156, 45-58, 2004. Soomro, R.A., C. Weidle, L. Cristiano, S. Lebedev, T. Meier. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broadband, inter-station measurements, Geophys. J. Int., 204, 517-534, 2016.

  11. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  12. A Unified Theory for Plants and Plant Structure

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    1998-04-01

    The wave theory provides for quantization of plant structure. If one measures many spacings between plant structures it becomes apparent that certain spacings repeat from plant to plant. These spacings are associated with certain discrete frequencies associated with plant operation. When a branch grows it extend by one or more of discrete half wavelengths associated with permitted frequencies. If conditions are optimum it grows by the larger permitted half wavelengths. The angle that the branch makes with the vertical also determines the length because vertical wave velocities are in general larger than horizontal wave velocities as mentioned in the previous abstract. It also appears that cell dimensions are determined by permitted wavelengths. In conifer fiber cells it appears that there is an exact ratio between the average reciprocals of vertical lengths and horizontal reciprocal averages with a value of 1.50 in the data taken so far. Similar ratios for external structure spacings include 1.50, 1.25, 1.33, 1.66, 3.0, These ratios appear to represent ratios of vertical to horizontal velocities (Wagner 1996). See the Wagner web page.

  13. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Wan, Minping; Chen, Song; Xie, Chenyue; Chen, Shiyi

    2018-04-01

    The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves are investigated by using numerical simulations at turbulent Mach number Mt ranging from 0.30 to 0.65. The spectra of the compressible velocity component, density, pressure, and temperature exhibit a k-2 scaling at different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity component and thermodynamic variables are close to 1 at high orders n ≥3 . The probability density functions of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region with the exponent -2 . Models for the conditional average of increments of the compressible velocity component and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical simulations. The overall statistics of the compressible velocity component and thermodynamic variables are similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.

  14. Structure of the Los Angeles Basin from Ambient Noise and Receiver Function Analysis

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Ma, Y.; Cochran, E. S.

    2015-12-01

    We show the results from the LASSIE seismic experiment, which consists of a dense (1-km spacing) linear array of broadband stations deployed across the LA basin for approximately two months. Two common methods - ambient noise and receiver function (RF) - are applied to determine the velocity and structure of the basin. The basin RFs are complicated, however, the dense array enhances the lateral coherence of the signals and allows the structure to be imaged. The basement shape is clearly shown in the migrated image of the PpPs phase. The Ps conversion at the basement is the largest signal (including the direct wave) in the first 3 s. However, the Ps phase does not form as clear an image compared with the PpPs phase, possibly due to a requirement of more accurate velocity model. The surface wave signals from the ambient noise cross-correlations between LASSIE and surrounding SCSN stations are used for velocity inversion. A linear Dix-type inversion (Haney and Tsai, 2015, Geophysics) is applied to the extracted dispersion curves. The 1-10 s period Rayleigh wave and the 1-8 s period Love wave dispersion curves provide excellent constraints on top 5 km SV and top 3 km SH velocity structures respectively. Strong anisotropy (SV > SH) is observed for the top 1 km, and we plan to use this result to infer the fracture orientation and density of the shallow sedimentary rocks.

  15. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  16. Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor

    USGS Publications Warehouse

    Chouet, B.; De Luca, G.; Milana, G.; Dawson, P.; Martini, M.; Scarpa, R.

    1998-01-01

    The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configued in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh and Love waves. Love and Rayleigh waves contribute 70% and 30%, respectively, of the surface-wave power. The phase velocities of Rayleigh waves range from 1000 m/sec at 2 Hz to 350 m/sec at 9 Hz, and those for Love waves range from 700 to 400 m/sec over the same frequency band. These velocities are similar to those measured near Puu Oo on the east rift of Kilauea Volcano, Hawaii, although the dispersion characteristics of Rayleigh waves at Stromboli show a stronger dependence on frequency. Such low velocities are consistent with values expected for densely cracked solidified basalt. The dispersion curves are inverted for a velocity model beneath the arrays, assuming those dispersions represent the fundamental modes of Rayleigh and Love waves.

  17. Development of smart wave mitigation structure using array of poles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2017-05-01

    This paper describes reduction of water flow velocity by array of poles as a new wave mitigation structure. This structure is based on tsunami mitigation coastal forest. As natural forests have many problems such as low fraction of trees, low visibility of ocean waves, low strength, long of time to grow, and so on. To cope with these problems, a new wave mitigation structure has been developed, which are intended to add better capability of high wave or tsunami mitigation effect to actual ones by optimizing various parameters such as configuration, distribution density and material properties. In this study, the effect of type of material and its combination were mainly investigated. According to the results, reduction rate of the flow velocity increases with increasing number of rows for each material up to a certain level, and that of poles having lower Young's modulus is generally higher than that of those having higher Young's modulus. The effect of combination of materials was also investigated and drastic increase of mitigation effect was found when soft and hard poles were combined.

  18. Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Guo, Zhi; Gao, Xing; Shi, Heng; Wang, Weiming

    2013-04-01

    In this study, the crustal and uppermost mantle shear wave velocities beneath the Japanese islands have been determined by inversion from seismic ambient noise tomography using data recorded at 75 Full Range Seismograph Network of Japan broad-band seismic stations, which are uniformly distributed across the Japanese islands. By cross-correlating 2 yr of vertical component seismic ambient noise recordings, we are able to extract Rayleigh wave empirical Green's functions, which are subsequently used to measure phase velocity dispersion in the period band of 6-50 s. The dispersion data are then inverted to yield 2-D tomographic phase velocity maps and 3-D shear wave velocity models. Our results show that the velocity variations at short periods (˜10 s), or in the uppermost crust, correlate well with the major known surface geological and tectonic features. In particular, the distribution of low-velocity anomalies shows good spatial correlation with active faults, volcanoes and terrains of sediment exposure, whereas the high-velocity anomalies are mainly associated with the mountain ranges. We also observe that large upper crustal earthquakes (5.0 ≤ M ≤ 8.0, depth ≤ 25 km) mainly occurred in low-velocity anomalies or along the boundary between low- and high-velocity anomalies, suggesting that large upper crustal earthquakes do not strike randomly or uniformly; rather they are inclined to nucleate within or adjacent to low-velocity areas.

  19. Apparatus for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2005-01-01

    A method and apparatus for determining stiffness of a plate-like structure including a monolithic or composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined by a processor based on the wave velocity. Methods and apparatus for evaluating both isotropic plates and anisotropic laminates are disclosed.

  20. A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments

    PubMed Central

    Caliendo, Cinzia; Hamidullah, Muhammad

    2016-01-01

    The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419

  1. Mantle shear-wave tomography and the fate of subducted slabs.

    PubMed

    Grand, Steven P

    2002-11-15

    A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.

  2. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  3. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bai, Ling; Zhou, Yuanze; Wang, Xiaoran; Cui, Qinghui

    2017-11-01

    P-wave triplications related to the 410 km discontinuity (the 410) were clearly observed from the vertical component seismograms of three intermediate-depth earthquakes that occurred in the Indo-Burma Subduction Zone (IBSZ) and were recorded by the Chinese Digital Seismic Network (CDSN). By matching the observed P-wave triplications with synthetics through a grid search, we obtained the best-fit models for four azimuthal profiles (I-IV from north to south) to constrain the P-wave velocity structure near the 410 beneath the southeastern margin of the Tibetan Plateau (TP). A ubiquitous low-velocity layer (LVL) resides atop the mantle transition zone (MTZ). The LVL is 25 to 40 km thick, with a P-wave velocity decrement ranging from approximately - 5.3% to - 3.6% related to the standard Earth model IASP91. An abrupt transition in the velocity decrement of the LVL was observed between profiles II and III. We postulate that the mantle structure beneath the southeastern margin of the TP is primarily controlled by the southeastern extrusion of the TP to the north combined with the eastward subduction of the Indian plate to the south, but not affected by the Emeishan mantle plume. We attribute the LVL to the partial melting induced by water and/or other volatiles released from the subducted Indian plate and the stagnant Pacific plate, but not from the upwelling or the remnants of the Emeishan mantle plume. A high-velocity anomaly ranging from approximately 1.0% to 1.5% was also detected at a depth of 542 to 600 km, providing additional evidence for the remnants of the subducted Pacific plate within the MTZ.

  4. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  5. Seismic anisotropy in the uppermost mantle beneath oceanic regions from data of broadband OBSs

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Nishida, K.; Isse, T.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Kanazawa, T.; Suetsugu, D.

    2011-12-01

    For improving vertical resolution of seismic-anisotropy structure at depths of 10-100 km beneath oceanic regions, we measured phase velocities of surface waves in a broadband frequency range by two methods: the ambient noise interferometry in frequency higher than 0.035 Hz, and array analysis of event waveforms in lower frequency. We use seismograms recorded by broadband ocean bottom seismometers (BBOBSs) in two regions: (i) the Shikoku Basin in the Philippine Sea by Stagnant Slab Project, and (ii) east of Tahiti Island by a project called the tomographic investigation by seafloor array experiment for Society hotspot (TIARES). The frequency ranges of phase-velocity measurements in each region are summarized in Table. For the case of Shikoku Basin, we invert phase velocities for radially anisotropic structure. The resultant structure shows decrease of shear-wave velocity by 6-8 % at depths of 50-70 km, and intensification of radial anisotropy (VSH>VSV) from 1-2 % at 10-20 km depth to 4-6 % at 40-70 km depth. These results indicate increasing amount of preferred-oriented olivine crystal, and/or horizontal layering of partial melt near the boundary between the lithosphere and the asthenosphere. The azimuthal anisotropy of phase velocity in the Shikoku Basin is also investigated by array analysis of event waveforms for the fundamental mode of Rayleigh wave at 0.03 Hz. The fastest direction is NW, and consistent with direction of present plate motion. The velocity difference between fastest and slowest directions is 1-2 %. These results mainly reflect shear-wave velocity at depth of 30-60 km, and imply that lattice preferred orientation is, at least, partly (though may not be fully) responsible for the anisotropy in the depth range. We will obtain radially anisotropic structure and azimuthal anisotropy in Tahiti region, and will present difference between two regions.
    Frequency range of phase-velocity measurements for two regions of analyses.

  6. Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei

    2018-04-01

    Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity matching condition to achieve cumulative second harmonic generation. This nature also enables the primary Lamb waves excited at a low center frequency to generate static component used for inspecting large-scale structures with micro-scale damages.

  7. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters

    NASA Astrophysics Data System (ADS)

    Griv, E.; Jiang, I.-G.

    2015-02-01

    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r<3 kpc from the Sun and -200 < z <200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high-velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin-Shu type density waves estimated from two independent line-of-sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  8. Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis

    2014-08-19

    Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris–Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris–Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ~7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ~19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us tomore » investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.« less

  9. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  10. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  11. Plane waves and structures in turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  12. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly (MGA). However, a low-velocity structure is imaged in the lithosphere just east of the MGA.

  13. Verification and Improvement of the Three-Dimensional Basin Velocity Structure Model in the Osaka Sedimentary Basin, Japan Using Interstation Green's Functions and H/V Spectral Ratios of Microtremors

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.

    2012-12-01

    The Osaka sedimentary basin is filled by the Plio-Pleistocene Osaka group, terrace deposits, and alluvium deposits with thickness of 1 to 2 km over the bedrock, and it is surrounded by active fault systems. The Uemachi active fault system underlies the Osaka urban area. In order to predict the strong ground motions for future events of the Uemachi fault and others, the precise basin velocity structure model is indispensable as well as the detailed source fault model. The velocity structure of the Osaka basin has been extensively investigated by using various techniques such as gravity anomaly measurements, reflection surveys, boring explorations, and microtremor measurements. Based on these surveys and ground motion simulations for observed events, the three-dimensional velocity structure models of the Osaka basin have been developed and improved for decades (e.g., Kagawa et al., 1993; Horikawa et al., 2003; Iwata et al., 2008; Iwaki and Iwata, 2011). Now we are trying to verify the velocity structure model of the Osaka basin and to improve it incorporating new data sets. We have conducted two kinds of observations in the Osaka basin. The first observation is continuous microtremor observation. We have temporarily installed three-component velocity sensors at 15 sites covering the Osaka basin to record microtremors continuously for more than one year. The seismic interferometry technique (e.g. Shapiro and Campillo, 2004) is applied to retrieve interstation Green's function for analyzing the wave propagation characteristics inside the sedimentary basin. Both Rayleigh- and Love-wave type signals are identified in 0.1-0.5 Hz from observed interstation Green's functions. The group velocities of Rayleigh and Love waves propagating between two stations are estimated from them using the multiple filter analysis method, and they are compared with the theoretical group-velocities of the model. For example, estimated Love-wave group velocity along a line inside the basin is as low as 350 m/s in 0.2-0.5 Hz. The second observation is a set of short-time (30~60 min) single-station microtremor observations to obtain H/V spectral ratios at sites. We observed microtremor at 100 strong motion stations of Osaka prefecture government, JMA, K-NET, KiK-net, and other institutes. The peak period of H/V ranges from about 1 to 7 s, and it depends on the bedrock depth at the observation site as previously pointed by Miyakoshi et al. (1997). Though the basin velocity model explains the characteristics of observed H/V spectral ratios at most sites, we found discrepancies between observed and predicted H/V peak periods at north part of Osaka bay area and hill area in southeastern part of the basin. By combining the observed constraints from the group velocities, waveform characteristics of interstation Green's functions, and H/V spectral ratios, we will improve the S-wave velocity structure model inside the Osaka basin.

  14. Lithospheric Structure of Greenland from Ambient Noise and Earthquake Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.

    2017-12-01

    We present a high resolution seismic tomography model of Greenland's lithosphere from surface wave analysis. Regional and teleseismic events recorded by GLISN over the last 20 years were used. We developed a new group velocity correction method to alleviate the limitations of the sparse network and the relatively few local events. The global dispersion model GDM52 was used to calculate group delays from the earthquake to the boundaries of our study area. To better constrain the crustal structure of Greenland and cross-validate our group velocity correction approach, we also collected and processed several years of ambient noise data. An iterative reweighted generalized least-square scheme was used to invert for the group velocity maps and a Markov chain Monte Carlo technique was applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km. Our shear wave velocity model is consistent with previous studies but of higher resolution and we show that in regions with limited station coverage and local seismicity, we can rely on global models to construct relatively large local data sets that can provide some important constraints on regional structures. Our model contains the signature of known geological features and reveals three prominent anomalies: a shallow low-velocity anomaly between central-eastern and northeastern Greenland that correlates well with a previously measured high geothermal heat flux; a deep high-velocity anomaly extending from southwestern to northwestern Greenland that could be interpreted as the signature of a thick Archean keel; and a deep low-velocity anomaly in central-eastern Greenland that could be associated with lithospheric thinning and upwelling of hot asthenosphere material from the rifting of the Atlantic Ocean around 60 Ma and the passage of the Icelandic mantle plume beneath Greenland between 70 and 30 Ma. Upper mantle temperature and heat flux distribution beneath Greenland are further derived from our velocity model using a grid search approach and some thermodynamic constraints. By delineating the velocity and thermal properties of these anomalies, we hope to better understand how underlying geological and geophysical processes may impact the ice sheet dynamics and influence its potential contribution to future sea level changes.

  15. Seismic Tomography of the Sacramento -- San Joaquin River Delta: Joint P-wave/Gravity and Ambient Noise Methods

    NASA Astrophysics Data System (ADS)

    Teel, Alexander C.

    The Sacramento -- San Joaquin River Delta (SSJRD) is an area that has been identified as having high seismic hazard but has resolution gaps in the seismic velocity models of the area due to a scarcity of local seismic stations and earthquakes. I present new three-dimensional (3D) P-wave velocity (Vp) and S-wave velocity (Vs) models for the SSJRD which fill in the sampling gaps of previous studies. I have created a new 3D seismic velocity model for the SSJRD, addressing an identified need for higher resolution velocity models in the region, using a new joint gravity/body-wave tomography algorithm. I am able to fit gravity and arrival-time residuals jointly using an empirical density-velocity relationship to take advantage of existing gravity data in the region to help fill in the resolution gaps of previous velocity models in the area. I find that the method enhances the ability to resolve the relief of basin structure relative to seismic-only tomography at this location. I find the depth to the basement to be the greatest in the northwest portion of the SSJRD and that there is a plateau in the basement structure beneath the southeast portion of the SSJRD. From my findings I infer that the SSJRD may be prone to focusing effects and basin amplification of ground motion. A 3D, Vs model for the SSJRD and surrounding area was created using ambient noise tomography. The empirical Green's functions are in good agreement with published cross-correlations and match earthquake waveforms sharing similar paths. The group velocity and shear velocity maps are in good agreement with published regional scale models. The new model maps velocity values on a local scale and successfully recovers the basin structure beneath the Delta. From this Vs model I find the maximum depth of the basin to reach approximately 15 km with the Great Valley Ophiolite body rising to a depth of 10 km east of the SSJRD. We consider our basement-depth estimates from the Vp model to be more robust than from the Vs model.

  16. Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo, Bagus Adi, E-mail: bagusadiwibowo1993@gmail.com; Ngadmanto, Drajat; Daryono

    2015-04-24

    A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wavemore » in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below.« less

  17. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  18. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    NASA Astrophysics Data System (ADS)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.

  19. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.

  20. Three-dimensional shear wave velocity structure in the Atlantic upper mantle

    NASA Astrophysics Data System (ADS)

    James, Esther Kezia Candace

    Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.

  1. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng

    2017-05-01

    We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.

  2. New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.

    2007-05-01

    Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.

  3. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  4. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  5. Determining the Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography

    NASA Astrophysics Data System (ADS)

    Brenn, G.; Hansen, S. E.; Park, Y.

    2016-12-01

    Stretching 3500 km across Antarctica, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth. It has been suggested that the TAMs may have served as a nucleation point for the large-scale glaciation of Antarctica, and understanding their tectonic history has important implications for ice sheet modeling. However, the origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP= -2.0%; δVS=-1.5% to -4.0%) and Terra Nova Bay (TNB; δVP=-1.5% to -2.0%; δVS= -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP=0.5% to 2%; δVS=1.5% to 4.0%). A low velocity region (δVP= -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.

  6. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    NASA Astrophysics Data System (ADS)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  7. The velocity field of a coronal mass ejection - The event of September 1, 1980

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Hundhausen, A. J.

    1987-01-01

    The velocity field of a mass ejection that was observed by the coronagraph of the SMM satellite over the northwest limb of the sun at about 0600 UT on September 1, 1980 is studied in detail. A descriptive account of the event is given, concentrating on qualitative features of the mass motion and suggesting a possible origin of the unusual two-loop structure. The velocity field is analyzed quantitatively, and the implications of the results for the mass ejection theory are considered. It is concluded that a self-similar description of the velocity field is a gross oversimplification and that although some evidence of wave propagation can be found, the bright features in the mass ejection are plasma structures moving with frozen-in magnetic fields, rather than waves propagating through plasmas and magnetic fields.

  8. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    NASA Astrophysics Data System (ADS)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first arrivals in the VSP dataset of a borehole located near the city of Bad Frankenhausen. In addition, a strong attenuation of the source signals may indicate areas influenced by subrosion.

  9. An inexpensive instrument for measuring wave exposure and water velocity

    USGS Publications Warehouse

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  10. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray)

    USGS Publications Warehouse

    Pollitz, F.F.

    2008-01-01

    Broadband recordings of the dense Transportable Array (TA) in the western United States provide unparalleled detailed images of long-period seismic surface wavefields. With 400 stations spanning most of the western United States, wavefronts of fundamental mode Rayleigh waves may be visualized coherently across the array at periods ???40 s. In order to constrain the Rayleigh wave phase velocity structure in the western United States, I assemble a data set of vertical component seismograms from 53 teleseismic events recorded by the TA from April 2006 to October 2007. Complex amplitude spectra from these recordings at peni ods 27-100 s are interpreted using the multiplane wave tomographic method of Friederich and Wielandt (1995) and Pollitz (1999). This analysis yields detailed surface wave phase velocity and three-dimensional shear wave velocity patterns across the North American plate boundary zone, elucidating the active processes in the highly heterogeneous western U.S. upper mantle.

