Sample records for wave-based substructuring approach

  1. The wave-based substructuring approach for the efficient description of interface dynamics in substructuring

    NASA Astrophysics Data System (ADS)

    Donders, S.; Pluymers, B.; Ragnarsson, P.; Hadjit, R.; Desmet, W.

    2010-04-01

    In the vehicle design process, design decisions are more and more based on virtual prototypes. Due to competitive and regulatory pressure, vehicle manufacturers are forced to improve product quality, to reduce time-to-market and to launch an increasing number of design variants on the global market. To speed up the design iteration process, substructuring and component mode synthesis (CMS) methods are commonly used, involving the analysis of substructure models and the synthesis of the substructure analysis results. Substructuring and CMS enable efficient decentralized collaboration across departments and allow to benefit from the availability of parallel computing environments. However, traditional CMS methods become prohibitively inefficient when substructures are coupled along large interfaces, i.e. with a large number of degrees of freedom (DOFs) at the interface between substructures. The reason is that the analysis of substructures involves the calculation of a number of enrichment vectors, one for each interface degree of freedom (DOF). Since large interfaces are common in vehicles (e.g. the continuous line connections to connect the body with the windshield, roof or floor), this interface bottleneck poses a clear limitation in the vehicle noise, vibration and harshness (NVH) design process. Therefore there is a need to describe the interface dynamics more efficiently. This paper presents a wave-based substructuring (WBS) approach, which allows reducing the interface representation between substructures in an assembly by expressing the interface DOFs in terms of a limited set of basis functions ("waves"). As the number of basis functions can be much lower than the number of interface DOFs, this greatly facilitates the substructure analysis procedure and results in faster design predictions. The waves are calculated once from a full nominal assembly analysis, but these nominal waves can be re-used for the assembly of modified components. The WBS approach thus enables efficient structural modification predictions of the global modes, so that efficient vibro-acoustic design modification, optimization and robust design become possible. The results show that wave-based substructuring offers a clear benefit for vehicle design modifications, by improving both the speed of component reduction processes and the efficiency and accuracy of design iteration predictions, as compared to conventional substructuring approaches.

  2. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2017-03-09

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  3. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2016-07-01

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  4. An Impulse Based Substructuring approach for impact analysis and load case simulations

    NASA Astrophysics Data System (ADS)

    Rixen, Daniel J.; van der Valk, Paul L. C.

    2013-12-01

    In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.

  5. Novel SHM method to locate damages in substructures based on VARX models

    NASA Astrophysics Data System (ADS)

    Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.

    2015-07-01

    A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.

  6. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  7. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young

    2018-03-01

    The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.

  8. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  9. Knowledge-based fragment binding prediction.

    PubMed

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.

  10. Knowledge-based Fragment Binding Prediction

    PubMed Central

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  11. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    NASA Astrophysics Data System (ADS)

    Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.

    2015-12-01

    Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.

  12. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  13. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE PAGES

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    2015-09-26

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  14. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  15. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, B.; Jonkman, J.; Damiani, R.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less

  16. Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania mexicana.

    PubMed

    Jamal, Salma; Scaria, Vinod

    2013-11-19

    Leishmaniasis is a neglected tropical disease which affects approx. 12 million individuals worldwide and caused by parasite Leishmania. The current drugs used in the treatment of Leishmaniasis are highly toxic and has seen widespread emergence of drug resistant strains which necessitates the need for the development of new therapeutic options. The high throughput screen data available has made it possible to generate computational predictive models which have the ability to assess the active scaffolds in a chemical library followed by its ADME/toxicity properties in the biological trials. In the present study, we have used publicly available, high-throughput screen datasets of chemical moieties which have been adjudged to target the pyruvate kinase enzyme of L. mexicana (LmPK). The machine learning approach was used to create computational models capable of predicting the biological activity of novel antileishmanial compounds. Further, we evaluated the molecules using the substructure based approach to identify the common substructures contributing to their activity. We generated computational models based on machine learning methods and evaluated the performance of these models based on various statistical figures of merit. Random forest based approach was determined to be the most sensitive, better accuracy as well as ROC. We further added a substructure based approach to analyze the molecules to identify potentially enriched substructures in the active dataset. We believe that the models developed in the present study would lead to reduction in cost and length of clinical studies and hence newer drugs would appear faster in the market providing better healthcare options to the patients.

  17. Full-degrees-of-freedom frequency based substructuring

    NASA Astrophysics Data System (ADS)

    Drozg, Armin; Čepon, Gregor; Boltežar, Miha

    2018-01-01

    Dividing the whole system into multiple subsystems and a separate dynamic analysis is common practice in the field of structural dynamics. The substructuring process improves the computational efficiency and enables an effective realization of the local optimization, modal updating and sensitivity analyses. This paper focuses on frequency-based substructuring methods using experimentally obtained data. An efficient substructuring process has already been demonstrated using numerically obtained frequency-response functions (FRFs). However, the experimental process suffers from several difficulties, among which, many of them are related to the rotational degrees of freedom. Thus, several attempts have been made to measure, expand or combine numerical correction methods in order to obtain a complete response model. The proposed methods have numerous limitations and are not yet generally applicable. Therefore, in this paper an alternative approach based on experimentally obtained data only, is proposed. The force-excited part of the FRF matrix is measured with piezoelectric translational and rotational direct accelerometers. The incomplete moment-excited part of the FRF matrix is expanded, based on the modal model. The proposed procedure is integrated in a Lagrange Multiplier Frequency Based Substructuring method and demonstrated on a simple beam structure, where the connection coordinates are mainly associated with the rotational degrees of freedom.

  18. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    NASA Astrophysics Data System (ADS)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  19. A Feasibility Study of Synthesizing Subsurfaces Modeled with Computational Neural Networks

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Housner, Jerrold M.; Szewczyk, Z. Peter

    1998-01-01

    This paper investigates the feasibility of synthesizing substructures modeled with computational neural networks. Substructures are modeled individually with computational neural networks and the response of the assembled structure is predicted by synthesizing the neural networks. A superposition approach is applied to synthesize models for statically determinate substructures while an interface displacement collocation approach is used to synthesize statically indeterminate substructure models. Beam and plate substructures along with components of a complicated Next Generation Space Telescope (NGST) model are used in this feasibility study. In this paper, the limitations and difficulties of synthesizing substructures modeled with neural networks are also discussed.

  20. Convolved substructure: analytically decorrelating jet substructure observables

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Nachman, Benjamin; Neill, Duff

    2018-05-01

    A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z'. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.

  1. A composite experimental dynamic substructuring method based on partitioned algorithms and localized Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca

    2018-02-01

    Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.

  2. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  3. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  4. Sub-structure formation in starless cores

    NASA Astrophysics Data System (ADS)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  5. Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates

    DOE PAGES

    Old, L.; Wojtak, R.; Pearce, F. R.; ...

    2017-12-20

    With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less

  6. Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Old, L.; Wojtak, R.; Pearce, F. R.

    With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less

  7. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  8. A topological substructural molecular design approach for predicting mutagenesis end-points of alpha, beta-unsaturated carbonyl compounds.

    PubMed

    Pérez-Garrido, Alfonso; Helguera, Aliuska Morales; López, Gabriel Caravaca; Cordeiro, M Natália D S; Escudero, Amalio Garrido

    2010-01-31

    Chemically reactive, alpha, beta-unsaturated carbonyl compounds are common environmental pollutants able to produce a wide range of adverse effects, including, e.g. mutagenicity. This toxic property can often be related to chemical structure, in particular to specific molecular substructures or fragments (alerts), which can then be used in specialized software or expert systems for predictive purposes. In the past, there have been many attempts to predict the mutagenicity of alpha, beta-unsaturated carbonyl compounds through quantitative structure activity relationships (QSAR) but considering only one exclusive endpoint: the Ames test. Besides, even though those studies give a comprehensive understanding of the phenomenon, they do not provide substructural information that could be useful forward improving expert systems based on structural alerts (SAs). This work reports an evaluation of classification models to probe the mutagenic activity of alpha, beta-unsaturated carbonyl compounds over two endpoints--the Ames and mammalian cell gene mutation tests--based on linear discriminant analysis along with the topological Substructure molecular design (TOPS-MODE) approach. The obtained results showed the better ability of the TOPS-MODE approach in flagging structural alerts for the mutagenicity of these compounds compared to the expert system TOXTREE. Thus, the application of the present QSAR models can aid toxicologists in risk assessment and in prioritizing testing, as well as in the improvement of expert systems, such as the TOXTREE software, where SAs are implemented. 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Conditioning of FRF measurements for use with frequency based substructuring

    NASA Astrophysics Data System (ADS)

    Nicgorski, Dana; Avitabile, Peter

    2010-02-01

    Frequency based substructuring approaches have been used for the generation of system models from component data. While numerical models show successful results, there have been many difficulties with actual measurements in many instances. Previous work has identified some of these typical problems using simulated data to incorporate specific measurement difficulties commonly observed along with approaches to overcome some of these difficulties. This paper presents the results using actual measured data for a laboratory structure subjected to both analytical and experimental studies. Various commonly used approaches are shown to illustrate some of the difficulties with measured data. A new approach to better condition the measured functions and purge commonly found data measurement contaminants is utilized to provide dramatically improved results. Several cases are explored to show the difficulties commonly observed as well as the improved conditioning of the measured data to obtain acceptable results.

  10. Modeling of multi-rotor torsional vibrations in rotating machinery using substructuring

    NASA Technical Reports Server (NTRS)

    Soares, Fola R.

    1986-01-01

    The application of FEM modeling techniques to the analysis of torsional vibrations in complex rotating systems is described and demonstrated, summarizing results reported by Soares (1985). A substructuring approach is used for determination of torsional natural frequencies and resonant-mode shapes, steady-state frequency-sweep analysis, identification of dynamically unstable speed ranges, and characterization of transient linear and nonlinear systems. Results for several sample problems are presented in diagrams, graphs, and tables. STORV, a computer code based on this approach, is in use as a preliminary design tool for drive-train torsional analysis in the High Altitude Wind Tunnel at NASA Lewis.

  11. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  12. Power spectrum of dark matter substructure in strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  13. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Lee, J. H.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Leonard, T.; Wilder, F. D.; Ergun, R. E.; Baker, D. N.; Cohen, I. J.; Mauk, B. H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu. V.; Torbert, R. B.; Allen, R. C.; Burch, J. L.; Santolik, O.

    2017-11-01

    Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLAT < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT -31°). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

  14. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  15. Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections

    NASA Astrophysics Data System (ADS)

    Allen, Matthew S.; Mayes, Randall L.; Bergman, Elizabeth J.

    2010-11-01

    Modal substructuring or component mode synthesis (CMS) has been standard practice for many decades in the analytical realm, yet a number of significant difficulties have been encountered when attempting to combine experimentally derived modal models with analytical ones or when predicting the effect of structural modifications using experimental measurements. This work presents a new method that removes the effects of a flexible fixture from an experimentally obtained modal model. It can be viewed as an extension to the approach where rigid masses are removed from a structure. The approach presented here improves the modal basis of the substructure, so that it can be used to more accurately estimate the modal parameters of the built-up system. New types of constraints are also presented, which constrain the modal degrees of freedom of the substructures, avoiding the need to estimate the connection point displacements and rotations. These constraints together with the use of a flexible fixture enable a new approach for joining structures, especially those with statically indeterminate multi-point connections, such as two circular flanges that are joined by many more bolts than required to enforce compatibility if the substructures were rigid. Fixture design is discussed, one objective of which is to achieve a mass-loaded boundary condition that exercises the substructure at the connection point as it is in the built up system. The proposed approach is demonstrated with two examples using experimental measurements from laboratory systems. The first is a simple problem of joining two beams of differing lengths, while the second consists of a three-dimensional structure comprising a circular plate that is bolted at eight locations to a flange on a cylindrical structure. In both cases frequency response functions predicted by the substructuring methods agree well with those of the actual coupled structures over a significant range of frequencies.

  16. The motion of interconnected flexible bodies

    NASA Technical Reports Server (NTRS)

    Hopkins, A. S.

    1975-01-01

    The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.

  17. Innovative FRF measurement technique for frequency based substructuring method

    NASA Astrophysics Data System (ADS)

    Mirza, W. I. I. Wan Iskandar; Rani, M. N. Abdul; Ayub, M. A.; Yunus, M. A.; Omar, R.; Mohd Zin, M. S.

    2018-04-01

    In this paper, frequency based substructuring (FBS) is used in an attempt to predict the dynamic behaviour of an assembled structure. The assembled structure which consists of two beam substructures namely substructure A (finite element model) and substructure B (experimental model) was tested. The FE model of substructure A was constructed by using 3D elements and the Frequency Response Functions (FRFs) were derived viaa FRF synthesis method. A specially customised bolt was used to allow the attachment of sensors and excitation to be made at theinterfaces of substructure B, and the FRFs were measured by using an impact testing method. Both substructures A and B were then coupled by using the FBS method for the prediction of FRFs. The coupled FRF obtained was validated with the measured FRF counterparts. This work revealed that by implementing a specially customised bolt during the measurement of FRF at the interface, led to an improvement in the FBS predicted results.

  18. 3D Representative Volume Element Reconstruction of Fiber Composites via Orientation Tensor and Substructure Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Chen, Wei; Xu, Hongyi

    To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less

  19. Development and Demonstration of a Magnesium-Intensive Vehicle Front-End Substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen D.; Forsmark, Joy H.; Osborne, Richard

    2016-07-01

    This project is the final phase (designated Phase III) of an extensive, nine-year effort with the objectives of developing a knowledge base and enabling technologies for the design, fabrication and performance evaluation of magnesium-intensive automotive front-end substructures intended to partially or completely replace all-steel comparators, providing a weight savings approaching 50% of the baseline. Benefits of extensive vehicle weight reduction in terms of fuel economy increase, extended vehicle range, vehicle performance and commensurate reductions in greenhouse gas emissions are well known. An exemplary vehicle substructure considered by the project is illustrated in Figure 1, along with the exterior vehicle appearance.more » This unibody front-end “substructure” is one physical objective of the ultimate design and engineering aspects established at the outset of the larger collective effort.« less

  20. Experimental issues related to frequency response function measurements for frequency-based substructuring

    NASA Astrophysics Data System (ADS)

    Nicgorski, Dana; Avitabile, Peter

    2010-07-01

    Frequency-based substructuring is a very popular approach for the generation of system models from component measured data. Analytically the approach has been shown to produce accurate results. However, implementation with actual test data can cause difficulties and cause problems with the system response prediction. In order to produce good results, extreme care is needed in the measurement of the drive point and transfer impedances of the structure as well as observe all the conditions for a linear time invariant system. Several studies have been conducted to show the sensitivity of the technique to small variations that often occur during typical testing of structures. These variations have been observed in actual tested configurations and have been substantiated with analytical models to replicate the problems typically encountered. The use of analytically simulated issues helps to clearly see the effects of typical measurement difficulties often observed in test data. This paper presents some of these common problems observed and provides guidance and recommendations for data to be used for this modeling approach.

  1. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    PubMed

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A SUBSTRUCTURE INSIDE SPIRAL ARMS, AND A MIRROR IMAGE ACROSS THE GALACTIC MERIDIAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.p.vallee@gmail.com

    2016-04-10

    Though the galactic density wave theory is over 50 years old and is well known in science, it has been difficult to say whether it fits our own Milky Way disk. Here we show a substructure inside the spiral arms. This substructure is reversing with respect to the Galactic Meridian (longitude zero), and crosscuts of the arms at negative longitudes appear as mirror images of crosscuts of the arms at positive longitudes. Four lanes are delineated: a mid-arm (extended {sup 12}CO gas at the mid-arm, H i atoms), an in-between offset by about 100 pc (synchrotron, radio recombination lines), anmore » in-between offset by about 200 pc (masers, colder dust), and an inner edge (hotter dust seen in mid-IR and near-IR)« less

  3. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  4. Application of the mobility power flow approach to structural response from distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

  5. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  6. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1992-01-01

    A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method.

  7. Ceramic matrix composite behavior -- Computational simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamis, C.C.; Murthy, P.L.N.; Mital, S.K.

    Development of analytical modeling and computational capabilities for the prediction of high temperature ceramic matrix composite behavior has been an ongoing research activity at NASA-Lewis Research Center. These research activities have resulted in the development of micromechanics based methodologies to evaluate different aspects of ceramic matrix composite behavior. The basis of the approach is micromechanics together with a unique fiber substructuring concept. In this new concept the conventional unit cell (the smallest representative volume element of the composite) of micromechanics approach has been modified by substructuring the unit cell into several slices and developing the micromechanics based equations at themore » slice level. Main advantage of this technique is that it can provide a much greater detail in the response of composite behavior as compared to a conventional micromechanics based analysis and still maintains a very high computational efficiency. This methodology has recently been extended to model plain weave ceramic composites. The objective of the present paper is to describe the important features of the modeling and simulation and illustrate with select examples of laminated as well as woven composites.« less

  8. An optimal structure for a 34-meter millimeter-wave center-fed BWG antenna: The Cross-Box concept

    NASA Technical Reports Server (NTRS)

    Chuang, K. L.

    1988-01-01

    An approach to the design of the planned NASA/JPL 34 m elevation-over-azimuth (Az-El) antenna structure at the Venus site (DSS-13) is presented. The antenna structural configuration accommodates a large (2.44 m) beam waveguide (BWG) tube centrally routed through the reflector-alidade structure, an elevation wheel design, and an optimal structural geometry. The design encompasses a cross-box elevation wheel-reflector base substructure that preserves homology while satisfying many constraints, such as structure weight, surface tolerance, stresses, natural frequency, and various functional constraints. The functional requirements are set to ensure that microwave performance at millimeter wavelengths is adequate. The cross-box configuration was modeled, optimized, and found to satisfy all DSN HEF baseline antenna specifications. In addition, the structure design was conceptualized and analyzed with an emphasis on preserving the structure envelope and keeping modifications relative to the HEF antennas to a minimum, thus enabling the transferability of the BWG technology for future retrofitting. Good performance results were obtained.

  9. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  10. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    PubMed

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  11. On the sound insulation of acoustic metasurface using a sub-structuring approach

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  12. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  13. Ballast and Subgrade requirements study : railroad track substructure - design and performance evaluation practices

    DOT National Transportation Integrated Search

    1983-06-30

    Earth materials--i.e., soil and rock--form the substructure (ballast, subballast, and subgrade) of all railroad track. In this report, the most suitable technology and design criteria as related to design of the substructure are identified based on a...

  14. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org

  15. Bayesian comparison of protein structures using partial Procrustes distance.

    PubMed

    Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi

    2017-09-26

    An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

  16. Over 20 years of reaction access systems from MDL: a novel reaction substructure search algorithm.

    PubMed

    Chen, Lingran; Nourse, James G; Christie, Bradley D; Leland, Burton A; Grier, David L

    2002-01-01

    From REACCS, to MDL ISIS/Host Reaction Gateway, and most recently to MDL Relational Chemistry Server, a new product based on Oracle data cartridge technology, MDL's reaction database management and retrieval systems have undergone great changes. The evolution of the system architecture is briefly discussed. The evolution of MDL reaction substructure search (RSS) algorithms is detailed. This article mainly describes a novel RSS algorithm. This algorithm is based on a depth-first search approach and is able to fully and prospectively use reaction specific information, such as reacting center and atom-atom mapping (AAM) information. The new algorithm has been used in the recently released MDL Relational Chemistry Server and allows the user to precisely find reaction instances in databases while minimizing unrelated hits. Finally, the existing and new RSS algorithms are compared with several examples.

  17. Extracting sets of chemical substructures and protein domains governing drug-target interactions.

    PubMed

    Yamanishi, Yoshihiro; Pauwels, Edouard; Saigo, Hiroto; Stoven, Véronique

    2011-05-23

    The identification of rules governing molecular recognition between drug chemical substructures and protein functional sites is a challenging issue at many stages of the drug development process. In this paper we develop a novel method to extract sets of drug chemical substructures and protein domains that govern drug-target interactions on a genome-wide scale. This is made possible using sparse canonical correspondence analysis (SCCA) for analyzing drug substructure profiles and protein domain profiles simultaneously. The method does not depend on the availability of protein 3D structures. From a data set of known drug-target interactions including enzymes, ion channels, G protein-coupled receptors, and nuclear receptors, we extract a set of chemical substructures shared by drugs able to bind to a set of protein domains. These two sets of extracted chemical substructures and protein domains form components that can be further exploited in a drug discovery process. This approach successfully clusters protein domains that may be evolutionary unrelated but that bind a common set of chemical substructures. As shown in several examples, it can also be very helpful for predicting new protein-ligand interactions and addressing the problem of ligand specificity. The proposed method constitutes a contribution to the recent field of chemogenomics that aims to connect the chemical space with the biological space.

  18. Discovering interesting molecular substructures for molecular classification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2010-06-01

    Given a set of molecular structure data preclassified into a number of classes, the molecular classification problem is concerned with the discovering of interesting structural patterns in the data so that "unseen" molecules not originally in the dataset can be accurately classified. To tackle the problem, interesting molecular substructures have to be discovered and this is done typically by first representing molecular structures in molecular graphs, and then, using graph-mining algorithms to discover frequently occurring subgraphs in them. These subgraphs are then used to characterize different classes for molecular classification. While such an approach can be very effective, it should be noted that a substructure that occurs frequently in one class may also does occur in another. The discovering of frequent subgraphs for molecular classification may, therefore, not always be the most effective. In this paper, we propose a novel technique called mining interesting substructures in molecular data for classification (MISMOC) that can discover interesting frequent subgraphs not just for the characterization of a molecular class but also for the distinguishing of it from the others. Using a test statistic, MISMOC screens each frequent subgraph to determine if they are interesting. For those that are interesting, their degrees of interestingness are determined using an information-theoretic measure. When classifying an unseen molecule, its structure is then matched against the interesting subgraphs in each class and a total interestingness measure for the unseen molecule to be classified into a particular class is determined, which is based on the interestingness of each matched subgraphs. The performance of MISMOC is evaluated using both artificial and real datasets, and the results show that it can be an effective approach for molecular classification.

  19. Sachem: a chemical cartridge for high-performance substructure search.

    PubMed

    Kratochvíl, Miroslav; Vondrášek, Jiří; Galgonek, Jakub

    2018-05-23

    Structure search is one of the valuable capabilities of small-molecule databases. Fingerprint-based screening methods are usually employed to enhance the search performance by reducing the number of calls to the verification procedure. In substructure search, fingerprints are designed to capture important structural aspects of the molecule to aid the decision about whether the molecule contains a given substructure. Currently available cartridges typically provide acceptable search performance for processing user queries, but do not scale satisfactorily with dataset size. We present Sachem, a new open-source chemical cartridge that implements two substructure search methods: The first is a performance-oriented reimplementation of substructure indexing based on the OrChem fingerprint, and the second is a novel method that employs newly designed fingerprints stored in inverted indices. We assessed the performance of both methods on small, medium, and large datasets containing 1, 10, and 94 million compounds, respectively. Comparison of Sachem with other freely available cartridges revealed improvements in overall performance, scaling potential and screen-out efficiency. The Sachem cartridge allows efficient substructure searches in databases of all sizes. The sublinear performance scaling of the second method and the ability to efficiently query large amounts of pre-extracted information may together open the door to new applications for substructure searches.

  20. Jet Substructure at the Large Hadron Collider : Experimental Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, Lily; Campanelli, Mario; Delitzsch, Chris

    Jet substructure has emerged to play a central role at the Large Hadron Collider (LHC), where it has provided numerous innovative new ways to search for new physics and to probe the Standard Model, particularly in extreme regions of phase space. In this article we focus on a review of the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments. ALICE and LHCb have been probing fragmentation functions since the start of the LHC and have also recently started studying other jet substructure techniques. It is likely that in the near future all LHC collaborationsmore » will make significant use of jet substructure and grooming techniques. Much of the work in this field in recent years has been galvanized by the Boost Workshop Series, which continues to inspire fruitful collaborations between experimentalists and theorists. We hope that this review will prove a useful introduction and reference to experimental aspects of jet substructure at the LHC. A companion overview of recent progress in theory and machine learning approaches is given in 1709.04464, the complete review will be submitted to Reviews of Modern Physics.« less

  1. Graph-based similarity concepts in virtual screening.

    PubMed

    Hutter, Michael C

    2011-03-01

    Applying similarity for finding new promising compounds is a key issue in drug design. Conversely, quantifying similarity between molecules has remained a difficult task despite the numerous approaches. Here, some general aspects along with recent developments regarding similarity criteria are collected. For the purpose of virtual screening, the compounds have to be encoded into a computer-readable format that permits a comparison, according to given similarity criteria, comprising the use of the 3D structure, fingerprints, graph-based and alignment-based approaches. Whereas finding the most common substructures is the most obvious method, more recent approaches take into account chemical modifications that appear throughout existing drugs, from various therapeutic categories and targets.

  2. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    PubMed

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  3. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement

    PubMed Central

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-01-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131

  4. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  5. An alternative view of protein fold space.

    PubMed

    Shindyalov, I N; Bourne, P E

    2000-02-15

    Comparing and subsequently classifying protein structures information has received significant attention concurrent with the increase in the number of experimentally derived 3-dimensional structures. Classification schemes have focused on biological function found within protein domains and on structure classification based on topology. Here an alternative view is presented that groups substructures. Substructures are long (50-150 residue) highly repetitive near-contiguous pieces of polypeptide chain that occur frequently in a set of proteins from the PDB defined as structurally non-redundant over the complete polypeptide chain. The substructure classification is based on a previously reported Combinatorial Extension (CE) algorithm that provides a significantly different set of structure alignments than those previously described, having, for example, only a 40% overlap with FSSP. Qualitatively the algorithm provides longer contiguous aligned segments at the price of a slightly higher root-mean-square deviation (rmsd). Clustering these alignments gives a discreet and highly repetitive set of substructures not detectable by sequence similarity alone. In some cases different substructures represent all or different parts of well known folds indicative of the Russian doll effect--the continuity of protein fold space. In other cases they fall into different structure and functional classifications. It is too early to determine whether these newly classified substructures represent new insights into the evolution of a structural framework important to many proteins. What is apparent from on-going work is that these substructures have the potential to be useful probes in finding remote sequence homology and in structure prediction studies. The characteristics of the complete all-by-all comparison of the polypeptide chains present in the PDB and details of the filtering procedure by pair-wise structure alignment that led to the emergent substructure gallery are discussed. Substructure classification, alignments, and tools to analyze them are available at http://cl.sdsc.edu/ce.html.