  11. Time-lapse seismic study of levees in southern New Mexico

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Stimac, N.; Ballard, R.F.; Dunbar, J. Joseph; Smullen, S. Steve

    2006-01-01

    The primary objective of this work was to measure changes in compressional- (Vp) and shear-wave (Vs) velocities in an earthen levee during a ponding experiment designed to simulate flood conditions on the Rio Grande in south New Mexico. Although similar to such experiment, performed an year earlier on the Rio Grande in south Texas, the levee seismic response results are different. This work was similar to previous Preliminary testing at three levee sites, all within a 1 km radius and each with unique physical, EM, and core characteristics, was completed and a single low-conductivity, highly fractured site was selected for investigation. Several different types of seismic data were recorded. Seismic data analysis techniques appraised included P-refraction tomography and Rayleigh surface-wave analysis using multichannel analysis of surface waves (MASW). P-wave velocity change (decrease) was rapid and isolated to one section within the pool confines, which already had anomalously high velocity most likely related to burrowing animals modification of the levee structure. S-wave velocity change was gradual and could be observed along the whole width of the pond within and below the levee. The results within the levee sand core were consistent with the observations of sand S-wave velocity changed due to saturation. ?? 2005 Society of Exploration Geophysicists.

  12. Simulation of the Action of a Shock Wave on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Afanas'eva, S. A.; Belov, N. N.; Burkin, V. V.; Dudarev, E. F.; Ishchenko, A. N.; Rogaev, K. S.; Dudarev, E. F.; Ishchenko, A. N.; Rogaev, K. S.

    2017-01-01

    The laws and mechanism of fracture of coarse-grain and ultrafine-grain titanium under shock-wave loading has been investigated. For the shock wave generator a "SINUS-7" accelerator emitting a nanosecond relativistic highcurrent electron beam was used. To test the high-velocity impact at velocities of the order of 2500 m/s, a ballistic installation of caliber 23 mm was used. The mathematical simulation of the high-velocity interaction was carried out with account for the fracture, the phase transitions, and the dependence of the strength characteristics of materials on the internal energy within the framework of continuum mechanics. For both granular structures the general laws and features of the fracture have been established.

  13. Anisotropic models of the upper mantle

    NASA Technical Reports Server (NTRS)

    Regan, J.; Anderson, D. L.

    1983-01-01

    Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, were not simultaneously satisfied by an isotropic structure. Available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, an elastic dispersion, sphericity, and gravity. The resulting models, for the average Earth, average ocean and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggested.

  14. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  15. Rayleigh Wave and Shear Wave Tomography of Northeastern China: Results Coconstrained by Multiple Datasets

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Chen, J.; Han, J.; Tian, Y.; Wu, M.; Yang, Y.; Ning, J.

    2014-12-01

    We investigate crustal and upper mantle phase velocity structures beneath NorthEastern China (NEC, 40°-54°N, 112°-135°E), a tectonically active region with continental volcanicity divided by active faults. Rayleigh wave phase velocity is obtained respectively by Ambient Noise Method (ANM, Lin et al., GJI, 2009), Two Station Method (TSM, Meier et al., GJI, 2004) and Two Plane Wave Method (TPWM, Yang and Forsyth, JGR, 2005), assuring good frequency coverage. Two-year' events with magnitude Ms>5.5 and epicentral distance Δ>30°recorded by NECESSArray and some permanent stations of CEA are together used in TPWM and TSM, while 1 s continuous seismic observations in the same period are employed in ANM. The period of Rayleigh wave phase velocity spans from 6 s to 150 s, i.e., from 6 s to 30 s (ANM); 30 s to 100 s (TPWM) and 30 s to 150 s (TSM). Shear wave velocity structure of the research region is obtained by Weighted Least Squares Inversion, in which the weight is adopted as function of data quality. Our results not only display close relation with tectonics of this region, such as mountains, sedimentary basins, faults, but also reveal variation feature of crustal thickness. Moreover, our results clearly show that all volcanos in this region have their roots — low velocity zones, among them the roots of Changbai, Jingbohu, Wudalianchi are obviously connected, while the biggest one of Daxinganling is separated. This feature might be result of an early intense eruption in western NEC and a late weak one in eastern NEC.

  16. Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gök, R.; Mellors, R. J.; Sandvol, E.

    The Anatolian plateau-Caucasus-Caspian region is an area of complex lithospheric structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region, little is known about the detailed lithospheric structure. Using data from 31 new, permanent broadband seismic stations along with results from a previous 29 temporary seismic stations and 3 existing global seismic stations in the region, a 3-D velocity model is developed using joint inversion of teleseismic receiver functions and surface waves. Both group and phase dispersion curves (Love and Rayleigh) were derived from regional and teleseismic events. Additional Rayleigh wave group dispersion curves weremore » determined using ambient noise correlation. Receiver functions were calculated using P arrivals from 789 teleseismic (30°–90°) earthquakes. The stacked receiver functions and surface wave dispersion curves were jointly inverted to yield the absolute shear wave velocity to a depth of 100 km at each station. The depths of major discontinuities (sediment-basement, crust-mantle, and lithosphere-asthenosphere) were inferred from the velocity-depth profiles at the location of each station. Distinct spatial variations in crustal and upper mantle shear velocities were observed. The Kura basin showed slow (~2.7–2.9 km/s) upper crustal (0–11 km) velocities but elevated (~3.8–3.9 km/s) velocities in the lower crust. The Anatolian plateau varied from ~3.1–3.2 in the upper crust to ~3.5–3.7 in the lower crust, while velocities in the Arabian plate (south of the Bitlis suture) were slightly faster (upper crust between 3.3 and 3.4 km/s and lower crust between 3.8 and 3.9 km/s). The depth of the Moho, which was estimated from the shear velocity profiles, was 35 km in the Arabian plate and increased northward to 54 km at the southern edge of the Greater Caucasus. Moho depths in the Kura and at the edge of the Caspian showed more spatial variability but ranged between 35 and 45 km. Upper mantle velocities were slow under the Anatolian plateau but increased to the south under the Arabian plate and to the east (4.3–4.4 km/s) under the Kura basin and Greater Caucasus. The areas of slow mantle coincided with the locations of Holocene volcanoes. Differences between Rayleigh and Love dispersions at long wavelengths reveal a pronounced variation in anisotropy between the Anatolian plateau and the Kura basin.« less

  17. Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region

    DOE PAGES

    Gök, R.; Mellors, R. J.; Sandvol, E.; ...

    2011-05-07

    The Anatolian plateau-Caucasus-Caspian region is an area of complex lithospheric structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region, little is known about the detailed lithospheric structure. Using data from 31 new, permanent broadband seismic stations along with results from a previous 29 temporary seismic stations and 3 existing global seismic stations in the region, a 3-D velocity model is developed using joint inversion of teleseismic receiver functions and surface waves. Both group and phase dispersion curves (Love and Rayleigh) were derived from regional and teleseismic events. Additional Rayleigh wave group dispersion curves weremore » determined using ambient noise correlation. Receiver functions were calculated using P arrivals from 789 teleseismic (30°–90°) earthquakes. The stacked receiver functions and surface wave dispersion curves were jointly inverted to yield the absolute shear wave velocity to a depth of 100 km at each station. The depths of major discontinuities (sediment-basement, crust-mantle, and lithosphere-asthenosphere) were inferred from the velocity-depth profiles at the location of each station. Distinct spatial variations in crustal and upper mantle shear velocities were observed. The Kura basin showed slow (~2.7–2.9 km/s) upper crustal (0–11 km) velocities but elevated (~3.8–3.9 km/s) velocities in the lower crust. The Anatolian plateau varied from ~3.1–3.2 in the upper crust to ~3.5–3.7 in the lower crust, while velocities in the Arabian plate (south of the Bitlis suture) were slightly faster (upper crust between 3.3 and 3.4 km/s and lower crust between 3.8 and 3.9 km/s). The depth of the Moho, which was estimated from the shear velocity profiles, was 35 km in the Arabian plate and increased northward to 54 km at the southern edge of the Greater Caucasus. Moho depths in the Kura and at the edge of the Caspian showed more spatial variability but ranged between 35 and 45 km. Upper mantle velocities were slow under the Anatolian plateau but increased to the south under the Arabian plate and to the east (4.3–4.4 km/s) under the Kura basin and Greater Caucasus. The areas of slow mantle coincided with the locations of Holocene volcanoes. Differences between Rayleigh and Love dispersions at long wavelengths reveal a pronounced variation in anisotropy between the Anatolian plateau and the Kura basin.« less

  18. Tomographic inversion of P-wave velocity and Q structures beneath the Kirishima volcanic complex, Southern Japan, based on finite difference calculations of complex traveltimes

    USGS Publications Warehouse

    Tomatsu, T.; Kumagai, H.; Dawson, P.B.

    2001-01-01

    We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.

  19. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  20. Linear and Nonlinear Coupling of Electrostatic Drift and Acoustic Perturbations in a Nonuniform Bi-Ion Plasma with Non-Maxwellian Electrons

    NASA Astrophysics Data System (ADS)

    Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.

    2017-12-01

    Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.

  1. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  2. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of spindle-shape S waves. Such large-scale FDM simulations are conducted on the Earth Simulator at JAMSTEC. It is found that the FDM simulation of the model without strong velocity fluctuation cannot explain the characteristics of observed S waves. By introducing strong velocity fluctuation in the LV zone, strong peak delay and spindle-shape S waves observed at central and southern part of Chiba are simulated successfully. In addition, the strong amplitude decrease of S waves in the LV zone due to strong seismic scattering is good corresponding to results based on the tomographic study of Q in Kanto (e.g., Nakamura et al., 2006). Simulation results demonstrated that strong velocity fluctuation in the LV zone plays important role in the peak delay and waveform shape. The LV zone beneath northeastern Chiba is considered as a result of dehydration from oceanic crust of subducted Philippine Sea plate (e.g., Matsubara et al., 2005). Therefore strong small-scale velocity fluctuation in the LV zone may be related with dehydrated water.

  3. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  4. Wave Gradiometry for the Central U.S

    NASA Astrophysics Data System (ADS)

    liu, Y.; Holt, W. E.

    2013-12-01

    Wave gradiometry is a new technique utilizing the shape of seismic wave fields captured by USArray transportable stations to determine fundamental wave propagation characteristics. The horizontal and vertical wave displacements, spatial gradients and time derivatives of displacement are linearly linked by two coefficients which can be used to infer wave slowness, back azimuth, radiation pattern and geometrical spreading. The reducing velocity method from Langston [2007] is applied to pre-process our data. Spatial gradients of the shifted displacement fields are estimated using bi-cubic splines [Beavan and Haines, 2001]. Using singular value decomposition, the spatial gradients are then inverted to iteratively solve for wave parameters mentioned above. Numerical experiments with synthetic data sets provided by Princeton University's Neal Real Time Global Seismicity Portal are conducted to test the algorithm stability and evaluate errors. Our results based on real records in the central U.S. show that, the average Rayleigh wave phase velocity ranges from 3.8 to 4.2 km/s for periods from 60-125s, and 3.6 to 4.0 km/s for periods from 25-60s, which is consistent with earth model. Geometrical spreading and radiation pattern show similar features between different frequency bands. Azimuth variations are partially correlated with phase velocity change. Finally, we calculated waveform amplitude and spatial gradient uncertainties to determine formal errors in the estimated wave parameters. Further effort will be put into calculating shear wave velocity structure with respect to depth in the studied area. The wave gradiometry method is now being employed across the USArray using real observations and results obtained to date are for stations in eastern portion of the U.S. Rayleigh wave phase velocity derived from Aug, 20th, 2011 Vanuatu earthquake for periods from 100 - 125 s.

  5. P-wave velocity structure beneath the northern Antarctic Peninsula: evidence of a steeply subducting slab and a deep-rooted low-velocity anomaly beneath the central Bransfield Basin

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Kim, Kwang-Hee; Lee, Joohan; Yoo, Hyun Jae; Plasencia L., Milton P.

    2012-12-01

    Upper-mantle structure between 100 and 300 km depth below the northern Antarctic Peninsula is imaged by modelling P-wave traveltime residuals from teleseismic events recorded on the King Sejong Station (KSJ), the Argentinean/Italian stations (JUBA and ESPZ), an IRIS/GSN Station (PMSA) and the Seismic Experiment in Patagonia and Antarctica (SEPA) broad-band stations. For measuring traveltime residuals, we applied a multichannel cross-correlation method and inverted for upper-mantle structure using VanDecar's method. The new 3-D velocity model reveals a subducted slab with a ˜70° dip angle at 100-300 km depth and a strong low-velocity anomaly confined below the SE flank of the central Bransfield Basin. The low velocity is attributed to a thermal anomaly in the mantle that could be as large as 350-560 K and which is associated with high heat flow and volcanism in the central Bransfield Basin. The low-velocity zone imaged below the SE flank of the central Bransfield Basin does not extend under the northern Bransfield Basin, suggesting that the rifting process in that area likely involves different geodynamic processes.

  6. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  7. Seismic velocity structure of the crust and upper mantle beneath the Texas-Gulf of Mexico margin from joint inversion of Ps and Sp receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Pulliam, J.; Sen, M. K.

    2013-12-01

    The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.

  8. High Resolution Shear-Wave Velocity Structure of Greenland from Surface Wave Analysis

    NASA Astrophysics Data System (ADS)

    Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.

    2016-12-01

    We present a high resolution seismic tomography model of Greenland's lithosphere from the analysis of fundamental mode Rayleigh-wave group velocity dispersion measurements. Regional and teleseismic events recorded by the GLISN, GSN and CN seismic networks over the last 20 years were used. In order to better constrain the crustal structure of Greenland, we also collected and processed several years of ambient noise data. We developed a new group velocity correction method that helps to alleviate the limitations of the sparse Greenland station network and the relatively few local events. The global dispersion model GDM52 from Ekström [2011] was used to calculate group delays from the earthquake to the boundaries of our study area. An iterative reweighted generalized least-square approach was used to invert for the group velocity maps between periods of 5 s and 180 s. A Markov chain Monte Carlo technique was then applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km and estimate the uncertainties in the model. Our method results in relatively uniform azimuthal coverage and high resolution length ( 200 to 400 km) in west and east Greenland. We detect a deep high velocity zone extending from northwestern to southwestern Greenland and a low velocity zone (LVZ) between central-eastern and northeastern Greenland. The location of the LVZ correlates well with a previously measured high geothermal heat flux and could provide valuable information about its source. We expect the results of the ambient noise tomography to cross-validate the earthquake tomography results and give us a better estimate of the spatial extent and amplitude of the LVZ at shallow depths. A refined regional model of Greenland's lithospheric structure should eventually help better understand how underlying geological and geophysical processes may impact the dynamics of the ice sheet and influence its potential contribution to future sea level changes.

  9. A Contribution to the Understanding of the Regional Seismic Structure in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Di Luccio, F.; Thio, H.; Pino, N.

    2001-12-01

    Regional earthquakes recorded by two digital broadband stations (BGIO and KEG) located in the Eastern Mediterranean have been analyzed in order to study the seismic structure in this region. The area consists of different tectonic provinces, which complicate the modeling of the seismic wave propagation. We have modeled the Pnl arrivals using the FK-integration technique (Saikia, 1994) along different paths at the two stations, at several distances, ranging from 400 to 1500 km. Comparing the synthetics obtained by using several models compiled by other authors, we have constructed a velocity model, considering the informations deriving from group velocity distribution, in order to determine the finer structure in the analyzed paths. The model has been perturbed by trial and error until a compressional velocity profile has been found producing the shape of the observed waveforms. The crustal thickness, upper mantle P-wave velocity and 410-km discontinuity determine the shape of the observed waveform portions.

  10. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  11. Lamb Wave Response of Fatigued Composite Samples

    NASA Technical Reports Server (NTRS)

    Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.

    1994-01-01

    Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, M; Gok, R; Zor, E

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel timemore » of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function inversion results. In fact, we observe that the inversion results are independent at the starting model and converges well to the same final model. We don't observe a significant change at the first order discontinuities of model (e.g. Moho depth), but we obtain better defined depths to low velocity layers.« less

  13. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  14. Alternative expression of the Bloch wave group velocity in loss-less periodic media using the electromagnetic field energy

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Lambin, Philippe

    2018-01-01

    In periodic optical media, the group velocity is defined as the gradient with respect to wave-vector of the corresponding Bloch mode frequency dispersion curve, forming the photonic band structure. Instead of deducing it from the numerically computed photonic crystal band structure, the group velocity can be calculated directly from the integral of the Poynting vector over the crystal unit cell, the physical meaning of which is immediately perceivable. The related formula, which can be regarded as the application of Hellmann-Feynman theorem to electromagnetism, has been reported previously though without proof. We provide hereafter a full derivation of that formula starting from Maxwell's equations and we discuss its usefulness in photonics.

  15. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity

    NASA Astrophysics Data System (ADS)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.

    2017-12-01

    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km apertures to image basin structure, important for seismic hazard analysis and ground motion predictions. Clear Rayleigh and Love wave signals are extracted. We determine Love wave dispersion and Rayleigh wave H/V and phase dispersion measurements. The preliminary basin models from inverting surface wave measurements will be presented.

  16. Evaluation and developmental studies of possible active seismic experiments during the post-Apollo period

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.

    1974-01-01

    Seismic velocity studies pertinent to the lunar crust and mantle are briefly summarized. The compressional and shear wave velocities in loose aggregates are discussed along with the effects of temperature on seismic velocity in compacted powders. Abstracts of papers concerning the lunar structure are included.

  17. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  18. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less

  19. Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amri, A; Rodgers, A

    2007-01-05

    Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions,more » reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being underlain by slower velocities, {+-}3% for P-waves and {+-}6% for S-waves. Seismic anisotropy was inferred from shear-wave splitting, using teleseismic SKS waveforms. Results reveal a splitting time of approximately 1.4 seconds, with the fast axis slightly east of north. The shear-wave splitting results are consistent across the Peninsula, with a slight clockwise rotation parallel for stations near the Gulf of Aqaba. In summary, these results allow us to make several conclusions about the tectonic evolution and current state of the Arabian Plate. Lithospheric thickness implies that thinning near the Red Sea has accompanied the rupturing of the Arabian-Nubian continental lithosphere. The step in the lithospheric thickness across the Shield-Platform boundary likely reveals a pre-existing difference in the lithospheric structure prior to accretion of the terranes composing the eastern Arabian Shield. Tomographic imaging of upper mantle velocities implies a single large-scale thermal anomaly underlies the Arabian Shield and is associated with Cenozoic uplift and volcanism.« less

  20. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  1. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T.; Goossens, M.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less

  2. Shear wave velocity structure of the Anatolian Plate and surrounding regions using Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.

    2013-12-01

    The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods <= 40s to investigate the crust and uppermost mantle structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active volcanism. The Tuz Golu fault has a visible seismic signal down to ~15 km below sea level, and the eastern Inner-Tauride Suture corresponding to the Central Anatolian Fault Zone may extend into the mantle. The Isparta Angle separates the actively extending portion of western Anatolia from the plateau regions in the east, and the largest anomaly (slow velocities) extending into the upper mantle is observed under the western flank of the Isparta Angle, corresponding to the Fethiye-Burdur fault zone. We attribute these slow shear-wave velocities to the effects of complex deformations within the crust as a result of the interactions of the African and Anatolian Plates. In the upper mantle, slow shear-wave velocities are consistent with a slab tear along a STEP fault corresponding to the extensions of the Pliny and Strabo Transform faults, allowing asthenosphere to rise to very shallow depths. The upper mantle beneath the Taurides exhibits very slow shear-wave velocities, in agreement with possible delamination or slab-breakoff (Cosentino et al. 2012) causing rapid uplift in the last 8 million years.

  3. Waveform inversion for 3-D earth structure using the Direct Solution Method implemented on vector-parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko

    2004-08-01

    We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.