  6. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    DOE PAGES

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2015-12-21

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

  7. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

  8. Modelling brain emergent behaviours through coevolution of neural agents.

    PubMed

    Maniadakis, Michail; Trahanias, Panos

    2006-06-01

    Recently, many research efforts focus on modelling partial brain areas with the long-term goal to support cognitive abilities of artificial organisms. Existing models usually suffer from heterogeneity, which constitutes their integration very difficult. The present work introduces a computational framework to address brain modelling tasks, emphasizing on the integrative performance of substructures. Moreover, implemented models are embedded in a robotic platform to support its behavioural capabilities. We follow an agent-based approach in the design of substructures to support the autonomy of partial brain structures. Agents are formulated to allow the emergence of a desired behaviour after a certain amount of interaction with the environment. An appropriate collaborative coevolutionary algorithm, able to emphasize both the speciality of brain areas and their cooperative performance, is employed to support design specification of agent structures. The effectiveness of the proposed approach is illustrated through the implementation of computational models for motor cortex and hippocampus, which are successfully tested on a simulated mobile robot.

  9. Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less

  10. Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction

    DOE PAGES

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2017-03-29

    Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less

  11. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  12. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  13. Tetraquark bound states in a Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.

    2012-12-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  14. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick; Wendt, Fabian; Musial, Walter

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less

  15. Efficient RNA structure comparison algorithms.

    PubMed

    Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason

    2017-12-01

    Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.

  16. Substructure Discovery of Macro-Operators

    DTIC Science & Technology

    1988-05-01

    Aspects of Scientific Discovery," in Machine Learning: An Artifcial Intelligence Approach, Vol. II. R. S. Michalski, J. G. Carbonell and T. M. Mitchell (ed... intelligent robot using this system could learn how to perform new tasks by watching tasks being performed by someone else. even if the robot does not possess...Substructure Discovery of Macro-Operators* Bradley L. Whitehall Artificial Intelligence Research Group Coordinated Science Laboratory ’University of Illinois at

  17. Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes.

    PubMed

    Huiskonen, Juha T

    2018-02-08

    Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the three-dimensional structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions. ©2018 The Author(s).

  18. Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system

    NASA Astrophysics Data System (ADS)

    Bouslema, Marwa; Frikha, Ahmed; Abdennadhar, Moez; Fakhfakh, Tahar; Nasri, Rachid; Haddar, Mohamed

    2017-12-01

    The present paper is aimed at the application of a substructure methodology, based on the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a stage reducer connected by a rigid coupling to a planetary gear system. The computation of the vibration response was achieved using the FRF-based substructuring method. First of all, the two subsystems were analyzed separately and their FRF were obtained. Then the coupled model was analyzed indirectly using the substructuring technique. A comparison between the full system response and the coupled model response using the FRF substructuring was investigated to validate the coupling method. Furthermore, a parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and the effects of modal truncation and condensation methods on the FRF of subsystems were analyzed.

  19. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    NASA Astrophysics Data System (ADS)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  20. Providing structural modules with self-integrity monitoring software user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.

  1. Substructuring of multibody systems for numerical transfer path analysis in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Acri, Antonio; Offner, Guenter; Nijman, Eugene; Rejlek, Jan

    2016-10-01

    Noise legislations and the increasing customer demands determine the Noise Vibration and Harshness (NVH) development of modern commercial vehicles. In order to meet the stringent legislative requirements for the vehicle noise emission, exact knowledge of all vehicle noise sources and their acoustic behavior is required. Transfer path analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. Transmission paths from different sources to target points of interest and their contributions can be analyzed by applying TPA. This technique is applied on test measurements, which can only be available on prototypes, at the end of the designing process. In order to overcome the limits of TPA, a numerical transfer path analysis methodology based on the substructuring of a multibody system is proposed in this paper. Being based on numerical simulation, this methodology can be performed starting from the first steps of the designing process. The main target of the proposed methodology is to get information of noise sources contributions of a dynamic system considering the possibility to have multiple forces contemporary acting on the system. The contributions of these forces are investigated with particular focus on distribute or moving forces. In this paper, the mathematical basics of the proposed methodology and its advantages in comparison with TPA will be discussed. Then, a dynamic system is investigated with a combination of two methods. Being based on the dynamic substructuring (DS) of the investigated model, the methodology proposed requires the evaluation of the contact forces at interfaces, which are computed with a flexible multi-body dynamic (FMBD) simulation. Then, the structure-borne noise paths are computed with the wave based method (WBM). As an example application a 4-cylinder engine is investigated and the proposed methodology is applied on the engine block. The aim is to get accurate and clear relationships between excitations and responses of the simulated dynamic system, analyzing the noise and vibrational sources inside a car engine, showing the main advantages of a numerical methodology.

  2. Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound Holography

    NASA Astrophysics Data System (ADS)

    Shekhawat, Gajendra S.; Dravid, Vinayak P.

    2005-10-01

    A nondestructive imaging method, scanning near-field ultrasound holography (SNFUH), has been developed that provides depth information as well as spatial resolution at the 10- to 100-nanometer scale. In SNFUH, the phase and amplitude of the scattered specimen ultrasound wave, reflected in perturbation to the surface acoustic standing wave, are mapped with a scanning probe microscopy platform to provide nanoscale-resolution images of the internal substructure of diverse materials. We have used SNFUH to image buried nanostructures, to perform subsurface metrology in microelectronic structures, and to image malaria parasites in red blood cells.

  3. The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data.

    PubMed

    He, Zongxiao; Zhang, Di; Renton, Alan E; Li, Biao; Zhao, Linhai; Wang, Gao T; Goate, Alison M; Mayeux, Richard; Leal, Suzanne M

    2017-02-02

    Whole-genome and exome sequence data can be cost-effectively generated for the detection of rare-variant (RV) associations in families. Causal variants that aggregate in families usually have larger effect sizes than those found in sporadic cases, so family-based designs can be a more powerful approach than population-based designs. Moreover, some family-based designs are robust to confounding due to population admixture or substructure. We developed a RV extension of the generalized disequilibrium test (GDT) to analyze sequence data obtained from nuclear and extended families. The GDT utilizes genotype differences of all discordant relative pairs to assess associations within a family, and the RV extension combines the single-variant GDT statistic over a genomic region of interest. The RV-GDT has increased power by efficiently incorporating information beyond first-degree relatives and allows for the inclusion of covariates. Using simulated genetic data, we demonstrated that the RV-GDT method has well-controlled type I error rates, even when applied to admixed populations and populations with substructure. It is more powerful than existing family-based RV association methods, particularly for the analysis of extended pedigrees and pedigrees with missing data. We analyzed whole-genome sequence data from families affected by Alzheimer disease to illustrate the application of the RV-GDT. Given the capability of the RV-GDT to adequately control for population admixture or substructure and analyze pedigrees with missing genotype data and its superior power over other family-based methods, it is an effective tool for elucidating the involvement of RVs in the etiology of complex traits. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Fast Geometric Consensus Approach for Protein Model Quality Assessment

    PubMed Central

    Adamczak, Rafal; Pillardy, Jaroslaw; Vallat, Brinda K.

    2011-01-01

    Abstract Model quality assessment (MQA) is an integral part of protein structure prediction methods that typically generate multiple candidate models. The challenge lies in ranking and selecting the best models using a variety of physical, knowledge-based, and geometric consensus (GC)-based scoring functions. In particular, 3D-Jury and related GC methods assume that well-predicted (sub-)structures are more likely to occur frequently in a population of candidate models, compared to incorrectly folded fragments. While this approach is very successful in the context of diversified sets of models, identifying similar substructures is computationally expensive since all pairs of models need to be superimposed using MaxSub or related heuristics for structure-to-structure alignment. Here, we consider a fast alternative, in which structural similarity is assessed using 1D profiles, e.g., consisting of relative solvent accessibilities and secondary structures of equivalent amino acid residues in the respective models. We show that the new approach, dubbed 1D-Jury, allows to implicitly compare and rank N models in O(N) time, as opposed to quadratic complexity of 3D-Jury and related clustering-based methods. In addition, 1D-Jury avoids computationally expensive 3D superposition of pairs of models. At the same time, structural similarity scores based on 1D profiles are shown to correlate strongly with those obtained using MaxSub. In terms of the ability to select the best models as top candidates 1D-Jury performs on par with other GC methods. Other potential applications of the new approach, including fast clustering of large numbers of intermediate structures generated by folding simulations, are discussed as well. PMID:21244273

  5. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  6. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  7. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user subroutine DISP and URDFIL of ABAQUS, respectively, while constitutive formulations of the FEM model are coded and implemented in UMAT. The results of the simulations are compared to experiments. This model verified the validity of Winter's two-phase model and Taylor's uniform stress assumption, explored substructure evolution and "intrinsic" behavior in substructures and successfully simulated the process of PSB band formation and propagation.

  8. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  9. Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco

    2018-06-01

    We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

  10. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.

  11. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, Walter; Fregolent, Annalisa

    2014-04-01

    The paper deals with the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the remaining part of the structural system (residual subsystem). This topic is also known as decoupling problem, subsystem subtraction or inverse dynamic substructuring. Whenever it is necessary to combine numerical models (e.g. FEM) and test models (e.g. FRFs), one speaks of experimental dynamic substructuring. Substructure decoupling techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. On the contrary, direct decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem. Starting from a reduced version of the 3-field formulation (dynamic equilibrium using FRFs, compatibility and equilibrium of interface forces), a direct hybrid assembly is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not be the same: this generates the so-called non-collocated approach. The technique is applied using experimental data from an assembled system made by a plate and a rigid mass.

  12. The Next Generation Virgo Cluster Survey (NGVS). XXXII. A Search for Globular Cluster Substructures in the Virgo Galaxy Cluster Core

    NASA Astrophysics Data System (ADS)

    Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Longobardi, Alessia; Peng, Eric W.; Duc, Pierre-Alain; Alamo-Martínez, Karla; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Durrell, Patrick; Eigenthaler, Paul; Ferrarese, Laura; Guhathakurta, Puragra; Gwyn, S. D. J.; Hudelot, Patrick; Liu, Chengze; Mei, Simona; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Rubén; Toloba, Elisa; Zhang, Hongxin

    2018-03-01

    Substructure in globular cluster (GC) populations around large galaxies is expected in galaxy formation scenarios that involve accretion or merger events, and it has been searched for using direct associations between GCs and structure in the diffuse galaxy light, or with GC kinematics. Here, we present a search for candidate substructures in the GC population around the Virgo cD galaxy M87 through the analysis of the spatial distribution of the GC colors. The study is based on a sample of ∼1800 bright GCs with high-quality u, g, r, i, z, K s photometry, selected to ensure a low contamination by foreground stars or background galaxies. The spectral energy distributions of the GCs are associated with formal estimates of age and metallicity, which are representative of its position in a 4D color space relative to standard single stellar population models. Dividing the sample into broad bins based on the relative formal ages, we observe inhomogeneities that reveal signatures of GC substructures. The most significant of these is a spatial overdensity of GCs with relatively young age labels, of diameter ∼0.°1 (∼30 kpc), located to the south of M87. The significance of this detection is larger than about 5σ after accounting for estimates of random and systematic errors. Surprisingly, no large Virgo galaxy is present in this area that could potentially host these GCs. But candidate substructures in the M87 halo with equally elusive hosts have been described based on kinematic studies in the past. The number of GC spectra available around M87 is currently insufficient to clarify the nature of the new candidate substructure.

  13. Consecutive thiophene-annulation approach to π-extended thienoacene-based organic semiconductors with [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure.

    PubMed

    Mori, Takamichi; Nishimura, Takeshi; Yamamoto, Tatsuya; Doi, Iori; Miyazaki, Eigo; Osaka, Itaru; Takimiya, Kazuo

    2013-09-18

    We describe a new synthetic route to the [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure featuring two consecutive thiophene-annulation reactions from o-ethynyl-thioanisole substrates and arylsulfenyl chloride reagents that can be easily derived from arylthiols. The method is particularly suitable for the synthesis of unsymmetrical derivatives, e.g., [1]benzothieno[3,2-b]naphtho[2,3-b]thiophene, [1]benzothieno[3,2-b]anthra[2,3-b]thiophene, and naphtho[3,2-b]thieno[3,2-b]anthra[2,3-b]thiophene, a selenium-containing derivative, [1]benzothieno[3,2-b][1]benzoselenophene. It also allows us to access largely π-extended derivatives with two BTBT substructures, e.g., bis[1]benzothieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and bis[1]benzothieno[2,3-d:2',3'-d']naphtho[2,3-b:6,7-b']dithiophene (BBTNDT). It should be emphasized that these new BTBT derivatives are otherwise difficult to be synthesized. In addition, since various substrates and reagents, o-ethynyl-thioanisoles and arylthiols, respectively, can be combined, the method can be regarded as a versatile tool for the development of thienoacene-based organic semiconductors in this class. Among the newly synthesized materials, highly π-extended BBTNDT afforded very high mobility (>5 cm(2) V(-1) s(-1)) in its vapor-deposited organic field-effect transistors (OFETs), which is among the highest for unsubstituted acene- or thienoacenes-based organic semiconductors. In fact, the structural analyses of BBTNDT both in the single crystal and thin-film state indicated that an interactive two-dimensional molecular array is realized in the solid state, which rationalize the higher carrier mobility in the BBTNDT-based OFETs.

  14. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  15. Modal coupling procedures adapted to NASTRAN analysis of the 1/8-scale shuttle structural dynamics model. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Zalesak, J.

    1975-01-01

    A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.

  16. Matching organic libraries with protein-substructures

    NASA Astrophysics Data System (ADS)

    Preissner, R.; Goede, A.; Rother, K.; Osterkamp, F.; Koert, U.; Froemmel, C.

    2001-09-01

    We present a general approach which allows automatic identification of sub-structures in proteins that resemble given three-dimensional templates. This paper documents its success with non-peptide templates such as β-turn mimetics. We considered well-tested turn-mimetics such as the bicyclic turned dipeptide (BTD), spiro lactam (Spiro) and the 2,5-disubstituded tetrahydrofuran (THF), a new furan-derivative which was recently developed and characterized. The detected geometric similarity between the templates and the protein patches corresponds to r.m.s.-values of 0.3 Å for more than 80% of the constituting atoms, which is typical for active site comparisons of homologous proteins. This fast automatic procedure might be of biomedical value for finding special mimicking leads for particular protein sub-structures as well as for template-assembled synthetic protein (TASP) design.

  17. Interpreting linear support vector machine models with heat map molecule coloring

    PubMed Central

    2011-01-01

    Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031

  18. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  19. Design sensitivity analysis of boundary element substructures

    NASA Technical Reports Server (NTRS)

    Kane, James H.; Saigal, Sunil; Gallagher, Richard H.

    1989-01-01

    The ability to reduce or condense a three-dimensional model exactly, and then iterate on this reduced size model representing the parts of the design that are allowed to change in an optimization loop is discussed. The discussion presents the results obtained from an ongoing research effort to exploit the concept of substructuring within the structural shape optimization context using a Boundary Element Analysis (BEA) formulation. The first part contains a formulation for the exact condensation of portions of the overall boundary element model designated as substructures. The use of reduced boundary element models in shape optimization requires that structural sensitivity analysis can be performed. A reduced sensitivity analysis formulation is then presented that allows for the calculation of structural response sensitivities of both the substructured (reduced) and unsubstructured parts of the model. It is shown that this approach produces significant computational economy in the design sensitivity analysis and reanalysis process by facilitating the block triangular factorization and forward reduction and backward substitution of smaller matrices. The implementatior of this formulation is discussed and timings and accuracies of representative test cases presented.

  20. Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications.

    PubMed

    Barigye, S J; Marrero-Ponce, Y; Martínez López, Y; Martínez Santiago, O; Torrens, F; García Domenech, R; Galvez, J

    2013-01-01

    Versatile event-based approaches for the definition of novel information theory-based indices (IFIs) are presented. An event in this context is the criterion followed in the "discovery" of molecular substructures, which in turn serve as basis for the construction of the generalized incidence and relations frequency matrices, Q and F, respectively. From the resultant F, Shannon's, mutual, conditional and joint entropy-based IFIs are computed. In previous reports, an event named connected subgraphs was presented. The present study is an extension of this notion, in which we introduce other events, namely: terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs, MACCs, E-state and substructure fingerprints and, finally, Ghose and Crippen atom-types for hydrophobicity and refractivity. Moreover, we define magnitude-based IFIs, introducing the use of the magnitude criterion in the definition of mutual, conditional and joint entropy-based IFIs. We also discuss the use of information-theoretic parameters as a measure of the dissimilarity of codified structural information of molecules. Finally, a comparison of the statistics for QSPR models obtained with the proposed IFIs and DRAGON's molecular descriptors for two physicochemical properties log P and log K of 34 derivatives of 2-furylethylenes demonstrates similar to better predictive ability than the latter.

  1. Population structure and covariate analysis based on pairwise microsatellite allele matching frequencies.

    PubMed

    Givens, Geof H; Ozaksoy, Isin

    2007-01-01

    We describe a general model for pairwise microsatellite allele matching probabilities. The model can be used for analysis of population substructure, and is particularly focused on relating genetic correlation to measurable covariates. The approach is intended for cases when the existence of subpopulations is uncertain and a priori assignment of samples to hypothesized subpopulations is difficult. Such a situation arises, for example, with western Arctic bowhead whales, where genetic samples are available only from a possibly mixed migratory assemblage. We estimate genetic structure associated with spatial, temporal, or other variables that may confound the detection of population structure. In the bowhead case, the model permits detection of genetic patterns associated with a temporally pulsed multi-population assemblage in the annual migration. Hypothesis tests for population substructure and for covariate effects can be carried out using permutation methods. Simulated and real examples illustrate the effectiveness and reliability of the approach and enable comparisons with other familiar approaches. Analysis of the bowhead data finds no evidence for two temporally pulsed subpopulations using the best available data, although a significant pattern found by other researchers using preliminary data is also confirmed here. Code in the R language is available from www.stat.colostate.edu/~geof/gammmp.html.

  2. Evidence for Highly Inhomogeneous mm-Wave Sources During the Impulsive Flare of May 9, 1991

    NASA Technical Reports Server (NTRS)

    Hermann, R.; Magun, A.; Kaufmann, P.; Correia, E.; Costa, J. E. R.; Machado, M. E.; Fishman, G.

    1997-01-01

    In this paper multiwavelength observations of an impulsive flare of May 9, 1991 are presented. This event was observed with the 48 GHz multibeam focal array used at the Itapetinga radio telescope, the microwave patrol telescopes at Bem and the BATSE high time resolution hard X-ray spectrometer on board CGRO. While spatially unresolved low sensitivity observations show two major impulsive peaks, the mm-wave observations with the ability of spatially high resolved tracking of the emission centroids suggest a primarily bipolar source configuration. For the first time two mm-wave sources with a spacing below the HPBW could be separated with the multibeam technique. The general features of the observations are explained as emission of partially trapped electrons. Furthermore we present evidence for highly inhomogeneous substructures within one of the two mm-wave sources for which the positional scatter of the emission center, within 2s, is less than 2".

  3. A New Publicly Available Chemical Query Language, CSRML, to support Chemotype Representations for Application to Data-Mining and Modeling

    EPA Science Inventory

    A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transfor...

  4. Improving substructure identification accuracy of shear structures using virtual control system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  5. Evolution of the degree of substructures in simulated galaxy clusters

    NASA Astrophysics Data System (ADS)

    De Boni, Cristiano; Böhringer, Hans; Chon, Gayoung; Dolag, Klaus

    2018-05-01

    We study the evolution of substructure in the mass distribution with mass, redshift and radius in a sample of simulated galaxy clusters. The sample, containing 1226 objects, spans the mass range M200 = 1014 - 1.74 × 1015 M⊙ h-1 in six redshift bins from z = 0 to z = 1.179. We consider three different diagnostics: 1) subhalos identified with SUBFIND; 2) overdense regions localized by dividing the cluster into octants; 3) offset between the potential minimum and the center of mass. The octant analysis is a new method that we introduce in this work. We find that none of the diagnostics indicate a correlation between the mass of the cluster and the fraction of substructures. On the other hand, all the diagnostics suggest an evolution of substructures with redshift. For SUBFIND halos, the mass fraction is constant with redshift at Rvir, but shows a mild evolution at R200 and R500. Also, the fraction of clusters with at least a subhalo more massive than one thirtieth of the total mass is less than 20%. Our new method based on the octants returns a mass fraction in substructures which has a strong evolution with redshift at all radii. The offsets also evolve strongly with redshift. We also find a strong correlation for individual clusters between the offset and the fraction of substructures identified with the octant analysis. Our work puts strong constraints on the amount of substructures we expect to find in galaxy clusters and on their evolution with redshift.

  6. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity

    PubMed Central

    Gimbel, Sarah I.; Brewer, James B.; Maril, Anat

    2018-01-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. PMID:28073651

  7. Dynamical structure of extreme ultraviolet macrospicules

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, Shadia Rifai

    1994-01-01

    We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.

  8. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  9. Role of the oxyallyl substructure in the near infrared (NIR) absorption in symmetrical dye derivatives: A computational study.

    PubMed

    Prabhakar, Ch; Chaitanya, G Krishna; Sitha, Sanyasi; Bhanuprakash, K; Rao, V Jayathirtha

    2005-03-24

    It is well-known from experimental studies that the oxyallyl-substructure-based squarylium and croconium dyes absorb in the NIR region of the spectrum. Recently, another dye has been reported (J. Am. Chem. Soc. 2003, 125, 348) which contains the same basic chromophore, but the absorption is red-shifted by at least 300 nm compared to the former dyes and is observed near 1100 nm. To analyze the reasons behind the large red shift, in this work we have carried out symmetry-adapted cluster-configuration interaction (SAC-CI) studies on some of these NIR dyes which contain the oxyallyl substructure. From this study, contrary to the earlier reports, it is seen that the donor groups do not seem to play a major role in the red-shift of the absorption. On the other hand, on the basis of the results of the high-level calculations carried out here and using qualitative molecular orbital theory, it is observed that the orbital interactions play a key role in the red shift. Finally, design principles for the oxyallyl-substructure-based NIR dyes are suggested.

  10. Rapid identification of Keap1-Nrf2 small-molecule inhibitors through structure-based virtual screening and hit-based substructure search.

    PubMed

    Zhuang, Chunlin; Narayanapillai, Sreekanth; Zhang, Wannian; Sham, Yuk Yin; Xing, Chengguo

    2014-02-13

    In this study, rapid structure-based virtual screening and hit-based substructure search were utilized to identify small molecules that disrupt the interaction of Keap1-Nrf2. Special emphasis was placed toward maximizing the exploration of chemical diversity of the initial hits while economically establishing informative structure-activity relationship (SAR) of novel scaffolds. Our most potent noncovalent inhibitor exhibits three times improved cellular activation in Nrf2 activation than the most active noncovalent Keap1 inhibitor known to date.

  11. Substructure program for analysis of helicopter vibrations

    NASA Technical Reports Server (NTRS)

    Sopher, R.

    1981-01-01

    A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.

  12. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  13. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: A case study using aromatic amine mutagenicity.

    PubMed

    Ahlberg, Ernst; Amberg, Alexander; Beilke, Lisa D; Bower, David; Cross, Kevin P; Custer, Laura; Ford, Kevin A; Van Gompel, Jacky; Harvey, James; Honma, Masamitsu; Jolly, Robert; Joossens, Elisabeth; Kemper, Raymond A; Kenyon, Michelle; Kruhlak, Naomi; Kuhnke, Lara; Leavitt, Penny; Naven, Russell; Neilan, Claire; Quigley, Donald P; Shuey, Dana; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; White, Angela; Wichard, Joerg; Zwickl, Craig; Myatt, Glenn J

    2016-06-01

    Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  15. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  16. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  17. Discovery of New Retrograde Substructures: The Shards of ω Centauri?

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Sanders, J. L.; Koposov, S. E.

    2018-06-01

    We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62 133 halo stars with full phase space coordinates and extends out to heliocentric distances of ˜10 kpc. As actions are conserved under slow changes of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster ω Centauri. Using a simple model of the accretion of the progenitor of the ω Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of 5× 108M⊙ for the progenitor, so as to bring ω Centauri to its current location in action - energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by ω Centauri stars.

  18. A substructure coupling procedure applicable to general linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Howsman, T. G.; Craig, R. R., Jr.

    1984-01-01

    A substructure synthesis procedure applicable to structural systems containing general nonconservative terms is presented. In their final form, the nonself-adjoint substructure equations of motion are cast in state vector form through the use of a variational principle. A reduced-order mode for each substructure is implemented by representing the substructure as a combination of a small number of Ritz vectors. For the method presented, the substructure Ritz vectors are identified as a truncated set of substructure eigenmodes, which are typically complex, along with a set of generalized real attachment modes. The formation of the generalized attachment modes does not require any knowledge of the substructure flexible modes; hence, only the eigenmodes used explicitly as Ritz vectors need to be extracted from the substructure eigenproblem. An example problem is presented to illustrate the method.

  19. On the relationship between residue structural environment and sequence conservation in proteins.

    PubMed

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  20. Morality as the Substructure of Social Justice: Religion in Education as a Case in Point

    ERIC Educational Resources Information Center

    Potgieter, Ferdinand J.

    2011-01-01

    Moral issues and principles do not only emerge in cases of conflict among, for instance, religious communities or political parties; indeed they form the moral substructure of notions of social justice. During periods of conflict each opponent claims justice for his/her side and bases the claim on certain principles. In this article, reference is…

  1. Haloes gone MAD: The Halo-Finder Comparison Project

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Knollmann, Steffen R.; Muldrew, Stuart I.; Pearce, Frazer R.; Aragon-Calvo, Miguel Angel; Ascasibar, Yago; Behroozi, Peter S.; Ceverino, Daniel; Colombi, Stephane; Diemand, Juerg; Dolag, Klaus; Falck, Bridget L.; Fasel, Patricia; Gardner, Jeff; Gottlöber, Stefan; Hsu, Chung-Hsing; Iannuzzi, Francesca; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron; Neyrinck, Mark C.; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Read, Justin I.; Ricker, Paul M.; Roy, Fabrice; Springel, Volker; Stadel, Joachim; Stinson, Greg; Sutter, P. M.; Turchaninov, Victor; Tweed, Dylan; Yepes, Gustavo; Zemp, Marcel

    2011-08-01

    We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge. Airport code for Madrid, Spain

  2. Optical Substructure and BCG Offsets of Sunyaev-Zel'dovich and X-ray Selected Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lopes, Paulo AA; Trevisan, M.; Laganá, T. F.; Durret, F.; Ribeiro, A. LB; Rembold, S. B.

    2018-05-01

    We used optical imaging and spectroscopic data to derive substructure estimates for local Universe (z < 0.11) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zel'dovich (SZ) effect by the Planck satellite and the second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement (˜60%) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG-X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of ˜0.01 ×R500 to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at Δm12 = 1.0. The central galaxy paradigm (CGP) may not be valid for ˜20% of relaxed massive clusters. This fraction increases to ˜60% for disturbed systems.

  3. Yellowstone bison genetics: let us move forward

    USGS Publications Warehouse

    Halbert, Natalie D.; Gogan, Peter J.P.; Hedrick, Philip W.; Wahl, Jacquelyn M.; Derr, James N.

    2012-01-01

    White and Wallen (2012) disagree with the conclusions and suggestions made in our recent assessment of population structure among Yellowstone National Park (YNP) bison based on 46 autosomal microsatellite loci in 661 animals (Halbert et al. 2012). First, they suggest that "the existing genetic substructure (that we observed) was artificially created." Specifically, they suggest that the substructure observed between the northern and central populations is the result of human activities, both historical and recent. In fact, the genetic composition of all known existing bison herds was created by, or has been influenced by, anthropogenic activities, although this obviously does not reduce the value of these herds for genetic conservation (Dratch and Gogan 2010). As perspective, many, if not most, species of conservation concern have been influenced by human actions and as a result currently exist as isolated populations. However, it is quite difficult to distinguish between genetic differences caused by human actions and important ancestral variation contained in separate populations without data from early time periods. Therefore, to not lose genetic variation that may be significant or indicative of important genetic variation, the generally acceptable management approach is to attempt to retain this variation based on the observed population genetic subdivision (Hedrick et al. 1986).

  4. Development and application of a time-history analysis for rotorcraft dynamics based on a component approach

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Hallock, D. W.

    1985-01-01

    A time history analysis for rotorcraft dynamics based on dynamical substructures, and nonstructural mathematical and aerodynamic components is described. The analysis is applied to predict helicopter ground resonance and response to rotor damage. Other applications illustrate the stability and steady vibratory response of stopped and gimballed rotors, representative of new technology. Desirable attributes expected from modern codes are realized, although the analysis does not employ a complete set of techniques identified for advanced software. The analysis is able to handle a comprehensive set of steady state and stability problems with a small library of components.

  5. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity.

    PubMed

    Gimbel, Sarah I; Brewer, James B; Maril, Anat

    2017-03-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  7. Comparing photonic band structure calculation methods for diamond and pyrochlore crystals.

    PubMed

    Vermolen, E C M; Thijssen, J H J; Moroz, A; Megens, M; van Blaaderen, A

    2009-04-27

    The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.

  8. Spherical shock-wave propagation in three-dimensional granular packings.

    PubMed

    Xue, Kun; Bai, Chun-Hua

    2011-02-01

    We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.

  9. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.

  10. Dalitz plot analysis of the D+→π-π+π+ decay

    NASA Astrophysics Data System (ADS)

    Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Horwitz, N.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.

    2007-07-01

    Using 281pb-1 of data recorded by the CLEO-c detector in e+e- collisions at the ψ(3770), corresponding to 0.78×106 D+D- pairs, we investigate the substructure of the decay D+→π-π+π+ using the Dalitz plot technique. We find that our data are consistent with the following intermediate states: ρ(770)π+, f2(1270)π+, f0(1370)π+, f0(1500)π+, f0(980)π+, and σπ+. We confirm large S wave contributions at low ππ mass. We set upper limits on contributions of other possible intermediate states. We consider three models of the ππ S wave and find that all of them adequately describe our data.

  11. Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility.

    PubMed

    Leistra, Abigail N; Amador, Paul; Buvanendiran, Aishwarya; Moon-Walker, Alex; Contreras, Lydia M

    2017-12-15

    Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.

  12. Validation of a FAST model of the Statoil-Hywind Demo floating wind turbine

    DOE PAGES

    Driscoll, Frederick; Jonkman, Jason; Robertson, Amy; ...

    2016-10-13

    To assess the accuracy of the National Renewable Energy Laboratory's (NREL's) FAST simulation tool for modeling the coupled response of floating offshore wind turbines under realistic open-ocean conditions, NREL developed a FAST model of the Statoil Hywind Demo floating offshore wind turbine, and validated simulation results against field measurements. Field data were provided by Statoil, which conducted a comprehensive test measurement campaign of its demonstration system, a 2.3-MW Siemens turbine mounted on a spar substructure deployed about 10 km off the island of Karmoy in Norway. A top-down approach was used to develop the FAST model, starting with modeling themore » blades and working down to the mooring system. Design data provided by Siemens and Statoil were used to specify the structural, aerodynamic, and dynamic properties. Measured wind speeds and wave spectra were used to develop the wind and wave conditions used in the model. The overall system performance and behavior were validated for eight sets of field measurements that span a wide range of operating conditions. The simulated controller response accurately reproduced the measured blade pitch and power. In conclusion, the structural and blade loads and spectra of platform motion agree well with the measured data.« less

  13. Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.

    2016-01-01

    The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.

  14. The importance of calorimetry for highly-boosted jet substructure

    DOE PAGES

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas; ...

    2018-01-09

    Here, jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstratemore » physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  15. The importance of calorimetry for highly-boosted jet substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas

    2017-09-25

    Jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstrate physicsmore » contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  16. The importance of calorimetry for highly-boosted jet substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas

    Here, jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstratemore » physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  17. NASTRAN multipartitioning and one-shot substructuring

    NASA Technical Reports Server (NTRS)

    Levy, A.

    1973-01-01

    For intermediate size problems where all the data is accessible, the present method of substructuring in three separate phases (for static analysis) is unneccessarily cumbersome. The versatility of NASTRAN's DMAP and internal logic lends itself to finding a practical alternative to these procedures whereby self-contained special-purpose ALTER packages can be written to be run in one pass. Two examples are presented here under the titles of multipartitioning and one-shot substructuring. The flow of multipartitioning resembles that of the present three-phase substructuring. The basic effect is to partition the structure into substructures and operate on each substructure separately. This can be used to reduce the bandwidth of a given problem as well as to store information which will allow a change to be made in one of the substructures in a later run. This latter procedure is carried out in a second program titled one-shot substructuring.

  18. Studies in tilt rotor VTOL aircraft aeroelasticity, volume 2. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1973-01-01

    Two methods for natural mode vibration analysis are discussed. The first consists of a direct approach based on a finite element representation of the complete structure as an entity. The mass and stiffness matrices for the complete structure are assembled by properly combining the mass and stiffness matrices of the individual elements into which the structure has been divided. The second approach is that of component mode synthesis. This method is based on the concept of synthesizing the natural modes of the complete structure from modes of conveniently difined substructures, or components, into which the structure has been partitioned. In this way the expedient of reducing the system degrees of freedom, and thus the size of the eigenvalue problem, can be introduced by partial modal synthesis.

  19. A Problem-Based Approach to Elastic Wave Propagation: The Role of Constraints

    ERIC Educational Resources Information Center

    Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni

    2009-01-01

    A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen…

  20. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure

    DOE PAGES

    Dolen, James; Harris, Philip; Marzani, Simone; ...

    2016-05-26

    Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.

  1. Hippocampal sclerosis: volumetric evaluation of the substructures of the hippocampus by magnetic resonance imaging.

    PubMed

    Granados Sánchez, A M; Orejuela Zapata, J F

    2018-05-25

    The pathological classification of hippocampal sclerosis is based on the loss of neurons in the substructures of the hippocampus. This study aimed to evaluate these substructures in patients with hippocampal sclerosis by magnetic resonance imaging and to compare the usefulness of this morphological analysis compared to that of volumetric analysis of the entire hippocampus. We included 25 controls and 25 patients with hippocampal sclerosis whose diagnosis was extracted from the institutional epilepsy board. We used FreeSurfer to process the studies and obtain the volumetric data. We evaluated overall volume and volume by substructure: fimbria, subiculum, presubiculum, hippocampal sulcus, CA1, CA2-CA3, CA4, and dentate gyrus (DG). We considered p < 0.05 statistically significant. We observed statistically significant decreases in the volume of the hippocampus ipsilateral to the epileptogenic focus in 19 (76.0%) of the 25 cases. With the exception of the hippocampal sulcus, we observed a decrease in all ipsilateral hippocampal substructures in patients with right hippocampal sclerosis (CA1, p=0.0223; CA2-CA3, p=0.0066; CA4-GD, p=0.0066; fimbria, p=0.0046; presubiculum, p=0.0087; subiculum, p=0.0017) and in those with left hippocampal sclerosis (CA1, p<0.0001; CA2-CA3, p<0. 0001; CA4-GD, p<0. 0001; fimbria, p=0.0183; presubiculum, p<0. 0001; subiculum, p<0. 0001). In four patients with left hippocampal sclerosis, none of the substructures had statistically significant alterations, although a trend toward atrophy was observed, mainly in CA2-CA3 and CA4-GD. The findings suggest that it can be useful to assess the substructures of the hippocampus to improve the performance of diagnostic imaging in patients with hippocampal sclerosis. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Synthesis and Control of Flexible Systems with Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Lim, Kyong B.

    2009-01-01

    An efficient and computationally robust method for synthesis of component dynamics is developed. The method defines the interface forces/moments as feasible vectors in transformed coordinates to ensure that connectivity requirements of the combined structure are met. The synthesized system is then defined in a transformed set of feasible coordinates. The simplicity of form is exploited to effectively deal with modeling parametric and non-parametric uncertainties at the substructure level. Uncertainty models of reasonable size and complexity are synthesized for the combined structure from those in the substructure models. In particular, we address frequency and damping uncertainties at the component level. The approach first considers the robustness of synthesized flexible systems. It is then extended to deal with non-synthesized dynamic models with component-level uncertainties by projecting uncertainties to the system level. A numerical example is given to demonstrate the feasibility of the proposed approach.

  3. Frontier Fields: Subaru Weak-Lensing Analysis of the Merging Galaxy Cluster A2744

    NASA Astrophysics Data System (ADS)

    Medezinski, Elinor; Umetsu, Keiichi; Okabe, Nobuhiro; Nonino, Mario; Molnar, Sandor; Massey, Richard; Dupke, Renato; Merten, Julian

    2016-01-01

    We present a weak-lensing analysis of the merging Frontier Fields (FF) cluster Abell 2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneously modeling the two-dimensional reduced shear field using a combination of a Navarro-Frenk-White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as {M}200{{c}}=(2.06+/- 0.42)× {10}15 {M}⊙ . The most massive clump is the southern component with {M}200{{c}}=(7.7+/- 3.4)× {10}14 {M}⊙ , followed by the western substructure ({M}200{{c}}=(4.5+/- 2.0)× {10}14 {M}⊙ ) and two smaller substructures to the northeast ({M}200{{c}}=(2.8+/- 1.6)× {10}14 {M}⊙ ) and northwest ({M}200{{c}}=(1.9+/- 1.2)× {10}14 {M}⊙ ). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a “slingshot” effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ({87}-28+34 arcsec, 90% CL) and the galaxies ({72}-53+34 arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.

  4. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merello, Manuel; Evans II, Neal J.; Shirley, Yancy L.

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3more » K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.« less

  5. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne R.

    2009-01-01

    This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.

  6. Shading Vita In-ceram YZ substructures: influence on value and chroma, part II.

    PubMed

    Devigus, A; Lombardi, G

    2004-10-01

    In this study, the influence of differently shaded substructures made of Y-TZP from different manufacturers (without, with 0.5 mm or 1.0 mm ceramic veneer with Vita VM9 Base Dentin) on the lightness, the saturation, and the color shade (= value, chroma, and hue) was measured and assessed with a spectral photometer (Easy Shade, Vita) on a clinical case in the mouth and on models of different color. Shading substructures made of Y-TZP facilitated adaptation to the basic shade and reduced the layer thickness of the veneer ceramic required to achieve the desired color. This should be done in the future as a matter of routine. In this way, tooth substance can be better conserved when preparing the teeth, and the esthetic result is not diminished. The material used for the production of the working models (plaster or plastic) should be tooth colored and in terms of lightness--analogous to the shading of the substructure--in order to facilitate clinical color measurement and quality control in the laboratory.

  7. Development and applications of two computational procedures for determining the vibration modes of structural systems. [aircraft structures - aerospaceplanes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1975-01-01

    Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.

  8. Substructural controller synthesis

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1989-01-01

    A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.

  9. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  10. Exposing the QCD Splitting Function with CMS Open Data.

    PubMed

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  11. Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds

    NASA Astrophysics Data System (ADS)

    Joshi, Sarang C.; Miller, Michael I.; Christensen, Gary E.; Banerjee, Ayan; Coogan, Tom; Grenander, Ulf

    1995-08-01

    In this paper we present a coarse-to-fine approach for the transformation of digital anatomical textbooks from the ideal to the individual that unifies the work on landmark deformations and volume based transformation. The Hierarchical approach is linked to the Biological problem itself, coming out of the various kinds of information which is provided by the anatomists. This information is in the form of points, lines, surfaces and sub-volumes corresponding to 0, 1, 2, and 3 dimensional sub-manifolds respectively. The algorithm is driven by these sub- manifolds. We follow the approach that the highest dimensional transformation is a result from the solution of a sequence of lower dimensional problems driven by successive refinements or partitions of the images into various Biologically meaningful sub-structures.

  12. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin

    PubMed Central

    Jaksic, V.; O'Shea, R.; Cahill, P.; Murphy, J.; Mandic, D. P.; Pakrashi, V.

    2015-01-01

    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson–Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. PMID:25583866

  13. Multi-scale seismic tomography of the Merapi-Merbabu volcanic complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Mujid Abdullah, Nur; Valette, Bernard; Potin, Bertrand; Ramdhan, Mohamad

    2017-04-01

    Merapi-Merbabu volcanic complex is the most active volcano located on Java Island, Indonesia, where the Indian plate subducts beneath Eurasian plate. We present a preliminary study of a multi-scale seismic tomography of the substructures of the volcanic complex. The main objective of our study is to image the feeding paths of the volcanic complex at an intermediate scale by using the data from the dense network (about 5 km spacing) constituted by 53 stations of the French-Indonesian DOMERAPI experiment complemented by the data of the German-Indonesian MERAMEX project (134 stations) and of the Indonesia Tsunami Early Warning System (InaTEWS) located in the vicinity of the complex. The inversion was performed using the INSIGHT algorithm, which follows a non-linear least squares approach based on a stochastic description of data and model. In total, 1883 events and 41846 phases (26647 P and 15199 S) have been processed, and a two-scale approach was adopted. The model obtained at regional scale is consistent with the previous studies. We selected the most reliable regional model as a prior model for the local tomography performed with a variant of the INSIGHT code. The algorithm of this code is based on the fact that inverting differences of data when transporting the errors in probability is equivalent to inverting initial data while introducing specific correlation terms in the data covariance matrix. The local tomography provides images of the substructure of the volcanic complex with a sufficiently good resolution to allow identification of a probable magma chamber at about 20 km.

  14. Evaluation of a timber column bent substructure after more than 60 years in-service

    Treesearch

    James P. Wacker; Xiping Wang; Douglas R. Rammer; William J. Nelson

    2011-01-01

    This paper describes both the field evaluation and laboratory testing of two timber-column-bent bridge substructures. These substructures served as intermediate pier supports for the East Deer Park Drive Bridge located in Gaithersburg, Maryland. A field evaluation of the bridge substructure was conducted in September 2008. Nondestructive testing was performed with a...

  15. A Search for Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, Helen

    2017-06-01

    Density substructure is expected in evolved starless cores: a single peak to form a protostar, or multiple peaks from fragmentation. Searches for this substructure have had mixed success. In an ALMA survey of Ophiuchus, we find two starless cores with signs of substructure, consistent with simulation predictions. A similar survey in Chameleon (Dunham et al. 2016) had no detections, despite expecting at least two. Our results suggest that Chamleon may lack a more evolved starless cores. Future ALMA observations will better trace the influence of environment on core substructure formation.

  16. Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012

    DOE PAGES

    Altheimer, A.; Arce, A.; Asquith, L.; ...

    2014-03-21

    This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments’ ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. The final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted topmore » quarks.« less

  17. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  18. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGES

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  19. A two-dimensional Riemann solver with self-similar sub-structure - Alternative formulation based on least squares projection

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard

    2016-01-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.

  20. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing

    DOE PAGES

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less

  1. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.

    PubMed

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.

  2. Distant Galactic Halo Substructures Observed by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir

    2013-01-01

    Characterization of Galactic halo substructures is important as their kinematic and chemical properties help constrain the properties of the Galactic dark matter halo, the formation history of the Milky Way, and the galaxy formation process in general. The best practical choice for finding distant halo substructures are pulsating RR Lyrae stars, due to their intrinsic brightness (M_V = 0.6 mag) and distinct light curves. I will present kinematic and chemical properties of two distant halo substructures that were traced using RR Lyrae stars observed by the Palomar Transient Factory. One of these substructures, located at 90 kpc from the Sun in the Cancer constellation, consists of two groups of RR Lyrae stars moving away from the Galaxy at ~80 and ~20 km/s, respectively. The second substructure is located at ~65 kpc from the Sun in the Hercules constellation. The kinematics of RR Lyrae stars tracing this substructure suggest a presence of 2 or 3 stellar streams extending in the similar direction on the sky. Due to their spatial extent, both of these substructures are clearly disrupted and would be very difficult to detect using tradiitonal techniques such as the color-magnitude diagram filtering.

  3. Theoretical and software considerations for general dynamic analysis using multilevel substructured models

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1985-01-01

    The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.

  4. A structural design decomposition method utilizing substructuring

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1994-01-01

    A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.

  5. Analysis and Application of European Genetic Substructure Using 300 K SNP Information

    PubMed Central

    Tian, Chao; Plenge, Robert M; Ransom, Michael; Lee, Annette; Villoslada, Pablo; Selmi, Carlo; Klareskog, Lars; Pulver, Ann E; Qi, Lihong; Gregersen, Peter K; Seldin, Michael F

    2008-01-01

    European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans. PMID:18208329

  6. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.

    PubMed

    Kurunmäki, Hemmo; Kantola, Rosita; Hatamleh, Muhanad M; Watts, David C; Vallittu, Pekka K

    2008-11-01

    This clinical report describes the use of a glass fiber-reinforced composite (FRC) substructure to reinforce the silicone elastomer of a large facial prosthesis. The FRC substructure was shaped into a framework and embedded into the silicone elastomer to form a reinforced facial prosthesis. The prosthesis is designed to overcome the disadvantages associated with traditionally fabricated prostheses; namely, delamination of the silicone of the acrylic base, poor marginal adaptation over time, and poor simulation of facial expressions.

  7. On the use of attachment modes in substructure coupling for dynamic analysis

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chang, C.-J.

    1977-01-01

    Substructure coupling or component-mode synthesis may be employed in the solution of dynamics problems for complex structures. Although numerous substructure-coupling methods have been devised, little attention has been devoted to methods employing attachment modes. In the present paper the various mode sets (normal modes, constraint modes, attachment modes) are defined. A generalized substructure-coupling procedure is described. Those substructure-coupling methods which employ attachment modes are described in detail. One of these methods is shown to lead to results (e.g., system natural frequencies) comparable to or better than those obtained by the Hurty (1965) method.

  8. Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach

    PubMed Central

    Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo

    2017-01-01

    In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291

  9. Acta Aeronautica et Astronautica Sinica,

    DTIC Science & Technology

    1983-07-28

    substructural analysis in modal synthesis - two improved substructural assembling techniques 49 9-node quadrilateral isoparametric element 64 Application of laser...Time from Service Data, J. Aircraft, Vol. 15, No. 11, 1978. 48 MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL SYNTHESIS -- TWO IMPROVED SUBSTRUCTURAL...34 Modal Synthesis in Structural Dynamic Analysis ," Naching Institute of Aeronautics and Astronautics, 1979. 62a 8. Chang Te-wen, "Free-Interface Modal

  10. Identifying a new particle with jet substructures

    DOE PAGES

    Han, Chengcheng; Kim, Doojin; Kim, Minho; ...

    2017-01-09

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observablesmore » formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Damiani, Rick R

    This poster summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between two modeling approaches (fully coupled and sequentially coupled) through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  12. FHWA LTPP Guidelines for Measuring Bridge Approach Transitions Using Inertial Profilers

    DOT National Transportation Integrated Search

    2016-12-01

    The bump at the end of the bridge has long been studied for highways and railways, yet experts from across the transportation industry continue to identify it as one of the most prevalent substructure factors affecting bridge performance. Often, ride...

  13. Influence of fractal substructures of the percolating cluster on transferring processes in macroscopically disordered environments

    NASA Astrophysics Data System (ADS)

    Kolesnikov, B. P.

    2017-11-01

    The presented work belongs to the issue of searching for the effective kinetic properties of macroscopically disordered environments (MDE). These properties characterize MDE in general on the sizes which significantly exceed the sizes of macro inhomogeneity. The structure of MDE is considered as a complex of interpenetrating percolating and finite clusters consolidated from homonymous components, topological characteristics of which influence on the properties of the whole environment. The influence of percolating clusters’ fractal substructures (backbone, skeleton of backbone, red bonds) on the transfer processes during crossover (a structure transition from fractal to homogeneous condition) is investigated based on the offered mathematical approach for finding the effective conductivity of MDEs and on the percolating cluster model. The nature of the change of the critical conductivity index t during crossover from the characteristic value for the area close to percolation threshold to the value corresponded to homogeneous condition is demonstrated. The offered model describes the transfer processes in MDE with the finite conductivity relation of «conductive» and «low conductive» phases above and below percolation threshold and in smearing area (an analogue of a blur area of the second-order phase transfer).

  14. Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers

    PubMed Central

    Tabei, Yasuo; Pauwels, Edouard; Stoven, Véronique; Takemoto, Kazuhiro; Yamanishi, Yoshihiro

    2012-01-01

    Motivation: Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug–target interactions is crucial in the drug design process. Results: We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug–target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L1 regularized classifiers over the tensor product space of possible drug–target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug–target interactions and the extracted features are biologically meaningful. The extracted substructure–domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families. Availability: Softwares are available at the supplemental website. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ . PMID:22962471

  15. [Effects of three types of veneering porcelain on bending strength of KAVO(TM) Y-TZP/porcelain bilayered structure].

    PubMed

    Ma, Ting-ting; Yi, Yuan-fu; Shao, Long-quan; Tian, Jie-mo; Hou, Kang-lin; Zhang, Wei-wei; Wen, Ning; Deng, Bin

    2010-10-01

    To investigate the effect of three types of veneering porcelain on the bending strength of KAVO Y-TZP/porcelain layered structure. KAVO zirconia ceramics were used as the substructure. To form Y-TZP/porcelain bilayered structure, a leucite-based veneering porcelain was fired on the zirconia substructures by slip-casting technique with dentin washbake, and two nano-fluorapatite-based veneering porcelains were fired on the zirconia substructures by either slip-casting or pressed-on technique with or without liner coverage. The bending strength was tested according to ISO 6872 standard, and the veneered surfaces of the fracture samples were analyzed by scanning electron microscopy (SEM). For covering KAVO zirconia core material, the conventional veneering slurry-porcelain combined with liner or wash firing had significant higher bending strength than pressed-on porcelain. SEM showed that the main failure type at the interface was adhesive failure. Thin layer sintering using washbake program or liner on KAVO zirconia surface increases the surface wettability, and this procedure may be indispensable when veneering on the surface of dental zirconia.

  16. Classification of mathematics deficiency using shape and scale analysis of 3D brain structures

    NASA Astrophysics Data System (ADS)

    Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj

    2011-03-01

    We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.

  17. Multi-level damage identification with response reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Dong; Xu, You-Lin

    2017-10-01

    Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.

  18. Dynamic bridge substructure evaluation and monitoring

    DOT National Transportation Integrated Search

    2005-09-01

    This research project was funded to investigate the possibility that, by measuring and modeling the dynamic response characteristics of a bridge substructure, it might be possible to determine the condition and safety of the substructure and identify...

  19. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  20. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  1. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  2. Residues with similar hexagon neighborhoods share similar side-chain conformations.

    PubMed

    Li, Shuai Cheng; Bu, Dongbo; Li, Ming

    2012-01-01

    We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.

  3. Spatial Substructure in the M87 Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Feng, Yuting; Zhang, Yunhao; Guhathakurta, Puragra; Peng, Eric; Lim, Sungsoon

    2018-01-01

    Based on the observation of Next Generation Virgo Cluster Survey (NGVS) project, we obtained the u,g,r,i,z and Ks band photometric information of all the objects in the 2 degree × 2 degree area (Pilot Region) around M87, the major subcluster of Virgo. By adapting an Extreme Deconvolution method, which classifies objects into Globular Clusters (GCs), galaxies and foreground stars with their color and morphology data, we got a purer-than-ever GC distribution map with a depth to gmag=25 in Pilot Region. After masking galaxy GCs, smoothing with a 10arcmin Gaussian kernel and performing a flat field correction, we show the GC density map of M87, and got a good sersic fitting of GC radial distribution with a sersic index~2.2 in the central ellipse part (45arcmin semi major axis area of M87). We quantitatively compared our GC sample with a substructure-free mock data set, which was generated from the smoothed density map as well as the sersic fitting, by calculating the 2 point correlation function (TPCF) value in different parts of the map. After separately performing such comparison with mocks based on different galaxy masking radii which vary from 4 times g band effective radius to 10, we found signals of remarkable spatial enhancement in certain directions in the central ellipse of M87, as well as halo substructures shown as lumpiness and holes in the outer region. We present the estimated scales of these substructures from the TPCF results, and, managed to locate them with a statistical analysis of the pixelized GC map. Apart from all results listed above, we discuss the constant, extra-galactic substructure signal at a scale of ~3kpc, which does not diminish with masking sizes, as the evidence of merging and accretion history of M87.

  4. Substructures In Protostellar Discs: Spirals, Gaps (And Warps)

    NASA Astrophysics Data System (ADS)

    Lodato, Giuseppe

    2016-07-01

    The advent of high resolution imaging of protostellar discs, both in the sub-mm (thanks to ALMA) and in the near infrared, has radically changed our understanding of the evolution of such discs and of the planet formation process occuring within them. While in the past disc were modeled as simplified, axi-symmetric structures, often characterized by simple radial power-law for density and temperature, we now need more advanced modeling, able to describe the substructures observed. Such modeling needs to take into account both the gas component, that dominates the dynamics and the line emission, and the dust, which is responsible for the continuum mm band emission. Here, I review several aspects of such modeling. I will discuss the theory and some hydrodynamical simulations describing: (a) spiral density waves, for example induced by gravitational instabilities in young and massive discs; (b) gaps induced by the presence of a forming planet in the disc, with particular emphasis on the spectacular case of HL Tau, that we have recently successfully modeled; (c) warps, which are expected to develop in circumbinary discs, or in discs where a planet has been put on a very inclined orbit.