  4. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip in the Moho depth, from 30-35 km in the Paleozoic Platform to 42-52 km in the Precambrian craton. The new model confirms the Moho depth derived from previous compilations. In the TESZ the lower crust has a very high seismic velocity (> 7.0 km/s) which correlates to the high P-wave velocity (about 8.4 km/s) in the uppermost mantle beneath the Polish Basin. The Cratonic area is generally characterized by high P-wave velocities (> 8.2 km/s), while the Phanerozoic area is characterized by velocities of ~ 8.0 km/s. In the TESZ very high velocities of 8.3-8.4 km/s are observed, and the southwestern limitation of this area coincides with a high velocity lower crust, and could be continued to the NW toward the Elbe line. The influence of the structure for teleseismic tomography time residuals of seismic waves traveling through the 3D seismic model was analyzed. Lithological candidates for the crust and uppermost mantle of the EEC and WEP were suggested by comparison to laboratory data. The presented 3D seismic model may make more reliable studies on global dynamics, and geotectonic correlations, particularly for sedimentary basins in the Polish Lowlands, the napped flysch sediment series in the Carpathians, the basement shape, the southwestern edge of the EEC, a high-velocity lower crust and the high-velocity uppermost mantle in the TESZ. Finally, the new 3D velocity model of the crust shows a heterogeneous structure and offers a starting point for the numerical modeling of deeper structures by allowing for a correction of the crustal effects in studies of the mantle heterogeneities.

  5. Constraining the Size and Depth of a Shallow Crustal Magma Body at Newberry Volcano Using P-Wave Tomography and Finite-Difference Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.

    2011-12-01

    Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body beneath 3 km depth is not well resolved and that, for example, an unrealistically large low-velocity body with a volume up to 72 km3 at 40% velocity reduction (representing 30±7% partial melt) could be consistent with the observed travel-times. We use the tomographically derived velocity structure to construct 2D finite difference models and include synthetic low-velocity bodies in these models to test various magma chamber geometries and melt contents. Waveform modeling identifies the observed secondary phase as a transmitted P-wave formed by delaying and focusing P-wave energy through the low-velocity region. We will further constrain the size and shape of the low-velocity region by comparing arrival times and amplitudes of observed and synthetic primary and secondary phases. Secondary arrivals provide compelling evidence for an active crustal magmatic system beneath Newberry volcano and demonstrate the ability of waveform modeling to constrain the nature of magma bodies beyond the limits of seismic tomography.

  6. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic rift zone, which is transitional between continental and oceanic rifting, do not support detachment fault models of lithospheric extension but instead point to strain accommodation via magma assisted rifting.

  7. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    NASA Astrophysics Data System (ADS)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  8. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume

    2018-03-01

    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  9. Shallow subsurface structure estimated from dense aftershock records and microtremor observations in Furukawa district, Miyagi, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Mitsunaga, Hitoshi; Inatani, Masayuki; Iiyama, Kahori; Hada, Koji; Ikeda, Takaaki; Takaya, Toshiyasu; Kimura, Sayaka; Akiyama, Ryohei; Sawada, Sumio; Morikawa, Hitoshi

    2017-11-01

    We conducted single-site and array observations of microtremors in order to revise the shallow subsurface structure of the Furukawa district, Miyagi, Japan, where severe residential damage was reported during the Great Eastern Japan Earthquake of 2011, off the Pacific coast of Tohoku. The phase velocities of Rayleigh waves are estimated from array observations at three sites, and S-wave velocity models are established. The spatial distribution of predominant periods is estimated for the surface layer, on the basis of the spectral ratio of horizontal and vertical components (H/V) of microtremors obtained from single-site observations. We then compared ground motion records from a dense seismometer network with results of microtremor observations, and revised a model of the shallow (~100 m) subsurface structure in the Furukawa district. The model implies that slower near-surface S-wave velocity and deeper basement are to be found in the southern and eastern areas. It was found that the damage in residential structures was concentrated in an area where the average value for the transfer functions in the frequency range of 2 to 4 Hz was large.

  10. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  11. P wave velocity of Proterozoic upper mantle beneath central and southern Asia

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.

    1996-05-01

    P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.

  12. Prototype of web-based database of surface wave investigation results for site classification

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Cakir, R.; Martin, A. J.; Craig, M. S.; Lorenzo, J. M.

    2016-12-01

    As active and passive surface wave methods are getting popular for evaluating site response of earthquake ground motion, demand on the development of database for investigation results is also increasing. Seismic ground motion not only depends on 1D velocity structure but also on 2D and 3D structures so that spatial information of S-wave velocity must be considered in ground motion prediction. The database can support to construct 2D and 3D underground models. Inversion of surface wave processing is essentially non-unique so that other information must be combined into the processing. The database of existed geophysical, geological and geotechnical investigation results can provide indispensable information to improve the accuracy and reliability of investigations. Most investigations, however, are carried out by individual organizations and investigation results are rarely stored in the unified and organized database. To study and discuss appropriate database and digital standard format for the surface wave investigations, we developed a prototype of web-based database to store observed data and processing results of surface wave investigations that we have performed at more than 400 sites in U.S. and Japan. The database was constructed on a web server using MySQL and PHP so that users can access to the database through the internet from anywhere with any device. All data is registered in the database with location and users can search geophysical data through Google Map. The database stores dispersion curves, horizontal to vertical spectral ratio and S-wave velocity profiles at each site that was saved in XML files as digital data so that user can review and reuse them. The database also stores a published 3D deep basin and crustal structure and user can refer it during the processing of surface wave data.

  13. Near surface velocity and Q S structure of the Quaternary sediment in Bohai basin, China

    NASA Astrophysics Data System (ADS)

    Chong, Jiajun; Ni, Sidao

    2009-10-01

    Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation ( Q P and Q S) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 M W4.9 Wen’an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average ν P and ν S of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ν P/ ν S ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain Q S and the near surface velocity structure. Our modeling indicates that Q S is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (˜10), but consistent with Q S modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.

  14. Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.

    PubMed

    Strelitzki, R; Paech, V; Nicholson, P H

    1999-05-01

    Measurements of an airborne ultrasonic wave were made in defatted cancellous bone from the human calcaneus using standard ultrasonic equipment. The wave propagating under these conditions was consistent with a decoupled Biot slow wave travelling in the air alone, as previously reported in gas-saturated foams. Reproducible measurements of phase velocity and attenuation coefficient were possible, and an estimate of the tortuosity of the trabecular framework was derived from the high frequency limit of the phase velocity. Thus the method offers a new approach to the acoustic characterisation of bone in vitro which, in contrast to existing techniques, has the potential to yield information directly characterising the trabecular structure.

  15. P-wave velocity structure offshore central Sumatra: implications for compressional and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M. T.; Barton, P. J.

    2014-12-01

    The Sunda subduction zone features significant along-strike structural variability including changes in accretionary prism and forearc morphology. Some of these changes have been linked to changes in megathrust faulting styles, and some have been linked to other thrust and strike-slip fault systems across this obliquely convergent margin (~54-58 mm/yr convergence rate, 40-45 mm/yr subduction rate). We examine these structural changes in detail across central Sumatra, from Siberut to Nias Island, offshore Indonesia. In this area the Investigator Fracture Zone and the Wharton Fossil Ridge, features with significant topography, are being subducted, which may affect sediment thickness variation and margin morphology. We present new seismic refraction P-wave velocity models using marine seismic data collected during Sonne cruise SO198 in 2008. The experiment geometry consisted of 57 ocean bottom seismometers, 23 land seismometers, and over 10,000 air gun shots recorded along ~1750 km of profiles. About 130,000 P-wave first arrival refractions were picked, and the picks were inverted using FAST (First Arrivals Refraction Tomography) 3-D to give a velocity model, best-resolved in the top 25 km. Moho depths, crustal composition, prism geometry, slab dip, and upper and lower plate structures provide insight into the past and present tectonic processes at this plate boundary. We specifically examine the relationships between velocity structure and faulting locations/ styles. These observations have implications for strain-partitioning along the boundary. The Mentawai Fault, located west of the forearc basin in parts of Central Sumatra, has been interpreted variably as a backthrust, strike-slip, and normal fault. We integrate existing data to evaluate these hypotheses. Regional megathrust earthquake ruptures indicate plate boundary segmentation in our study area. The offshore forearc west of Siberut is almost aseismic, reflecting the locked state of the plate interface, which last ruptured in 1797. The weakly-coupled Batu segment experiences sporadic clusters of events near the forearc slope break. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. We compare P-wave velocity structure to the earthquake data to examine potential links between lithospheric structure and seismogenesis.

  16. Shear velocity structure of central Eurasia from inversion of surface wave velocities

    NASA Astrophysics Data System (ADS)

    Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.

    2001-04-01

    We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.

  17. Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.

    2015-12-01

    An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.

  18. Quantitative analysis of seismic trapped waves in the rupture zone of the Landers, 1992, California earthquake: Evidence for a shallow trapping structure

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Ben-Zion, Y.; Michael, A. J.; Zhu, L.

    2002-12-01

    Waveform modeling of seismic fault zone (FZ) trapped waves has been claimed to provide a high resolution imaging of FZ structure at seismogenic depth. We analyze quantitatively a waveform data set generated by 238 Landers aftershocks recorded by a portable seismic array (Lee, 1999). The array consists of 33 three-component L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. A subset of 93 aftershocks were also recorded by the Southern California Seismic Network, while the other events were recorded only by the FZ array. We locate the latter subset of events with a "grid-search relocation method" using accurately picked P and S arrival times, a half-space velocity model, and back-azimuth adjustment to correct the effect of low velocity FZ material on phase arrivals. Next we determine the quality of FZ trapped wave generation from the ratio of trapped waves to S-wave energy for stations relatively close to and far from the FZ. Energy ratios exceeding 4, between 2 and 4, and less than 2, are assigned quality A, B, and C of trapped wave generation. We find that about 70% of nearby events with S-P time less than 2 sec, including many clearly off the fault, generate FZ trapped waves with quality A or B. This distribution is in marked contrast with previous claims that trapped waves at Landers are generated only by sources close to or inside the fault zone (Li et al., 1994, 2000). The existence of trapped waves due to sources outside the Landers rupture zone indicates that the generating structure is shallow, as demonstrated in recent 3D calculations of wave propagation in irregular FZ structures (Fohrmann et al., 2002). The time difference between the S arrivals and trapped wave group does not grow systematically with increasing source-receiver distance along the fault, in agreement with the above conclusion. The dispersion of trapped waves at Landers is rather weak, again suggesting a short propagation distance inside the low velocity FZ material. To put additional constraints on properties of the shallow trapping structure at Landers, we modeled FZ trapped waves with a genetic inversion algorithm (Michael and Ben-Zion, 2002) using the 2D analytical solution of Ben-Zion and Aki (1990) and Ben-Zion (1998) for a uniform FZ structure. The synthetic waveform modeling indicates an effective FZ waveguide with depth of about 3-5 km, width on the order of 200 m, shear velocity reduction relative to the host rock of about 40-50%, and S wave quality factor of about 30. The modeling also shows that the waveguide is not centered at the exposed fault trace (station C00), but at a distance of about 100 m east of C00. Shallow trapping structures with similar properties appear to characterize also the Karadere-Duzce branch of the north Anatolian fault (Ben-Zion et al., 2002) and the Parkfield segment of the San Andreas fault (Michael and Ben-Zion, 2002; Korneev et al., 2002).

  19. Large-scale shear velocity structure of the upper mantle beneath Africa and surrounding regions

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric; Meier, Thomas; Lebedev, Sergei; Friederich, Wolfgang; Egelados Working Group

    2010-05-01

    The automated multimode waveform inversion technique developed by Lebedev et al. (2005) was applied to available data of broadband stations in Africa and surrounding regions. It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming the location and focal mechanism of a considered earthquake as known, the first basic step is to consider each available seismogram separately and to find the velocity perturbations that can explain the filtered seismogram best. In a second step, each velocity perturbations serves as a linear constraint in an inversion for a 3D S-wave velocity model of the upper mantle. We collected data for the years from 1990 to 2006 from all permanent stations for which data were available via the data centers of ORFEUS, GEOFON and IRIS, and from others that build the Virtual European Seismological Network (VEBSN) as well as all available African stations. Just recently we were also able to add the data recorded by the temporary broadband EGELADOS network in the southern Aegean. This represents a huge dataset with all available stations in Africa and surroundings regions. The resulting models exhibit an overwhelming structural detail in relation to the size of the region considered in the inversion. They are to our knowledge the most detailed models of shear wave velocity currently available for the African upper mantle and surroundings. Most prominent features are an extremely sharp demarcation of the Dead Sea Rift System. Narrow high velocity regions follow the Hellenic arc and the Ionian trench toward the north. Low velocity zones are found at depths around 150 km in the Middle East region. The hotspots in North Africa are also clearly imaged.

  20. A Review of Geophysical Constraints on the Deep Structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Molnar, P.

    1988-09-01

    The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface-wave dispersion for different paths. The notably lower velocities and the greater attenuation in the mantle of north--central Tibet than elsewhere imply higher temperatures there and are consistent with the occurrence of active and young volcanism in roughly the same area. Surface-wave dispersion across north--central Tibet also requires a thinner crust in that area than in most of the plateau. Consequently the relatively uniform height of the plateau implies that isostatic compensation in the north--central part of Tibet occurs partly because the density of the relatively hot material in the upper mantle is lower than that elsewhere beneath Tibet, the mechanism envisioned by Pratt. Several seismological studies provide evidence consistent with a continuity of the Indian Shield, and its cold thick lithosphere, beneath the Himalaya. Fault-plane solutions and focal depths of the majority of moderate earthquakes in the Himalaya are consistent with their occurring on the top surface of the gently flexed, intact Indian plate that has underthrust the Lesser Himalaya roughly 80-100 km or more. P-waves from explosions in southern Tibet and recorded in Nepal can be interpreted as wide-angle reflections from this fault zone. P-wave delays across the Tarbela network in Pakistan from distant earthquakes indicate a gentle dip of the Moho beneath the array without pronounced later variations in upper-mantle structure. High Pn and Sn velocities beneath the Himalaya and normal to early S-wave arrival times from Himalayan earthquakes recorded at teleseismic distances are consistent with Himalaya being underlain by the same structure that underlies India. Results from explosion seismology indicate an increase in crustal thickness from the Indo--Gangetic Plain across the Himalaya to southern Tibet, but Hirn, Lepine, Sapin and their co-workers inferred that the depth of the Moho does not increase smoothly northward, as it would if the Indian Shield had been underthrust coherently beneath the Himalaya. They interpreted wide-angle reflections as evidence for steps in the Moho displaced from one another on southward-dipping faults. Although I cannot disprove this interpretation, I think that one can recognize a sequence of signals on their wide-angle reflection profiles that could be wide-angle reflections from a northward-dipping Moho. Gravity anomalies across the Himalaya show that both the Indo--Gangetic Plain and the Himalaya are not in local isostatic equilibrium. A mass deficit beneath the plain is apparently caused by the flexure of the Indian Shield and by the low density of the sedimentary rock in the basin formed by the flexure. The mass excess in the Himalaya seems to be partly supported by the strength of the Indian plate, for which the flexural rigidity is particularly large. An increase in the Bouguer gravity gradient from about 1 mGal km-1 (1 mGal = 10-3 cm s-2) over the Indo--Gangetic Plain to 2 mGal km-1 over the Himalaya implies a marked steepening of the Moho, and therefore a greater flexure of the Indian plate, beneath the Himalaya. This implies a northward decrease in the flexural rigidity of the part of the Indian plate underlying the range. Nevertheless, calculations of deflections of elastic plates with different flexural rigidities and flexed by the weight of the Himalaya show larger deflections and yield more negative gravity anomalies than are observed. Thus, some other force, besides the flexural strength of the plate, must contribute to the support of the range. A bending moment applied to the end of the Indian plate could flex the plate up beneath the range and provide the needed support. The source of this moment might be gravity acting on the mantle portion of the subducting Indian continental lithosphere with much or all of the crust detached from it. Seismological studies of the Karakoram are consistent with its being underlain by particularly cold material in the upper mantle. Intermediate-depth earthquakes occur between depths of 70 and 100 km but apparently do not define a zone of subducted oceanic lithosphere. Rayleigh-wave phase velocities are particularly high for paths across this area and imply high shear wave velocities in the upper mantle. Isostatic gravity anomalies indicate a marked low of 70 mGal over the Karakoram, which could result from a slightly thickened crust pulled down by the sinking of cold material beneath it. Geophysical constraints on the structure of Tibet, the Himalaya and the Karakoram are consistent with a dynamic uppermost mantle that includes first, the plunging of cold material into the asthenosphere beneath southern Tibet and the Karakoram, as the Indian plate slides beneath the Himalaya, and second, an upwelling of hot material beneath north--central Tibet. The structure is too poorly resolved to require such dynamic flow, but the existence for both a hot uppermost mantle beneath north--central Tibet and a relatively cold uppermost mantle beneath southern Tibet and the Karakoram seem to be required. Both group and phase velocities of Rayleigh waves and Love waves are delayed along paths crossing Tibet. The low velocities require a crustal thickness in excess of 50 km, and for most regions in excess of 60 km. Crustal thicknesses in excess of 80 km can be ruled out for all paths studied, and for most of Tibet, a crustal thickness of 65-70 km seems required. Clear evidence for lateral heterogeneity beneath Tibet is provided not only by body waves (discussed below) but also by surface waves (Brandon & Romanowicz 1986), which show an area of lower uppermost shear-wave velocity and thinner crust in north--central Tibet than elsewhere in the plateau. These variations might explain the differences in group velocities measured by different workers, and the different structures that they deduced, but if so, they also render the regionalization of surface-wave dispersion into arbitrary tectonic provinces risky. Although Rayleigh-wave phase velocities can resolve large differences in upper-mantle velocities for regions the size of Tibet, constraints on these velocities are best derived from body waves. Thus, with the exceptions of Brandon & Romanowicz's (1986) detailed investigation of north--central Tibet, the study of southernmost Tibet by Jobert et al. (1985) and that of Romanowicz (1982) for the northeasternmost part of the plateau, I do not think that surface waves have placed an important bound on the velocity in the upper mantle beneath Tibet. The seismic data are broadly consistent with partial melting of the uppermost mantle of north--central Tibet, where recent volcanism has been observed. Correspondingly, there is no suggestion of such low velocities, and such high temperatures, in the mantle elsewhere beneath Tibet, for which late-Cainozoic volcanism has not been reported. The results are also consistent with a slightly thinner crust in north--central Tibet than farther south, suggesting that both Airy and Pratt isostasy share compensation for north--central Tibet's great height. Finally, the average shear-wave velocity in the upper mantle of southern Tibet seems to be higher than that in northern Tibet, but neither is the degree of difference well determined, nor is the location of the transition from one to the other well mapped.

  1. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  2. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan Belt

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.

    1981-01-01

    The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.

  3. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  4. Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique

    USGS Publications Warehouse

    Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.

    2004-01-01

    A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.

  5. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  6. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  7. Upper crustal structure of the North Anatolian Fault Zone from ambient seismic noise Rayleigh and Love wave tomography

    NASA Astrophysics Data System (ADS)

    Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor

    2017-04-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface wave group velocity. To the north of the NAFZ, we observe low Rayleigh wave group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  8. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Yalcinkaya, Esref; Alp, Hakan; Ozel, Oguz; Gorgun, Ethem; Martino, Salvatore; Lenti, Luca; Bourdeau, Celine; Bigarre, Pascal; Coccia, Stella

    2016-11-01

    In this study, near-surface geophysical techniques are used to investigate the physical characteristics of the Buyukcekmece landslide (Istanbul, Turkey). The Buyukcekmece landslide has continuous activity at a low velocity and is classified as a complex mechanism. It includes rototranslational parts, several secondary scarps, several landslide terraces, and evidence of two earth flows. It mainly develops in the clayey layers of the Danismen Formation. According to our findings, P-wave velocities ranging from 300 m/s to 2400 m/s do not provide notable discrimination between sliding mass and stable soil. They show variations in blocks reflecting a complex structure. We obtained the S-wave velocity structure of the landslide up to 80 m by combining the analysis of MASW and ReMi. It is clear that S-wave velocities are lower in the landslide compared to those of the stable area. Identical S-wave velocities for the entire area at depths higher than 60 m may point out the maximum thickness of the landslide mass. Resonance frequencies obtained from the H/V analysis of the landslide area are generally higher than those of the stable area. The depths computed by using an empirical relationship between the resonance frequency and the soil thickness point out the failure surfaces from 10 to 50 m moving downslope from the landslide crown area. The resistivity values within the landslide are generally lower than 30 Ω m, i.e., a typical value for remolded clayey debris. The geophysical results reflect an overview of the geological model, but the complexity of the landslide makes it difficult to map the landslide structure in detail.