  5. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.

    PubMed

    Podlewska, Sabina; Czarnecki, Wojciech M; Kafel, Rafał; Bojarski, Andrzej J

    2017-02-27

    The growing computational abilities of various tools that are applied in the broadly understood field of computer-aided drug design have led to the extreme popularity of virtual screening in the search for new biologically active compounds. Most often, the source of such molecules consists of commercially available compound databases, but they can also be searched for within the libraries of structures generated in silico from existing ligands. Various computational combinatorial approaches are based solely on the chemical structure of compounds, using different types of substitutions for new molecules formation. In this study, the starting point for combinatorial library generation was the fingerprint referring to the optimal substructural composition in terms of the activity toward a considered target, which was obtained using a machine learning-based optimization procedure. The systematic enumeration of all possible connections between preferred substructures resulted in the formation of target-focused libraries of new potential ligands. The compounds were initially assessed by machine learning methods using a hashed fingerprint to represent molecules; the distribution of their physicochemical properties was also investigated, as well as their synthetic accessibility. The examination of various fingerprints and machine learning algorithms indicated that the Klekota-Roth fingerprint and support vector machine were an optimal combination for such experiments. This study was performed for 8 protein targets, and the obtained compound sets and their characterization are publically available at http://skandal.if-pan.krakow.pl/comb_lib/ .

  6. Investigation of inversion polymorphisms in the human genome using principal components analysis.

    PubMed

    Ma, Jianzhong; Amos, Christopher I

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct "populations" of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.

  7. Damage Evaluation for Ti Alloys in Creep based on Incompatibility Field Measurement via EBSD Technique and Micro-Pillar Experiments Toward Identification of Roles of Dislocation Substructures on Fatigue Crack Initiation

    DTIC Science & Technology

    2011-02-07

    Reproduction of a slip band with a PSB -ladder-like internal structure is attempted assuming initial conditions with and without corresponding strain...into heat at the PSB region, the present study extensively examined possible transition mechanisms toward the growth of grooves thereabout and that...arrangements even with the same dislocation density. (2)A slip band-like region having a substructure mimicking PSB ladder is demonstrated to be

  8. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin.

    PubMed

    Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V

    2015-02-28

    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    NASA Astrophysics Data System (ADS)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  10. Developing Wave Encyclopaedia based on Scientific Approach

    NASA Astrophysics Data System (ADS)

    Nurafifah, A.; Budi, A. S.; Siahaan, B. Z.

    2017-09-01

    Students have many difficulties in understanding to wave propagation. Such difficulties lead to misconceptions also in understanding sound, light, and electromagnetic wave. Meanwhile, students only use the text book as the learning resources. Whereas students need a more varied and interesting learning resources. This study aims to develop a wave encyclopaedia based on scientific approach as the learning resources that tested the feasibility and superiority. The method used is research by design. The steps are (1) analysing learner characteristic, (2) state objective, (3) select media and materials, (4) utilize materials, (5) requires learner participation, (6) evaluation and revision. The wave encyclopaedia is developed by applying the 5 components of a scientific approach that is, observing, questioning, experimenting, associating, and communicating. In this encyclopaedia also includes fun science activities and exciting recommended websites. The encyclopaedia has been validated by material experts, media experts, and learning experts. And then field trials are conducted to assess an impact on use. Overall the development of encyclopaedia based on scientific approach can enhance learning outcomes of students in high school.

  11. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  12. Substructural Regularization With Data-Sensitive Granularity for Sequence Transfer Learning.

    PubMed

    Sun, Shichang; Liu, Hongbo; Meng, Jiana; Chen, C L Philip; Yang, Yu

    2018-06-01

    Sequence transfer learning is of interest in both academia and industry with the emergence of numerous new text domains from Twitter and other social media tools. In this paper, we put forward the data-sensitive granularity for transfer learning, and then, a novel substructural regularization transfer learning model (STLM) is proposed to preserve target domain features at substructural granularity in the light of the condition of labeled data set size. Our model is underpinned by hidden Markov model and regularization theory, where the substructural representation can be integrated as a penalty after measuring the dissimilarity of substructures between target domain and STLM with relative entropy. STLM can achieve the competing goals of preserving the target domain substructure and utilizing the observations from both the target and source domains simultaneously. The estimation of STLM is very efficient since an analytical solution can be derived as a necessary and sufficient condition. The relative usability of substructures to act as regularization parameters and the time complexity of STLM are also analyzed and discussed. Comprehensive experiments of part-of-speech tagging with both Brown and Twitter corpora fully justify that our model can make improvements on all the combinations of source and target domains.

  13. Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset

    PubMed Central

    Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle

    2016-01-01

    Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto–Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. PMID:27797945

  14. Substructures in the temporal distribution of atmospheric Cerenkov light in EAS

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Navarra, G.; Saavedra, O.; Boehm, E.

    1980-06-01

    Particle density and arrival time distribution of atmospheric Cerenkov light (ACL) was measured simultaneously in individual air showers at Pic du Midi. Substructures were observed in the arrival time distribution of the ACL. The arrival time is related to a position in the shower plane which indicates the existence of density variations, i.e., substructures in the lateral distribution of particles. The frequency of substructures is a few percent, and core distances of up to tens of meters were observed.

  15. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less

  16. Multi-objective shape optimization of plate structure under stress criteria based on sub-structured mixed FEM and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis

    2015-07-01

    This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.

  17. Common substructure in otoacoustic emission spectra of land vertebrates

    NASA Astrophysics Data System (ADS)

    Manley, Geoffrey A.; Köppl, Christine; Bergevin, Christopher

    2015-12-01

    In humans, a similar spectral periodicity is found in all otoacoustic emission types and in threshold fine structure. This may reflect travelling wave phase and reflectance from "structural roughness" in the organ of Corti, or entrainment and suppressive interactions between emissions. To further understand these phenomena, we have examined spontaneous otoacoustic emission (SOAE) spectra in 9 lizard species and the barn owl and find a comparable periodicity. Importantly, the frequency spacing between SOAE peaks was independent of the physical spacing and of the frequency space constants in hearing organs. In 9 lizard species, median spectral gaps lay between 219 and 461 Hz, with no correlation to papillar length (0.3 to 2.1 mm). Similarly in much longer organs: In humans (35 mm), SOAE spectral gaps vary up to 220 Hz at 4 kHz; in the barn owl (11 mm), the median SOAE peak spacing was 395Hz. In the barn owl, a very large space constant between 5 and 10 kHz (5 mm/octave) contrasts with stable SOAE spacing between 1 and 11 kHz. Similar SOAE spectral gaps across all species suggests they represent a basic frequency grating revealing local phase-dependent interactions between active hair cells, a feature not determined by macro-structural anatomy. Emission spectral spacing is independent of cochlear length, of the frequency space constant, of the existence of travelling waves or of a tectorial membrane. Our data suggest that there are greater similarities between frequency selectivity reflected at the level of the hair cells' spontaneous mechanical output (OAEs) than there are at the level of the auditory nerve, where macro-structural anatomy links hair-cell activity differentially to the neural output. Apparently, all hair-cell arrays show a similar frequency substructure not directly replicated in neural tuning.

  18. Analytic boosted boson discrimination

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-05-20

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less

  20. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE).

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y; Yoshioka, Y; Shiraishi, H

    2011-01-01

    The validity of chemical reaction mechanistic domains defined by skin sensitisation in the Quantitative Structure-Activity Relationship (QSAR) ecotoxicity system, KAshinhou Tools for Ecotoxicity (KATE), March 2009 version, has been assessed and an external validation of the current KATE system carried out. In the case of the fish end-point, the group of chemicals with substructures reactive to skin sensitisation always exhibited higher root mean square errors (RMSEs) than chemicals without reactive substructures under identical C- or log P-judgements in KATE. However, in the case of the Daphnia end-point this was not so, and the group of chemicals with reactive substructures did not always have higher RMSEs: the Schiff base mechanism did not function as a high error detector. In addition to the RMSE findings, the presence of outliers suggested that the KATE classification rules needs to be reconsidered, particularly for the amine group. Examination of the dependency of the organism on the toxic action of chemicals in fish and Daphnia revealed that some of the reactive substructures could be applied to the improvement of the KATE system. It was concluded that the reaction mechanistic domains of toxic action for skin sensitisation could provide useful complementary information in predicting acute aquatic ecotoxicity, especially at the fish end-point.

  1. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less

  2. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less

  3. A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roettgen, Dan; Seegar, Ben; Tai, Wei Che

    Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then theymore » are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.« less

  4. A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roettgen, Dan; Seeger, Benjamin; Tai, Wei Che

    Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then theymore » are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.« less

  5. Coupled dynamics of a viscoelastically supported infinite string and a number of discrete mechanical systems moving with uniform speed

    NASA Astrophysics Data System (ADS)

    Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan

    2018-02-01

    The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.

  6. Ionospheric very low frequency transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.« less

  7. Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.

    2016-03-01

    Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.

  8. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  9. The build-up of the cD halo of M 87: evidence for accretion in the last Gyr

    NASA Astrophysics Data System (ADS)

    Longobardi, A.; Arnaboldi, M.; Gerhard, O.; Mihos, J. C.

    2015-07-01

    Aims: We present kinematic and photometric evidence for an accretion event in the halo of the cD galaxy M 87 in the last Gyr. Methods: Using velocities for ~300 planetary nebulas (PNs) in the M 87 halo, we identify a chevron-like substructure in the PN phase-space. We implement a probabilistic Gaussian mixture model to identify PNs that belong to the chevron. From analysis of deep V-band images of M 87, we find that the region with the highest density of chevron PNs is a crown-shaped substructure in the light. Results: We assign a total of NPN,sub = 54 to the substructure, which extends over ~50 kpc along the major axis where we also observe radial variations of the ellipticity profile and a colour gradient. The substructure has highest surface brightness in a 20 kpc × 60 kpc region around 70 kpc in radius. In this region, the substructure causes an increase in surface brightness by ≳60%. The accretion event is consistent with a progenitor galaxy with a V-band luminosity of L = 2.8±1.0×109 L⊙ ,V, a colour of (B - V) = 0.76±0.05, and a stellar mass of M = 6.4±2.3×109 M⊙. Conclusions: The accretion of this progenitor galaxy has caused an important modification of the outer halo of M 87 in the last Gyr. This result provides strong evidence that the galaxy's cD halo is growing through the accretion of smaller galaxies as predicted by hierarchical galaxy evolution models. Based on observations made with the VLT at Paranal Observatory under programme 088.B-0288(A) and 093.B-066(A), and with the Subaru Telescope under programme S10A-039.

  10. Exploring a Potential Bias in Dark Matter Investigations Using Strongly Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Hsueh, Jen-Wei; Fassnacht, Christopher; Vegetti, Simona; Springola, Cristiana; Oldham, Lindsay; Despali, Giulia; Auger, Matthew; Xu, Dandan; Metcalf, Benton; McKean, John; Koopmans, Leon; Lagattuta, David

    2018-01-01

    Simulations based on ΛCDM cosmology predict thousands of substructures under galactic scale have not been detected in the local universe. One hypothesis proposes that most of these substructures are dark for various astrophysical reasons. Gravitational lensing provides a powerful alternative way to probe dark substructures in distant galaxies by detecting their gravitational perturbations and therefore provides insights into the nature of dark matter. Lensed quasars with certain image configurations are especially promising for probing substructure abundance in lens galaxy halos. When the observed flux ratios of the lensed quasar images deviate from the smooth mass model predictions, these “flux-ratio anomalies” are considered to be the evidence of gravitational perturbations. While the standard analysis of flux-ratio anomalies assumes that substructures are the only cause of anomalies, we found that in two edge-on disk lenses, B1555+375 and B0712+472, their flux anomalies can be explained by including disk components into their mass models. Our results bring up a concern with a potential bias in the previous analyses of flux-ratio anomalies. To further investigate the baryonic effects in flux-ratio anomalies, we create mock quasar lenses by selecting disk and elliptical galaxies in the Illustris simulation. Our analysis shows that baryon-induced flux anomalies can be found in all morphological types of lens galaxies. The baryonic effects increase the probability of finding lenses with strong anomalies by 8% in ellipticals and 10~20% in disk lenses, showing that the baryonic effects are unneglectable in the analysis. As future large-scale surveys are expected to bring numerous lensed quasar samples, further investigations on baryonic effects should be done in order to achieve precise constraints on dark matter in the future.

  11. Comparison of Shade of Ceramic with Three Different Zirconia Substructures using Spectrophotometer.

    PubMed

    Habib, Syed Rashid; Shiddi, Ibraheem F Al

    2015-02-01

    This study assessed how changing the Zirconia (Zr) substructure affected the color samples after they have been overlaid by the same shade of veneering ceramic. Three commercial Zr materials were tested in this study: Prettau(®) Zirconia (ZirKonZahn, Italy), Cercon (Dentsply, Germany) and InCoris ZI (Sirona, Germany). For each system, 15 disk-shaped specimens (10 × 1 mm) were fabricated. Three shades of A1, A2 and A3.5 of porcelain (IPS e.MaxCeram, IvoclarVivadent, USA) were used for layering the specimens. Five specimens from each type of Zr were layered with same shade of ceramic. Color measurements were recorderd by a spectrophotometer Color-Eye(®) 7000A (X-Rite, Grand Rapids, MI). Mean values of L, a, b color coordinates and ΔE were recorded and comparisons were made. Differences in the ΔE were recorded for the same porcelain shade with different Zr substructures and affected the color of the specimens (p < 0.01, ANOVA). The maximum difference between the ΔE values for the A1, A2 and A3.5 shades with three types of Zr substructures was found to be 1.59, 1.69 and 1.45 respectively. Multiple comparisons of the ΔE with PostHoc Tukey test revealed a statistically significant difference (p < 0.05) between the three types of Zr, except between Type 2 Zr and Type 3 Zr for the Shade A1. The mean values of L, a, b and ΔE for the Prettau(®) Zirconia substructure were found to be the least among the three types. The brand of Zr used influences the final color of the all ceramic Zr based restorations and this has clinical significance.

  12. Variable stiffness sandwich panels using electrostatic interlocking core

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.

  13. Dignity and cost-effectiveness: a rejection of the utilitarian approach to death.

    PubMed Central

    Brooks, S A

    1984-01-01

    Utilitarianism is commonly assumed to be the most appropriate sub-structure for medical ethics. This view is challenged. It is suggested that the utilitarian approach to euthanasia works against the patient's individual advantage and is a corrupting influence in the relationship between the physician and society. Dignity for the individual patient is not easily achieved by assessing that person's worth against the yardstick of others' needs and wishes. PMID:6502643

  14. Ftmp-Based Simulation of Twin Nucleation and Substructure Evolution Under Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Okuda, Tatsuya; Imiya, Kazuhiro; Hasebe, Tadashi

    2013-01-01

    The deformation twinning model based on Field Theory of Multiscale Plasticity (FTMP) represents the twin degrees of freedom with the incompatibility tensor, which is incorporated into the hardening law of the FTMP-based crystalline plasticity framework. The model is further implemented into a finite element code. In the present study, the model is adapted to a single slip-oriented FCC single crystal sample, and preliminary simulations are conducted under static conditions to confirm the model's basic capabilities. The simulation results exhibit nucleation and growth of twinned regions, accompanied by serrated stress response and overall softening. Simulations under hypervelocity impact conditions are also conducted to investigate the model's descriptive capabilities of induced complex substructures composing of both twins and dislocations. The simulated nucleation of twins is examined in detail by using duality diagrams in terms of the flow-evolutionary hypothesis.

  15. Similarity- and Substructure-Based Development of β2-Adrenergic Receptor Ligands Based on Unusual Scaffolds

    PubMed Central

    2017-01-01

    The β2-adrenergic receptor (β2AR) is a G protein-coupled receptor (GPCR) and a well-explored target. Here, we report the discovery of 13 ligands, ten of which are novel, of this particular GPCR. They have been identified by similarity- and substructure-based searches using multiple ligands, which were described in an earlier study, as starting points. Of note, two of the molecules used as queries here distinguish themselves from other β2AR antagonists by their unique scaffold. The molecules described in this work allow us to explore the ligand space around the previously reported molecules in greater detail, leading to insights into their structure–activity relationship. We also report experimental binding and selectivity data and putative binding modes for the novel molecules. PMID:28523097

  16. Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset.

    PubMed

    Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle

    2016-12-31

    Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto-Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening

    PubMed Central

    2014-01-01

    Analyzing the chemical space coverage in commercial fragment screening collections revealed the overlap between bioactive medicinal chemistry substructures and rule-of-three compliant fragments is only ∼25%. We recommend including these fragments in fragment screening libraries to maximize confidence in discovering hit matter within known bioactive chemical space, while incorporation of nonoverlapping substructures could offer novel hits in screening libraries. Using principal component analysis, polar and three-dimensional substructures display a higher-than-average enrichment of bioactive compounds, indicating increasing representation of these substructures may be beneficial in fragment screening. PMID:24405118

  18. Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.

    PubMed

    Thorn, Andrea

    2017-01-01

    This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.

  19. Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.

    1972-01-01

    The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.

  20. Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal systems

    NASA Astrophysics Data System (ADS)

    Gadjiev, Bahruz; Progulova, Tatiana

    2015-01-01

    We consider a multifractal structure as a mixture of fractal substructures and introduce a distribution function f (α), where α is a fractal dimension. Then we can introduce g(p)˜ ∫- ln p μe-yf(y)dy and show that the distribution functions f (α) in the form of f(α) = δ(α-1), f(α) = δ(α-θ) , f(α) = 1/α-1 , f(y)= y α-1 lead to the Boltzmann - Gibbs, Shafee, Tsallis and Anteneodo - Plastino entropies conformably. Here δ(x) is the Dirac delta function. Therefore the Shafee entropy corresponds to a fractal structure, the Tsallis entropy describes a multifractal structure with a homogeneous distribution of fractal substructures and the Anteneodo - Plastino entropy appears in case of a power law distribution f (y). We consider the Fokker - Planck equation for a fractal substructure and determine its stationary solution. To determine the distribution function of a multifractal structure we solve the two-dimensional Fokker - Planck equation and obtain its stationary solution. Then applying the Bayes theorem we obtain a distribution function for the entire system in the form of q-exponential function. We compare the results of the distribution functions obtained due to the superstatistical approach with the ones obtained according to the maximum entropy principle.

  1. Scaffold explorer: an interactive tool for organizing and mining structure-activity data spanning multiple chemotypes.

    PubMed

    Agrafiotis, Dimitris K; Wiener, John J M

    2010-07-08

    We introduce Scaffold Explorer, an interactive tool that allows medicinal chemists to define hierarchies of chemical scaffolds and use them to explore their project data. Scaffold Explorer allows the user to construct a tree, where each node corresponds to a specific scaffold. Each node can have multiple children, each of which represents a more refined substructure relative to its parent node. Once the tree is defined, it can be mapped onto any collection of compounds and be used as a navigational tool to explore structure-activity relationships (SAR) across different chemotypes. The rich visual analytics of Scaffold Explorer afford the user a "bird's-eye" view of the chemical space spanned by a particular data set, map any physicochemical property or biological activity of interest onto the individual scaffold nodes, serve as an aggregator for the properties of the compounds represented by these nodes, and quickly distinguish promising chemotypes from less interesting or problematic ones. Unlike previous approaches, which focused on automated extraction and classification of scaffolds, the utility of the new tool rests on its interactivity and ability to accommodate the medicinal chemists' intuition by allowing the use of arbitrary substructures containing variable atoms, bonds, and/or substituents such as those employed in substructure search.

  2. Predicting drug side-effect profiles: a chemical fragment-based approach

    PubMed Central

    2011-01-01

    Background Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients. Results In the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information. Conclusions The proposed method is expected to be useful in various stages of the drug development process. PMID:21586169

  3. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  4. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working Projects which directly could have dealt with moisture evaluation. As a result, independent and complementary targets have been singled out. To cite a few, interesting exchange of views took place in both the First and Second Action General Meetings of Rome and Vienna, respectively, in July 2013 and May 2014. In addition, a questionnaire with a relevant list of topics together with the identification of test scenarios for advanced comparison of inspection procedures have gathered invaluable information on the main expertises, fields of application, and equipments managed by the Project participants. The heterogeneous scenario outlined consequently, has indeed represented the third main issue to address. According to the Participants responses, roads were found to be the main target investigated (53%) so far, followed by soil materials (21%). In line with this, asphalt and compacted loose materials gathered the main interest among the main constituent materials with, respectively, 39% and 22%, as well as organic soils (22%). In this framework, the intermediate scale of investigation s, i.e., 0.01 m2 < s < 100 m2, was found to be the most used for surveying. Finally, the fourth issue has been focused at avoiding the research to get blocked by ensuring a continuous updating of the latest results in moisture assessment using ground-penetrating radar achieved by Project 2.5 Participants [3-9]. Acknowledgements The authors would like to thank COST, for funding the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar'. References [1] Tosti, F., Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. State of the art and open issues. Proceedings of the 1st COST Action General Meeting TU1208, Rome, Italy, 22-24 July 2013, pp. 99-105. ISBN: 978-88-548-6190-9. [2] Tosti, F., Slob, E.C., Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. In. 'Civil Engineering applications of Ground Penetrating Radar', Springer ed., 2015. [3] De Coster A., Tran A.P. and Lambot S. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion, EGU Conference, 2014, Vienna, Austria. [4] De Coster A., Tran A.P. and Lambot S. Impact of the antenna offset and the number of frequencies on layered media reconstruction using full-wave inversion in near-field conditions, GPR Conference, 2014, Brussels, Belgium. [5] De Pue J., Van Meirvenne M. and Cornelis W. Simultaneous measurement of surface and subsoil water content with air-coupled GPR, GPR Conference, 2014, Brussels, Belgium. [6] Fernandes J.M. and Pais J. Assessment of moisture in road pavements, GPR Conference, 2014, Brussels, Belgium. [7] Hugenschmidt J., Wenk F.and Brühwiler E. GPR chloride inspection of a RC bridge deck slab followed by an examination of the results, GPR Conference, 2014, Brussels, Belgium [8] Mourmeaux N., Meunier F., Tran A.P. and Lambot S. High-resolution monitoring of root water uptake dynamics in laboratory conditions using full-wave inversion of near-field radar data, EGU Conference, 2014, Vienna, Austria. [9] Mourmeaux N., Tran A.P. and Lambot S. Soil permittivity and conductivity characterization by full-wave inversion of near-field GPR data, GPR Conference, 2014, Brussels, Belgium.

  5. Genetic Population Structure Analysis in New Hampshire Reveals Eastern European Ancestry

    PubMed Central

    Sloan, Chantel D.; Andrew, Angeline D.; Duell, Eric J.; Williams, Scott M.; Karagas, Margaret R.; Moore, Jason H.

    2009-01-01

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population. PMID:19738909

  6. Genetic population structure analysis in New Hampshire reveals Eastern European ancestry.

    PubMed

    Sloan, Chantel D; Andrew, Angeline D; Duell, Eric J; Williams, Scott M; Karagas, Margaret R; Moore, Jason H

    2009-09-07

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population.

  7. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  8. Clustering XML Documents Using Frequent Subtrees

    NASA Astrophysics Data System (ADS)

    Kutty, Sangeetha; Tran, Tien; Nayak, Richi; Li, Yuefeng

    This paper presents an experimental study conducted over the INEX 2008 Document Mining Challenge corpus using both the structure and the content of XML documents for clustering them. The concise common substructures known as the closed frequent subtrees are generated using the structural information of the XML documents. The closed frequent subtrees are then used to extract the constrained content from the documents. A matrix containing the term distribution of the documents in the dataset is developed using the extracted constrained content. The k-way clustering algorithm is applied to the matrix to obtain the required clusters. In spite of the large number of documents in the INEX 2008 Wikipedia dataset, the proposed frequent subtree-based clustering approach was successful in clustering the documents. This approach significantly reduces the dimensionality of the terms used for clustering without much loss in accuracy.

  9. Automatic classification of protein structures relying on similarities between alignments

    PubMed Central

    2012-01-01

    Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051

  10. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  11. Guided wave tomography in anisotropic media using recursive extrapolation operators

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  12. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.

  13. Architectures for wrist-worn energy harvesting

    NASA Astrophysics Data System (ADS)

    Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.

    2018-04-01

    This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.

  14. Design and optimization of membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  15. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all of these effects when estimating the shear elasticity. This new approach simulates shear wave particle velocities using a Green's function-based approach for the Voigt model, where the shear elasticity and viscosity values are estimated using an optimization-based approach that compares measured shear wave particle velocities with simulated shear wave particle velocities in the time-domain. The results are evaluated on a point-by-point basis to generate images. There is good agreement between the simulated and measured shear wave particle velocities, where the new approach yields much better images of the shear elasticity and shear viscosity than the TOF method. The new estimation approach is accelerated with an approximate viscoelastic Green's function model that is evaluated with shear wave data obtained from in vivo human livers. Instead of calculating shear waves with combinations of different shear elasticities and shear viscosities, shear waves are calculated with different shear elasticities on the GPU and then convolved with a viscous loss model, which accelerates the calculation dramatically. The shear elasticity and shear viscosity values are then estimated using an optimization-based approach by minimizing the difference between measured and simulated shear wave particle velocities. Shear elasticity and shear viscosity images are generated at every spatial point in a two-dimensional (2D) field-of-view (FOV). The new approach is applied to measured shear wave data obtained from in vivo human livers, and the results show that this new approach successfully generates shear elasticity and shear viscosity images from this data. The results also indicate that the shear elasticity values estimated with this approach are significantly smaller than the values estimated with the conventional TOF method and that the new approach demonstrates more consistent values for these estimates compared with the TOF method. This experience suggests that the new method is an effective approach for estimating the shear elasticity and the shear viscosity in liver and in other soft tissue.

  16. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  17. Effect of load eccentricity and substructure deformation on ultimate strength of shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.

    1981-01-01

    The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.

  18. A method for analyzing absorbed power distribution in the hand and arm substructures when operating vibrating tools

    NASA Astrophysics Data System (ADS)

    Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2008-04-01

    In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.

  19. Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  20. Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1986-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  1. Fractal nature of aluminum alloys substructures under creep and its implications

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2018-04-01

    The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress σ normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with σ/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge.

  2. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    NASA Technical Reports Server (NTRS)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  3. Estimating material viscoelastic properties based on surface wave measurements: A comparison of techniques and modeling assumptions

    PubMed Central

    Royston, Thomas J.; Dai, Zoujun; Chaunsali, Rajesh; Liu, Yifei; Peng, Ying; Magin, Richard L.