  9. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  10. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  11. Lithospheric structure below seismic stations in Cuba from the joint inversion of Rayleigh surface waves dispersion and receiver functions

    NASA Astrophysics Data System (ADS)

    González, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.

    2012-05-01

    The joint inversion of Rayleigh wave group velocity dispersion and receiver functions has been used to study the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances in the range from 30° to 90° and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. The thickest crust (˜30 km) below Cuban stations is found at Cascorro (CCC) and Maisí (MAS) whereas the thinnest crust (˜18 km) is found at stations Río Carpintero (RCC) and Guantánamo Bay (GTBY), in the southeastern part of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. In the crystalline crust, the S-wave velocity varies between ˜2.8 and ˜3.9 km s-1 and, at the crust-mantle transition zone, the shear wave velocity varies from ˜4.0 and ˜4.3 km s-1. The lithospheric thickness varies from ˜65 km, in the youngest lithosphere, to ˜150 km in the northeastern part of the Cuban island, below Maisí (MAS) and Moa (MOA) stations. Evidence of a subducted slab possibly belonging to the Caribbean plate is present below the stations Las Mercedes (LMG), RCC and GTBY whereas earlier subducted slabs could explain the results obtained below the Soroa (SOR), Manicaragua (MGV) and Cascorro (CCC) station.

  12. Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias

    2017-10-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.

  13. Upper mantle and crustal structure of southwestern Scandinavia: Results of the TopoScandiaDeep project

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Balling, N.; Ebbing, J.; England, R.; Frassetto, A.; Gradmann, S.; Jacobsen, B. H.; Kvarven, T.; Maupin, V.; Medhus, A. Bondo; Mjelde, R.; Ritter, J.; Schweizer, J.; Stratford, W.; Thybo, H.; Wawerzinek, B.; Weidle, C.

    2012-04-01

    The origin of the Scandinavian mountains, located far away from any presently active plate margin, is still not well understood. In particular, it is not clear if the mountains are sustained isostatically either by crustal thickening or by light upper mantle material. Within the TopoScandiaDeep project (a collaborative research project within the ESF TOPO-EUROPE programme), we therefore analyse recently collected passive seismological and active seismic data in the southern Scandes and surrounding regions. We infer crustal and upper mantle (velocity) structures and relate them to results of gravity and temperature-composition modelling. The Moho under the high topography of southern Norway appears from controlled source seismic refraction and Receiver Functions as relatively shallow (<= 45 km) compared to the deeper conversion (>55 km) imaged beneath the low topography in Sweden and elsewhere in the Baltic Shield area outside Norway. The Receiver Function modeling as well as the active seismic results suggest that the differences in the observed Moho response may represent the transition between tectonically reworked Moho under southern Norway and an intact, cratonic crust-mantle boundary beneath the Baltic Shield. Furthermore, the 410km-discontinuity and the LAB is imaged, the latter one suggesting a lithospheric thickening in NE direction. Upper mantle P-wave and S-wave velocities in southern Sweden and southern Norway east of the Oslo Graben are correspondingly relatively high while lower velocities are observed in the southwestern part of Norway and northern Denmark. The lateral velocity gradient, interpreted as the southwestern boundary of thick Baltic Shield lithosphere, is remarkably sharp. Differences in upper mantle velocities are found at depths of 100-400 km and amount to ± 2-3%. S-to-P wave conversions, interpreted to originate from the lithosphere-asthenosphere boundary, are preliminary estimated to 90-120 km depth. Inversion of Rayleigh and Love surface wave phase velocity dispersion curves from observations of ambient noise and earthquakes yield another independent model of the crust and upper mantle structure below southern Norway. Inverted crustal velocities and Moho depths are consistent with the results of seismic refraction and receiver functions. Additionally, indications for radial crustal anisotropy of up to about 3% are found. The inferred upper mantle S-wave velocities show that the lithosphere under southern Norway has characteristics usually found under continental platforms and changes towards a cratonic-like velocity structure in the East, in agreement with the body wave tomography. All in all, these separate investigations give a very consistent and stable picture of the crust and upper mantle configuration. Integrated geophysical modeling of the results shows that a lateral transition from thinner, warmer lithosphere under southern Norway towards thicker, colder lithosphere under Sweden results in a density distribution that significantly adds to the isostatic support of Norway's high topography.

  14. Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Chen, Anguo

    2017-06-01

    Lithospheric shear wave velocity beneath the southeastern margin of the Tibetan Plateau is obtained from Rayleigh wave tomography using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Rayleigh wave phase velocities at periods of 20-100 s are determined and used to construct the 3-D shear wave velocity model. Low-velocity anomalies appear along or close to the major faults in the middle crust and become a broad zone in the lower crust, suggesting block extrusion in the shallow crust and diffuse deformation in the lower crust, both of which play important roles in accommodating the collision between the Indian and Eurasian plates. A vertical low-velocity column beneath the Tengchong Volcano is observed, which could be caused by upwelling of warm mantle due to the lithosphere extension in the Thailand rift basin to the south or by fluid-induced partial melting due to the subduction of the Burma slab. The western Yangtze Craton is characterized by low velocity in the crust and uppermost mantle above the fast mantle lithosphere, indicating possible thermal erosion at the western craton edge resulted from the extrusion of the Tibetan Plateau. A low-velocity zone is imaged at the depths of 70-150 km beneath the eastern part of the Yangtze Craton, which could be caused by small-scale mantle convection associated with the subduction of the Burma microplate and/or the opening of the South China Sea.

  15. A theory of self-organized zonal flow with fine radial structure in tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  16. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    USGS Publications Warehouse

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  17. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin

    USGS Publications Warehouse

    Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S.

    2006-01-01

    The 1000-km-long Darlag-Lanzhou-Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4??km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3??km/s are 0.15??km/s lower than the worldwide average of 6.45??km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4??km/s and only 0.5??km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38??km as the crustal thickness increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino-Korean and Gobi Ala Shan platforms. ?? 2006.

  18. Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo

    2018-01-01

    By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57)ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45)ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).

  19. Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo

    2018-06-01

    By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57) ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45) ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).

  20. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh

    2015-02-01

    We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.

  1. 3D near-surface soil response from H/V ambient-noise ratios

    USGS Publications Warehouse

    Wollery, E.W.; Street, R.

    2002-01-01

    The applicability of the horizontal-to-vertical (H/V) ambient-noise spectral ratio for characterizing earthquake site effects caused by nearsurface topography and velocity structures was evaluated at sites underlain by thick (i.e. >100 m) sediment deposits near the southern-end of the New Madrid seismic zone in the central United States. Three-component ambient-noise and velocity models derived from seismic (shearwave) refraction/reflection surveys showed that a relatively horizontal, sharp shear-wave velocity interface in the soil column resulted in an H/V spectral ratio with a single well-defined peak. Observations at sites with more than one sharp shear-wave velocity contrast and horizontally arranged soil layers resulted in at least two well-defined H/V spectral ratio peaks. Furthermore, at sites where there were sharp shear-wave velocity contrasts in nonhorizontal, near-surface soil layers, the H/V spectra exhibited a broad-bandwidth, relatively low amplitude signal instead of a single well-defined peak. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. S-wave tomography of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.

    2017-12-01

    We present an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. Offshore, our model shows a rapid transition from slow velocities beneath the ridge to fast velocities under the central Juan de Fuca plate, as seen in previous studies of the region (c.f., Bell et al., 2016; Byrnes et al., 2017). Our model also shows an elongated low-velocity feature beneath the hinge of the Juan de Fuca slab, similar to that observed in a P-wave study (Hawley et al., 2016). The addition of offshore data also allows us to investigate along-strike variations in the structure of the subducting slab. Of particular note is a `gap' in the high velocity slab between 44N and 46N, beginning around 100km depth. There exist a number of explanations for this section of lower velocities, ranging from a change in minerology along strike, to a true tear in the subducting slab.

  3. Beyond Single Images: Combining the Geosciences in Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Malin, P. E.

    2012-12-01

    Geothermal exploration routinely includes a variety of field surveys, the interpretations of which are usually done separately and then combined in some ad hoc way. Instead, because these data share numerous constraints, combining them in a systematic, quantitative way is far preferable. Aside from the shared geological background, a "joint" analysis can dampen errors and noise in one data set by less sensitive responses in another. In this presentation case histories from several surveys will be used to illustrate these points. By way of background, an example of this type of integrated approach is the improvement in earthquake location when P-wave data are supplemented with S-wave data. These two waves share the effects of the S-wave velocity structure through its shear modulus, which the S-wave measures independent of the P-wave. Using only P-waves travel times for event location is thus equivalent to making the acoustic approximation for the elastic rock velocities. When earthquake location combines both phases, not only is this approximation improved, but errors in picking these times are reduced as well. The case histories include 1) mapping fracture orientations -primarily using seismic shear wave splitting and magnetotelluric polarization directions, but supplemented with surface geology and 2) deriving combined porosity and permeability from seismic velocity and resistivity. Shear wave splitting is routinely used to detect fracture orientation since S-waves propagate faster parallel to their direction. However shear wave splitting can also be caused by other features such as 2-D layering. Magnetotelluric polarizations can be the result of fracture orientation, but also with 3-D structural effects. However, combined, the non-fracture related effects are notably different between the two data types. As a result, detecting similar polarization effects in both makes the case for aligned fractures strong. In a similar vein, porosity and permeability play different roles in determining the relationships between seismic velocities and electrical conductivities. Velocities are more sensitive to rocks with different lithology and porosity while electrical conductivities are more sensitive to rocks with different permeability. Change in seismic velocity due to rock density or lithology have less of an effect on electrical conductivity as compared to a similar change in seismic velocity due to porosity. Similarly, a large fluctuation in electrical conductivity is more logically attributed to variation in permeability. The joint quantitative analysis of such data sets includes using, for example, simple linear and more advanced inversion schemes. Combining their inversion creates a subsurface map that is more robust than with either method alone. The combination of sensitivities helps constrain local fluctuations in these properties as well as background noise. The final test is of course in the drilling, recent results of which support the approach described here.

  4. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  5. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    NASA Astrophysics Data System (ADS)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity location varies as depth changes. Associated with previous geochemistry studies, we propose an on-going asthenosphere upwelling near Datong volcanic field. Overall, the shear wave velocity structures between north and south part of the FWR is different,and imply the different rifting mechanisms between the two sides of FWR.

  6. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  7. Ground Truth, Magnitude Calibration, and Regional Phase Propagation and Detection in the Middle East and the Horn of Africa

    DTIC Science & Technology

    2008-09-01

    Arabian Shield. Background The Arabian Shield consists of a late Proterozoic crystalline basement overlain by Tertiary and Quaternary volcanic...mantle structure under the Arabian Shield using body waves, we measured and inverted relative travel times from stations in Arabia. We augmented the...Rodgers, and A. Al-Amri (2008). S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography, Geochem. Geophys

  8. Linear Stability of Relativistic Space-Charge Flow in a Magnetically Insulated Transmission Line Oscillator

    DTIC Science & Technology

    1989-04-01

    MILO Magnetica fy insulated transmission line Slow-wave structure Relativistic Brillouin flow Space-charge waves Slow electromagnetic waves (over) 19... resonant layer always see a decelerating axial electric field. Consequently, field energy increases at the expense of particle energy. 17 AFWL-TR-88-103...Ve). If ve is greater than the structure coupling velocity, a resonant layer of electrons will always be present, and oscillations will occur at any

  9. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.

  10. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at BNS station may be attributed to the widespread recently discovered hydrocarbon fields at the Beni-Suef Basin along the Eastern Desert. Finally, an integrated geophysical and hydrological study of the dimensions and physical properties of the aquifer and hydrocarbon fields at SWA and BNS stations to confirm if they are sufficient to produce the elevated Vp/Vs ratios or not become essential and highly recommended.

  11. Ambient noise tomography of Ecuador: Fore- and back-arc velocity structure and radial anisotropy

    NASA Astrophysics Data System (ADS)

    Lynner, C.; Beck, S. L.; Porritt, R.; Meltzer, A.; Alvarado, A. P.; Gabriela, P.; Ruiz, M. C.; Hoskins, M.; Stachnik, J.; Rietbrock, A.; Leon-Rios, S.; Regnier, M. M.; Agurto-Detzel, H.; Font, Y.; Charvis, P.

    2017-12-01

    In northern South America, the oceanic Nazca plate subducts beneath the South American continent, giving rise to the high mountains of the northern Andes. The Ecuador subduction zone has a history of large megathrust earthquakes, most recently the Mw=7.8 April 16, 2016, Pedernales earthquake. The volcanic arc in Ecuador is broad with active volcanoes along both the western and eastern cordilleras. Many of these volcanoes surround the city of Quito putting millions of people at risk. A recent international broadband aftershock deployment was conducted for approximately one year after the Pedernales mainshock and this data combined with a sub-set of data from from the permanent IGEPN national network provide an ideal data set to use for ambient noise tomography (ANT) to constrain absolute Vsh and Vsv across Ecuador. ANT studies use noise-generated surface wave dispersion measurements to invert for 3D shear velocity in the crust. Having a precise understanding of crustal velocity structure is necessary to advance a number of projects, including better earthquake locations of the April 16, 2016 Pedernales-earthquake aftershock sequence and identifying large-scale partial melt zones associated with the active volcanic arc. The majority of ANT studies use only Rayleigh waves to constrain Vsv structure. Initial Rayleigh wave ANT results, using periods between 8 and 40 seconds, show a fast phase velocities for the forearc and much slower phase velocities for the high elevation volcanic arc. Including Love wave dispersion measurements can improve overall crustal velocity models, as well as provide constraints on radial anisotropy. Radial anisotropy can develop in a variety of ways but most typically arises from the deformation-induced alignment of anisotropic minerals. Radial anisotropy, therefore, can inform on patterns of ductile crustal flow. Strong radial anisotropy at mid-crustal depths from ANT has already been observed south of Ecuador, in the Central Andean Plateau, raising the question, does the radial anisotropy signal persist as far north as the Ecuadorian Andes? Here we present Vsh, Vsv, and radial anisotropy results from Love and Rayleigh wave ambient noise tomography in Ecuador from the fore-arc to the back-arc region.

  12. Numerical modelling of wind effects on breaking waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  13. Seismic Velocity Structure of the San Jacinto Fault Zone from Double-Difference Tomography and Expected Distribution of Head Waves

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Ben-Zion, Y.

    2010-12-01

    We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault Zone (SJFZ), and related 3D forward calculations of waves in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-wave phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault zone head waves as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.

  14. Explosion source strong ground motions in the Mississippi embayment

    USGS Publications Warehouse

    Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.

    2006-01-01

    Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.

  15. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.

    2006-01-01

    A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.

  16. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  17. Complex Modeling of the Seismic Structure of the Trans-European Suture Zone's Margin from Receiver Function Analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Chrapkiewicz, K.; Lepore, S.; Polkowski, M.; Grad, M.

    2016-12-01

    The Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Paleozoic Platform from the much older Precambrian East European Craton. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) are analyzed to investigate the crustal and upper mantle structure of the margin of the Trans-European Suture Zone (TESZ) in northern Poland. Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. Recorded seismograms are rotated from ZNE to LQT system with method using the properties of RF (Wilde-Piórko, 2015). Different techniques of receiver function interpretation are applied, including 1-D inversion of RF, 1-D forward modeling of RF, 2.5D forward modeling of RF, 1-D join inversion of RF and dispersion curves of surface wave, to find the best S-wave velocity model of the TESZ margin. A high-resolution 3D P-wave velocity model in the area of Poland (Grad et al. 2016) are used as a starting model. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  18. Three-dimensional S-wave tomography under Axial Seamount

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Wilcock, W. S. D.; Arnulf, A. F.; Tolstoy, M.; Waldhauser, F.

    2017-12-01

    Axial Seamount is a submarine volcano located at the intersection of the Juande Fuca Ridge and the Cobb-Eickelberg hotspot 500 km off the coast of thenorthwestern United States. The seamount, which rises 1 km above the seafloor, ischaracterized by a shallow caldera that is elongated in the N-S direction, measure 8km by 3 km and sits on top of a 14 km by 3 km magma reservoir. Two eruptive eventsin 1998 and 2011 motivated the deployment in 2014 of a real time cabled observatorywithin the Axial caldera, as part of the Ocean Observatories Initiative (OOI).Theobservatory includes a network of seven seismometers that span the southern half ofthe caldera. Five months after the observatory came on-line in November 2014, thevolcano erupted on April 24, 2015. Well over 100,000 events were located in thevicinity of the caldera, delineating an outward dipping ring fault that extends fromnear the surface to the magma body at 2 km depth and which accommodatesinflation and deflation of the volcano.The initial earthquake locations have beenobtained with a one-dimensional velocity model but the travel time residuals suggeststrong heterogeneities. A three-dimensional P-wave velocity model, obtained bycombining multichannel and ocean bottom seismometer refraction data, is being usedto refine locations but the three-dimensional S-wave structure is presently unknown.In most mid-ocean ridge settings, the distribution of earthquakes is not conducive forjoint inversions for S-wave velocity and hypocentral parameters because there are fewcrossing ray paths but at Axial the presence of a ring fault that is seismically active atall depths on both the east and west side of the caldera, provides a reasonablegeometry for such efforts. We will present the results of joint inversions that assumethe existing three-dimensional P wave velocity model and solve for VP/VS structure andhypocentral parameters using LOTOS, an algorithm that solves the forward problemusing ray bending.The resulting model of S-wave velocities will provide newconstraints on the volcanic structure of the caldera, the distribution and characteristicsof fractures, and the effects of hydrothermal circulation. The model will also lead toimproved earthquakes locations that are critical for a fine scale interpretation of thefault system.

  19. Imaging Lithospheric Structure beneath the Indian continent

    NASA Astrophysics Data System (ADS)

    Maurya, S.; Montagner, J. P.; Mangalampally, R. K.; Stutzmann, E.; Burgos, G.; Kumar, P.; Davuluri, S.

    2015-12-01

    The lithospheric structure and thickness to the LAB are the most debated issues, especially beneath continents. In this context, the structure and thickness of the Indian lithosphere has been controversial. Paleomagnetic data reveals that the Indian continent moved northwards at exceptionally high speeds (18-20 cm/year) and subsequently slowed down to 4-5 cm/year after its collision with Asia ≈40 Myr ago. This super mobility has been explained by an unusually thin Indian lithosphere (≈100 km; Kumar et al., 2007) in contradiction with the thick lithosphere that commonly underlies old cratonic nuclei. It is pertinent to note that the thermobarometric estimates on the ultramafic xenoliths from 65 Myr kimberlites of the Central India (Babu et al. 2009) suggest an approximately 175 km thick lithosphere. Also, recent results of P and S wave travel time tomography of India suggest that the lithospheric roots are not uniformly thick on a regional scale. Although high velocity roots typical of Precambrian shields are preserved beneath a few cratons of the Indian shield, they seem to have suffered attrition, in the plume ravaged regions like the NDVP and the Southern SGT (Singh et al., 2014). We assembled a new massive surface wave database towards obtaining 3D isotropic and anisotropic models for the Indian sub-continent, using surface waves. This necessitated processing of data from more than 500 seismic broadband stations across India and surrounding regions. Surface waves group and phase dispersion measurements are performed in a broad frequency range (16-250s). Our phase velocity anomaly maps recover most of the known geological structures. The cratons are associated with high velocity (4-6%) anomalies till 200 sec, with the WDC being faster than the EDC. Slow velocities in NW India and very high velocity anomalies (6-8%) beneath the central part of the Indo-Gangetic plains are possibly associated with the subducting Indian lithosphere. The LAB depths inferred from isotropic depth inversion reveal a very large variability around 120 km to 210 km thick beneath craton. Depth inversion incorporating anisotropy, is in progress. We observe that the best resolved parameters are the transversal shear wave velocities, radial anisotropy and fast axis directions. These play a key role in mapping the LAB

  20. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less

  1. Determining the upper mantle seismic structure beneath the northern Transantarctic Mountains, Antarctica, from regional P- and S-wave tomography

    NASA Astrophysics Data System (ADS)

    Brenn, Gregory Randall

    Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.