    2011-01-01

    Previous studies of the first author and others have focused on low audible frequency (<1 kHz) shear and surface wave motion in and on a viscoelastic material comprised of or representative of soft biological tissue. A specific case considered has been surface (Rayleigh) wave motion caused by a circular disk located on the surface and oscillating normal to it. Different approaches to identifying the type and coefficients of a viscoelastic model of the material based on these measurements have been proposed. One approach has been to optimize coefficients in an assumed viscoelastic model type to match measurements of the frequency-dependent Rayleigh wave speed. Another approach has been to optimize coefficients in an assumed viscoelastic model type to match the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances from it. In the present article, the relative merits of these approaches are explored theoretically, computationally, and experimentally. It is concluded that matching the complex-valued FRF may provide a better estimate of the viscoelastic model type and parameter values; though, as the studies herein show, there are inherent limitations to identifying viscoelastic properties based on surface wave measurements. PMID:22225067

  4. A Unified Approach to Optimization

    DTIC Science & Technology

    2014-10-02

    employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers

  5. Progress on the development of FullWave, a Hot and Cold Plasma Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, J. Andrew; Svidzinski, Vladimir; Zhao, Liangji; Kim, Jin-Soo

    2017-10-01

    FullWave is being developed at FAR-TECH, Inc. to simulate RF waves in hot inhomogeneous magnetized plasmas without making small orbit approximations. FullWave is based on a meshless formulation in configuration space on non-uniform clouds of computational points (CCP) adapted to better resolve plasma resonances, antenna structures and complex boundaries. The linear frequency domain wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. The details of FullWave and some preliminary results will be presented, including: 1) a monitor function based on analytic solutions of the cold-plasma dispersion relation; 2) an adaptive CCP based on the monitor function; 3) construction of the finite differences for approximation of derivatives on adaptive CCP; 4) results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach for ECRH, ICRH and Lower Hybrid range of frequencies. Work is supported by the U.S. DOE SBIR program.

  6. Quantitative photoacoustic imaging in the acoustic regime using SPIM

    NASA Astrophysics Data System (ADS)

    Beigl, Alexander; Elbau, Peter; Sadiq, Kamran; Scherzer, Otmar

    2018-05-01

    While in standard photoacoustic imaging the propagation of sound waves is modeled by the standard wave equation, our approach is based on a generalized wave equation with variable sound speed and material density, respectively. In this paper we present an approach for photoacoustic imaging, which in addition to the recovery of the absorption density parameter, the imaging parameter of standard photoacoustics, also allows us to reconstruct the spatially varying sound speed and density, respectively, of the medium. We provide analytical reconstruction formulas for all three parameters based in a linearized model based on single plane illumination microscopy (SPIM) techniques.

  7. Educational Analysis of a First Year Engineering Physics Experiment on Standing Waves: Based on the ACELL Approach

    ERIC Educational Resources Information Center

    Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…

  8. Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics

    NASA Technical Reports Server (NTRS)

    Vrtilek, Jan; Thronson, Harley (Technical Monitor)

    2001-01-01

    The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.

  9. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  10. Impact of Type II Spicules into the Corona

    NASA Astrophysics Data System (ADS)

    Martinez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Pereira, Tiago M. D.

    2017-08-01

    In the lower solar atmosphere, the chromosphere is permeated by jets, in which plasma is propelled at speeds of 50-150 km/s into the Sun’s atmosphere or corona. Although these spicules may play a role in heating the million-degree corona and are associated with Alfvén waves that help drive the solar wind, their generation remains mysterious. We implemented in the radiative MHD Bifrost code the effects of partial ionization using the generalized Ohm’s law. This code also solves the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along magnetic field lines. The ion-neutral collision frequency is computed using recent studies that improved the estimation of the cross sections under chromospheric conditions (Vranjes & Krstic 2013). Self-consistently driven jets (spicules type II) in magnetohydrodynamic simulations occur ubiquitously when magnetic tension is confined and transported upwards through interactions between ions and neutrals, and impulsively released to drive flows, heat plasma, generate Alfvén waves, and may play an important role in maintaining the substructure of loop fans. This mechanism explains how spicular plasma can be heated to millions of degrees and how Alfvén waves are generated in the chromosphere.

  11. New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model.

    PubMed

    Madeiro, João P V; Nicolson, William B; Cortez, Paulo C; Marques, João A L; Vázquez-Seisdedos, Carlos R; Elangovan, Narmadha; Ng, G Andre; Schlindwein, Fernando S

    2013-08-01

    This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, -0.38±7.12 ms and -3.70±15.46 ms, for the first database, and 1.40±8.99 ms and 2.83±15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. A NASTRAN model of a large flexible swing-wing bomber. Volume 3: NASTRAN model development-wing structure

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.

    1982-01-01

    The NASTRAN model plan for the wing structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The wing substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.

  13. A NASTRAN model of a large flexible swing-wing bomber. Volume 2: NASTRAN model development-horizontal stabilzer, vertical stabilizer and nacelle structures

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.; Tisher, E. D.

    1982-01-01

    The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.

  14. A NASTRAN model of a large flexible swing-wing bomber. Volume 4: NASTRAN model development-fuselage structure

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.

    1982-01-01

    The NASTRAN model plan for the fuselage structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The fuselage substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.

  15. Structural optimization by generalized, multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B. B.; Riley, M. F.

    1985-01-01

    The developments toward a general multilevel optimization capability and results for a three-level structural optimization are described. The method partitions a structure into a number of substructuring levels where each substructure corresponds to a subsystem in the general case of an engineering system. The method is illustrated by a portal framework that decomposes into individual beams. Each beam is a box that can be further decomposed into stiffened plates. Substructuring for this example spans three different levels: (1) the bottom level of finite elements representing the plates; (2) an intermediate level of beams treated as substructures; and (3) the top level for the assembled structure. The three-level case is now considered to be qualitatively complete.

  16. Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Ali, M. A. B. Md; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bierwagen, K.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-06-01

    A search is performed for a vector-like heavy T quark that is produced in pairs and that decays to a top quark and a Higgs boson. The data analysed correspond to an integrated luminosity of 19.7 fb-1 collected with the CMS detector in proton-proton collisions at TeV. For T quarks with large mass values the top quarks and Higgs bosons can have significant Lorentz boosts, so that their individual decay products often overlap and merge. Methods are applied to resolve the substructure of such merged jets. Upper limits on the production cross section of a T quark with mass between 500 and 1000 GeV/ c 2 are derived. If the T quark decays exclusively to tH, the observed (expected) lower limit on the mass of the T quark is 745 (773) GeV/ c 2 at 95% confidence level. For the first time an algorithm is used for tagging boosted Higgs bosons that is based on a combination of jet substructure information and b tagging. [Figure not available: see fulltext.

  17. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  18. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  19. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Probabilistic Analysis and Design of a Raked Wing Tip for a Commercial Transport

    NASA Technical Reports Server (NTRS)

    Mason Brian H.; Chen, Tzi-Kang; Padula, Sharon L.; Ransom, Jonathan B.; Stroud, W. Jefferson

    2008-01-01

    An approach for conducting reliability-based design and optimization (RBDO) of a Boeing 767 raked wing tip (RWT) is presented. The goal is to evaluate the benefits of RBDO for design of an aircraft substructure. A finite-element (FE) model that includes eight critical static load cases is used to evaluate the response of the wing tip. Thirteen design variables that describe the thickness of the composite skins and stiffeners are selected to minimize the weight of the wing tip. A strain-based margin of safety is used to evaluate the performance of the structure. The randomness in the load scale factor and in the strain limits is considered. Of the 13 variables, the wing-tip design was controlled primarily by the thickness of the thickest plies in the upper skins. The report includes an analysis of the optimization results and recommendations for future reliability-based studies.

  1. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation.

    PubMed

    Hammer, Niels; Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction . The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods . Microcomputed tomography ( μ -CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results . TFCC reconstruction was impossible using μ -CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion . This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ -CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool.

  2. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation

    PubMed Central

    Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction. The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods. Microcomputed tomography (μ-CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results. TFCC reconstruction was impossible using μ-CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion. This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ-CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool. PMID:28246600

  3. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    PubMed

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  4. Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.

    PubMed

    Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W

    2017-05-09

    The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.

  5. Physicochemical properties/descriptors governing the solubility and partitioning of chemicals in water-solvent-gas systems. Part 1. Partitioning between octanol and air.

    PubMed

    Raevsky, O A; Grigor'ev, V J; Raevskaja, O E; Schaper, K-J

    2006-06-01

    QSPR analyses of a data set containing experimental partition coefficients in the three systems octanol-water, water-gas, and octanol-gas for 98 chemicals have shown that it is possible to calculate any partition coefficient in the system 'gas phase/octanol/water' by three different approaches: (1) from experimental partition coefficients obtained in the corresponding two other subsystems. However, in many cases these data may not be available. Therefore, a solution may be approached (2), a traditional QSPR analysis based on e.g. HYBOT descriptors (hydrogen bond acceptor and donor factors, SigmaCa and SigmaCd, together with polarisability alpha, a steric bulk effect descriptor) and supplemented with substructural indicator variables. (3) A very promising approach which is a combination of the similarity concept and QSPR based on HYBOT descriptors. In this approach observed partition coefficients of structurally nearest neighbours of a compound-of-interest are used. In addition, contributions arising from differences in alpha, SigmaCa, and SigmaCd values between the compound-of-interest and its nearest neighbour(s), respectively, are considered. In this investigation highly significant relationships were obtained by approaches (1) and (3) for the octanol/gas phase partition coefficient (log Log).

  6. Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis

    PubMed Central

    Ma, Jianzhong; Amos, Christopher I.

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct “populations” of inversion homozygotes of different orientations and their 1∶1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases. PMID:22808122

  7. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLASmore » physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.« less

  8. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling.

    PubMed

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures.

  9. Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling

    PubMed Central

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. PMID:23516343

  10. Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.

    2016-04-01

    The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.

  11. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  12. Generalized pseudopotential approach for electron-atom scattering.

    NASA Technical Reports Server (NTRS)

    Zarlingo, D. G.; Ishihara, T.; Poe, R. T.

    1972-01-01

    A generalized many-electron pseudopotential approach is presented for electron-neutral-atom scattering problems. A calculation based on this formulation is carried out for the singlet s-wave and p-wave electron-hydrogen phase shifts with excellent results. We compare the method with other approaches as well as discuss its applications for inelastic and rearrangement collision problems.

  13. A new approach based on the median filter to T-wave detection in ECG signal.

    PubMed

    Kholkhal, Mourad; Bereksi Reguig, Fethi

    2014-07-01

    The electrocardiogram (ECG) is one of the most used signals in the diagnosis of heart disease. It contains different waves which directly correlate to heart activity. Different methods have been used in order to detect these waves and consequently lead to heart activity diagnosis. This paper is interested more particularly to the detection of the T-wave. Such a wave represents the re-polarization state of the heart activity. The proposed approach is based on the algorithm procedure which allows the detection of the T-wave using a lot of filter including mean and median filter. The proposed algorithm is implemented and tested on a set of ECG recordings taken from, respectively, the European STT, MITBIH and MITBIH ST databases. The results are found to be very satisfactory in terms of sensitivity, predictivity and error compared to other works in the field.

  14. The induced electric field due to a current transient

    NASA Astrophysics Data System (ADS)

    Beck, Y.; Braunstein, A.; Frankental, S.

    2007-05-01

    Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.

  15. Hunting for Snarks in Quantum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hestenes, David

    2009-12-08

    A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it ismore » an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.« less

  16. Singular behavior of jet substructure observables

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  17. Automated Measurement of P- and S-Wave Differential Times for Imaging Spatial Distributions of Vp/Vs Ratio, with Moving-Window Cross-Correlation Technique

    NASA Astrophysics Data System (ADS)

    Taira, T.; Kato, A.

    2013-12-01

    A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers geothermal field, California. The both target areas are characterized by earthquake swarms that provide a number of similar events clusters. We use the following automated procedure to systematically analyze the two data sets: 1) the identification of the direct P arrivals by using an Akaike Information Criterion based phase picking algorithm introduced by Zhang and Thurber (2003, BSSA), 2) the waveform alignment by the P-wave with a waveform cross-correlation to obtain P-wave differential time, 3) the moving-time window analysis to estimate the S-differential time. Kato et al. (2010, GRL) have estimated the Vp/Vs ratios for a few similar earthquake clusters from the Wakayama data set, by a conventional approach to obtain differential times. We find that the resulting Vp/Vs ratios from our approach for the same earthquake clusters are comparable with those obtained from Kato et al. (2010, GRL). We show that the moving-window cross-correlation technique effectively measures both P- and S-wave differential times for the seismograms in which the clear P and S phases are not observed. We will show spatial distributions in Vp/Vs ratios in our two target areas.

  18. Coherence and visibility for vectorial light.

    PubMed

    Luis, Alfredo

    2010-08-01

    Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path interference between four scalar waves. This comprises previous approaches to coherence between vectorial waves and restores the equivalence between correlation-based coherence and visibility.

  19. Exploiting parallel computing with limited program changes using a network of microcomputers

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.

    1985-01-01

    Network computing and multiprocessor computers are two discernible trends in parallel processing. The computational behavior of an iterative distributed process in which some subtasks are completed later than others because of an imbalance in computational requirements is of significant interest. The effects of asynchronus processing was studied. A small existing program was converted to perform finite element analysis by distributing substructure analysis over a network of four Apple IIe microcomputers connected to a shared disk, simulating a parallel computer. The substructure analysis uses an iterative, fully stressed, structural resizing procedure. A framework of beams divided into three substructures is used as the finite element model. The effects of asynchronous processing on the convergence of the design variables are determined by not resizing particular substructures on various iterations.

  20. Microstructural evolution of garnet in a greenschist facies transpression zone

    NASA Astrophysics Data System (ADS)

    Massey, M. A.; Prior, D. J.; Moecher, D. P.

    2007-12-01

    Natural observations, laboratory experiments, and theoretical modeling support the interpretation of Grt plasticity in the lower crust and upper mantle; however, these processes are thought to be of little importance in shallow to middle crustal levels. Multiple textural varieties of Grt from the western boundary (Mt. Dumplin high strain zone) of an upper greenschist facies dextral transpression zone in southern New England, USA, display mesoscopic and microscopic evidence of syn-tectonic deformation and recrystallization. These microstructures were examined further by optical microscopy, electron probe microanalysis, orientation contrast imaging (OCI), and automated electron backscatter diffraction (EBSD) in order to understand possible low-grade deformation mechanisms and their significance. The N-S-striking shear zone dips steeply W, the mylonitic foliation is defined by aligned Ms- Chl-Rt, layers of Qtz and fine-grained Grt; Qtz-Chl-Ms and fine-grained Grt aggregates define lineations that plunge moderately SW. S-C-C¡¦ fabrics, asymmetric folds and porphyroclasts (delta- and sigma-type) are well developed on foliation-normal/lineation-parallel planes, and display sinistral kinematics; surfaces normal to foliation and normal to lineation exhibit strong asymmetries that indicate normal motion. Pre-tectonic mineral parageneses consist of St pseudomorphed by Chl-Ms-Ctd, Als pseudomorphed by Ms, and coarse-grained Grt and Ab porphyroclasts with associated asymmetric tails. Grt is manifest as three types: 1) equant Grt porphyroclasts; 2) elongate Grt aggregates consisting of 50-100 Ým equant Grt porphyroblasts; 3) type 1-type 2 transitional Grt morphology. Elemental x-ray mapping of Ca and Mn reveals at least two periods of growth in Grt types 1 and 3, and one period of growth in type 2 that correlates with type 1 and 3 rims; Mg is completely homogenized. Detailed mapping of type 3 Grt cores reveals ¡¥fractured¡¦ Ca-enriched cores ¡¥healed¡¦ with Ca- depleted composition. OCI of type 1 Grt shows no internal substructure. OCI of type 2 Grt also shows rare internal substructure (finer-grained equant inclusions with low angle boundaries), and EBSD shows aggregates have CPO symmetrical to tectonic fabric (parallel to lineation), high angle grain boundaries, and neighbor- neighbor grain pairs correlate with random grain pair distributions. Type 2 Grt also displays ¡¥stacking¡¦ structures where individual porphyroblasts are stacked vertically and grain boundaries are at low angle. OCI of type 3 Grt shows considerable internal substructure of three varieties: A) substructure boundaries that coincide with Ca-depleted compositions in cores; B) 50-100 Ým equant substructures included in rims; C) substructure boundaries in rims that ¡¥nucleate¡¦ from substructure A boundaries in cores. Detailed EBSD traverses across all substructure boundaries indicate rotation around rational crystallographic axes. Observations suggest that early amphibolite facies Grt (type 1 and 3 cores) was deformed non-penetratively by plastic deformation or sub-critical fracture (type 3 Grt, substructure A). Type 2 Grt nucleated pre- to syn-tectonically, at least partially through the consumption of type 3 Grt porphyroclasts, and was included in type 1 and 3 rims by rigid body rotations (substructure B). Substructures C in type 3 Grt rims are inherited from pre-existing crystallographic anisotropies in cores (substructure A). Additionally, type 2 Grt was deformed syn-tectonically to produce CPOs, likely as a result of flattening associated with transpression.

  1. 5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DOWNSTREAM ELEVATION OF BRIDGE AND SUBSTRUCTURE (with graduated meter pole); VIEW TO NORTH-NORTHEAST. - Auwaiakeakua Bridge, Spanning Auwaiakekua Gulch at Mamalahoa Highway, Waikoloa, Hawaii County, HI

  2. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy.

    PubMed

    Rudolf, Martin; Clark, Mark E; Chimento, Melissa F; Li, Chuan-Ming; Medeiros, Nancy E; Curcio, Christine A

    2008-03-01

    Macular drusen are hallmarks of age-related maculopathy (ARM), but these focal extracellular lesions also appear with age in the peripheral retina. The present study was conducted to determine regional differences in morphology that contribute to the higher vulnerability of the macula to advanced disease. Drusen from the macula (n = 133) and periphery (n = 282) were isolated and concentrated from nine ARM-affected eyes. A semiquantitative light microscopic evaluation of 1-mum-thick sections included 12 parameters. Significant differences were found between the macula and periphery in ease of isolation, distribution of druse type, composition qualities, and substructures. On harvesting, macular drusen were friable, with liquefied or crystallized contents. Peripheral drusen were resilient and never crystallized. On examination, soft drusen appeared in the macula only, had homogeneous content without significant substructures, and had abundant basal laminar deposits (BlamD). Several substructures, previously postulated as signatures of druse biogenesis, were found primarily in hard drusen. Specific to hard drusen, which appeared everywhere, were central subregions and reduced RPE coverage. Macular hard drusen with a rich substructure profile differed from primarily homogeneous peripheral hard drusen. Compound drusen, found in the periphery only, exhibited a composition profile that was not intermediate between hard and soft. The data confirm regional differences in druse morphology, composition, and physical properties, most likely based on different formative mechanisms that may contribute to macular susceptibility for ARM progression. Two other reasons that only the macula is at high risk despite having relatively few drusen are the exclusive presence of soft drusen and the abundant BlamD in this region.

  3. A method to quantify hand-transmitted vibration exposure based on the biodynamic stress concept.

    PubMed

    Dong, R G; Welcome, D E; Wu, J Z

    2007-11-01

    This study generally hypothesized that the vibration-induced biodynamic stress and number of its cycles in a substructure of the hand-arm system play an important role in the development of vibration-induced disorders in the substructure. As the first step to test this hypothesis, the specific aims of this study were to develop a practical method to quantify the biodynamic stress-cycle measure, to compare it with ISO-weighted and unweighted accelerations, and to assess its potential for applications. A mechanical-equivalent model of the system was established using reported experimental data. The model was used to estimate the average stresses in the fingers and palm. The frequency weightings of the stresses in these substructures were derived using the proposed stress-cycle measure. This study found the frequency dependence of the average stress distributed in the fingers is different from that in the palm. Therefore, this study predicted that the frequency dependencies of finger disorders could also be different from those of the disorders in the palm, wrist, and arms. If vibration-induced white finger (VWF) is correlated better with unweighted acceleration than with ISO-weighted acceleration, the biodynamic stress distributed in the fingers is likely to play a more important role in the development of VWF than is th e biodynamic stressdistributed in the other substructures of the hand-arm system. The results of this study also suggest that the ISO weighting underestimates the high-frequency effect on the finger disorder development but it may provide a reasonable risk assessment of the disorders in the wrist and arm.

  4. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  5. DETECTION OF SUBSTRUCTURE IN THE GRAVITATIONALLY LENSED QUASAR MG0414+0534 USING MID-INFRARED AND RADIO VLBI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Chelsea L.; Jones, Ramsey; Agol, Eric

    2013-08-10

    We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometrymore » (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.« less

  6. Analysis of flexural wave cloaks

    NASA Astrophysics Data System (ADS)

    Climente, Alfonso; Torrent, Daniel; Sánchez-Dehesa, José

    2016-12-01

    This work presents a comprehensive study of the cloak for bending waves theoretically proposed by Farhat et al. [see Phys. Rev. Lett. 103, 024301 (2009)] and later on experimentally realized by Stenger et al. [see Phys. Rev. Lett. 108, 014301 (2012)]. This study uses a semi-analytical approach, the multilayer scattering method, which is based in the Kirchoff-Love wave equation for flexural waves in thin plates. Our approach was unable to reproduce the predicted behavior of the theoretically proposed cloak. This disagreement is here explained in terms of the simplified wave equation employed in the cloak design, which employed unusual boundary conditions for the cloaking shell. However, our approach reproduces fairly well the measured displacement maps for the fabricated cloak, indicating the validity of our approach. Also, the cloak quality has been here analyzed using the so called averaged visibility and the scattering cross section. The results obtained from both analysis let us to conclude that there is room for further improvements of this type of flexural wave cloak by using better design procedures.

  7. Source and listener directivity for interactive wave-based sound propagation.

    PubMed

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh

    2014-04-01

    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  8. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates

    NASA Astrophysics Data System (ADS)

    Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.

  9. Shear-wave velocity profiling according to three alternative approaches: A comparative case study

    NASA Astrophysics Data System (ADS)

    Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.

    2016-11-01

    The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.

  10. 65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT COMPANY'S NEISSON CREEK SAWMILL. Print No. 177, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  11. Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Pang, Y.; Soergel, U.

    2017-05-01

    Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.

  12. Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    DOE PAGES

    Khachatryan, Vardan

    2015-06-12

    We performed a search for a vector-like heavy T quark that is produced in pairs and that decays to a top quark and a Higgs boson. The data analysed correspond to an integrated luminosity of 19.7 fb -1collected with the CMS detector in proton-proton collisions at √s=8 TeV. For T quarks with large mass values the top quarks and Higgs bosons can have significant Lorentz boosts, so that their individual decay products often overlap and merge. Methods are applied to resolve the substructure of such merged jets. We also derived upper limits on the production cross section of a Tmore » quark with mass between 500 and 1000 GeV/c 2. If the T quark decays exclusively to tH, the observed (expected) lower limit on the mass of the T quark is 745 (773) GeV/c 2 at 95% confidence level. For the first time an algorithm is used for tagging boosted Higgs bosons that is based on a combination of jet substructure information and b tagging.« less

  13. Considerations for the application of finite element beam modeling to vibration analysis of flight vehicle structures. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1976-01-01

    The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.

  14. Optimal decentralized feedback control for a truss structure

    NASA Technical Reports Server (NTRS)

    Cagle, A.; Ozguner, U.

    1989-01-01

    One approach to the decentralized control of large flexible space structures involves the design of controllers for the substructures of large systems and their subsequent application to the entire coupled system. This approach is presently developed for the case of active vibration damping on an experimental large struss structure. The isolated boundary loading method is used to define component models by FEM; component controllers are designed using an interlocking control concept which minimizes the motion of the boundary nodes, thereby reducing the exchange of mechanical disturbances among components.

  15. Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation

    NASA Astrophysics Data System (ADS)

    Abali, B. Emek

    2018-04-01

    For micro-architectured materials with a substructure, called metamaterials, we can realize a direct numerical simulation in the microscale by using classical mechanics. This method is accurate, however, computationally costly. Instead, a solution of the same problem in the macroscale is possible by means of the generalized mechanics. In this case, no detailed modeling of the substructure is necessary; however, new parameters emerge. A physical interpretation of these metamaterial parameters is challenging leading to a lack of experimental strategies for their determination. In this work, we exploit the variational formulation based on action principles and obtain a direct relation between a parameter used in the kinetic energy and a metamaterial parameter in the case of a viscoelastic model.

  16. A new mathematical approach for shock-wave solution in a dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G.C.; Dwivedi, C.B.; Talukdar, M.

    1997-12-01

    The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less

  17. 20. Top 30/3. Plan of exposed substructure elevations. Wyoming ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Top 30/3. Plan of exposed substructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  18. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  19. Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.

    2010-05-01

    We discuss jet substructure in recombination algorithms for QCD jets and single jets from heavy particle decays. We demonstrate that the jet algorithm can introduce significant systematic effects into the substructure. By characterizing these systematic effects and the substructure from QCD, splash-in, and heavy particle decays, we identify a technique, pruning, to better identify heavy particle decays into single jets and distinguish them from QCD jets. Pruning removes protojets typical of soft, wide-angle radiation, improves the mass resolution of jets reconstructing heavy particle decays, and decreases the QCD background to these decays. We show that pruning provides significant improvements overmore » unpruned jets in identifying top quarks and W bosons and separating them from a QCD background, and may be useful in a search for heavy particles.« less

  20. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  1. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to bemore » smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.« less

  2. Third Wave.

    ERIC Educational Resources Information Center

    Reed, Chris

    2000-01-01

    Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…

  3. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu

    2015-09-14

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less

  4. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    NASA Astrophysics Data System (ADS)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.

  5. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    PubMed

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  6. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  7. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  8. Towards the development of micromechanics equations for ceramic matrix composites via fiber substructuring

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1992-01-01

    A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkejord, T.

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. Themore » Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.« less

  10. Substructures in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Lehodey, Brigitte Tome

    2000-01-01

    This dissertation presents two methods for the detection of substructures in clusters of galaxies and the results of their application to a group of four clusters. In chapters 2 and 3, we remember the main properties of clusters of galaxies and give the definition of substructures. We also try to show why the study of substructures in clusters of galaxies is so important for Cosmology. Chapters 4 and 5 describe these two methods, the first one, the adaptive Kernel, is applied to the study of the spatial and kinematical distribution of the cluster galaxies. The second one, the MVM (Multiscale Vision Model), is applied to analyse the cluster diffuse X-ray emission, i.e., the intracluster gas distribution. At the end of these two chapters, we also present the results of the application of these methods to our sample of clusters. In chapter 6, we draw the conclusions from the comparison of the results we obtain with each method. In the last chapter, we present the main conclusions of this work trying to point out possible developments. We close with two appendices in which we detail some questions raised in this work not directly linked to the problem of substructures detection.