  2. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  3. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  4. 3-D structure of the crust and uppermost mantle at the junction between the Southeastern Alps and External Dinarides from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Guidarelli, Mariangela; Aoudia, Abdelkrim; Costa, Giovanni

    2017-12-01

    We use ambient noise tomography to investigate the crust and the uppermost mantle structure beneath the junction between the Southern Alps, the Dinarides and the Po Plain. We obtained Rayleigh wave empirical Green's functions from cross-correlation of vertical component seismic recordings for three years (2010-2012) using stations from networks in Italy, Slovenia, Austria, Croatia, Serbia and Switzerland. We measure group and phase velocity dispersion curves from the reconstructed Rayleigh waves in the period range 5-30 and 8-37 s, respectively, and we invert the surface wave velocities for tomographic images on a grid of 0.1° × 0.1°. After the tomography, the group velocities are then inverted to compute the 3-D shear wave velocity model of the crust and the upper mantle beneath the region. Our shear wave velocity model provides the 3-D image of the structure in the region between Northeastern Italy, Slovenia and Austria. The velocity variations at shallow depths correlate with known geological and tectonic domains. We find low velocities below the Po Plain, the northern tip of the Adriatic and the Pannonian Basin, whereas higher velocities characterize the Alpine chain. The vertical cross-sections reveal a clear northward increase of the crustal thickness with a sharp northward dipping of the Moho that coincides at the surface with the leading edge of the Alpine thrust front adjacent to the Friuli Plain in Northeastern Italy. This geometry of the Moho mimics fairly well the shallow north dipping geometry of the decollement inferred from permanent GPS velocity field where high interseismic coupling is reported. From the northern Adriatic domain up to the Idrija right lateral strike-slip fault system beneath Western Slovenia, the crustal thickness is more uniform. Right across Idrija fault, to the northeast, and along its strike, we report a clear change of the physical properties of the crust up to the uppermost mantle as reflected by the lateral distribution of both group and phase velocity anomalies at relevant periods. Idrija fault is therefore interpreted as a subvertical fault sampling the whole crust. Our 3-D velocity model favours crustal thickening with Adria underthrusting the Alps at a shallow angle north of the Friuli Plain where much of the convergence is absorbed and where the destructive 1976 Ms 6.5 thrust Friuli earthquake sequence took place. In Western Slovenia, the deformation is accommodated by strike-slip motion along the Idrija strike-slip fault system where the destructive 1511 Mw 6.9 right lateral strike-slip event occurred.

  5. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images derived from LET. Interestingly, a deep (> 5 km), subtle LVZ imaged between Trident and Mount Katmai may represent remnants of the magmatic conduit system from the cataclysmic 1912 eruption of Novarupta. A deployment of 11 temporary broadband seismometers are currently in place around Katmai Pass and should provide more constraints on the structure of the deep LVZ. The availability of many three-component seismometers within the Katmai permanent/temporary network makes it possible to additionally invert Love waves and the ratio of the horizontal-to-vertical motion of Rayleigh waves, the HV ratio, to further delineate volcanic structure from the ambient seismic field.

  6. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    NASA Astrophysics Data System (ADS)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.5-7.7 km/s for the gabbros and 6.3-7.9 km/s for the peridotites. Although the two results are broadly comparable to each other for plagiogranites and gabbros, the calculated velocities are considerably higher than the experimental ones for pillow lavas, dolerites and peridotites. The discrepancy for the pillow lavas and dolerites can be attributed to the presence of pore-spaces in the experimental samples. On the other hand, serpentinization of peridotite samples likely resulted in lower velocities in experiments than in calculation. We compared our results with Vp structure of the oceanic crust and mantle (White et al. 1992, JGR). The calculated Vp of peridotites and gabbros are comparable to those of mantle and layer-3, respectively. The calculated Vp of dolerites is comparable to layer-3 and considerably higher than layer-2 velocities. However, recent deep drilling results (Holes 504B and 1256D) indicate the seismic layer-2 of oceanic crust mainly composed of dolerites, which is consistent with the experimental P-wave velocities of dolerites (Christensen & Smewing, 1981, JGR). These results imply that the velocity structure of seismic layer-2 reflects the distribution of pore-spaces in the upper oceanic crust.

  7. The Use of Barker Coded Signal on the Measurement of Wave Velocity of Rock

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wu, H.

    2016-12-01

    The wave velocity of the rock is important petro physics parameters; it can be used to calculate the elastic parameters, monitor the variations in the stress suffered by rock; and the velocity anisotropy reflects the rock anisotropy. Furthermore, since the coda wave is more sensitive to the change in rock properties, its velocity variation has been applied to monitor the variations in rock structures caused by varying temperature, stress, water saturation and other factors. However, the measurements of velocities heavily depend on signal-to-noise ratio (SNR) of the signals, because low signal-to-noise ratio would result in the difficulty in the identification of information. Fortunately coded excitation technique, widely used in radar, and medical system, just can solve the problem above. Although this technique can effectively improve the SNR and resolution of received signal, there exits very high sidelobes after traditional matched filter. So a pseudo inverse filter was successfully applied to suppress the side lobes. After comparing different coded signals, Barker coded signal are selected to measure the velocity of P wave of Plexiglas, sandstone, granite, marble with automatic measurement method, which are compared with the measurement results of single pulse; the results showed that the measurement of coded signals is more closely to the manual measurement. Moreover, coda wave measurement of loading granite was also made with Barker coded signal, the results of which also showed that the detection result of coded signals is better than that of the single pulse. In conclusion, the experiments verify the effectiveness and reliability of coded signals used on the measurement of wave velocity of rock.

  8. Rayleigh Wave Tomography of Mid-Continent Rift (MCR) using Earthquake and Ambient Noise Data

    NASA Astrophysics Data System (ADS)

    Aleqabi, G. I.; Wiens, D.; Wysession, M. E.; Shen, W.; van der Lee, S.; Revenaugh, J.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.; Wolin, E.; Bollmann, T. A.

    2015-12-01

    The structure of the North American Mid-Continent Rift Zone (MCRZ) is examined using Rayleigh waves from teleseismic earthquakes and ambient seismic noise recorded by the Superior Province Rifting EarthScope Experiment (SPREE). Eighty-four broadband seismometers were deployed during 2011-2013 in Minnesota and Wisconsin, USA, and Ontario, CA, along three lines; two across the rift axis and the third along the rift axis. These stations, together with the EarthScope Transportable Array, provided excellent coverage of the MCRZ. The 1.1 Ga Mesoproterozoic failed rift consists of two arms, buried under post-rifting sedimentary formations that meet at Lake Superior. We compare two array-based tomography methods using teleseismic fundamental mode Rayleigh waves phase and amplitude measurements: the two-plane wave method (TPWM, Forsyth, 1998) and the automated surface wave phase velocity measuring system (ASWMS, Jin and Gaherty, 2015). Both array methods and the ambient noise method give relatively similar results showing low velocity zones extending along the MCRZ arms. The teleseismic Rayleigh wave results from 18 - 180 s period are combined with short period phase velocity results (period 8-30 s) obtained from ambient noise by cross correlation. Phase velocities from the methods are very similar at periods of 18-30 where results overlap; in this period range we use the average of the noise and teleseismic results. Finally the combined phase velocity curve is inverted using a Monte-Carlo inversion method at each geographic point in the model. The results show low velocities at shallow depths (5-10 km) that are the result of very deep sedimentary fill within the MCRZ. Deeper-seated low velocity regions may correspond to mafic underplating of the rift zone.

  9. Wave propagation modelling of induced earthquakes at the Groningen gas production site

    NASA Astrophysics Data System (ADS)

    Paap, Bob; Kraaijpoel, Dirk; Bakker, Marcel; Gharti, Hom Nath

    2018-06-01

    Gas extraction from the Groningen natural gas field, situated in the Netherlands, frequently induces earthquakes in the reservoir that cause damage to buildings and pose a safety hazard and a nuisance to the local population. Due to the dependence of the national heating infrastructure on Groningen gas, the short-term mitigation measures are mostly limited to a combination of spatiotemporal redistribution of gas production and strengthening measures for buildings. All options become more effective with a better understanding of both source processes and seismic wave propagation. Detailed wave propagation simulations improve both the inference of source processes from observed ground motions and the forecast of ground motions as input for hazard studies and seismic network design. The velocity structure at the Groningen site is relatively complex, including both deep high-velocity and shallow low-velocity deposits showing significant thickness variations over relatively small spatial extents. We performed a detailed three-dimensional wave propagation modelling study for an induced earthquake in the Groningen natural gas field using the spectral-element method. We considered an earthquake that nucleated along a normal fault with local magnitude of {{{M}}_{{L}}} = 3. We created a dense mesh with element size varying from 12 to 96 m, and used a source frequency of 7 Hz, such that frequencies generated during the simulation were accurately sampled up to 10 Hz. The velocity/density model is constructed using a three-dimensional geological model of the area, including both deep high-velocity salt deposits overlying the source region and shallow low-velocity sediments present in a deep but narrow tunnel valley. The results show that the three-dimensional density/velocity model in the Groningen area clearly play a large role in the wave propagation and resulting surface ground motions. The 3d structure results in significant lateral variations in site response. The high-velocity salt deposits have a dispersive effect on the radiated wavefield, reducing the seismic energy reaching the surface near the epicentre. In turn, the presence of low-velocity tunnel valley deposits can locally cause a significant increase in peak ground acceleration. Here we study induced seismicity on a local scale and use SPECFEM3D to conduct full waveform simulations and show how local velocity variations can affect seismic records.

  10. Empirical transfer functions: Application to the determination of outermost core velocity structure using teleseismic SmKS phases

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Alexandrakis, C.

    2007-05-01

    Teleseismic SmKS waves propagate as S-waves in the mantle and compressional (K) waves in the core, with m-1 underside bounce points at the core-mantle boundary. For long-period or broadband recordings at epicentral distances of 115-135°, higher-order SmKS waves (3 ≤ m < ∞) are not often discernible as distinct pulses. Instead, they are typically manifested as a weakly dispersive waveform that lags SKKS by ~ 12-32s. In a ray-theoretical representation of this process, there is a strong geometrical similarity between the coalescence of SmKS turning waves to form a composite arrival and the interference of mantle S waves to form teleseismic Love waves. SmKS waves can thus be viewed as a type of pseudo-interface wave, the dispersive properties of which depend strongly on the fine-scale velocity structure of the outermost core. In order to analyze SmKS arrivals, we have developed an empirical transfer-function (ETF) technique that uses SKKS as a reference phase. An ETF is a wave-shaping filter that transforms the observed SKKS pulse into the observed SmKS pulse. We obtain this filter by windowing the respective pulses and applying frequency- domain Wiener deconvolution. Each ETF contains SmKS-SKKS differential arrival-time, phase-shift and relative-amplitude information; it also implicitly removes the source-time function and instrument response, thus facilitating the merging of results from different stations and events. Here, we apply this approach to global observations of SmKS phases and invert the results to yield a new velocity model for the outermost core region.

  11. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol

    2016-09-01

    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly above the imaged LVZs, suggesting that these anomalies are also the source of Cenozoic volcanic rocks throughout the study area.

  12. Geological and Seismic Data Mining For The Development of An Interpretation System Within The Alptransit Project

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Giese, R.; Löw, S.; Borm, G.

    Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.

  13. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  14. Relative Travel Time Tomography for East Asia

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; CHO, S.

    2016-12-01

    Japan island region is one of the most seismically active region in the world. As a large number of earthquakes have recently occurred along circum-Pacific belt called the ring of fire, concern over earthquakes is increasing in South Korea close to Japan. In this study, we perform seismic imaging based on relative S-wave travel-times to examine S-wave velocity upper mantle structure of East Asia. We used teleseismic events recorded at the Korea Institute of Geoscience and Mineral Resources (KIGAM) network and F-net network operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel-time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along East and South side of Japan island region. These anomalies may indicate subducting Pacific and Philippine Sea plates, respectively. The velocity structure beneath southwest Japan is revealed very complex because the two slabs interact with each other there. Velocity structure of East Asia is useful to understand the tectonic evolution and the mechanism of earthquakes that occur in this region.

  15. A generic model for the shallow velocity structure of volcanoes

    NASA Astrophysics Data System (ADS)

    Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra

    2018-05-01

    The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.

  16. Upper-crustal structure of the inner Continental Borderland near Long Beach, California

    USGS Publications Warehouse

    Baher, S.; Fuis, G.; Sliter, R.; Normark, W.R.

    2005-01-01

    A new P-wave velocity/structural model for the inner Continental Borderland (ICB) region was developed for the area near Long Beach, California. It combines controlled-source seismic reflection and refraction data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE), multichannel seismic reflection data collected by the U.S. Geological Survey (1998-2000), and nearshore borehole stratigraphy. Based on lateral velocity contrasts and stratigraphic variation determined from borehole data, we are able to locate major faults such as the Cabrillo, Palos Verdes, THUMS-Huntington Beach, and Newport Inglewood fault zones, along with minor faults such as the slope fault, Avalon knoll, and several other yet unnamed faults. Catalog seismicity (1975-2002) plotted on our preferred velocity/structural model shows recent seismicity is located on 16 out of our 24 faults, providing evidence for continuing concern with respect to the existing seismic-hazard estimates. Forward modeling of P-wave arrival times on the LARSE line 1 resulted in a four-layer model that better resolves the stratigraphy and geologic structures of the ICB and also provides tighter constraints on the upper-crustal velocity structure than previous modeling of the LARSE data. There is a correlation between the structural horizons identified in the reflection data with the velocity interfaces determined from forward modeling of refraction data. The strongest correlation is between the base of velocity layer 1 of the refraction model and the base of the planar sediment beneath the shelf and slope determined by the reflection model. Layers 2 and 3 of the velocity model loosely correlate with the diffractive crust layer, locally interpreted as Catalina Schist.

  17. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.

    2011-01-01

    The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.

  18. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  19. Velocity models and images using full waveform inversion and reverse time migration for the offshore permafrost in the Canadian shelf of Beaufort Sea, Arctic

    NASA Astrophysics Data System (ADS)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Kim, S.; Kim, Y. G.; Dallimore, S.; Riedel, M.; Shin, C.

    2015-12-01

    During Expedition ARA05C (from Aug 26 to Sep 19, 2014) on the Korean icebreaker RV ARAON, the multi-channel seismic (MCS) data were acquired on the outer shelf and slope of the Canadian Beaufort Sea to investigate distribution and internal geological structures of the offshore ice-bonded permafrost and gas hydrates, totaling 998 km L-km with 19,962 shots. The MCS data were recorded using a 1500 m long solid-type streamer with 120 channels. Shot and group spacing were 50 m and 12.5 m, respectively. Most MCS survey lines were designed perpendicular and parallel to the strike of the shelf break. Ice-bonded permafrost or ice-bearing sediments are widely distributed under the Beaufort Sea shelf, which have formed during periods of lower sea level when portions of the shelf less than ~100m water depth were an emergent coastal plain exposed to very cold surface. The seismic P-wave velocity is an important geophysical parameter for identifying the distribution of ice-bonded permafrost with high velocity in this area. Recently, full waveform inversion (FWI) and reverse time migration (RTM) are commonly used to delineate detailed seismic velocity information and seismic image of geological structures. FWI is a data fitting procedure based on wave field modeling and numerical analysis to extract quantitative geophysical parameters such as P-, S-wave velocities and density from seismic data. RTM based on 2-way wave equation is a useful technique to construct accurate seismic image with amplitude preserving of field data. In this study, we suggest two-dimensional P-wave velocity model (Figure.1) using the FWI algorithm to delineate the top and bottom boundaries of ice-bonded permafrost in the Canadian shelf of Beaufort Sea. In addition, we construct amplitude preserving migrated seismic image using RTM to interpret the geological history involved with the evolution of permafrost.

  20. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  1. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  2. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  3. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.

  4. Seismic imaging in hardrock environments: The role of heterogeneity?

    NASA Astrophysics Data System (ADS)

    Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian

    2012-10-01

    We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.

  5. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  6. Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Casas, Fernando; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric

    2014-10-01

    KEEN waves are non-stationary, nonlinear, self-organized asymptotic states in Vlasov plasmas. They lie outside the precepts of linear theory or perturbative analysis, unlike electron plasma waves or ion acoustic waves. Steady state, nonlinear constructs such as BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force generated by two crossing laser beams, for instance, used to drive them. Smaller amplitude drives manage to devolve into multiple highly-localized vorticlets, after the drive is turned off, and may eventually succeed to coalesce into KEEN waves. Fragmentation once the drive stops, and potential eventual remerger, is a hallmark of the weakly driven cases. A fully formed (more strongly driven) KEEN wave has one dominant vortical core. But it also involves fine scale complex dynamics due to shedding and merging of smaller vortical structures with the main one. Shedding and merging of vorticlets are involved in either case, but at different rates and with different relative importance. The narrow velocity range in which one must maintain sufficient resolution in the weakly driven cases, challenges fixed velocity grid numerical schemes. What is needed is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the use of a new high-order time-splitting scheme which allows much longer simulations per computational effort. This is needed for low amplitude runs. There, global coherent structures take a long time to set up, such as KEEN waves, if they do so at all. The new code's performance is compared to uniform grid simulations and the advantages are quantified. The birth pains associated with weakly driven KEEN waves are captured in these simulations. Canonical KEEN waves with ample drive are also treated using these advanced techniques. They will allow the efficient simulation of KEEN waves in multiple dimensions, which will be tackled next, as well as generalizations to Vlasov-Maxwell codes. These are essential for pursuing the impact of KEEN waves in high energy density plasmas and in inertial confinement fusion applications. More generally, one needs a fully-adaptive grid-in-phase-space method which could handle all small vorticlet dynamics whether pealing off or remerging. Such fully adaptive grids would have to be computed sparsely in order to be viable. This two-velocity grid method is a concrete and fruitful step in that direction. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  7. Qualitative numerical studies of the modification of the pitch angle distribution of test particles by alfvènic wave activity

    NASA Astrophysics Data System (ADS)

    Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to pitch angle diffusion.The framework of our simulations is a first step toward understanding wave particle interactions at the most basic level and is readily expandable to e.g. the inclusion of multiple wave frequencies, intermittent wave activity, gradients in the background magnetic field or collisions with solar wind particles.

  8. New Constraints on Extensional Environments through Analysis of Teleseisms

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary Cohen

    We apply a variety of teleseismic methodologies to investigate the upper mantle structure in extensional environments. Using a body wave dataset collected from a regional deployment in the Woodlark Rift, Papua New Guinea, we image anisotropic velocity structure of a rapidly extending rift on the cusp of continental breakup. In the process, we develop a technique for azimuthal anisotropy tomography that is generally applicable to regions of relatively simple anisotropic structure. The Cascadia Initiative ocean bottom seismometer (OBS) deployment provides coverage of an entire oceanic plate in unprecedented detail; we measure attenuation and velocities of teleseisms to characterize the temperature and melt structure from ridge to trench. Our study of shear wave splitting reveals strong azimuthal anisotropy within the Woodlark Rift with fairly uniform fast directions parallel to extension. This observation differs markedly from other continental rifts and resembles the pattern seen at mid-ocean ridges. This phenomenon is best explained by extension-related strain causing preferential alignment of mantle olivine. We develop a simple relationship that links total extension to predicted splitting, and show that it explains the apparent dichotomy in rifts' anisotropy. Finite frequency tomography using a dataset of teleseismic P- and S-wave differential travel times reveals the upper mantle velocity structure of the Woodlark Rift. A well developed slow rift axis extending >250 km along strike from the adjacent seafloor spreading centers demonstrates the removal of mantle lithosphere prior to complete crustal breakup. We argue that the majority of this rift is melt-poor, in agreement with geochemical results. A large temperature gradient arises from the juxtaposition of upwelled axial asthenosphere with a previously unidentified cold structure north of the rift that hosts well located intermediate depth earthquakes. Localization of upper mantle extension is apparent from the velocity structure of the rift axis and may result from the presence of water following recent subduction. In order to resolve potential tradeoffs between anisotropy and velocity gradients, we develop a novel technique for the joint inversion of Delta VS and strength of azimuthal anisotropy using teleseismic direct S-waves. This approach exploits the natural geometry of the regional tectonics and the relative consistency of observed splits; the imposed orthogonality of anisotropic structure takes care of the non-commutative nature of multi-layer splitting. Our tomographic models reveal the breakup of continental lithosphere in the anisotropy signal, as pre-existing fabric breaks apart and is replaced by upwelling asthenosphere that simultaneously advects and accrues an extension-related fabric. Accounting for anisotropy removes apparent noise in isotropic travel times and clarifies the velocity model. Taken together, our results paint a detailed and consistent picture of a highly extended continental rift. Finally, we collect a dataset of differential travel time (delta T) and attenuation (Deltat*) measurements of P- and S-waves recorded on OBS stations that span the Juan de Fuca and Gorda plates. We observe large gradients in Delta t*, with values as high as 2.0 s for S-waves at the ridge axes. Such high values of differential attenuation are not compatible with a purely thermal control, nor are they consistent with focusing effects. We assert that melt, grainsize, and water enhance anelastic effects beneath the ridge. The combination of attenuation and velocity measurements enables us to place quantitative constraints on the properties of the upper mantle in the vicinity of the spreading axis.

  9. PKP Waveform Complexity and Its Implications to Fine Structure Near the Edge of African Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Song, Teh-Ru Alex; Tanaka, Satoru; Takeuchi, Nozomu

    2010-05-01

    P wave traveling through the Earth's core typically includes three distinct phases, PKPdf (or PKIKP), PKPbc and PKPab and these waves have been frequently analyzed to study the structure of the outer-core and inner-core. It is well known that PKPab waveform suffers a 90-degree phase shift when encountering an internal acoustics in the outer-core and it is theoretically equivalent to Hilbert-transformed PKPbc (or PKPdf) waveform. Here, we report a dataset from an intermediate-depth earthquake in Vanuatu Islands recorded by a PASSCAL broadband array in Cameroon, West Africa. Two anomalous features stand out in this record section. First, in the period of a few seconds and longer, most PKPab waveforms recorded by this array are anomalous in a way that they do not display a 90-degree phase shift that is observed in other stations in Europe. Secondly, in the high frequency band of 0.5 Hz to 2 Hz, two large arrivals separated by about 3.4 seconds are observed in the time window of PKPab phase and they are often absent in the time window of PKPdf and PKPbc phases. In addition, the second arrival seems suffer some degree of phase shift relative to the first arrival. We examine several other record sections from nearby events in Tonga and they do not show such an anomalous feature, suggesting that receiver structures are probably not the cause of this observation. Note that the take-off angle of PKPab is typically 9-12 degrees shallower than that of PKPdf and PKPbc and it is possible that near-source scattering from the slab may account for such an anomalous feature. We make Hilbert transform of P waveforms recorded at shorter range of less than 90 degrees and compare them with these anomalous PKPab waveforms. However, these Hilbert-transformed P wave show a clear 90-degree phase shift relative to PKPdf and PKPbc and they are different from PKPab waveforms, despite a difference in take-off angles of less than 5 degrees in some cases. It appears that near-source scatterings and receiver-side structure do not play a predominant role in generating these anomalous PKPab waveforms. We then look into structural anomaly near the core-mantle-boundary (CMB) since PKPab grazes the CMB at a very shallow angle and it can effectively interact with it and possibly produce anomalous PKPab waveforms. We first explore 1-D model space by introducing velocity anomaly directly above the CMB, with a velocity perturbation up to a few tens of percents in S wave velocity and P wave velocity. We calculate synthetics up to 2 Hz by Direct Solution Method (DSM) and Reflectivity Method to examine waveform anomaly at long period band (0.01-0.2 Hz) as well as short-period band (0.5-2 Hz). Our preliminary result indicates that the model with a thin (~ 15 km) ultra-low velocity zone (ULVZ, 30% reduction in P wave and S wave velocity) is capable of reproducing characteristics of these anomalous PKPab waveforms at both frequency bands. The pierce points of PKPab in the source side at CMB are near the southeast Indian Ocean where S wave velocity is only slightly faster than PREM. On the other hand, the pierce points in the receiver side are at the eastern edge of the African Large Low Shear Velocity Province (LLSVP). One interesting feature of our ULVZ model is that dlnVs/dlnVp is about 1, which is different from most ULVZ models where dlnVs/dlnVp is about 3.

  10. P-wave tomography of the Chile Triple Junction region

    NASA Astrophysics Data System (ADS)

    Miller, M. R.; Priestley, K. F.; Tilmann, F. J.; Iwamori, H.; Bataille, K.

    2010-12-01

    We investigate the crustal and upper mantle structure of the Aysén region of Chile. This region is situated from 44 to 49oS, a place where the diverging oceanic Nazca and Antarctic plates subduct beneath the South American continent. The Seismic Experiment in the Aysén Region of CHile (SEARCH) project operated a network of up to 60 land-based seismometers in this region between 2004 and 2006, centred over a 6 Ma subducted spreading centre between the oceanic plates. The data is used to examine the P-wave velocity structure beneath the region using relative-arrival teleseismic travel time tomography, using 2534 P-wave residuals from 173 teleseismic earthquakes. It is possible to image the velocity structure beneath the seismic network down to ˜300 km depth. The velocity structure has a maximum resolution of ˜60 km and shows a large difference between the northern and southern parts of the region. To the north, a ˜100 km thick fast anomaly exists which dips away from the subduction trench; this is likely to be related to the subducting Nazca plate. Going to the south, as the age of this plate at the subduction trench decreases, the fast anomaly migrates further from the trench suggesting that the Nazca plate subducts at a low angle over a larger distance before the subduction angle steepens and hence slab tears exist across the fracture zones between parts of the slab of different age. Where the 6 Ma subducted ridge segment is predicted to lie there is a region of lower velocities between ˜200 and ˜100 km depth, and no fast region associated with a subducting slab is present. Instead, the lower velocities indicate the presence of an asthenospheric window between the subducted Nazca and Antarctic plate.

  11. Multidimensional nonlinear ion-acoustic waves in a plasma in view of relativistic effects

    NASA Astrophysics Data System (ADS)

    Belashov, V. Yu.

    2017-05-01

    The structure and dynamics of ion-acoustic waves in an unmagnetized plasma, including the case of weakly relativistic collisional plasma (when it is necessary to take into account the high energy particle flows which are observed in the magnetospheric plasma), are studied analytically and numerically on the basis of a model of the Kadomtsev-Petviashvili (KP) equation. It is shown that, if the velocity of plasma particles approaches the speed of light, the relativistic effects start to strongly influence on the wave characteristics, such as its phase velocity, amplitude, and characteristic wavelength, with the propagation of the twodimensional solitary ion-acoustic wave. The results can be used in the study of nonlinear wave processes in the magnetosphere and in laser and astrophysical plasma.

  12. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  13. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and DWSA arrivals. We also use an eigenvalue decomposition to determine the direction of the incoming wave field, and to measure the arrival azimuths. This work is supported by the USGS Earthquake Hazards Program under grant numbers G11AP20027 and G11AP20028.

  14. Improving the accurate assessment of a layered shear-wave velocity model using joint inversion of the effective Rayleigh wave and Love wave dispersion curves

    NASA Astrophysics Data System (ADS)

    Yin, X.; Xia, J.; Xu, H.

    2016-12-01

    Rayleigh and Love waves are two types of surface waves that travel along a free surface.Based on the assumption of horizontal layered homogenous media, Rayleigh-wave phase velocity can be defined as a function of frequency and four groups of earth parameters: P-wave velocity, SV-wave velocity, density and thickness of each layer. Unlike Rayleigh waves, Love-wave phase velocities of a layered homogenous earth model could be calculated using frequency and three groups of earth properties: SH-wave velocity, density, and thickness of each layer. Because the dispersion of Love waves is independent of P-wave velocities, Love-wave dispersion curves are much simpler than Rayleigh wave. The research of joint inversion methods of Rayleigh and Love dispersion curves is necessary. (1) This dissertation adopts the combinations of theoretical analysis and practical applications. In both lateral homogenous media and radial anisotropic media, joint inversion approaches of Rayleigh and Love waves are proposed to improve the accuracy of S-wave velocities.A 10% random white noise and a 20% random white noise are added to the synthetic dispersion curves to check out anti-noise ability of the proposed joint inversion method.Considering the influences of the anomalous layer, Rayleigh and Love waves are insensitive to those layers beneath the high-velocity layer or low-velocity layer and the high-velocity layer itself. Low sensitivities will give rise to high degree of uncertainties of the inverted S-wave velocities of these layers. Considering that sensitivity peaks of Rayleigh and Love waves separate at different frequency ranges, the theoretical analyses have demonstrated that joint inversion of these two types of waves would probably ameliorate the inverted model.The lack of surface-wave (Rayleigh or Love waves) dispersion data may lead to inaccuracy S-wave velocities through the single inversion of Rayleigh or Love waves, so this dissertation presents the joint inversion method of Rayleigh and Love waves which will improve the accuracy of S-wave velocities. Finally, a real-world example is applied to verify the accuracy and stability of the proposed joint inversion method. Keywords: Rayleigh wave; Love wave; Sensitivity analysis; Joint inversion method.

  15. Self-organizing Large-scale Structures in Earth's Foreshock Waves

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Pfau-Kempf, Y.; Turc, L.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.; Palmroth, M.

    2017-12-01

    Earth's foreshock is populated by plasma waves in the ULF regime, assumed to be caused by wave instabilities of shock-reflected particle beams. While in-situ observation of these waves has provided plentiful data of their amplitudes, frequencies, obliquities and relation to local plasma conditions, global-scale structures are hard to grasp from observation data alone. The hybrid-Vlasov simulation system Vlasiator, designed for kinetic modeling of the Earth's magnetosphere, has been employed to study foreshock formation under radial and near-radial IMF conditions on global scales. Structures arising in the foreshock can be comprehensively studied and directly compared to observation results. Our modeling results show that foreshock waves present emergent large-scale structures, in which regions of waves with similar phase exist. At the interfaces of these regions ("spines") we observe high wave obliquity, higher beam densities and lower beam velocities than inside them. We characterize these apparently self-organizing structures through the interplay between wave- and beam properties and present the microphysical mechanisms involved in their creation.

  16. Non-Linear Seismic Velocity Estimation from Multiple Waveform Functionals and Formal Assessment of Constraints

    DTIC Science & Technology

    2011-09-01

    tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been

  17. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    NASA Astrophysics Data System (ADS)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  18. Surface wave imaging of the Lithosphere-Asthenosphere system beneath 0-80 My seafloor of the equatorial Mid-Atlantic Ridge from the PI-LAB Experiment

    NASA Astrophysics Data System (ADS)

    Rychert, C.; Harmon, N.; Kendall, J. M.; Agius, M. R.; Tharimena, S.

    2017-12-01

    Oceanic lithosphere is the simplest realization of the tectonic plate, yet there are several indications that the evolution of oceanic lithosphere is more complicated than simple half space cooling models, i.e. sharp seismic discontinuities at 60-80 km depth, flattening of bathymetry at > 80 My. A deeper understanding of the complexities of oceanic lithosphere requires in situ measurements, and to date much work has focused on the Pacific ocean. The PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment deployed 39 ocean bottom seismometers and 39 ocean bottom magnetotelluric instruments around the equatorial Mid Atlantic ridge from 0-80 My old seafloor. We analysed Rayleigh wave dispersion at 18-143 s period using teleseismic events and Rayleigh wave and Love wave dispersion from 5-22 s period using ambient noise. We observe both fundamental mode and first higher mode Rayleigh waves at 5 - 18 s periods, with average phase velocities that range from 1.5 km/s at 5 s period to 4.31 km/s at 143 s, and fundamental mode Love waves, with average phase velocities ranging from 4.00 km/s at 5 s to 4.51 at 22 s. We invert these phase velocities for radially anisotropic shear velocity structure and find a 60 km thick fast lid for the region with velocities of 4.62 km/s, and x values up to 1.08 indicating radial anisotropy is required in the upper 200 km. We also examined the variation in phase velocity as function seafloor age across the region using the teleseismic Rayleigh wave dataset. From 25-81 s period we find low velocities beneath young seafloor ages. We find velocity systematically increases with seafloor age. At 40 My old seafloor, the phase velocities stop increasing and flatten out. At the longest periods (> 81 s) we observe no clear relationship with seafloor age, suggesting that lithospheric thickening ceases beneath seafloor > 50 My old.

  19. Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province

    NASA Astrophysics Data System (ADS)

    Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.

    2015-12-01

    Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.

  20. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  1. The Evolution of Cracks in Maluanshan Granite Subjected to Different Temperature Processing

    NASA Astrophysics Data System (ADS)

    Jiang, Guanghui; Zuo, Jianping; Li, Liyun; Ma, Teng; Wei, Xu

    2018-06-01

    The understanding of the change in the physical and mechanical properties of rock before and after heating is of great significance for the site selection of mattamore and the exploitation of geothermal resources. It is known that before and after heating, the changes in wave velocity, wave velocity anisotropy and permeability of rock are due to the evolution of cracks in the rock. In this study, the wave velocity and permeability of granite specimen from the Maluanshan tunnel in Shenzhen, China, were measured after high-temperature processing at atmospheric pressure. The effects of temperature on the properties of rock based on the acoustics and permeability were measured and analyzed. The evolution of the cracks in Maluanshan granite was inverted through the change rule of the cracks, wave velocity anisotropy and permeability with temperature. The main conclusions were as follows: (1) Both granite P and S wave velocities decreased with the increasing temperature, and the thermal cracking occurred in four stages: between 50 and 250 °C, the crack stabilization development stage was in effect; between 250 and 300 °C, an accelerated development stage of the cracks existed; between 300 and 350 °C, a shift stage for the cracks was entered; and finally, from 350 to 700 °C, the cracks continued into a further development stage; (2) The coefficient of variation could be used to reflect the structural feature change of the rocks in the study of the wave velocity anisotropy. The structures of cracks were observed to change before and after 300 °C. (3) The Maluanshan granite permeability increases with the increasing processing temperature. It was observed that the higher the processing temperature, the larger the increase in the permeability rate. A porosity function was used as a variable to analyze the relationship between the porosity function and permeability as follows: from 50 to 200 °C, the permeability was determined by the microcracks; 200-400 °C was the transition stage; and between 400 and 700 °C, the permeability was determined by the macrocracks.

  2. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.

  3. Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rahul; Verth, Gary; Erdélyi, Robertus

    2017-05-10

    Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity componentsmore » using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.« less

  4. Crustal Structure of the Middle East from Regional Seismic Studies

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Sibol, Matthew; Caron, Pierre; Ghalib, Hafidh; Chen, Youlin

    2010-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated ten broadband stations in north-eastern Iraq since late 2005. This network was supplemented by the five-element broadband Iraq Seismic Array (KSIRS) in 2007. More recently, the former Iraq Seismic Network (ISN), destroyed during the war with Iran, was reestablished with the deployment of six broadband stations throughout Iraq. The aim of the present study is to derive models of the local and regional crustal structure of the Middle East, including Eastern Turkey, Iraq and Iran. To achieve this goal, we derive crustal velocity models using receiver function, surface wave and body wave analyses. These refined velocity models will eventually be used to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of preliminary hypocenter locations produced a clearer picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Red Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Surface wave velocity analysis resulted in a clear demarcation of the tectonic features in the region. The Arabian shield, Zagros thrust zone and the Red Sea are apparent through distinct velocity distributions separating them from each other. Furthermore, the shear wave velocity of the crust in North Iraq appears to be 10% higher than that of the Iranian plateau. The velocity anomaly of the Zagros mountains appears to be present into the upper mantle beyond the resolving limit of our model. Analysis of waveform data for obstructed pathways indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on these seismograms. In contrast, blockage or attenuation of Pg and Sg-wave energy is observed for propagation paths across the Zagros-Makran zone from the south, while Pn and Sn phases are not affected. These findings are in support of earlier tectonic models that suggested the existence of multiple parallel listric faults splitting off the main Zagros fault zone in westerly direction. These faults appear to attenuate the crustal phases while the refracted phases, propagating across the mantle lid, remain unaffected. Azimuthal phase count and velocity analyses of body waves support the findings of blockage by the Zagros-Makran zone as well as higher shear wave velocities for the crust in Northern Iraq. In combination with receiver function and refraction studies, our first structural model of the crust beneath north-eastern Iraq indicates crustal depth of 40-45 km for the foothills, which increases to 45-50 km below the core of the Zagros-Bitlis zone.

  5. Application of the H/V and SPAC Method to Estimate a 3D Shear Wave Velocity Model, in the City of Coatzacoalcos, Veracruz.

    NASA Astrophysics Data System (ADS)

    Morales, L. E. A. P.; Aguirre, J.; Vazquez Rosas, R.; Suarez, G.; Contreras Ruiz-Esparza, M. G.; Farraz, I.

    2014-12-01

    Methods that use seismic noise or microtremors have become very useful tools worldwide due to its low costs, the relative simplicity in collecting data, the fact that these are non-invasive methods hence there is no need to alter or even perforate the study site, and also these methods require a relatively simple analysis procedure. Nevertheless the geological structures estimated by this methods are assumed to be parallel, isotropic and homogeneous layers. Consequently precision of the estimated structure is lower than that from conventional seismic methods. In the light of these facts this study aimed towards searching a new way to interpret the results obtained from seismic noise methods. In this study, seven triangular SPAC (Aki, 1957) arrays were performed in the city of Coatzacoalcos, Veracruz, varying in sizes from 10 to 100 meters. From the autocorrelation between the stations of each array, a Rayleigh wave phase velocity dispersion curve was calculated. Such dispersion curve was used to obtain a S wave parallel layers velocity (VS) structure for the study site. Subsequently the horizontal to vertical ratio of the spectrum of microtremors H/V (Nogoshi and Igarashi, 1971; Nakamura, 1989, 2000) was calculated for each vertex of the SPAC triangular arrays, and from the H/V spectrum the fundamental frequency was estimated for each vertex. By using the H/V spectral ratio curves interpreted as a proxy to the Rayleigh wave ellipticity curve, a series of VS structures were inverted for each vertex of the SPAC array. Lastly each VS structure was employed to calculate a 3D velocity model, in which the exploration depth was approximately 100 meters, and had a velocity range in between 206 (m/s) to 920 (m/s). The 3D model revealed a thinning of the low velocity layers. This proved to be in good agreement with the variation of the fundamental frequencies observed at each vertex. With the previous kind of analysis a preliminary model can be obtained as a first approximation, so that more careful studies can be conducted to assess a detailed geological characterization of a specific site. The continuous development of the methods that use microtremors, create many areas of interest in the seismic engineering study field. This and other reasons are why these methods have acquired more presence all over the globe.

  6. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion.

    PubMed

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  7. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  8. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.

    2005-03-01

    The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.