  11. DASS: efficient discovery and p-value calculation of substructures in unordered data.

    PubMed

    Hollunder, Jens; Friedel, Maik; Beyer, Andreas; Workman, Christopher T; Wilhelm, Thomas

    2007-01-01

    Pattern identification in biological sequence data is one of the main objectives of bioinformatics research. However, few methods are available for detecting patterns (substructures) in unordered datasets. Data mining algorithms mainly developed outside the realm of bioinformatics have been adapted for that purpose, but typically do not determine the statistical significance of the identified patterns. Moreover, these algorithms do not exploit the often modular structure of biological data. We present the algorithm DASS (Discovery of All Significant Substructures) that first identifies all substructures in unordered data (DASS(Sub)) in a manner that is especially efficient for modular data. In addition, DASS calculates the statistical significance of the identified substructures, for sets with at most one element of each type (DASS(P(set))), or for sets with multiple occurrence of elements (DASS(P(mset))). The power and versatility of DASS is demonstrated by four examples: combinations of protein domains in multi-domain proteins, combinations of proteins in protein complexes (protein subcomplexes), combinations of transcription factor target sites in promoter regions and evolutionarily conserved protein interaction subnetworks. The program code and additional data are available at http://www.fli-leibniz.de/tsb/DASS

  12. Substructure analysis using NICE/SPAR and applications of force to linear and nonlinear structures. [spacecraft masts

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai

    1987-01-01

    Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.

  13. 98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST SIDE OF 4TH TEE, LOOKING WEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. 2. Substructure of the main dock, looking south beneath the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Substructure of the main dock, looking south beneath the Hay and Grain Warehouse. Original log pilings have been encased in concrete. - Curtis Wharf, Main Dock, O & Second Streets, Anacortes, Skagit County, WA

  15. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  16. Space-Wave Routing via Surface Waves Using a Metasurface System.

    PubMed

    Achouri, Karim; Caloz, Christophe

    2018-05-15

    We introduce the concept of a metasurface system able to route space waves via surface waves. This concept may be used to laterally shift or modulate the beam width of scattered waves. The system is synthesized based on a momentum transfer approach using phase-gradient metasurfaces. The concept is experimentally verified in an "electromagnetic periscope". Additionally, we propose two other potential applications namely a beam expander and a multi-wave refractor.

  17. Transverse Wave Induced Kelvin–Helmholtz Rolls in Spicules

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Schmit, D.; Pereira, T. M. D.; De Pontieu, B.; De Moortel, I.

    2018-03-01

    In addition to their jet-like dynamic behavior, spicules usually exhibit strong transverse speeds, multi-stranded structure, and heating from chromospheric to transition region temperatures. In this work we first analyze Hinode and IRIS observations of spicules and find different behaviors in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models, or long-wavelength torsional Alfvén waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective magnetohydrodynamic (MHD) wave. By comparing with an idealized 3D MHD simulation combined with radiative transfer modeling, we analyze the role of transverse MHD waves and associated instabilities in spicule-like features. We find that transverse wave induced Kelvin–Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped Mg II k and Ca II H source functions in the transverse cross-section, potentially allowing IRIS to capture the Kelvin–Helmholtz instability dynamics. Twists and currents propagate along the spicule at Alfvénic speeds, and the temperature variations within TWIKH rolls, produce the sudden appearance/disappearance of strands seen in Doppler velocity and in Ca II H intensity. However, only a mild intensity increase in higher-temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.

  18. Research on simplified parametric finite element model of automobile frontal crash

    NASA Astrophysics Data System (ADS)

    Wu, Linan; Zhang, Xin; Yang, Changhai

    2018-05-01

    The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.

  19. Rapid bridge construction technology : precast elements for substructures.

    DOT National Transportation Integrated Search

    2011-06-01

    The goal of this research was to propose an alternate system of precast bridge substructures which can : substitute for conventional cast in place systems in Wisconsin to achieve accelerated construction. : Three types of abutment modules (hollow wal...

  20. 13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES AND 'I'-BEAMS, NORTHEAST SIDE OF BRIDGE, LOOKING WEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  1. Procedures, cost and effectiveness for deteriorated bridge substructure repair.

    DOT National Transportation Integrated Search

    2013-03-01

    Deterioration of bridge substructures has been a serious concern throughout Wisconsin. Concrete, steel and : timber components all require distinct repair methods which not only address the true cause of the deterioration, : but also protect the comp...

  2. Repair of deteriorated bridge substructures : [summary].

    DOT National Transportation Integrated Search

    2013-05-01

    Degradation of bridge substructure members in Wisconsin is a serious concern. Concrete, steel and timber members all require distinct repair methods which not only address the true cause of the deterioration, but also protect the members from future ...

  3. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  4. Turbine vane with high temperature capable skins

    DOEpatents

    Morrison, Jay A [Oviedo, FL

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  5. ALMA Observations of Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.

    2017-04-01

    Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.

  6. Offshore platform structure intended to be installed in arctic waters, subjected to drifting icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kure, G.; Jenssen, D.N.; Naesje, K.

    1984-09-11

    An offshore platform structure, particularly intended to be installed in waters where drifting iceberg frequently appear, the platform structure being intended to be founded in a sea bed and comprises a substructure, a superstructure rigidly affixed to the substructure and extending vertically up above the sea level supporting a deck superstructure at its upper end. The horizontal cross-sectional area of the substructure is substantially greater than tath of the superstructure. The substructure rigidly supports a fender structure, the fender structure comprising an outer peripherally arranged wall and an inner cylindrical wall the inner and outer wall being rigidly interconnected bymore » means of a plurality of vertical and/or horizontal partition walls, dividing the fender structure into a plurality of cells or compartlents. The fender structure is arranged in spaced relation with respect to the superstructure.« less

  7. Small but mighty: Dark matter substructures

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas

    2018-01-01

    The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.

  8. Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Melnykowycz, M.; Tschudin, M.; Clemens, F.

    2017-02-01

    For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

  9. Model-based framework for multi-axial real-time hybrid simulation testing

    NASA Astrophysics Data System (ADS)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.

  10. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  11. Seismic velocity estimation from time migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Maria Kourkina

    2007-01-01

    This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of themore » Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.« less

  12. European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus

    PubMed Central

    Chung, Sharon A.; Tian, Chao; Taylor, Kimberly E.; Lee, Annette T.; Ortmann, Ward A.; Hom, Geoffrey; Graham, Robert R.; Nititham, Joanne; Kelly, Jennifer A.; Morrisey, Jean; Wu, Hui; Yin, Hong; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Manzi, Susan; Petri, Michelle; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Seldin, Michael F.; Criswell, Lindsey A.

    2009-01-01

    Objective To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease. Methods SLE patients of European descent (n=1754) from 8 case collections were genotyped for over 1,400 ancestry informative markers that define a north/south gradient of European substructure. Based on these genetic markers, we used the STRUCTURE program to characterize each SLE patient in terms of percent northern (vs. southern) European ancestry. Non-parametric methods, including tests of trend, were used to identify associations between northern European ancestry and specific SLE manifestations. Results In multivariate analyses, increasing levels of northern European ancestry were significantly associated with photosensitivity (ptrend=0.0021, OR for highest quartile of northern European ancestry compared to lowest quartile 1.64, 95% CI 1.13–2.35) and discoid rash (ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98–3.83). In contrast, northern European ancestry was protective for anticardiolipin (ptrend=1.6 × 10−4, ORhigh-low 0.46, 95% CI 0.30–0.69) and anti-dsDNA (ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46–0.96) autoantibody production. Conclusions This study demonstrates that specific SLE manifestations vary according to northern vs. southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure due to genetic ancestry. PMID:19644962

  13. Identification of population substructure among Jews using STR markers and dependence on reference populations included.

    PubMed

    Listman, Jennifer B; Hasin, Deborah; Kranzler, Henry R; Malison, Robert T; Mutirangura, Apiwat; Sughondhabirom, Atapol; Aharonovich, Efrat; Spivak, Baruch; Gelernter, Joel

    2010-06-14

    Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage.

  14. Modelling the line-of-sight contribution in substructure lensing

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.

    2018-04-01

    We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.

  15. Identification of population substructure among Jews using STR markers and dependence on reference populations included

    PubMed Central

    2010-01-01

    Background Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Results Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Conclusions Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage. PMID:20546593

  16. Protection of reinforced concrete bridge substructures using submerged bulk anodes : final report, January 25, 2009.

    DOT National Transportation Integrated Search

    2010-01-01

    Reinforced concrete bridge substructures in Florida coastal waters have historically experienced deterioration as a consequence of embedded steel corrosion and resultant concrete cracking and spalling. Ultimately, this deterioration leads to added ma...

  17. 8. View of substructure showing the lower chord of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of substructure showing the lower chord of the Howe truss, flared board-and-batten siding, and pier configuration - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  18. Development of a precast bent cap system

    DOT National Transportation Integrated Search

    2001-01-01

    Improved speed of construction and economy can be achieved through the use of precast bridge substructures. As a step in the advancement of precast bridge substructures, a precast bent cap system is developed for nonseismic regions, including a desig...

  19. Analysis of the state of the art of precast concrete bridge substructure systems.

    DOT National Transportation Integrated Search

    2013-10-01

    Precasting of bridge substructure components holds potential for accelerating the construction of bridges,reducing : impacts to the traveling public on routes adjacent to construction sites, improving bridge durability and hence service : life, and r...

  20. Modeling of rail track substructure linear elastic coupling

    DOT National Transportation Integrated Search

    2015-09-30

    Most analyses of rail dynamics neglect contribution of the soil, or treat it in a very simple manner such as using spring elements. This can cause accuracy issues in examining dynamics for passenger comfort, derailment, substructure analysis, or othe...

  1. Substructure detail view of the castinplace concrete bents and steel, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Substructure detail view of the cast-in-place concrete bents and steel, longitudinal "I" beams. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  2. 2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF BRIDGE CROSSING THE SOUTH FORK OF THE TUOLUMNE RIVER. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA

  3. A Collaborative Web-Based Architecture For Sharing ToxCast Data

    EPA Science Inventory

    Collaborative Drug Discovery (CDD) has created a scalable platform that combines traditional drug discovery informatics with Web2.0 features. Traditional drug discovery capabilities include substructure, similarity searching and export to excel or sdf formats. Web2.0 features inc...

  4. Global strength assessment in oblique waves of a large gas carrier ship, based on a non-linear iterative method

    NASA Astrophysics Data System (ADS)

    Domnisoru, L.; Modiga, A.; Gasparotti, C.

    2016-08-01

    At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.

  5. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  6. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2007-01-01

    The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.

  7. Quasi-Static Probabilistic Structural Analyses Process and Criteria

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Verderaime, V.

    1999-01-01

    Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

  8. ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai

    2018-01-01

    The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.

  9. Insight into the Peopling of Mainland Southeast Asia from Thai Population Genetic Structure

    PubMed Central

    Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Assawamakin, Anunchai; Nuinoon, Manit; Sripichai, Orapan; Svasti, Saovaros; Fucharoen, Suthat; Praphanphoj, Verayuth; Tongsima, Sissades

    2013-01-01

    There is considerable ethno-linguistic and genetic variation among human populations in Asia, although tracing the origins of this diversity is complicated by migration events. Thailand is at the center of Mainland Southeast Asia (MSEA), a region within Asia that has not been extensively studied. Genetic substructure may exist in the Thai population, since waves of migration from southern China throughout its recent history may have contributed to substantial gene flow. Autosomal SNP data were collated for 438,503 markers from 992 Thai individuals. Using the available self-reported regional origin, four Thai subpopulations genetically distinct from each other and from other Asian populations were resolved by Neighbor-Joining analysis using a 41,569 marker subset. Using an independent Principal Components-based unsupervised clustering approach, four major MSEA subpopulations were resolved in which regional bias was apparent. A major ancestry component was common to these MSEA subpopulations and distinguishes them from other Asian subpopulations. On the other hand, these MSEA subpopulations were admixed with other ancestries, in particular one shared with Chinese. Subpopulation clustering using only Thai individuals and the complete marker set resolved four subpopulations, which are distributed differently across Thailand. A Sino-Thai subpopulation was concentrated in the Central region of Thailand, although this constituted a minority in an otherwise diverse region. Among the most highly differentiated markers which distinguish the Thai subpopulations, several map to regions known to affect phenotypic traits such as skin pigmentation and susceptibility to common diseases. The subpopulation patterns elucidated have important implications for evolutionary and medical genetics. The subpopulation structure within Thailand may reflect the contributions of different migrants throughout the history of MSEA. The information will also be important for genetic association studies to account for population-structure confounding effects. PMID:24223962

  10. A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves

    PubMed Central

    Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian

    2016-01-01

    Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183

  11. State-of-the-Art Report About Durability of Post-Tensioned Bridge Substructures

    DOT National Transportation Integrated Search

    1999-10-01

    Durability design requires an understanding of the factors influencing durability and the measures necessary to improve durability of concrete structures. The objectives of this report are to: 1. Survey the condition of bridge substructures in Texas;...

  12. Field validation of polyurethane technology in remediating rail substructure and enhancing rail freight capacity.

    DOT National Transportation Integrated Search

    2016-10-01

    Railways are an important component of a multi-modal freight transport network. The structural integrity of rail substructure and problematic railway elements can be compromised leading to track instability and ultimately, train derailments. Because ...

  13. System for detecting substructure microfractures and method therefore

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Narasimhan, K. Y. (Inventor)

    1979-01-01

    Bursts of signals at different frequencies are induced into substructure, adjacent to a borehole. The return signals from each burst of signals are normalized to compensate for the attenuation, experienced by more distant return signals. The peak amplitudes of return signals, above a selected level, are cut off, and an average signal is produced from the normalized amplitude-limited return signals of each burst. The averaged signals of the return signals of all the signal bursts at the different frequencies are processed to provide a combined signal, whose amplitude is related to the microfracture density of the substructure adjacent to the borehole.

  14. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  15. Study of substructure of high transverse momentum jets produced in proton-antiproton collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Alon, R.; Álvarez González, B.; ...

    2012-05-03

    A study of the substructure of jets with transverse momentum greater than 400 GeV/c produced in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider and recorded by the CDF II detector is presented. The distributions of the jet mass, angularity, and planar flow are measured for the first time in a sample with an integrated luminosity of 5.95 fb⁻¹. The observed substructure for high mass jets is consistent with predictions from perturbative quantum chromodynamics.

  16. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra

    PubMed Central

    2015-01-01

    Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576

  17. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  18. New angles on energy correlation functions

    DOE PAGES

    Moult, Ian; Necib, Lina; Thaler, Jesse

    2016-12-29

    Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/Hmore » tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i, N i, and U i. The Mi series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.« less

  19. New angles on energy correlation functions

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Necib, Lina; Thaler, Jesse

    2016-12-01

    Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.

  20. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS

    PubMed Central

    Einstein, Daniel R.; Dyedov, Vladimir

    2010-01-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546

  1. Comprehensive Analysis of LC/MS Data Using Pseudocolor Plots

    NASA Astrophysics Data System (ADS)

    Crutchfield, Christopher A.; Olson, Matthew T.; Gourgari, Evgenia; Nesterova, Maria; Stratakis, Constantine A.; Yergey, Alfred L.

    2013-02-01

    We have developed new applications of the pseudocolor plot for the analysis of LC/MS data. These applications include spectral averaging, analysis of variance, differential comparison of spectra, and qualitative filtering by compound class. These applications have been motivated by the need to better understand LC/MS data generated from analysis of human biofluids. The examples presented use data generated to profile steroid hormones in urine extracts from a Cushing's disease patient relative to a healthy control, but are general to any discovery-based scanning mass spectrometry technique. In addition to new visualization techniques, we introduce a new metric of variance: the relative maximum difference from the mean. We also introduce the concept of substructure-dependent analysis of steroid hormones using precursor ion scans. These new analytical techniques provide an alternative approach to traditional untargeted metabolomics workflow. We present an approach to discovery using MS that essentially eliminates alignment or preprocessing of spectra. Moreover, we demonstrate the concept that untargeted metabolomics can be achieved using low mass resolution instrumentation.

  2. Riccati parameterized self-similar waves in two-dimensional graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2015-04-01

    An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.

  3. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    PubMed

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Wave Period and Coastal Bathymetry Estimations from Satellite Images

    NASA Astrophysics Data System (ADS)

    Danilo, Celine; Melgani, Farid

    2016-08-01

    We present an approach for wave period and coastal water depth estimation. The approach based on wave observations, is entirely independent of ancillary data and can theoretically be applied to SAR or optical images. In order to demonstrate its feasibility we apply our method to more than 50 Sentinel-1A images of the Hawaiian Islands, well-known for its long waves. Six wave buoys are available to compare our results with in-situ measurements. The results on Sentinel-1A images show that half of the images were unsuitable for applying the method (no swell or wavelength too small to be captured by the SAR). On the other half, 78% of the estimated wave periods are in accordance with buoy measurements. In addition, we present preliminary results of the estimation of the coastal water depth on a Landsat-8 image (with characteristics close to Sentinel-2A). With a squared correlation coefficient of 0.7 for ground truth measurement, this approach reveals promising results for monitoring coastal bathymetry.

  5. A problem-posing approach to teaching the topic of radioactivity

    NASA Astrophysics Data System (ADS)

    Klaassen, C. W. J. M.

    1995-12-01

    This thesis highlights a problem-posing approach to science education. By this is meant an approach that explicitly aims at providing students with content-related motives for extending their existing conceptual resources, experiential base and belief system in a certain direction, such that a further development in that direction eventually leads to a proper understanding of science. An elaboration of that approach consists in designing, testing, improving, etc, concrete didactical structures. The eventual aim of the approach is a coherent, and by means of developmental research empirically supported, didactical structure that covers the whole of science education. The thesis also contains a few steps in the direction suggested by this programmatic view. It contains an illustration of the heuristic value of an articulation of a didactical structure in some main substructures, based on the work of van Hiele and ten Voorde. It further contains a discussion of some methodological aspects relating to the design and evaluation of a didactical structure, and of the role that a further developed version of Davidson's theory of interpretation could play in this respect. A detailed didactical structure of the topic of radioactivity is presented, evaluated and, on the basis of the evaluation, judged as `good enough.' Also the role of the teacher in a problem-posing approach is dis-cussed, and in particular the consequences for that role of giving students control over and responsibility for the progress of their learning process with respect to content.

  6. Effects of the earthquake of March 27, 1964, on the Alaska highway system: Chapter C in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Kachadoorian, Reuben

    1968-01-01

    The great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were damaged by seismic shaking. Lateral displacement of sediments toward a free face, which placed the bridges in compression, was the chief cause for the damage. This type of failure was extensive and widespread throughout the highway system. The chief engineering characteristics responsible for the type and intensity of damage include (1) thickness of roadway fills, (2) type of pile bents and masonry piers, (3) the weight ratio between the substructure and superstructure, and (4) the tie between the substructure and superstructure. The thicker the roadway fills, the more severe the damage. Wood piles did not break as extensively as piles constructed of three railroad rails welded together. Bridges that had relatively heavy superstructures, for example those with concrete decks on wood piles, were more severely damaged than those with all-wood or concrete decks or concrete piers. Failure first occurred at the tie between the superstructure and the substructure; the poorer this tie, the sooner the failure. Seismic sea waves destroyed 12 bridges on the Chiniak Highway on Kodiak Island, one bridge on Point Whitshed road near Cordova, and about 14 miles of roadway. The combination of regional tectonic subsidence and local subsidence and compaction of sediments caused inundation of many miles of highway by high tides, especially around Turnagain Arm. Total subsidence in some places amounted to more than 13 feet.

  7. Shading Vita YZ substructures: influence on value and chroma, part I.

    PubMed

    Devigus, A; Lombardi, G

    2004-07-01

    All-ceramic restorations should reproduce as well as possible the color of the natural teeth to create a restoration in accordance with the esthetic wishes and ideas of the patient. The basic color of zirconium oxide is white to ivory. The color can be partially adapted by veneering it with ceramic materials. However, it would be better if the substructure could already be adapted to the basic color shade of the neighboring teeth. In this study, the influence of differently shaded frameworks made of Y-TZP by Vita and 3M ESPE and by Enrico Steger (without, with 0.5 mm, or with 1.0 mm ceramic veneer with Base Dentin) on the brightness, saturation, and color shade (= value, chroma, and hue) was measured and assessed with the aid of a spectral photometer (EasyShade, Vita) in a clinical case in the mouth and on the model. By adaptation to the basic shade, the shading of substructures made of Y-TZP can help to reduce the necessary layer thickness of the veneer ceramic to achieve the desired color and should be performed in the future as a matter of routine. In this way, more substance can be conserved when restoring the teeth without having to accept an impairment of the esthetic result.

  8. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan1974@163.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002; Ao, Ke-Hou

    A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd{sub 2.5}((R)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-D), [Cd{sub 2.5}((S)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligandsmore » ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB to assemble with Cd{sup 2+} ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers.« less

  9. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.

    1983-07-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less

  10. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa

    PubMed Central

    Ridder, Lars; van der Hooft, Justin J. J.; Verhoeven, Stefan

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed. PMID:26819876

  11. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    PubMed

    Ridder, Lars; van der Hooft, Justin J J; Verhoeven, Stefan

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed.

  12. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.

    PubMed

    Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito

    2016-10-24

    To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.

  13. Modeling of connections between substructures

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1991-01-01

    It is demonstrated here that complete checkout of a basic substructure can be done under the special circumstance of a sliding connection with offsets. Stiff bar connectors make this possible so long as the bar coordinates are aligned with the displacement coordinates at the sliding surface.

  14. FHWA LTBP Workshop to Identify Bridge Substructure Performance Issues

    DOT National Transportation Integrated Search

    2013-06-01

    This TechBrief provides an overview of the proceedings and findings of the "FHWA Workshop to Identify Bridge Substructure Performance Issues" held in Orlando, Florida, from March 4 to 6, 2010. The purpose of the workshop was to consider overall bridg...

  15. Detail view of substructure, view looking south at the center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of substructure, view looking south at the center in-water frame bent - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  16. Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zheng, Shuhua

    2017-06-01

    By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.

  17. Evolution of Occupant Survivability Simulation Framework Using FEM-SPH Coupling

    DTIC Science & Technology

    2011-08-01

    SPH Coupling, Dooge and Thyagarajan. UNCLASSIFIED: Dist A. Approved for public release Page 2 of 14 works outward in the chain: soldier  seats ...reduced degree of freedom (DOF) system, evaluation of occupant seating independent of the vehicle environment, or using a substructure approach to...the ejected material covering the charge imposes most of the loading onto the structure above. The properties of the material in the "soil cap" are

  18. Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots.

    PubMed

    Mendoza, Marco; Bonilla, Isela; González-Galván, Emilio; Reyes, Fernando

    2016-01-01

    This paper presents an improved wave-based bilateral teleoperation scheme for rehabilitation therapies assisted by robot manipulators. The main feature of this bilateral teleoperator is that both robot manipulators, master and slave, are controlled by impedance. Thus, a pair of motion-based adaptive impedance controllers are integrated into a wave-based configuration, in order to guarantee a stable human-robot interaction and to compensate the position drift, characteristic of the available schemes of bilateral teleoperation. Moreover, the teleoperator stability, in the presence of time delays in the communication channel, is guaranteed because the wave-variable approach is included to encode the force and velocity signals. It should be noted that the proposed structure enables the implementation of several teleoperator schemes, from passive therapies, without the intervention of a human operator on the master side, to fully active therapies where both manipulators interact with humans in a stable manner. The suitable performance of the proposed teleoperator is verified through some results obtained from the simulation of the passive and active-constrained modes, by considering typical tasks in motor-therapy rehabilitation, where an improved behavior is observed when compared to implementations of the classical wave-based approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Social-group identity and population substructure in admixed populations in New Mexico and Latin America.

    PubMed

    Healy, Meghan E; Hill, Deirdre; Berwick, Marianne; Edgar, Heather; Gross, Jessica; Hunley, Keith

    2017-01-01

    We examined the relationship between continental-level genetic ancestry and racial and ethnic identity in an admixed population in New Mexico with the goal of increasing our understanding of how racial and ethnic identity influence genetic substructure in admixed populations. Our sample consists of 98 New Mexicans who self-identified as Hispanic or Latino (NM-HL) and who further categorized themselves by race and ethnic subgroup membership. The genetic data consist of 270 newly-published autosomal microsatellites from the NM-HL sample and previously published data from 57 globally distributed populations, including 13 admixed samples from Central and South America. For these data, we 1) summarized the major axes of genetic variation using principal component analyses, 2) performed tests of Hardy Weinberg equilibrium, 3) compared empirical genetic ancestry distributions to those predicted under a model of admixture that lacked substructure, 4) tested the hypotheses that individuals in each sample had 100%, 0%, and the sample-mean percentage of African, European, and Native American ancestry. We found that most NM-HL identify themselves and their parents as belonging to one of two groups, conforming to a region-specific narrative that distinguishes recent immigrants from Mexico from individuals whose families have resided in New Mexico for generations and who emphasize their Spanish heritage. The "Spanish" group had significantly lower Native American ancestry and higher European ancestry than the "Mexican" group. Positive FIS values, PCA plots, and heterogeneous ancestry distributions suggest that most Central and South America admixed samples also contain substructure, and that this substructure may be related to variation in social identity. Genetic substructure appears to be common in admixed populations in the Americas and may confound attempts to identify disease-causing genes and to understand the social causes of variation in health outcomes and social inequality.

  20. Evolution of the BCG in Disturbed Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ardila, Felipe; Strauss, Michael A.; Lauer, Tod R.; Postman, Marc

    2017-01-01

    The present paradigm in cosmology tells us that large-scale structures grow hierarchically. This suggests that galaxy clusters grow by accreting mass and merging with other clusters, a process which should be detectable by the presence of substructure within a cluster. Using the Dressler-Shectman (DS) three-dimensional test for dynamical substructure, we determined which clusters showed evidence for disturbance from a set of 227 Abell clusters from Lauer et al. (2014) with at least 50 member galaxies and spectroscopic redshifts, z < 0.08. Our results show that 155 (68.2%) of the clusters showed evidence for substructure at ≥ 95% confidence, while 72 did not. Kolmogorov-Smirnov tests suggest that the two populations of clusters (those with and without detected substructure) are significantly different in their distributions of BCG luminosities (Lm), but not in their BCG stellar velocity dispersions (σ), their BCG spatial offsets from the x-ray centers of the clusters, their BCG velocity offsets from the mean cluster velocity, the logarithmic slopes of their BCG photometric curves of growth (α), their cluster velocity dispersions, or their luminosity differences between the BCG and the second-ranked galaxy in the cluster (M2). Similarly, no significant difference was found in the fitting of the Lm-α-σ metric plane for BCGs of clusters with substructure compared those in which there is not substructure. This is surprising since our hierarchical growth models suggest that some of these BCG/cluster properties would be affected by a disturbance of the cluster, indicating that our understanding of how BCGs evolve with their clusters is incomplete and we should explore other ways to probe the level of disturbance.