  9. A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew J.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishnan, Sridhar; Aster, Richard C.; Huerta, Audrey D.; Wilson, Terry J.; Dalziel, Ian W. D.; Shore, Patrick J.; Zhao, Dapeng

    2015-12-01

    West Antarctica consists of several tectonically diverse terranes, including the West Antarctic Rift System, a topographic low region of extended continental crust. In contrast, the adjacent Marie Byrd Land and Ellsworth-Whitmore mountains crustal blocks are on average over 1 km higher, with the former dominated by polygenetic shield and stratovolcanoes protruding through the West Antarctic ice sheet and the latter having a Precambrian basement. The upper mantle structure of these regions is important for inferring the geologic history and tectonic processes, as well as the influence of the solid earth on ice sheet dynamics. Yet this structure is poorly constrained due to a lack of seismological data. As part of the Polar Earth Observing Network, 13 temporary broadband seismic stations were deployed from January 2010 to January 2012 that extended from the Whitmore Mountains, across the West Antarctic Rift System, and into Marie Byrd Land with a mean station spacing of ~90 km. Relative P and S wave travel time residuals were obtained from these stations as well as five other nearby stations by cross correlation. The relative residuals, corrected for both ice and crustal structure using previously published receiver function models of crustal velocity, were inverted to image the relative P and S wave velocity structure of the West Antarctic upper mantle. Some of the fastest relative P and S wave velocities are observed beneath the Ellsworth-Whitmore mountains crustal block and extend to the southern flank of the Bentley Subglacial Trench. However, the velocities in this region are not fast enough to be compatible with a Precambrian lithospheric root, suggesting some combination of thermal, chemical, and structural modification of the lithosphere. The West Antarctic Rift System consists largely of relative fast uppermost mantle seismic velocities consistent with Late Cretaceous/early Cenozoic extension that at present likely has negligible rift related heat flow. In contrast, the Bentley Subglacial Trench, a narrow deep basin within the West Antarctic Rift System, has relative P and S wave velocities in the uppermost mantle that are ~1% and ~2% slower, respectively, and suggest a thermal anomaly of ~75 K. Models for the thermal evolution of a rift basin suggest that such a thermal anomaly is consistent with Neogene extension within the Bentley Subglacial Trench and may, at least in part, account for elevated heat flow reported at the nearby West Antarctic Ice Sheet Divide Ice Core and at Subglacial Lake Whillans. The slowest relative P and S wave velocity anomaly is observed extending to at least 200 km depth beneath the Executive Committee Range in Marie Byrd Land, which is consistent with warm possibly plume-related, upper mantle. The imaged low-velocity anomaly and inferred thermal perturbation (~150 K) are sufficient to support isostatically the anomalous long-wavelength topography of Marie Byrd Land, relative to the adjacent West Antarctic Rift System.

  10. Observation of Hamiltonian chaos and its control in wave particle interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Macor, A.; Aïssi, A.

    2007-12-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  11. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  12. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  13. Nonlinear interaction and wave breaking with a submerged porous structure

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.

    2016-12-01

    Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.

  14. Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.

    2017-04-01

    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.

  15. The spatial sensitivity of Sp converted waves-kernels and their applications

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Fischer, K. M.

    2017-12-01

    We have developed a framework for improved imaging of strong lateral variations in crust and upper mantle seismic discontinuity structure using teleseismic S-to-P (Sp) scattered waves. In our framework, we rapidly compute scattered wave sensitivities to velocity perturbations in a one-dimensional background model using ray-theoretical methods to account for timing, scattering, and geometrical spreading effects. The kernels accurately describe the amplitude and phase information of a scattered waveform, which we confirm by benchmarking against kernels derived from numerical solutions of the wave equation. The kernels demonstrate that the amplitude of an Sp converted wave at a given time is sensitive to structure along a quasi-hyperbolic curve, such that structure far from the direct ray path can influence the measurements. We use synthetic datasets to explore two potential applications of the scattered wave sensitivity kernels. First, we back-project scattered energy back to its origin using the kernel adjoint operator. This approach successfully images mantle interfaces at depths of 120-180 km with up to 20 km of vertical relief over lateral distances of 100 km (i.e., undulations with a maximal 20% grade) when station spacing is 10 km. Adjacent measurements sum coherently at nodes where gradients in seismic properties occur, and destructively interfere at nodes lacking gradients. In cases where the station spacing is greater than 10 km, the destructive interference can be incomplete, and smearing along the isochrons can occur. We demonstrate, however, that model smoothing can dampen these artifacts. This method is relatively fast, and accurately retrieves the positions of the interfaces, but it generally does not retrieve the strength of the velocity perturbations. Therefore, in our second approach, we attempt to invert directly for velocity perturbations from our reference model using an iterative conjugate-directions scheme.

  16. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    NASA Astrophysics Data System (ADS)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from pEHVRs again. Thus we proposed here a simple empirical method to estimate S-wave velocity structures using single-station microtremor records, which is the most cost-effective method to characterize the site effects.

  17. 3D Structure of Iran and Surrounding Areas From The Simultaneous Inversion of Complementary Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.; Maceira, M.; Cleveland, M.

    2010-12-01

    We present a three-dimensional seismic-structure model of the Arabian-Eurasian collision zone obtained via simultaneous, joint inversion of surface-wave dispersion measurements, teleseismic P-wave receiver functions, and gravity observations. We use a simple, approximate relationship between density and seismic velocities so that the three data sets may be combined in a single inversion. The sensitivity of the different data sets are well known: surface waves provide information on the smooth variations in elastic properties, receiver functions provide information on abrupt velocity contrasts, and gravity measurements provide information on broad-wavenumber shallow density variations and long-wavenumber components of deeper density structures. The combination of the data provides improved resolution of shallow-structure variations, which in turn help produce the smooth features at depth with less contamination from the strong heterogeneity often observed in the upper crust. We also explore geologically based smoothness constraints to help resolve sharp features in the underlying shallow 3D structure. Our focus is on the region surrounding Iran from east Turkey and Iraq in the west, to Pakistan and Afghanistan in the east. We use Bouguer gravity anomalies derived from the global gravity model extracted from the GRACE satellite mission. Surface-wave dispersion velocities in the period range between 7 and 150 s are taken from previously published tomographic maps for the region. Preliminary results show expected strong variations in the Caspian region as well as the deep sediment regions of the Persian Gulf. Regions constrained with receiver-function information generally show sharper crust-mantle boundary structure than that obtained by inversion of the surface waves alone (with thin layers and smoothing constraints). Final results of the simultaneous inversion will help us to better understand one of the most prominent examples of continental collision. Such models also provide an important starting model for time-consuming and fully 3D inversions.

  18. Analysis and Simulation of 3D Scattering due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases; Magnitude and Discrimination

    DTIC Science & Technology

    2009-07-07

    inversion technique that is based on different weights for relatively high frequency waveform modeling of Pnl and relatively long period surface waves (Tan...et al., 2006). Pnl and surface waves are also allowed to shift in time to take into account of uncertainties in velocity structure. Joint...inversion of Pnl and surface waves provides better constraints on focal depth as well as source mechanisms. The pure strike-slip mechanism of the earthquake

  19. Geophysical Modeling in Eurasia: 2D Crustal P and LG Propagation; Upper- Mantle Shear Wave Propagation and Anisotropy; and 3D, Joint, Simultaneous Inversions

    DTIC Science & Technology

    2008-09-01

    improved resolution for shallow geologic structures . Jointly inverting these datasets with seismic body wave (S) travel times provides additional...constraints on the shallow structure and an enhanced 3D shear wave model for our study area in western China. 2008 Monitoring Research Review...for much of Eurasia, although the Arabian Shield and Arctic are less well recovered. The upper velocity gradient was tested for 10-degree cells

  20. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  1. P-wave Velocity Structure in the Lowermost 600 km of the Mantle beneath Western Pacific Inferred from Travel Times and Amplitudes Observed with NECESSArray

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kawakatsu, H.; Chen, Y. J.; Ning, J.; Grand, S. P.; Niu, F.; Obayashi, M.; Miyakawa, K.; Idehara, K.; Tonegawa, T.; Iritani, R.; Necessarray Project Team

    2011-12-01

    NECESSArray is a large-scale broadband seismic array deployed in northeastern China. Although its primary aims are to reveal the fate of subducted Pacific plate and to address several tectonic issues, it is also useful as a large aperture array to look at deep Earth. Here, we examine P-wave travel times observed with NECESSArray to determine P-wave velocity structure in the lower mantle beneath Western Pacific. Relative travel times with respect to those predicted by PREM are measured on short period seismograms from 15 earthquakes occurred in Tonga, Fiji, and Kermadec regions since Sep. 2009 to April 2010, so far, by using adaptive stacking method [Rawlinson and Kennett, 2004]. The residuals are defined as fluctuations with respect to an average of the whole array for each event. Station correction is defined as a median value of the residuals at each station. After applying the station corrections and distance corrections for the surface focus, we synthesize all the residuals and finally obtain a characteristic residual variation as a function of epicentral distance from 80 to 95 degrees. The travel time residuals show an inverted V-pattern with the maximum delay of 0.2 s at 87 degrees compared from a reference level at 80 and 95 degrees. To simply interpret this pattern through Herglotz-Wiechert inversion, we assume that the velocity structure above 600 km above the core-mantle boundary (CMB) is identical to PREM and find that the difference of the P-wave velocities from those of PREM gradually increase with depth, and reach the maximum velocity reduction of 0.15% and suddenly increase to those being identical to PREM at 270 km above the CMB. Thickness of a small velocity gradient layer at the base of the mantle is reduced to be 130 km instead of 150 km that is PREM's value. P-wave amplitudes are used as supplementary data. Station corrections for amplitude are inferred from 6 deep Fiji earthquakes in the distance range 75 to 90 degrees, in which focal mechanisms are corrected with the Global CMT solutions and theoretical amplitude variations due to elastic and anelastic structures with the reflectivity method are considered. The corrected amplitude that are sensitive to the velocity structure just the above the CMB are obtained from 3 earthquakes occurred in Kermadec islands (their latitudes vary from 29.2 S to 31.6S) in the distance range from 86 to 96 degrees. Although they are closely located each other, the data from the southernmost event indicate significantly rapid amplitude decay, and those from the northernmost event indicate moderate amplitude decay, those from the middle event show a large scatter. This observation suggests that a rapid horizontal change of the D" structure exists in the southwestern edge of the sampled region.

  2. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  3. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-01

    This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  4. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  5. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    NASA Astrophysics Data System (ADS)

    Zha, Yang; Webb, Spahr C.

    2016-05-01

    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  6. Mechanisms of ripple migration on a natural sand bed under waves

    NASA Astrophysics Data System (ADS)

    Carlson, E.; Foster, D. L.

    2016-02-01

    In nearshore environments, the wave bottom boundary layer is of particular importance to bedform migration and evolution as it is the location of energy transfer from the water column to the bed. This effort examines the mechanisms responsible for bedform evolution and migration. In a field scale laboratory study, sand ripple dynamics were measured using particle image velocimetry. Both monotonic (T = 4 s, 8 s), bimodal (wave pair T = 3.7, 4.3 s), and solitary wave cases were examined. Bedform states included orbital and anorbital rippled beds with wavelengths ranging from 5 to 15 cm. During cases of moderately high energy, time series of instantaneous ripple migration rates oscillated with the same frequency as the surface waves. The oscillatory ripple migration signature was asymmetric, with higher amplitudes during onshore directed movement. This asymmetry leads to a net onshore migration, ranging from 0.1 to 0.6 cm/min in the wave conditions mentioned. The cyclic motion of the ripple field was compared to concomitant transfer mechanisms affecting the boundary layer dynamics including: bed shear stress, coherent structure generation, and free stream velocity. Coherent structures were identified using the swirling strength criterion, and were present during each half wave developing in the ripple troughs. Two estimates of bed shear stress were made: 1) Meyer-Peter Muller method using the bed migration to determine the necessary stress and 2) double averaging of the velocity field and partitioning into components of stress, following the methods of Rodriguez-Abudo and Foster (2014). Peak ripple migration rates occurred during strengthening onshore flow, which coincides with peak bed shear stresses and the onset of coherent structure formation. Higher energy bimodal wave groups caused periods of high suspension which were coincident with peak onshore migrations, during the low velocity periods of the bimodal forcing the bed did not migrate.

  7. Rip Current Velocity Structure in Drifter Trajectories and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, W. E.; Slinn, D. N.

    2008-12-01

    Estimates of rip current velocity and cross-shore structure were made using surfzone drifters, bathymetric surveys, and rectified video images. Over 60 rip current trajectories were observed during a three year period at a Southern California beach in July 2000, 2001, and 2002. Incident wave heights (Hs) immediately offshore (~7 m depth) were obtained by initializing a refraction model with data from nearby directional wave buoys, and varied from 0.3 to 1.0 m. Tide levels varied over approximately 1 m and winds were light. Numerical simulations using the non-linear shallow water equations and modeled over measured bathymetry also produced similar flows and statistics. Time series of drifter position, sampled at 1 Hz, were first-differenced to produce velocity time series. Maximum observed velocities varied between 25 and 80 cm s-1, whereas model maximum velocities were lower by a factor 2 to 3. When velocity maxima were non-dimensionalized by respective trajectory mean velocity, both observed and modeled values varied between 1.5 and 3.5. Cross-shore location of rip current velocity maxima for both shore-normal and shore-oblique rip currents were strongly coincident with the surfzone edge (Xb), as determined by rectified video (observations) or breakpoint (model). Once outside of the surfzone, observed and modeled rip current velocities decreased to 10% of their peak values within 2 surfzone widths of the shoreline, a useful definition of rip current cross-shore extent.

  8. Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Daley, T. M.; Myer, L. R.

    2002-12-01

    A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.

  9. Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.

  10. The Crsut Structure of Northwest Mexico Through Multipath Surface Waves Analysis

    NASA Astrophysics Data System (ADS)

    Hincapie, J.; Doser, D. I.; Ortega, R.

    2005-12-01

    The location of the crystalline basement and other crustal features in Northwestern Mexico (Sonora, and Chihuahua) is not well defined. This information is required to better understand its tectonic setting. Several researchers have carried out preliminary studies with results that show a great uncertainty about the velocity structure of the region as well. The only conclusion those studies agree upon is that the region has remarkable similarities with the southwestern U.S. Our study uses information from earthquakes originating in the Gulf of California, and recorded at broadband stations in the U.S. (Arizona, New Mexico, Texas) to determine the velocity structure of the region. Because earthquake sources occur along a 1200km long zone within the gulf, we are able to sample a variety of travel paths within Northwest Mexico. We will analyze Pnl waveforms, coda dacay, and surface waves to build a regional velocity attenuation model. The results are compared to regional gravity and magnetic maps.

  11. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  12. A simple method of predicting S-wave velocity

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.

  13. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.

    2013-01-01

    This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.

  14. Spontaneous generation of bending waves in isolated Milky Way-like discs

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  15. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    USGS Publications Warehouse

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  16. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure.

    PubMed

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-02-04

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.

  17. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations. Characteristics of this complex propagation appear from the southern Sierra Nevada Mountains, in the west, to Death Valley in the east. The structure does not cross the Garlock fault to the south, but we are unsure of the structures northern extent.

  18. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  19. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less

  20. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi

    2015-04-01

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  1. Impact of Ocean Surface Waves on Air-Sea Momentum Flux

    NASA Astrophysics Data System (ADS)

    Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.

    2016-02-01

    In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.

  2. Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi

    2005-05-01

    The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.

  3. Fabric changes and their influence on P-wave velocity patterns—examples from a polyphase deformed orthogneiss

    NASA Astrophysics Data System (ADS)

    Siegesmund, S.; Vollbrecht, A.; Pros, Z.

    1993-10-01

    The complete P-wave velocity distribution, preferred orientation of rock-forming minerals and microcracks of two differently deformed orthogneisses from the Kutna Hora Crystalline Unit were investigated. The complete symmetry of P-wave velocities were determined as a function of confining pressure on the basis of 132 independent propagation directions up to 400 MPa. The two samples are of almost identical mineralogical composition, but exhibit different fabrics which can be related to different positions within a large-scale fold structure. The symmetry of the Vp-diagrams change from nearly transversely isotropic for the sample from the limb area to orthorhombic for the sample from the hinge zone, which shows an additional crenulation cleavage. This change of symmetry is observed at all pressure levels. Reorientation of the main velocity directions ( Vpmin, Vpmax, Kpint) between hinge and limb is controlled by the microcrack fabric and the texture of the rock-forming minerals. This can cause significant differences in reflectivity related to fabric changes within large-scale folds.

  4. Re-evaluation of Apollo 17 Lunar Seismic Profiling Experiment data

    NASA Astrophysics Data System (ADS)

    Heffels, Alexandra; Knapmeyer, Martin; Oberst, Jürgen; Haase, Isabel

    2017-01-01

    We re-analyzed Apollo 17 Lunar Seismic Profiling Experiment (LSPE) data to improve our knowledge of the subsurface structure of this landing site. We use new geometrically accurate 3-D positions of the seismic equipment deployed by the astronauts, which were previously derived using high-resolution images by Lunar Reconnaissance Orbiter (LRO) in combination with Apollo astronaut photography. These include coordinates of six Explosive Packages (EPs) and four geophone stations. Re-identified P-wave arrival times are used to calculate two- and three-layer seismic velocity models. A strong increase of seismic velocity with depth can be confirmed, in particular, we suggest a more drastic increase than previously thought. For the three-layer model the P-wave velocities were calculated to 285, 580, and 1825 m/s for the uppermost, second, and third layer, respectively, with the boundaries between the layers being at 96 and 773 m depth. When compared with results obtained with previously published coordinates, we find (1) a slightly higher velocity (+4%) for the uppermost layer, and (2) lower P-wave velocities for the second and third layers, representing a decrease of 34% and 12% for second and third layer, respectively. Using P-wave arrival time readings of previous studies, we confirm that velocities increase when changing over from old to new coordinates. In the three-layer case, this means using new coordinates alone leads to thinned layers, velocities rise slightly for the uppermost layer and decrease significantly for the layers below.

  5. Lithospheric Structure Beneath the Hangay Dome, Central Mongolia

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Meltzer, A.; Souza, S.; Munkhuu, U.; Tsaagan, B.; Russo, R. M.

    2014-12-01

    The Mongolian Plateau is a broad regional uplift positioned between the Siberian Craton to the north and the far northern edge of the India-Asia collision to the south. Within this intracontinental setting of high topography, the Hangay Dome in central Mongolia reaches elevations of 4 km and contains intermittent basaltic magmatism over the last 30 Ma. The relationship between high topography, magmatism, and geodynamic processes remains largely unsolved although processes ranging from lithospheric delamination to mantle plume effects have been proposed. A temporary array of seismic stations was deployed around the Hangay Dome to determine lithospheric structure. Preliminary results are shown from receiver function analysis, ambient noise tomography, and teleseismic P-wave tomography. Crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. The bulk crustal Vp/Vs ratio ranges from 1.71 to 1.9 with a median value for the array of 1.77, perhaps indicating a variable crustal composition with some regions having a more mafic crust. The stacked receiver functions are also combined with ambient noise phase velocity dispersion measurements in a joint inversion for shear velocity profiles at each station which reveals crustal thickness estimates consistent with the H-k stacks while also determining the shear velocity step at the Moho. Teleseismic P-wave travel time residuals ranging between +/-1 second are inverted for a 3D P-wave velocity model using finite-frequency kernels. Notable features include 1) a low velocity anomaly (-3%) in the upper 200 km beneath the eastern part of the Hangay Dome near the Orkhon River Valley, , 2) a steeply dipping low velocity anomaly to the north of the Hangay Dome, perhaps related to the nearby Baikal Rift, and 3) generally higher velocities in the upper 200 km surrounding the high topography. To first order, the high topography of the Hangay Dome appears to be largely supported by thickened crust. However, lower P-wave velocities in the upper mantle beneath the dome are observed. The relative contributions of crustal thickness and upper mantle structure for support of topography and their relationship to magmatism will be determined with further refinement of the models.

  6. A pitfall in shallow shear-wave refraction surveying

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.

    2002-01-01

    The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Crustal structure of Australia from ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Saygin, Erdinc; Kennett, B. L. N.

    2012-01-01

    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  8. Joint body- and surface-wave tomography of Yucca Flat, Nevada

    NASA Astrophysics Data System (ADS)

    Toney, L. D.; Abbott, R. E.; Preston, L. A.

    2017-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat (YF), Nevada, on the Nevada National Security Site. YF hosted over 650 underground nuclear tests (UGTs) between 1957 and 1992. Data from this survey will help characterize the geologic structure and bulk properties of the region, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line; we used a roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. We applied the multiple filter technique to the dataset using a comb of 30 narrow bandpass filters with center frequencies ranging from 1 to 50 Hz. After manually windowing out the fundamental Rayleigh-wave arrival, we picked group-velocity dispersion curves for 50,000 source-receiver pairs. We performed a joint inversion of group-velocity dispersion and existing body-wave travel-time picks for the shear- and compressional-wave velocity structure of YF. Our final models reveal significant Vp / Vs anomalies in the vicinities of legacy UGT sites. The velocity structures corroborate existing seismo-stratigraphic models of YF derived from borehole and gravity data. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  9. Mantle discontinuities mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J.

    2009-12-01

    We invert global observations of fundamental and higher order Love and Rayleigh surface-wave dispersion data jointly at selected locations for 1D radial profiles of Earth's mantle composition, thermal state and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties, provide us with a range of profiles of composition, temperature and anisotropy. This methodology presents an important complement to conventional seismic tomograpy methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges and subduction of chemically stratified lithosphere. Compared with PREM and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ), and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle stronger lateral variations are observed. The TZ structure, and thus location of the phase transitions in the Olivine system as well as their physical properties, are found to be controlled to a large degree by thermal rather than compositional variations. The retrieved anistropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.

  10. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  11. Waves in a plane graphene - dielectric waveguide structure

    NASA Astrophysics Data System (ADS)

    Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.

    2017-10-01

    The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.

  12. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    NASA Astrophysics Data System (ADS)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  13. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  14. Effect of Change in the Wavelengths of Short Wave Shifts on the Formation of a Twin Structure Fragment in Thin Lamellar α-Martensite Crystals

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Kashchenko, N. M.; Chashchina, V. G.

    2018-01-01

    One of the possible scenarios of the formation of transformation twins in α-martensite crystals of thin lamellar morphology typical of Fe-Ni-C alloys with low γ-α martensitic transition beginning temperatures is discussed within the framework of dynamic theory. It has been shown that the sharply pronounced inhomogeneity observed in a twin structure fragment at matched velocities of propagation with respect to short s waves and long ℓ waves is explained by the change in the length of s waves.

  15. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves

    NASA Astrophysics Data System (ADS)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.

    2011-07-01

    Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.

  16. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  17. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    NASA Astrophysics Data System (ADS)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  18. Shear velocity and intrinsic Q structure of the shallow crust in southeastern New England from Rg wave dispersion

    NASA Astrophysics Data System (ADS)

    Saikia, Chandan K.; Kafka, Alan L.; Gnewuch, Scott C.; McTigue, John W.

    1990-06-01

    In this study, we analyzed 0.5-2.0 s period Rayleigh waves (Rg) generated by quarry and construction blasting in southern New England (CNE). We investigated group velocity dispersion and attenuation of the observed Rg waves. The paths crossing the Hartford Rift basin (HRB) show an obvious correlation between geology and Rg dispersion. The entire region in the southeastern New England comprising a wide range of geological structures and rock types from the Bronson Hill Anticlinorium to the Avalonian Terrane can be represented as one dispersion region. Therefore the relationship between lateral changes in geologic structures mapped on the surface and Rg dispersion is not as straightforward as might be expected for a best fitting flat-layered model of the shallow crust. The shear wave velocities appear to vary between 2.55 and 3.63 km/s within the upper 2.5 km except for the central HRB where the variation is between 2.12 and 2.7 km/s. Intrinsic Q structure is considered to be the primary means for the loss of energy in the shallow crust and was analyzed by modelling the waveforms of several of the observed seismograms. For this aspect of our study, we used a modal summation of Rayleigh waves assuming a far-field radiation approximation. The observed seismograms were dominated primarily by contributions from the fundamental mode, but higher modes were also included in the synthesis of the waveform. We were unable to model the absolute amplitudes of the waveforms because of the problems with the instrument calibration. It is clear, however, that to predict correct waveforms, the shear wave Q values in the upper few tenths of a kilometer of the crust must be about an order of magnitude smaller than Q values at the depth of 1-3 km which is of order of 100-250.

  19. Waveform inversion of mantle Love waves: The born seismogram approach

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.

    1983-01-01

    Normal mode theory, extended to the slightly laterally heterogeneous Earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the Earth's lateral heterogeneity at l=2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l=2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5% in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.

  20. Waveform inversion of mantle Love waves - The Born seismogram approach

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.

    1984-01-01

    Normal mode theory, extended to the slightly laterally heterogeneous earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the earth's lateral heterogeneity at l = 2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l = 2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5 percent in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.

  1. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.

  2. The crust and uppermost mantle structure in Southern Peru from ambient noise and earthquake surface wave analysis

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Clayton, R. W.

    2012-12-01

    We determine the Vs structure to a depth of 140 km of Southern Peru, where the subducted Nazca slab changes from normal to flat subduction. The data are from a box-like array that is approximately 300 km on a side, and with 150 stations in total. The structure is inverted from surface wave dispersion curves measured between 5 s to 23 s period from ambient noise cross-correlations, and between 25 s to 69 s from earthquake two-plane-wave analysis. From the map views of different depths, we observe that: (1) The forearc region is characterized by shallow crustal thickness and higher crustal velocity compared with the backarc. (2) The upper-crust velocity in the backarc above normal subduction (3.0-3.2 km/s) is lower compared with that above flat subduction region (3.2-3.4 km/s). The low velocity coincides with the deep sediments above the Altiplano plateau. (3) The transition from the normal to flat subduction is characterized by a comparatively lower upper-mid crust velocity (3.2-3.4 km/s). The lower velocity zone also coincides with the highest topography (>4700 m) in the study area. (4) The mantle wedge velocity above the flat subduction (4.6-4.9 km/s) is higher than the surrounding mantle and the mantle above the normal subduction region (4.3-4.5 km/s). We deduce that the upper-mid crust above the transition of the slab geometry is probably more felsic, which can be due to the old volcanic activity during the normal-flat transition, and thus can more easily accommodate the crustal shortening. The lack of present volcanism above the flat subduction, however, could be explained by the high velocity anomaly related to the flat slab. It may indicate a cold environment, and thus the lack of mantle melting.

  3. The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Rost, Sebastian

    2014-10-01

    The Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle represent volumetrically significant thermal or chemical or thermo-chemical heterogeneities. Their structure and boundaries have been widely studied, mainly using S-waves, but much less is known about their signature in the P-wavefield. We use an extensive dataset recorded at USArray to create, for the first time, a high-resolution map of the location, shape, sharpness, and extent of the boundary of the Pacific LLSVP using P (Pdiff)-waves. We find that the northern edge of the Pacific LLSVP is shallow dipping (26° relative to the horizontal) and diffuse (∼120 km wide transition zone) whereas the eastern edge is steeper dipping (70°) and apparently sharp (∼40 km wide). We trace the LLSVP boundary up to ∼500 km above the CMB in most areas, and 700 km between 120° and 90°W at the eastern extent of the boundary. Apparent P-wave velocity drops are ∼1-3% relative to PREM, indicating a strong influence of LLSVPs on P-wave velocity, at least in the high-frequency wavefield, in contrast to previous studies. A localised patch with a greater velocity drop of ∼15-25% is detected, defined by large magnitude gradients of the travel-time residuals. We identify this as a likely location of an Ultra-Low Velocity Zone (ULVZ), matching the location of a previously detected ULVZ in this area. The boundary of a separate low velocity anomaly, of a similar height to the LLSVP, is detected in the north-west Pacific, matching tomographic images. This outlier appears to be connected to the main LLSVP through a narrow channel close to the CMB and may be in the process of joining or splitting from the main LLSVP. We also see strong velocity increases in the lower mantle to the east of the LLSVP, likely detecting subducted material beneath central America. The LLSVP P-wave boundary is similar to that determined in high-resolution S-wave studies and follows the -0.4% ΔVS iso-velocity contour in the S40RTS tomography model. Additionally, the LLSVP boundary roughly matches the shape of the -0.4% ΔVP iso-velocity contour of the P-wave model GyPSuM but defines an area more similar to that defined by the 0.0% VP iso-velocity contour. High resolution P-wave velocity determination allows for estimation of the ratio of P- and S-wave velocity anomalies (RS,P) which can be used to indicate dominantly thermal or chemical control of seismic velocities. Although the RS,P is found here to be approximately 2.4, which is indicative of a thermo-chemical anomaly. However, this result contains a large amount of uncertainty and the implications for the origin of LLSVPs likely remain inconclusive. Nonetheless, other observations of the Pacific LLSVP are consistent with a thermo-chemical anomaly whose shape and boundary sharpness are controlled by proximity to active and past subduction.

  4. Strong fast long-period waves in the Efpalio 2010 earthquake records: explanation in terms of leaking modes

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Zahradník, Jiří; Sokos, Efthimios

    2014-01-01

    The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece ( M w 5.3) generated unusually strong long-period waves (periods 4-8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40-250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).

  5. Seismic anisotropy in the lowermost mantle near the Perm Anomaly

    NASA Astrophysics Data System (ADS)

    Long, Maureen D.; Lynner, Colton

    2015-09-01

    The lower mantle is dominated by two large structures with anomalously low shear wave velocities, known as Large Low-Shear Velocity Provinces (LLSVPs). Several studies have documented evidence for strong seismic anisotropy at the base of the mantle near the edges of the African LLSVP. Recent work has identified a smaller structure with similar low-shear wave velocities beneath Eurasia, dubbed the Perm Anomaly. Here we probe lowermost mantle anisotropy near the Perm Anomaly using the differential splitting of SKS and SKKS phases measured at stations in Europe. We find evidence for lowermost mantle anisotropy in the vicinity of the Perm Anomaly, with geographic trends hinting at lateral variations in anisotropy across the boundaries of the Perm Anomaly as well as across a previously unsampled portion of the African LLSVP border. Our observations suggest that deformation is concentrated at the boundaries of both the Perm Anomaly and the African LLSVP.

  6. Optics. Spatially structured photons that travel in free space slower than the speed of light.

    PubMed

    Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J

    2015-02-20

    That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.

  7. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    NASA Astrophysics Data System (ADS)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (<2 Hz) arrivals. This dispersion has been attributed to low velocity structure within the subducting Nazca plate which acts as a waveguide, retaining and delaying high frequency energy. Full waveform modelling shows that the single LVL proposed by previous studies does not produce the first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older subducting slabs may carry more water per metre of arc, approximately one third of the oceanic material subducted globally is of a similar age to the Nazca plate. This suggests that subducting oceanic lithosphere of this age has a significant role to play in the global water cycle.

  8. Determining the Extent of Hydrothermal Interaction on the Southern Costa Rica Rift Ridge Flank During the Past 8 Ma from Joint Inversion of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; Moorkamp, M.; Hobbs, R. W.; Peirce, C.; Harris, R. N.; Morgan, J. V.

    2017-12-01

    Advective hydrothermal systems preferentially develop in zones of high porosity and permeability, driven by a local heat source. Associated chemical reactions lead to changes in the bulk physical properties, so variations in velocity and density, and the relationship connecting them, may provide a record of alteration by hydrothermal fluids. Oceanic crust accreted at intermediate rate ridges displays a range of characteristics between those typical for fast and slow spreading rates so changes in crustal porosity and permeability are sensitive to the interplay between tectonic stretching, magmatic supply and plate motions. Hence, changes in spreading style and sediment cover will influence the extent of the hydrothermal interaction that occurs and the mode of heat loss as evidenced by heat flow measurements. Using a variety of geophysical data we determine where hydrothermal circulation has been active in young oceanic crust that was accreted at an intermediate spreading rate. Results from traveltime tomography along a 300 km profile across the southern flank of the Costa Rica Rift reveal several variations in the P-wave velocity structure of the upper crust (layer 2). Following an initial increase in P-wave velocity near the ridge axis there is a section of the model 80 km in length that has lower P-wave velocity (up to 0.5 km s-1) compared to adjacent crust. This section has shallower bathymetry, by up to 500 m, than predicted by the subsidence curve and the top basement surface is rougher with a greater amount of faulting and larger throws. This zone is preceded by crust with significantly faster P-wave velocities (up to 1.0 km s-1) that was sampled by DSDP/ODP 504B. We characterise these changes in the shallow crustal structure by jointly inverting travel-time data and gravity data with deeper control from coincident magnetotelluric data. Using a cross-gradient approach allows us to search for models with a structural match, thus determining the relationship between P-wave velocity and density models from which we infer the likely hydrothermal regimes at the time of formation at the spreading ridge. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  9. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.

    2015-12-01

    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  10. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  11. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  12. Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data

    NASA Astrophysics Data System (ADS)

    Larkin, Steven Paul

    Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical PmP energy. Possibly related, inconsistencies in published velocity models are rectified by hypothesizing the existence of large, elongate, high-velocity bodies at the base of the crust oriented to and of similar scale as the basins and ranges at the surface. This structure would result in an anisotropic lower crust.

  13. AN EXPERIMENTAL STUDY OF SHOCK WAVES RESULTING FROM THE IMPACT OF HIGH VELOCITY MISSILES ON ANIMAL TISSUES

    PubMed Central

    Harvey, E. Newton; McMillen, J. Howard

    1947-01-01

    The spark shadowgram method of studying shock waves is described. It has been used to investigate the properties of such waves produced by the impact of a high velocity missile on the surface of water. The method can be adapted for study of behavior of shock waves in tissue by placing the tissue on a water surface or immersing it in water. Spark shadowgrams then reveal waves passing from tissue to water or reflected from tissue surfaces. Reflection and transmission of shock waves from muscle, liver, stomach, and intestinal wall are compared with reflection from non-living surfaces such as gelatin gel, steel, plexiglas, cork, and air. Because of its heterogeneous structure, waves transmitted by tissue are dispersed and appear as a series of wavelets. When the accoustical impedance (density x wave velocity) of a medium is less than that in which the wave is moving, reflection will occur with inversion of the wave; i.e., a high pressure wave will become a low pressure wave. This inversion occurs at an air surface and is illustrated by shadowgrams of reflection from stomach wall, from a segment of colon filled with gas, and from air-filled rubber balloons. Bone (human skull and beef ribs) shows good reflection and some transmission of shock waves. When steel is directly hit by a missile, clearly visible elastic waves pass from metal to water, but a similar direct hit on bone does not result in elastic waves strong enough to be detected by a spark shadowgram. PMID:19871617

  14. Topographic Influence on Near-Surface Seismic Velocity in southern California

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.

    2016-12-01

    Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment thickness, bedrock fractures, and weathering patterns.

  15. Imaging the complex Farallon subduction system with USArray derived joint inversion of body waves and surface waves

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Allen, R. M.; Pollitz, F. F.; Hung, S.

    2012-12-01

    The 150 million year history of subduction of the Farallon plate is being well elucidated by the passage of USArray. In this study, we use body wave relative delay times to generate independent P, SV, and SH relative velocity models for the USArray footprint. In addition, we use Rayleigh wave phase velocities derived from teleseismic earthquakes and ambient seismic noise to constrain the lithospheric structure where body waves have limited crossing ray information to form the SV-joint velocity model. The model volume contains a complex series of high velocities mostly along a planar front representing the remnants of the Farallon plate system. This feature has significant lateral and radial extent; beginning off the western coast of the US and terminating east of the model resolution, which goes to the Mississippi river. The bottom of the slab is well imaged through the mantle transition zone to at least 1000km. However, low velocity anomalies within this plane show the slab is far from a continuous sheet. Low velocities break up the slab into several major provinces, relating to different ages of orogens and an episode of flat slab subduction. Additionally, high velocities are often imaged well above the trace of the top of the slab with similar anomaly amplitude and dip as the main slab. While many of these anomalies have been interpreted as mantle drips, the similarity to the slab suggests a possible subduction origin for the features. However, the relatively shallow depths of these features require some mechanism of differentiation to develop neutral buoyancy. The prevalence of these high velocities, such as the Siletzia Curtain, Isabella Anomaly, Nevada Anomaly, and a newly imaged feature under southwest Texas, suggests a differentiation mechanism is fairly common among plates subducting under North America allowing for the observation of widespread shallow high velocity anomalies.

  16. Sn-wave velocity structure of the uppermost mantle beneath the Australian continent

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Kennett, Brian L. N.; Sun, Weijia

    2018-06-01

    We have extracted a data set of more than 5000 Sn traveltimes for source-station pairs within continental Australia, with 3-D source relocation using Pn arrivals to improve data consistency. We conduct tomographic inversion for S-wave-speed structure down to 100 km using the Fast Marching Tomography (FMTOMO) method for the whole Australian continent. We obtain a 3-D model with potential resolution of 3.0° × 3.0°. The new S-wave-speed model provides strong constraints on structure in a zone that was previously poorly characterized. The S velocities in the uppermost mantle are rather fast, with patterns of variation generally corresponding to those for Pn. We find strong heterogeneities of Swave speed in the uppermost mantle across the entire continent of Australia with a close relation to crustal geological features. For instance, the cratons in the western Australia usually have high S velocities (>4.70 km s-1), while the volcanic regions on the eastern margin of Australia are characterized by low S velocities (<4.40 km s-1). Exploiting an equivalent Pn inversion, we also determine the Vp/Vs ratios across the whole continent. We find that most of the uppermost mantle has Vp/Vs between 1.65 and 1.85, but with patches in central Australia and in the east with much higher Vp/Vs ratios. Distinctive local anomalies on the eastern margin may indicate the positions of remnants of mantle plumes.

  17. Crustal structure of the Southwest Subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging

    NASA Astrophysics Data System (ADS)

    Yu, Zhiteng; Li, Jiabiao; Ding, Weiwei; Zhang, Jie; Ruan, Aiguo; Niu, Xiongwei

    2017-06-01

    The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10-12 km). No high velocity bodies are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.

  18. Elastic Properties of 3D-Printed Rock Models: Dry and Saturated Cracks

    NASA Astrophysics Data System (ADS)

    Huang, L.; Stewart, R.; Dyaur, N.

    2014-12-01

    Many regions of subsurface interest are, or will be, fractured. In addition, these zones many be subject to varying saturations and stresses. New 3D printing techniques using different materials and structures, provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We use a 3D printer (Stratasys Dimension SST 768) to print two rock models: a solid octahedral prism and a porous cube with thousands of penny-shaped cracks. The printing material is ABS thermal plastic with a density of 1.04 g/cm3. After printing, we measure the elastic properties of the models, both dry and 100% saturated with water. Both models exhibit VTI (Vertical Transverse Isotropic) symmetry due to laying (about 0.25 mm thick) of the printing process. The prism has a density of 0.96 g/cm3 before saturation and 1.00 g/cm3 after saturation. Its effective porosity is calculated to be 4 %. We use ultrasonic transducers (500 kHz) to measure both P- and shear-wave velocities, and the raw material has a P-wave velocity of 1.89 km/s and a shear-wave velocity of 0.91 km/s. P-wave velocity in the un-saturated prism increases from 1.81 km/s to 1.84 km/s after saturation in the direction parallel to layering and from 1.73 km/s to 1.81 km/s in the direction perpendicular to layering. The fast shear-wave velocity decreases from 0.88 km/s to 0.87 km/s and the slow shear-wave velocity decreases from 0.82 km/s to 0.81 km/s. The cube, printed with penny-shaped cracks, gives a density of 0.79 g/cm3 and a porosity of 24 %. We measure its P-wave velocity as 1.78 km/s and 1.68 km/s in the direction parallel and perpendicular to the layering, respectively. Its fast shear-wave velocity is 0.88 km/s and slow shear-wave velocity is 0.70 km/s. The penny-shaped cracks have significant influence on the elastic properties of the 3D-printed rock models. To better understand and explain the fluid effects on the elastic properties of the models, we apply the extended anisotropic Gassmann's equations to predict the effects of saturation changes. We find that the predictions match observations from the experimental data within 1 % difference.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, M E

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithosphericmore » keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.« less

  20. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    NASA Astrophysics Data System (ADS)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

Top