  1. Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Peñarrubia, Jorge

    2015-04-01

    We study the evolution of the dark matter (DM) halo profiles of dwarf galaxies driven by the accretion of DM substructures through controlled N-body experiments. Our initial conditions assume that early supernova feedback erases the primordial DM cusps of haloes with z = 0 masses of 109 - 1010 M⊙. The orbits and masses of the infalling substructures are borrowed from the Aquarius cosmological simulations. Our experiments show that a fraction of haloes that undergo 1:3 down to 1:30 mergers are susceptible to reform a DM cusp by z ≈ 0. Cusp regrowth is driven by the accretion of DM substructures that are dense enough to reach the central regions of the main halo before being tidally disrupted. The infall of substructures on the mean of the reported mass-concentration relation and a mass ratio above 1:6 systematically leads to cusp regrowth. Substructures with 1:6-1:8, and 1:8-1:30 only reform DM cusps if their densities are 1σ and 2σ above the mean, respectively. The merging time-scales of these dense, low-mass substructures is relatively long (5 - 11 Gyr), which may pose a time-scale problem for the longevity of DM cores in dwarfs galaxies and possibly explain the existence of dense dwarfs-like Draco. These results suggest that within cold dark matter a non-negligible level of scatter in the mass profiles of galactic haloes acted on by feedback is to be expected given the stochastic mass accretion histories of low-mass haloes and the diverse star formation histories observed in the Local Group dwarfs.

  2. The ancient history of the structure of ribonuclease P and the early origins of Archaea

    PubMed Central

    2010-01-01

    Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683

  3. Modeling evolution of dark matter substructure and annihilation boost

    NASA Astrophysics Data System (ADS)

    Hiroshima, Nagisa; Ando, Shin'ichiro; Ishiyama, Tomoaki

    2018-06-01

    We study evolution of dark matter substructures, especially how they lose mass and change density profile after they fall in gravitational potential of larger host halos. We develop an analytical prescription that models the subhalo mass evolution and calibrate it to results of N -body numerical simulations of various scales from very small (Earth size) to large (galaxies to clusters) halos. We then combine the results with halo accretion histories and calculate the subhalo mass function that is physically motivated down to Earth-mass scales. Our results—valid for arbitrary host masses and redshifts—have reasonable agreement with those of numerical simulations at resolved scales. Our analytical model also enables self-consistent calculations of the boost factor of dark matter annihilation, which we find to increase from tens of percent at the smallest (Earth) and intermediate (dwarfs) masses to a factor of several at galaxy size, and to become as large as a factor of ˜10 for the largest halos (clusters) at small redshifts. Our analytical approach can accommodate substructures in the subhalos (sub-subhalos) in a consistent framework, which we find to give up to a factor of a few enhancements to the annihilation boost. The presence of the subhalos enhances the intensity of the isotropic gamma-ray background by a factor of a few, and as the result, the measurement by the Fermi Large Area Telescope excludes the annihilation cross section greater than ˜4 ×10-26 cm3 s-1 for dark matter masses up to ˜200 GeV .

  4. Spatial characterization of innervation zones under electrically elicited M-wave.

    PubMed

    Zhang, C; Peng, Y; Li, S; Zhou, P; Munoz, A; Tang, D; Zhang, Y

    2016-08-01

    The three dimensional (3D) innervation zone (IZ) imaging approach (3DIZI) has been developed in our group to localize the IZ of a particular motor unit (MU) from its motor unit action potentials decomposed from high-density surface electromyography (EMG) recordings. In this study, the developed 3DIZI approach was combined with electrical stimulation to investigate global distributions of IZs in muscles from electrically elicited M-wave recordings. Electrical stimulations were applied to the musculocutaneous nerve to activate supramaximal muscle response of the biceps brachii in one healthy subject, and high-density (128 channels) surface EMG signals of the biceps brachii muscles were recorded. The 3DIZI approach was then employed to image the IZ distribution of IZs in the 3D space of the biceps brachii. The performance of the M-wave based 3DIZI approach was evaluated with different stimulation intensities. Results show that the reconstructed IZs under supramaximal stimulation are spatially distributed in the center region of muscle belly which is consistent with previous studies. With sub-maximal stimulation intensity, the imaged IZ centers became more proximally and deeply located. The proposed M-wave based 3DIZI approach demonstrated its capability of imaging global distribution of IZs in muscles, which provide valuable information for clinical applications such as guiding botulinum toxin injection in treating muscle spasticity.

  5. Characterization of Chloride thresholds in Florida coastal concrete bridge substructures : final report, February 11, 2009.

    DOT National Transportation Integrated Search

    2009-02-11

    Sea water induced reinforcing steel corrosion often results in high maintenance costs and can be service life limiting for concrete bridge substructure elements in marine environments. In the present research, a novel piling type specimen assembly an...

  6. Correlation between the sub-structure parameters and the manufacturing technologies of metal threads in historical textiles using X-ray line profile analysis

    NASA Astrophysics Data System (ADS)

    Csiszár, Gábor; Ungár, Tamás; Járó, Márta

    2013-06-01

    Micro-structure can talk when documentation is missing. In ancient Roman or medieval periods, kings, queens, or just rich people decorated their clothes or even their horse covers richly with miniature jewels or metal threads. The origin or the fabrication techniques of these ancient threads is often unknown. Thirteen thread samples made of gold or gilt silver manufactured during the last sixteen hundred years are investigated for the micro-structure in terms of dislocation density, crystallite size, and planar defects. In a few cases, these features are compared with sub-structure of similar metallic threads prepared in modern, twentieth century workshops. The sub-structure is determined by X-ray line profile analysis, using high resolution diffractograms with negligible instrumental broadening. On the basis of the sub-structure parameters, we attempt to assess the metal-threads manufacturing procedures on samples stemming from the fourth century A.D. until now.

  7. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  8. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  9. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  10. Pre-stressed thermal protection systems

    NASA Technical Reports Server (NTRS)

    Dunn, T. J. (Inventor)

    1984-01-01

    A hexagonal protective and high temperature resistant system for the Space Shuttle Orbiter consists of a multiplicity of pockets formed by hexagonally oriented spacer bars secured on the vehicle substructure. A packing of low density insulating batt material 18 in each pocket, and a thin protective panel of laterally resilient advanced carbon-carbon material surmounting the peripherals bars and packing. Each panel has three stepped or offset lips on contiguous edges. At the center of each pocket is a fully insulated stanchion secured to and connecting the substructure and panel for flexing the panel toward the substructure and thereby prestressing the panel and forcing the panel edges firmly against the spacer bars.

  11. Thermal environments for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Fu, J. H.; Graves, G. R.

    1985-01-01

    The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.

  12. Spectral structure of electron antineutrinos from nuclear reactors.

    PubMed

    Dwyer, D A; Langford, T J

    2015-01-09

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  13. A NASTRAN model of a large flexible swing-wing bomber. Volume 5: NASTRAN model development-fairing structure

    NASA Technical Reports Server (NTRS)

    Mock, W. D.; Latham, R. A.

    1982-01-01

    The NASTRAN model plan for the fairing structure was expanded in detail to generate the NASTRAN model of this substructure. The grid point coordinates, element definitions, material properties, and sizing data for each element were specified. The fairing model was thoroughly checked out for continuity, connectivity, and constraints. The substructure was processed for structural influence coefficients (SIC) point loadings to determine the deflection characteristics of the fairing model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.

  14. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    DOT National Transportation Integrated Search

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  15. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  16. Automated deconvolution of structured mixtures from heterogeneous tumor genomic data

    PubMed Central

    Roman, Theodore; Xie, Lu

    2017-01-01

    With increasing appreciation for the extent and importance of intratumor heterogeneity, much attention in cancer research has focused on profiling heterogeneity on a single patient level. Although true single-cell genomic technologies are rapidly improving, they remain too noisy and costly at present for population-level studies. Bulk sequencing remains the standard for population-scale tumor genomics, creating a need for computational tools to separate contributions of multiple tumor clones and assorted stromal and infiltrating cell populations to pooled genomic data. All such methods are limited to coarse approximations of only a few cell subpopulations, however. In prior work, we demonstrated the feasibility of improving cell type deconvolution by taking advantage of substructure in genomic mixtures via a strategy called simplicial complex unmixing. We improve on past work by introducing enhancements to automate learning of substructured genomic mixtures, with specific emphasis on genome-wide copy number variation (CNV) data, as well as the ability to process quantitative RNA expression data, and heterogeneous combinations of RNA and CNV data. We introduce methods for dimensionality estimation to better decompose mixture model substructure; fuzzy clustering to better identify substructure in sparse, noisy data; and automated model inference methods for other key model parameters. We further demonstrate their effectiveness in identifying mixture substructure in true breast cancer CNV data from the Cancer Genome Atlas (TCGA). Source code is available at https://github.com/tedroman/WSCUnmix PMID:29059177

  17. Causal relationship model between variables using linear regression to improve professional commitment of lecturer

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2017-01-01

    The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.

  18. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  19. Applying temporal abstraction and case-based reasoning to predict approaching influenza waves.

    PubMed

    Schmidt, Rainer; Gierl, Lothar

    2002-01-01

    The goal of the TeCoMed project is to send early warnings against forthcoming waves or even epidemics of infectious diseases, especially of influenza, to interested practitioners, pharmacists etc. in the German federal state Mecklenburg-Western Pomerania. The forecast of these waves is based on written confirmations of unfitness for work of the main German health insurance company. Since influenza waves are difficult to predict because of their cyclic but not regular behaviour, statistical methods based on the computation of mean values are not helpful. Instead, we have developed a prognostic model that makes use of similar former courses. Our method combines Case-based Reasoning with Temporal Abstraction to decide whether early warning is appropriate.

  20. Stellar Stream and Halo Structure in the Andromeda Galaxy from a Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka; Chiba, Masashi; Tanaka, Mikito; Tanaka, Masayuki; Kirihara, Takanobu; Miki, Yohei; Mori, Masao; Lupton, Robert H.; Guhathakurta, Puragra; Kalirai, Jason S.; Gilbert, Karoline; Kirby, Evan; Lee, Myun Gyoon; Jang, In Sung; Sharma, Sanjib; Hayashi, Kohei

    2018-01-01

    We present wide and deep photometry of the northwestern part of the halo of the Andromeda galaxy (M31) using Hyper Suprime-Cam on the Subaru Telescope. The survey covers a 9.2 deg2 field in the g, i, and NB515 bands and shows a clear red giant branch (RGB) of M31's halo stars and a pronounced red clump (RC) feature. The spatial distribution of RC stars shows a prominent stream feature, the Northwestern (NW) Stream, and a diffuse substructure in the southern part of our survey field. We estimate the distances based on the RC method and obtain (m{--}M) = 24.63 ± 0.191 (random) ± 0.057 (systematic) and 24.29 ± 0.211 (random) ± 0.057 (systematic) mag for the NW Stream and diffuse substructure, respectively, implying that the NW Stream is located behind M31, whereas the diffuse substructure is located in front of it. We also estimate line-of-sight distances along the NW Stream and find that the southern part of the stream is ∼20 kpc closer to us relative to the northern part. The distance to the NW Stream inferred from the isochrone fitting to the color–magnitude diagram favors the RC-based distance, but the tip of the RGB (TRGB)-based distance estimated for NB515-selected RGB stars does not agree with it. The surface number density distribution of RC stars across the NW Stream is found to be approximately Gaussian with an FWHM of ∼25 arcmin (5.7 kpc), with a slight skew to the southwest side. That along the NW Stream shows a complicated structure, including variations in number density and a significant gap in the stream. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. Rogue waves and entropy consumption

    NASA Astrophysics Data System (ADS)

    Hadjihoseini, Ali; Lind, Pedro G.; Mori, Nobuhito; Hoffmann, Norbert P.; Peinke, Joachim

    2017-11-01

    Based on data from the Sea of Japan and the North Sea the occurrence of rogue waves is analyzed by a scale-dependent stochastic approach, which interlinks fluctuations of waves for different spacings. With this approach we are able to determine a stochastic cascade process, which provides information of the general multipoint statistics. Furthermore the evolution of single trajectories in scale, which characterize wave height fluctuations in the surroundings of a chosen location, can be determined. The explicit knowledge of the stochastic process enables to assign entropy values to all wave events. We show that for these entropies the integral fluctuation theorem, a basic law of non-equilibrium thermodynamics, is valid. This implies that positive and negative entropy events must occur. Extreme events like rogue waves are characterized as negative entropy events. The statistics of these entropy fluctuations changes with the wave state, thus for the Sea of Japan the statistics of the entropies has a more pronounced tail for negative entropy values, indicating a higher probability of rogue waves.

  2. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  3. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  4. A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bravin, A.; Mocella, V.; Coan, P.; Astolfo, A.; Ferrero, C.

    2007-04-01

    An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual ‘weak object’ approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.

  5. Wave processes in the human cardiovascular system: The measuring complex, computing models, and diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.

    2017-03-01

    A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.

  6. Review of combined isotopic and optical nanoscopy

    PubMed Central

    Richter, Katharina N.; Rizzoli, Silvio O.; Jähne, Sebastian; Vogts, Angela; Lovric, Jelena

    2017-01-01

    Abstract. Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the “history” of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology. PMID:28466025

  7. View of substructure of Sixth Street Bridge overcrossing of Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of substructure of Sixth Street Bridge overcrossing of Los Angeles River. Looking west. Note dark hole at lower with is access ramp to river channel seen in HAER CA-176-56 - Sixth Street Bridge, Spanning 101 Freeway at Sixth Street, Los Angeles, Los Angeles County, CA

  8. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  9. Tautomerism in chemical information management systems

    NASA Astrophysics Data System (ADS)

    Warr, Wendy A.

    2010-06-01

    Tautomerism has an impact on many of the processes in chemical information management systems including novelty checking during registration into chemical structure databases; storage of structures; exact and substructure searching in chemical structure databases; and depiction of structures retrieved by a search. The approaches taken by 27 different software vendors and database producers are compared. It is hoped that this comparison will act as a discussion document that could ultimately improve databases and software for researchers in the future.

  10. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  11. Modeling and design for electromagnetic surface wave devices

    NASA Astrophysics Data System (ADS)

    La Spada, Luigi; Haq, Sajad; Hao, Yang

    2017-09-01

    A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.

  12. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary

    USGS Publications Warehouse

    Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.

    2017-01-01

    Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.

  13. Gravitational Waves: A New Observational Window

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  14. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  15. A new physics-based modeling approach for tsunami-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.

    2015-06-01

    Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.

  16. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  17. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching.

    PubMed

    Willighagen, Egon L; Mayfield, John W; Alvarsson, Jonathan; Berg, Arvid; Carlsson, Lars; Jeliazkova, Nina; Kuhn, Stefan; Pluskal, Tomáš; Rojas-Chertó, Miquel; Spjuth, Ola; Torrance, Gilleain; Evelo, Chris T; Guha, Rajarshi; Steinbeck, Christoph

    2017-06-06

    The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, providing data structures to represent chemical concepts along with methods to manipulate such structures and perform computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug discovery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, resulting in many complex interdependencies among components and poor performance of many algorithms. We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing and molecular formula handling, and improvement to existing functionality that has led to significantly better performance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a code review mechanism. This paper highlights our continued efforts to provide a community driven, open source cheminformatics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a high-quality and performant library. By taking advantage of community support and contributions, we show that an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing software. Graphical abstract CDK 2.0 provides new features and improved performance.

  18. Fast generation of complex modulation video holograms using temporal redundancy compression and hybrid point-source/wave-field approaches

    NASA Astrophysics Data System (ADS)

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2015-09-01

    The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.

  19. Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao

    2017-05-01

    AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.

  20. Substructure procedure for including tile flexibility in stress analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1980-01-01

    A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered.

  1. Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian

    2018-01-01

    Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.

  2. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  3. 5-D interpolation with wave-front attributes

    NASA Astrophysics Data System (ADS)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.

  4. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library.

    PubMed

    Liu, Song; Scotti, John S; Kozmin, Sergey A

    2013-09-06

    We have developed a synthetic strategy that mimics the diversity-generating power of monoterpenoid indole alkaloid biosynthesis. Our general approach goes beyond diversification of a single natural product-like substructure and enables production of a highly diverse collection of small molecules. The reaction sequence begins with rapid and highly modular assembly of the tetracyclic indoloquinolizidine core, which can be chemoselectively processed into several additional skeletally diverse structural frameworks. The general utility of this approach was demonstrated by parallel synthesis of two representative chemical libraries containing 847 compounds with favorable physicochemical properties to enable its subsequent broad pharmacological evaluation.

  5. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  6. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    PubMed

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

  7. NASTRAN applications to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    White, J. L.; Beste, D. L.

    1975-01-01

    The use of NASTRAN in propulsion system structural integration analysis is described. Computer support programs for modeling, substructuring, and plotting analysis results are discussed. Requirements on interface information and data exchange by participants in a NASTRAN substructure analysis are given. Static and normal modes vibration analysis results are given with comparison to test and other analytical results.

  8. Genetic variation in social mammals: the marmot model.

    PubMed

    Schwartz, O A; Armitage, K B

    1980-02-08

    The social substructure and the distribution of genetic variation among colonies of yellow-bellied marmots, when analyzed as an evolutionary system, suggests that this substructure enhances the intercolony variance and retards the fixation of genetic variation. This result supports a traditional theory of gradual evolution rather than recent theories suggesting accelerated evolution in social mammals.

  9. Efficient heuristics for maximum common substructure search.

    PubMed

    Englert, Péter; Kovács, Péter

    2015-05-26

    Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.

  10. Nonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element

    PubMed Central

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667

  11. An algorithm to identify functional groups in organic molecules.

    PubMed

    Ertl, Peter

    2017-06-07

    The concept of functional groups forms a basis of organic chemistry, medicinal chemistry, toxicity assessment, spectroscopy and also chemical nomenclature. All current software systems to identify functional groups are based on a predefined list of substructures. We are not aware of any program that can identify all functional groups in a molecule automatically. The algorithm presented in this article is an attempt to solve this scientific challenge. An algorithm to identify functional groups in a molecule based on iterative marching through its atoms is described. The procedure is illustrated by extracting functional groups from the bioactive portion of the ChEMBL database, resulting in identification of 3080 unique functional groups. A new algorithm to identify all functional groups in organic molecules is presented. The algorithm is relatively simple and full details with examples are provided, therefore implementation in any cheminformatics toolkit should be relatively easy. The new method allows the analysis of functional groups in large chemical databases in a way that was not possible using previous approaches. Graphical abstract .

  12. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.

    PubMed

    Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann

    2016-05-15

    A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cryogenic Tank Structure Sizing With Structural Optimization Method

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.

    2001-01-01

    Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.

  14. Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex.

    PubMed

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2008-09-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine. A particularly useful application of this phenomenon is the experimental detection of the sub-structures of the anomalous scatterers in protein crystals. We demonstrate this here with a crystal of a C-terminally truncated variant of human CK2alpha to which two molecules of the inhibitor 5,6-dichloro-1-beta-D-ribo-furanosyl-benzimidazole (DRB) are bound. The structure of this co-crystal has been solved recently. For this study we measured an additional diffraction data set at a wavelength of 2 A which showed strong anomalous dispersion effects. On the basis of these effects we detected all sulfur atoms of the protein, the two liganded DRB molecules and a total of 16 additional chloride ions some of them emerging at positions filled with water molecules in previous structure determinations. A number of chloride ions are bound to structural and functional important locations fitting to the constitutive activity and the acidophilic substrate specificity of the enzyme.

  15. Detection of Ancestry Informative HLA Alleles Confirms the Admixed Origins of Japanese Population

    PubMed Central

    Nakaoka, Hirofumi; Mitsunaga, Shigeki; Hosomichi, Kazuyoshi; Shyh-Yuh, Liou; Sawamoto, Taiji; Fujiwara, Tsutomu; Tsutsui, Naohisa; Suematsu, Koji; Shinagawa, Akira; Inoko, Hidetoshi; Inoue, Ituro

    2013-01-01

    The polymorphisms in the human leukocyte antigen (HLA) region are powerful tool for studying human evolutionary processes. We investigated genetic structure of Japanese by using five-locus HLA genotypes (HLA-A, -B, -C, -DRB1, and -DPB1) of 2,005 individuals from 10 regions of Japan. We found a significant level of population substructure in Japanese; particularly the differentiation between Okinawa Island and mainland Japanese. By using a plot of the principal component scores, we identified ancestry informative alleles associated with the underlying population substructure. We examined extent of linkage disequilibrium (LD) between pairs of HLA alleles on the haplotypes that were differentiated among regions. The LDs were strong and weak for pairs of HLA alleles characterized by low and high frequencies in Okinawa Island, respectively. The five-locus haplotypes whose alleles exhibit strong LD were unique to Japanese and South Korean, suggesting that these haplotypes had been recently derived from the Korean Peninsula. The alleles characterized by high frequency in Japanese compared to South Korean formed segmented three-locus haplotype that was commonly found in Aleuts, Eskimos, and North- and Meso-Americans but not observed in Korean and Chinese. The serologically equivalent haplotype was found in Orchid Island in Taiwan, Mongol, Siberia, and Arctic regions. It suggests that early Japanese who existed prior to the migration wave from the Korean Peninsula shared ancestry with northern Asian who moved to the New World via the Bering Strait land bridge. These results may support the admixture model for peopling of Japanese Archipelago. PMID:23577161

  16. Detection of ancestry informative HLA alleles confirms the admixed origins of Japanese population.

    PubMed

    Nakaoka, Hirofumi; Mitsunaga, Shigeki; Hosomichi, Kazuyoshi; Shyh-Yuh, Liou; Sawamoto, Taiji; Fujiwara, Tsutomu; Tsutsui, Naohisa; Suematsu, Koji; Shinagawa, Akira; Inoko, Hidetoshi; Inoue, Ituro

    2013-01-01

    The polymorphisms in the human leukocyte antigen (HLA) region are powerful tool for studying human evolutionary processes. We investigated genetic structure of Japanese by using five-locus HLA genotypes (HLA-A, -B, -C, -DRB1, and -DPB1) of 2,005 individuals from 10 regions of Japan. We found a significant level of population substructure in Japanese; particularly the differentiation between Okinawa Island and mainland Japanese. By using a plot of the principal component scores, we identified ancestry informative alleles associated with the underlying population substructure. We examined extent of linkage disequilibrium (LD) between pairs of HLA alleles on the haplotypes that were differentiated among regions. The LDs were strong and weak for pairs of HLA alleles characterized by low and high frequencies in Okinawa Island, respectively. The five-locus haplotypes whose alleles exhibit strong LD were unique to Japanese and South Korean, suggesting that these haplotypes had been recently derived from the Korean Peninsula. The alleles characterized by high frequency in Japanese compared to South Korean formed segmented three-locus haplotype that was commonly found in Aleuts, Eskimos, and North- and Meso-Americans but not observed in Korean and Chinese. The serologically equivalent haplotype was found in Orchid Island in Taiwan, Mongol, Siberia, and Arctic regions. It suggests that early Japanese who existed prior to the migration wave from the Korean Peninsula shared ancestry with northern Asian who moved to the New World via the Bering Strait land bridge. These results may support the admixture model for peopling of Japanese Archipelago.

  17. MultiWaveLink: An interactive data base for the coordination of multiwavelength and multifacility observations

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.

    1993-01-01

    MultiWaveLink is an interactive, computerized data base that was developed to facilitate a multi-wavelength approach to studying astrophysical sources. It can be used to access information about multiwavelenth resources (observers, telescopes, data bases and analysis facilities) or to organize observing campaigns that require either many telescopes operating in different spectral regimes or a network of similar telescopes circumspanning the Earth.

  18. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  19. Developmental synchrony of thalamocortical circuits in the neonatal brain.

    PubMed

    Poh, Joann S; Li, Yue; Ratnarajah, Nagulan; Fortier, Marielle V; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2015-08-01

    The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Discovery of a Novel Series of Tankyrase Inhibitors by a Hybridization Approach.

    PubMed

    Anumala, Upendra Rao; Waaler, Jo; Nkizinkiko, Yves; Ignatev, Alexander; Lazarow, Katina; Lindemann, Peter; Olsen, Petter Angell; Murthy, Sudarshan; Obaji, Ezeogo; Majouga, Alexander G; Leonov, Sergey; von Kries, Jens Peter; Lehtiö, Lari; Krauss, Stefan; Nazaré, Marc

    2017-12-28

    A structure-guided hybridization approach using two privileged substructures gave instant access to a new series of tankyrase inhibitors. The identified inhibitor 16 displays high target affinity on tankyrase 1 and 2 with biochemical and cellular IC 50 values of 29 nM, 6.3 nM and 19 nM, respectively, and high selectivity toward other poly (ADP-ribose) polymerase enzymes. The identified inhibitor shows a favorable in vitro ADME profile as well as good oral bioavailability in mice, rats, and dogs. Critical for the approach was the utilization of an appropriate linker between 1,2,4-triazole and benzimidazolone moieties, whereby a cyclobutyl linker displayed superior affinity compared to a cyclohexane and phenyl linker.

  1. Tsunami Waves Joint Inversion Using Tsunami Inundation, Tsunami Deposits Distribution and Marine-Terrestrial Sediment Signal in Tsunami Deposit

    NASA Astrophysics Data System (ADS)

    Tang, H.; WANG, J.

    2017-12-01

    Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.

  2. Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System

    NASA Astrophysics Data System (ADS)

    Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.

    2017-12-01

    In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.

  3. Cognitive-behavioral therapies for depression and substance use disorders: An overview of traditional, third-wave, and transdiagnostic approaches.

    PubMed

    Vujanovic, Anka A; Meyer, Thomas D; Heads, Angela M; Stotts, Angela L; Villarreal, Yolanda R; Schmitz, Joy M

    2017-07-01

    The co-occurrence of depression and substance use disorders (SUD) is highly prevalent and associated with poor treatment outcomes for both disorders. As compared to individuals suffering from either disorder alone, individuals with both conditions are likely to endure a more severe and chronic clinical course with worse treatment outcomes. Thus, current practice guidelines recommend treating these co-occurring disorders simultaneously. The overarching aims of this narrative are two-fold: (1) to provide an updated review of the current empirical status of integrated psychotherapy approaches for SUD and depression comorbidity, based on models of traditional cognitive-behavioral therapy (CBT) and newer third-wave CBT approaches, including acceptance- and mindfulness-based interventions and behavioral activation (BA); and (2) to propose a novel theoretical framework for transdiagnostic CBT for SUD-depression, based upon empirically grounded psychological mechanisms underlying this highly prevalent comorbidity. Traditional CBT approaches for the treatment of SUD-depression are well-studied. Despite advances in the development and evaluation of various third-wave psychotherapies, more work needs to be done to evaluate the efficacy of such approaches for SUD-depression. Informed by this summary of the evidence, we propose a transdiagnostic therapy approach that aims to integrate treatment elements found in empirically supported CBT-based interventions for SUD and depression. By targeting shared cognitive-affective processes underlying SUD-depression, transdiagnostic treatment models have the potential to offer a novel clinical approach to treating this difficult-to-treat comorbidity and relevant, co-occurring psychiatric disturbances, such as posttraumatic stress.

  4. Halo substructure in the SDSS-Gaia catalogue: streams and clumps

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Amorisco, N. C.; Koposov, S. E.

    2018-04-01

    We use the Sloan Digital Sky Survey (SDSS)-Gaia Catalogue to identify six new pieces of halo substructure. SDSS-Gaia is an astrometric catalogue that exploits SDSS data release 9 to provide first epoch photometry for objects in the Gaia source catalogue. We use a version of the catalogue containing 245 316 stars with all phase-space coordinates within a heliocentric distance of ˜10 kpc. We devise a method to assess the significance of halo substructures based on their clustering in velocity space. The two most substantial structures are multiple wraps of a stream which has undergone considerable phase mixing (S1, with 94 members) and a kinematically cold stream (S2, with 61 members). The member stars of S1 have a median position of (X, Y, Z) = (8.12, -0.22, 2.75) kpc and a median metallicity of [Fe/H] = -1.78. The stars of S2 have median coordinates (X, Y, Z) = (8.66, 0.30, 0.77) kpc and a median metallicity of [Fe/H] = -1.91. They lie in velocity space close to some of the stars in the stream reported by Helmi et al. By modelling, we estimate that both structures had progenitors with virial masses ≈1010M⊙ and infall times ≳ 9 Gyr ago. Using abundance matching, these correspond to stellar masses between 106 and 107M⊙. These are somewhat larger than the masses inferred through the mass-metallicity relation by factors of 5 to 15. Additionally, we identify two further substructures (S3 and S4 with 55 and 40 members) and two clusters or moving group (C1 and C2 with 24 and 12) members. In all six cases, clustering in kinematics is found to correspond to clustering in both configuration space and metallicity, adding credence to the reliability of our detections.

  5. GAGA: a new algorithm for genomic inference of geographic ancestry reveals fine level population substructure in Europeans.

    PubMed

    Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred

    2014-02-01

    Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to evolutionary biology, behavioural ecology, medicine, and forensics.

  6. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  7. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear structure with accurate results even with measurement noise, model error and environmental disturbances.

  8. Social-group identity and population substructure in admixed populations in New Mexico and Latin America

    PubMed Central

    Healy, Meghan E.; Hill, Deirdre; Berwick, Marianne; Edgar, Heather; Gross, Jessica

    2017-01-01

    We examined the relationship between continental-level genetic ancestry and racial and ethnic identity in an admixed population in New Mexico with the goal of increasing our understanding of how racial and ethnic identity influence genetic substructure in admixed populations. Our sample consists of 98 New Mexicans who self-identified as Hispanic or Latino (NM-HL) and who further categorized themselves by race and ethnic subgroup membership. The genetic data consist of 270 newly-published autosomal microsatellites from the NM-HL sample and previously published data from 57 globally distributed populations, including 13 admixed samples from Central and South America. For these data, we 1) summarized the major axes of genetic variation using principal component analyses, 2) performed tests of Hardy Weinberg equilibrium, 3) compared empirical genetic ancestry distributions to those predicted under a model of admixture that lacked substructure, 4) tested the hypotheses that individuals in each sample had 100%, 0%, and the sample-mean percentage of African, European, and Native American ancestry. We found that most NM-HL identify themselves and their parents as belonging to one of two groups, conforming to a region-specific narrative that distinguishes recent immigrants from Mexico from individuals whose families have resided in New Mexico for generations and who emphasize their Spanish heritage. The “Spanish” group had significantly lower Native American ancestry and higher European ancestry than the “Mexican” group. Positive FIS values, PCA plots, and heterogeneous ancestry distributions suggest that most Central and South America admixed samples also contain substructure, and that this substructure may be related to variation in social identity. Genetic substructure appears to be common in admixed populations in the Americas and may confound attempts to identify disease-causing genes and to understand the social causes of variation in health outcomes and social inequality. PMID:28977000

  9. A new in silico classification model for ready biodegradability, based on molecular fragments.

    PubMed

    Lombardo, Anna; Pizzo, Fabiola; Benfenati, Emilio; Manganaro, Alberto; Ferrari, Thomas; Gini, Giuseppina

    2014-08-01

    Regulations such as the European REACH (Registration, Evaluation, Authorization and restriction of Chemicals) often require chemicals to be evaluated for ready biodegradability, to assess the potential risk for environmental and human health. Because not all chemicals can be tested, there is an increasing demand for tools for quick and inexpensive biodegradability screening, such as computer-based (in silico) theoretical models. We developed an in silico model starting from a dataset of 728 chemicals with ready biodegradability data (MITI-test Ministry of International Trade and Industry). We used the novel software SARpy to automatically extract, through a structural fragmentation process, a set of substructures statistically related to ready biodegradability. Then, we analysed these substructures in order to build some general rules. The model consists of a rule-set made up of the combination of the statistically relevant fragments and of the expert-based rules. The model gives good statistical performance with 92%, 82% and 76% accuracy on the training, test and external set respectively. These results are comparable with other in silico models like BIOWIN developed by the United States Environmental Protection Agency (EPA); moreover this new model includes an easily understandable explanation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. SMMRNA: a database of small molecule modulators of RNA

    PubMed Central

    Mehta, Ankita; Sonam, Surabhi; Gouri, Isha; Loharch, Saurabh; Sharma, Deepak K.; Parkesh, Raman

    2014-01-01

    We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA. Currently, SMMRNA consists of ∼770 unique ligands along with structural images of RNA molecules. Each ligand in the SMMRNA contains information such as Kd, Ki, IC50, ΔTm, molecular weight (MW), hydrogen donor and acceptor count, XlogP, number of rotatable bonds, number of aromatic rings and 2D and 3D structures. These parameters can be explored using text search, advanced search, substructure and similarity-based analysis tools that are embedded in SMMRNA. A structure editor is provided for 3D visualization of ligands. Advance analysis can be performed using substructure and OpenBabel-based chemical similarity fingerprints. Upload facility for both RNA and ligands is also provided. The physicochemical properties of the ligands were further examined using OpenBabel descriptors, hierarchical clustering, binning partition and multidimensional scaling. We have also generated a 3D conformation database of ligands to support the structure and ligand-based screening. SMMRNA provides comprehensive resource for further design, development and refinement of small molecule modulators for selective targeting of RNA molecules. PMID:24163098

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolvedmore » maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.« less

  13. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  14. Investigating dark matter substructure with pulsar timing - II. Improved limits on small-scale cosmology

    NASA Astrophysics Data System (ADS)

    Clark, Hamish A.; Lewis, Geraint F.; Scott, Pat

    2016-02-01

    Ultracompact minihaloes (UCMHs) have been proposed as a type of dark matter substructure seeded by large-amplitude primordial perturbations and topological defects. UCMHs are expected to survive to the present era, allowing constraints to be placed on their cosmic abundance using observations within our own Galaxy. Constraints on their number density can be linked to conditions in the early Universe that impact structure formation, such as increased primordial power on small scales, generic weak non-Gaussianity, and the presence of cosmic strings. We use new constraints on the abundance of UCMHs from pulsar timing to place generalized limits on the parameters of each of these cosmological scenarios. At some scales, the limits are the strongest to date, exceeding those from dark matter annihilation. Our new limits have the added advantage of being independent of the particle nature of dark matter, as they are based only on gravitational effects.

  15. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  16. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Jung, Jinjoo; Koo, Jaeyoung; Cho, Wansang; Lee, Won Seok; Kim, Chanwoo; Park, Wonwoo; Park, Seung Bum

    2016-10-01

    Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.

  17. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.

  18. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  19. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    PubMed

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  20. The genetics of amphibian decline: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data

    USGS Publications Warehouse

    Shaffer, H. Bradley; Fellers, Gary M.; Magee, Allison; Voss, S. Randal

    2000-01-01

    We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.

  1. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

    PubMed Central

    Tulapornchai, Chantana; Mamani, Jatuphol; Kamchatphai, Wannaporn; Thongpun, Noparat

    2013-01-01

    PURPOSE The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at α=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS L*, a*, and b* values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ΔE*ab values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION No significant differences were observed between the L*, a*, and b* values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ΔE*ab values. PMID:24049574

  2. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    PubMed

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  3. Numerical modeling of hydrodynamics and sediment transport—an integrated approach

    NASA Astrophysics Data System (ADS)

    Gic-Grusza, Gabriela; Dudkowska, Aleksandra

    2017-10-01

    Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind-wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.

  4. Three integrated projects to enhance non-contact rail inspection technology for application to substructure health evaluation on both rail and road bridges : final project report.

    DOT National Transportation Integrated Search

    2014-01-01

    Causing loss of use and sometimes life, bridge collapses are always high profile and hit many wallets. The economic benefits of condition-based maintenance are well established, including reduced visual inspection and potentially longer structural li...

  5. FilTer BaSe: A web accessible chemical database for small compound libraries.

    PubMed

    Kolte, Baban S; Londhe, Sanjay R; Solanki, Bhushan R; Gacche, Rajesh N; Meshram, Rohan J

    2018-03-01

    Finding novel chemical agents for targeting disease associated drug targets often requires screening of large number of new chemical libraries. In silico methods are generally implemented at initial stages for virtual screening. Filtering of such compound libraries on physicochemical and substructure ground is done to ensure elimination of compounds with undesired chemical properties. Filtering procedure, is redundant, time consuming and requires efficient bioinformatics/computer manpower along with high end software involving huge capital investment that forms a major obstacle in drug discovery projects in academic setup. We present an open source resource, FilTer BaSe- a chemoinformatics platform (http://bioinfo.net.in/filterbase/) that host fully filtered, ready to use compound libraries with workable size. The resource also hosts a database that enables efficient searching the chemical space of around 348,000 compounds on the basis of physicochemical and substructure properties. Ready to use compound libraries and database presented here is expected to aid a helping hand for new drug developers and medicinal chemists. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  7. Substructure analysis techniques and automation. [to eliminate logistical data handling and generation chores

    NASA Technical Reports Server (NTRS)

    Hennrich, C. W.; Konrath, E. J., Jr.

    1973-01-01

    A basic automated substructure analysis capability for NASTRAN is presented which eliminates most of the logistical data handling and generation chores that are currently associated with the method. Rigid formats are proposed which will accomplish this using three new modules, all of which can be added to level 16 with a relatively small effort.

  8. Erratum: Substructure in clusters of galaxies and the value of {OMEGA}

    NASA Astrophysics Data System (ADS)

    Dutta, Suvendra N.

    1996-05-01

    The paper `Substructure in clusters of galaxies and the value of {OMEGA}' was published in Mon. Not. R. Astron. Soc. 276, 1109- 1115(1995). Unfortunately, the wrong set of figures was inadvertently supplied to the publishers after the paper had been accepted. The correct figures are reproduced below, with the corresponding captions. [See Journal].

  9. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  10. Towards an understanding of the correlations in jet substructure

    DOE PAGES

    Adams, D.; Arce, A.; Asquith, L.; ...

    2015-09-09

    Over the past decade, a large number of jet substructure observables have been proposed in the literature, and explored at the LHC experiments. Such observables attempt to utilize the internal structure of jets in order to distinguish those initiated by quarks, gluons, or by boosted heavy objects, such as top quarks and W bosons. This report, originating from and motivated by the BOOST2013 workshop, presents original particle-level studies that aim to improve our understanding of the relationships between jet substructure observables, their complementarity, and their dependence on the underlying jet properties, particularly the jet radius and jet transverse momentum. Thismore » is explored in the context of quark/gluon discrimination, boosted W boson tagging and boosted top quark tagging.« less

  11. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    PubMed

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  12. Terahertz near-field imaging of surface plasmon waves in graphene structures

    DOE PAGES

    Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...

    2015-09-08

    In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

  13. Alarms about structural alerts.

    PubMed

    Alves, Vinicius; Muratov, Eugene; Capuzzi, Stephen; Politi, Regina; Low, Yen; Braga, Rodolpho; Zakharov, Alexey V; Sedykh, Alexander; Mokshyna, Elena; Farag, Sherif; Andrade, Carolina; Kuz'min, Victor; Fourches, Denis; Tropsha, Alexander

    2016-08-21

    Structural alerts are widely accepted in chemical toxicology and regulatory decision support as a simple and transparent means to flag potential chemical hazards or group compounds into categories for read-across. However, there has been a growing concern that alerts disproportionally flag too many chemicals as toxic, which questions their reliability as toxicity markers. Conversely, the rigorously developed and properly validated statistical QSAR models can accurately and reliably predict the toxicity of a chemical; however, their use in regulatory toxicology has been hampered by the lack of transparency and interpretability. We demonstrate that contrary to the common perception of QSAR models as "black boxes" they can be used to identify statistically significant chemical substructures (QSAR-based alerts) that influence toxicity. We show through several case studies, however, that the mere presence of structural alerts in a chemical, irrespective of the derivation method (expert-based or QSAR-based), should be perceived only as hypotheses of possible toxicological effect. We propose a new approach that synergistically integrates structural alerts and rigorously validated QSAR models for a more transparent and accurate safety assessment of new chemicals.

  14. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  15. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  16. Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Kakoulaki, Georgia; Vousdoukas, Michalis; Voukouvalas, Evangelos; Feyen, Luc; Besio, Giovanni

    2018-06-01

    Parameterizing the dissipative effects of small, unresolved coastal features, is fundamental to improve the skills of wave models. The established technique to deal with this problem consists in reducing the amount of energy advected within the propagation scheme, and is currently available only for regular grids. To find a more general approach, Mentaschi et al., 2015b formulated a technique based on source terms, and validated it on synthetic case studies. This technique separates the parameterization of the unresolved features from the energy advection, and can therefore be applied to any numerical scheme and to any type of mesh. Here we developed an open-source library for the estimation of the transparency coefficients needed by this approach, from bathymetric data and for any type of mesh. The spectral wave model WAVEWATCH III was used to show that in a real-world domain, such as the Caribbean Sea, the proposed approach has skills comparable and sometimes better than the established propagation-based technique.

  17. Fully nonlocal inelastic scattering computations for spectroscopical transmission electron microscopy methods

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Lubk, Axel; Spiegelberg, Jakob; Tyutyunnikov, Dmitry

    2017-12-01

    The complex interplay of elastic and inelastic scattering amenable to different levels of approximation constitutes the major challenge for the computation and hence interpretation of TEM-based spectroscopical methods. The two major approaches to calculate inelastic scattering cross sections of fast electrons on crystals—Yoshioka-equations-based forward propagation and the reciprocal wave method—are founded in two conceptually differing schemes—a numerical forward integration of each inelastically scattered wave function, yielding the exit density matrix, and a computation of inelastic scattering matrix elements using elastically scattered initial and final states (double channeling). Here, we compare both approaches and show that the latter is computationally competitive to the former by exploiting analytical integration schemes over multiple excited states. Moreover, we show how to include full nonlocality of the inelastic scattering event, neglected in the forward propagation approaches, at no additional computing costs in the reciprocal wave method. Detailed simulations show in some cases significant errors due to the z -locality approximation and hence pitfalls in the interpretation of spectroscopical TEM results.

  18. Finite element based N-Port model for preliminary design of multibody systems

    NASA Astrophysics Data System (ADS)

    Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice

    2018-02-01

    This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.

  19. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  20. Structure and Population of the Andromeda Stellar Halo from a Subaru/Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka; Guhathakurta, Puragra; Kalirai, Jason S.; Iye, Masanori

    2010-01-01

    We present a photometric survey of the stellar halo of the nearest giant spiral galaxy, Andromeda (M31), using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-of-sight distance, surface brightness, metallicity, and age. These are used to isolate and characterize different components of the M31 halo: (1) the giant southern stream (GSS); (2) several other substructures; and (3) the smooth halo. First, the GSS is characterized by a broad red giant branch (RGB) and a metal-rich/intermediate-age red clump (RC). The I magnitude of the well-defined tip of the RGB suggests that the distance to the observed GSS field is (m - M)0 = 24.73 ± 0.11 (883 ± 45 kpc) at a projected radius of R ~ 30 kpc from M31's center. The GSS shows a high metallicity peaked at [Fe/H]gsim-0.5 with a mean (median) of -0.7 (-0.6), estimated via comparison with theoretical isochrones. Combined with the luminosity of the RC, we estimate the mean age of its stellar population to be ~8 Gyr. The mass of its progenitor galaxy is likely in the range of 107-109 M sun. Second, we study M31's halo substructure along the northwest/southeast minor axis out to R ~ 100 kpc and the southwest major-axis region at R ~ 60 kpc. We confirm two substructures in the southeast halo reported by Ibata et al. and discover two overdense substructures in the northwest halo. We investigate the properties of these four substructures as well as other structures including the western shelf and find that differences in stellar populations among these systems, thereby suggesting each has a different origin. Our statistical analysis implies that the M31 halo as a whole may contain at least 16 substructures, each with a different origin, so its outer halo has experienced at least this many accretion events involving dwarf satellites with mass 107-109 M sun since a redshift of z ~ 1. Third, we investigate the properties of an underlying, smooth, and extended halo component out to R>100 kpc. We find that the surface density of this smooth halo can be fitted to a Hernquist model of scale radius ~17 kpc or a power-law profile with Σ(R) vprop R -2.17±0.15. In contrast to the relative smoothness of the halo density profile, its metallicity distribution appears to be spatially non-uniform with non-monotonic variations with radius, suggesting that the halo population has not had sufficient time to dynamically homogenize the accreted populations. Further implications for the formation of the M31 halo are discussed. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr

    2010-03-24

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less

  2. Breakpoint Forcing Revisited: Phase Between Forcing and Response

    NASA Astrophysics Data System (ADS)

    Contardo, S.; Symonds, G.; Dufois, F.

    2018-02-01

    Using the breakpoint forcing model, for long wave generation in the surf zone, expressions for the phase difference between the breakpoint-forced long waves and the incident short wave groups are obtained. Contrary to assumptions made in previous studies, the breakpoint-forced long waves and incident wave groups are not in phase and outgoing breakpoint-forced long waves and incident wave groups are not π out of phase. The phase between the breakpoint-forced long wave and the incident wave group is shown to depend on beach geometry and wave group parameters. The breakpoint-forced incoming long wave lags behind the wave group, by a phase smaller than π/2. The phase lag decreases as the beach slope decreases and the group frequency increases, approaching approximately π/16 within reasonable limits of the parameter space. The phase between the breakpoint-forced outgoing long wave and the wave group is between π/2 and π and it increases as the beach slope decreases and the group frequency increases, approaching 15π/16 within reasonable limits of the parameter space. The phase between the standing long wave (composed of the incoming long wave and its reflection) and the incident wave group tends to zero when the wave group is long compared to the surf zone width. These results clarify the phase relationships in the breakpoint forcing model and provide a new base for the identification of breakpoint forcing signal from observations, laboratory experiments and numerical modeling.

  3. Characterizing Bonding Patterns in Diradicals and Triradicals by Density-Based Wave Function Analysis: A Uniform Approach.

    PubMed

    Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I

    2018-02-13

    Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.

  4. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    NASA Astrophysics Data System (ADS)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  5. Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet.

    PubMed

    Scott, Gregory G; Margulies, Susan S; Coats, Brittany

    2016-10-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. To help understand and better predict TBI, researchers have developed complex finite element (FE) models of the head which incorporate many biological structures such as scalp, skull, meninges, brain (with gray/white matter differentiation), and vasculature. However, most models drastically simplify the membranes and substructures between the pia and arachnoid membranes. We hypothesize that substructures in the pia-arachnoid complex (PAC) contribute substantially to brain deformation following head rotation, and that when included in FE models accuracy of extra-axial hemorrhage prediction improves. To test these hypotheses, microscale FE models of the PAC were developed to span the variability of PAC substructure anatomy and regional density. The constitutive response of these models were then integrated into an existing macroscale FE model of the immature piglet brain to identify changes in cortical stress distribution and predictions of extra-axial hemorrhage (EAH). Incorporating regional variability of PAC substructures substantially altered the distribution of principal stress on the cortical surface of the brain compared to a uniform representation of the PAC. Simulations of 24 non-impact rapid head rotations in an immature piglet animal model resulted in improved accuracy of EAH prediction (to 94 % sensitivity, 100 % specificity), as well as a high accuracy in regional hemorrhage prediction (to 82-100 % sensitivity, 100 % specificity). We conclude that including a biofidelic PAC substructure variability in FE models of the head is essential for improved predictions of hemorrhage at the brain/skull interface.

  6. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  7. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy

    DOE PAGES

    Miao, Jiashi; Slone, C. E.; Smith, T. M.; ...

    2017-05-15

    The equiatomic NiCoCr alloy exhibits an excellent combination of strength and ductility, even greater than the FeNiCrCoMn high entropy alloy, and also displays a simultaneous increase in strength and ductility with decreasing the testing temperature. To systemically investigate the origin of the exceptional properties of NiCoCr alloy, which are related to the evolution of the deformation substructure with strain, interrupted tensile testing was conducted on the equiatomic NiCoCr single-phase solid solution alloy at both cryogenic and room temperatures at five different plastic strain levels of 1.5%, 6.5%, 29%, 50% and 70%. The evolution of deformation substructure was examined using electronmore » backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), conventional transmission electron microscopy (CTEM), diffraction contrast imaging using STEM (DCI-STEM) and atomic resolution scanning transmission electron microscopy. While the deformation substructure mainly consisted of planar dislocation slip and the dissociation of dislocations into stacking faults at small strain levels (≤6.5%), at larger strain levels, additional substructures including nanotwins and a new phase with hexagonal close packed (HCP) lamellae also appeared. The volume fraction of the HCP lamellae increases with increasing deformation, especially at cryogenic temperature. First principles calculations at 0 K indicate that the HCP phase is indeed energetically favorable relative to FCC for this composition. In conclusion, the effects of the nanotwin and HCP lamellar structures on hardening rate and ductility at both cryogenic and room temperature are qualitatively discussed.« less

  8. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  9. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  10. Cracks in Complex Bodies: Covariance of Tip Balances

    NASA Astrophysics Data System (ADS)

    Mariano, Paolo Maria

    2008-04-01

    In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.

  11. Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.

    1995-01-01

    The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.

  12. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  13. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  14. Rapid impact testing for quantitative assessment of large populations of bridges

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  15. Bayesian evidence computation for model selection in non-linear geoacoustic inference problems.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Osler, John C

    2010-12-01

    This paper applies a general Bayesian inference approach, based on Bayesian evidence computation, to geoacoustic inversion of interface-wave dispersion data. Quantitative model selection is carried out by computing the evidence (normalizing constants) for several model parameterizations using annealed importance sampling. The resulting posterior probability density estimate is compared to estimates obtained from Metropolis-Hastings sampling to ensure consistent results. The approach is applied to invert interface-wave dispersion data collected on the Scotian Shelf, off the east coast of Canada for the sediment shear-wave velocity profile. Results are consistent with previous work on these data but extend the analysis to a rigorous approach including model selection and uncertainty analysis. The results are also consistent with core samples and seismic reflection measurements carried out in the area.

  16. Wave simulation for the design of an innovative quay wall: the case of Vlorë Harbour

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Archetti, Renata; Lamberti, Alberto

    2017-01-01

    Sea states and environmental conditions are basic data for the design of marine structures. Hindcasted wave data have been applied here with the aim of identifying the proper design conditions for an innovative quay wall concept. In this paper, the results of a computational fluid dynamics model are used to optimise the new absorbing quay wall of Vlorë Harbour (Republic of Albania) and define the design loads under extreme wave conditions. The design wave states at the harbour entrance have been estimated analysing 31 years of hindcasted wave data simulated through the application of WaveWatch III. Due to the particular geography and topography of the Bay of Vlorë, wave conditions generated from the north-west are transferred to the harbour entrance with the application of a 2-D spectral wave module, whereas southern wave states, which are also the most critical for the port structures, are defined by means of a wave generation model, according to the available wind measurements. Finally, the identified extreme events have been used, through the NewWave approach, as boundary conditions for the numerical analysis of the interaction between the quay wall and the extreme events. The results show that the proposed method, based on numerical modelling at different scales from macro to meso and to micro, allows for the identification of the best site-specific solutions, also for a location devoid of any wave measurement. In this light, the objectives of the paper are two-fold. First, they show the application of sea condition estimations through the use of wave hindcasted data in order to properly define the design wave conditions for a new harbour structure. Second, they present a new approach for investigating an innovative absorbing quay wall based on CFD modelling and the NewWave theory.

  17. A Novel Approach to Constrain Near-Surface Seismic Wave Speed Based on Polarization Analysis

    NASA Astrophysics Data System (ADS)

    Park, S.; Ishii, M.

    2016-12-01

    Understanding the seismic responses of cities around the world is essential for the risk assessment of earthquake hazards. One of the important parameters is the elastic structure of the sites, in particular, near-surface seismic wave speed, that influences the level of ground shaking. Many methods have been developed to constrain the elastic structure of the populated sites or urban basins, and here, we introduce a new technique based on analyzing the polarization content or the three-dimensional particle motion of seismic phases arriving at the sites. Polarization analysis of three-component seismic data was widely used up to about two decades ago, to detect signals and identify different types of seismic arrivals. Today, we have good understanding of the expected polarization direction and ray parameter for seismic wave arrivals that are calculated based on a reference seismic model. The polarization of a given phase is also strongly sensitive to the elastic wave speed immediately beneath the station. This allows us to compare the observed and predicted polarization directions of incoming body waves and infer the near-surface wave speed. This approach is applied to High-Sensitivity Seismograph Network in Japan, where we benchmark the results against the well-log data that are available at most stations. There is a good agreement between our estimates of seismic wave speeds and those from well logs, confirming the efficacy of the new method. In most urban environments, where well logging is not a practical option for measuring the seismic wave speeds, this method can provide a reliable, non-invasive, and computationally inexpensive estimate of near-surface elastic properties.

  18. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  19. Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas

    2012-06-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  20. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

Top